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Abstract. Histograms are used to analyze and index images. They have been found experimentally to have low
sensitivity to certain types of image morphisms, for example, viewpoint changes and object deformations. The pre-
cise effect of these image morphisms on the histogram, however, has not been studied. In this work we derive the
complete class of local transformations that preserve or scale the magnitude of the histogram of all images. We also
derive a more general class of local transformations that preserve the histogram relative to a particular image. To
achieve this, the transformations are represented as solutions to families of vector fields acting on the image. The
local effect of fixed points of the fields on the histograms is also analyzed. The analytical results are verified with
several examples. We also discuss several applications and the significance of these transformations for histogram

indexing.
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1. Introduction

Histograms have been widely used to represent, ana-
lyze, and characterize images. One of their initial appli-
cations in indexing was the work of Swain and Ballard
for the identification of 3D objects (Swain and Ballard,
1991). Currently, histograms are an important tool for
the retrieval of images and video from visual databases
(Niblack, 1993; Zhang et al., 1993; Smoliar and Wu,
1995; Bach et al., 1996). Some of the reasons for their
wide applicability are that they can be computed easily
and fast, they achieve significant data reduction, and
they are robust to noise and local image transforma-
tions. Furthermore, in images that contain low level
information, the histogram can be used to character-
ize the images. Images of manmade environments can-
not always be classified using their histogram. Many
manmade objects, however, have characteristic colors
(Swain and Ballard, 1991). Further, the color proper-
ties of an object must be considered to make a recogni-
tion system complete. That is, a system should be able

to discriminate between objects that are geometrically
identical but have different colors.

Following the initial work of Swain and Ballard
(1991) various indexing and recognition systems
(Stricker and Orengo, 1995; Finlayson et al., 1996)
based on histograms were developed. Several obser-
vations have been made about the sensitivity of the
histogram to image transformations. More precisely, it
is generally accepted that the histogram is relatively in-
sensitive to viewpoint changes, and that it is possible to
account for scale changes of its magnitude (Cohen and
Guibas, 1999). More generally, several authors (Swain
and Ballard, 1991; Finlayson et al., 1996) observed that
histograms are insensitive even under certain object
deformations.

The local and global histogram are also pre-
served under locally orderless transformations. One
such example is error diffusion. This representation
was analyzed extensively in the context of signal
coding (Anastassiou, 1989). Griffin generalized this
model and introduced it into computational vision as
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scale-imprecision representation (Griffin, 1997). Later,
Koenderink and Van Doorn formalized this repre-
sentation into a locally orderless model for images
(Koenderink and Doorn, 1999). Ginneken and Romeny
discussed several applications of the locally orderless
model (Ginneken and Romeny, 2000). These represen-
tations are the result of local and discontinuous trans-
formations. In this work we examine the condition
that local continuous transformations should satisfy to
preserve the histogram.

We study the invariances of histograms with respect
to transformations by describing those transformations
in terms of vector fields. Vector fields are also widely
used to represent images and optical flow. Primarily,
they are used to model rigid and non-rigid motion.
Some examples are fluid flow, deformations of textile
textures, rubber deformations, and face motion (Huang,
1990). In addition, vector fields have also been used
to model oriented planar textures (Kass and Witkin,
1987; Rao and Jain, 1992). Image vector fields have
been expressed in terms of differential equations (Verri
and Poggio, 1989; Verri et al., 1989). It has also been
shown that the projection of 3D motion on the 2D im-
age plane creates a motion field that can also be ex-
pressed in terms of differential equations. In a more
general context, the effect of vector fields on their do-
main is represented with the integral theorems of Gauss
and Stokes (Spivak, 1965; Marsden and Tromba, 1988;
Arnold, 1989). The effect of vector fields on the his-
togram of an image, however, has not been studied to
our knowledge.

The topology of continuous vector fields can be de-
termined by the local topology around points where
the field is zero, namely fixed points (Andronov et al.,
1973). Therefore, the detection and characterization of
such points is important (Ford et al., 1994; Giachetti
and Torre, 1996). Sander and Zucker (1992) and Kass
and Witkin (1987) detected fixed points using the Poin-
carre’s winding number of the vector field (Andronov
et al., 1973; Ford et al., 1994).

In this work we first discuss some general types of
transformations that preserve the histograms. Then we
study the effect of continuous transformations on the
histograms and relate continuous transformations to
continuous vector fields. In this context the domain
of the images is continuous and can be measured with
the Lebesgue measure (Royden, 1968). We define the
histogram in terms of a density function on grayscale
intensities. This density is derived from the Radon—
Nicodym derivative of push-forward of area measure

on the image to intensities (Royden, 1968). Using
these models we derive the complete class of local im-
age transformations, given as solutions of flow equa-
tions, that preserve the histogram or simply scale its
magnitude.

In particular, we show that vector fields which
preserve the histogram are divergence free and
Hamiltonian (Abraham and Marsden, 1978; Arnold,
1989; Hadjidemetriou et al., 2000). We also show that
fields whose divergence is constant simply scale the
histogram (Hadjidemetriou et al., 2000). Further, we
present more general classes of continuous transfor-
mations that preserve the histogram relative to a par-
ticular image. Finally, we analyze the effect of fixed
points of the field on the histogram. The results are
verified with several examples. We also discuss appli-
cations and the significance of these transformations.
Thus, we completely describe the class of local contin-
uous transformations with respect to which histogram
recognition systems are insensitive.

2. General Invariance of Histograms

To study the invariance of the histogram with image
transformations we note that transformations belong
to two classes, namely, discontinuous and continuous.
For discontinuous transformations it is obvious that re-
arranging different regions of the image by cutting,
pasting, or reflecting can preserve the histogram. Such
transformations preserve the global histogram.! In ad-
dition to these global transformations, individual pix-
els can also be rearranged. Clearly, permutations of the
pixels in an image can preserve the global histogram.
If these permutations are done locally, the local his-
tograms are preserved. For example different types of
halftoning and error diffusion (Ulichney, 1988; Foley
et al., 1996; Anastassiou, 1989). Griffin (1997) and
Koenderink and Van Doorn (1999) formalized the lo-
cally orderless image representation, similar to error
diffusion. They introduced it into computational vision,
and provided a mathematical model for their repre-
sentation. These orderless transformations are usually
modeled stochastically (Anastassiou, 1989; Ulichney,
1988).

Unlike permutations of regions and pixels, many of
the transformations that arise in computer vision, such
as projective transformations, optical flow, and defor-
mations are locally continuous. That is, they are the
result of continuous vector fields. In this work, we will
examine histogram preserving transformations that can



be analyzed into continuous vector fields. Such trans-
formations preserve not only the global histograms, but
also the local histograms. Some simple examples are
the translations and rotations. These transformations
are called isometries. Furthermore, there is a more gen-
eral class of exotic continuous local transformations
that are not isometries, but still preserve the histogram.
Such transformations, being the result of the action of
continuous fields, also preserve the image topology.

3. Effect of Continuous Vector Fields
on Histograms

As apreliminary step we present continuous models for
the domain of the image and the histogram. These mod-
els are useful for analytical purposes. We also give an
overview of the properties of continuous vector fields
and the resulting transformations. Then, we discuss
the effect of the vector fields on the domain of the
image. Finally, we give several examples of a partic-
ular type of continuous transformations, the gradient
transformations.

3.1. Continuous Model for the Domains
of the Images and the Histograms

We represent the image by an image intensity map.
The domain of the map is assumed to be spatially con-
tinuous with dimensions x and y (Spivak, 1965). This
intensity map for a single color channel is £:D — ‘R,
where D C 912 is the bounded region taken by the CCD
that lies on the image plane 9%, Similarly, for a color
image the intensity map is £:D — 91>, where R%R° is
a 3D color space, for example, RGB or HSV. Area of
the image domain can be computed with the Lebesgue
measure (Royden, 1968; Haaser and Sullivan, 1971).
The domain of the measure can be any countable and
bounded union or intersection of regions of the image
domain.

The density value of a bin in the discrete histogram
represents the number of pixels with values in the
intensity range associated with that bin. In our case
the bin densities represent image area and the his-
togram is a continuous density. The density value of
a bin associated with intensity interval U is the push
forward measure v given by: v(U) = [, ) dxdy.
This is because £ (U) is the part of the image that
has intensities within the range U, that is, £L~!(U) =
{(x,y) | (x,y) € R s.t. L(x, y) € U}. Therefore, mea-
sure v(U) is a real number equal to the area of the
image domain that has intensities in U. For example,
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if the domain U is the intensities in the interval [a, b],
the area in the image that has intensities in this range
is given by v([a, b]) = ftl([a,b]) dx dy.

The derivative of v(U) with respect to b happens to
be the Radon-Nycodim derivative g of v as a measure
(Royden, 1968) and gives the histogram as a continuous
density. Therefore,

v(U)E/ dxdyE/c]q>dr (1)
o-1(U) U

where r is a variable of intensities and U C fR is a set
of values of r. Formally:

Definition 1. A histogram is the Radon-Nikodym de-
rivative of the push forward of Lebesgue measure via
the intensity map (image).

The definition of the histogram in Eq. (1) can be ex-
tended for 3D color spaces. For example, to extend
to RGB space, instead of integrating over the single
grayscale dimension dr, as in Eq. (1), we should be
integrating over the three color dimensions drgdrgdrg.

3.2.  Background on Vector Fields

The domain of an image £ can be morphed to give a
new image £. An interesting class of morphisms are
the rubber deformations (Andronov et al., 1973). Such
deformations can stretch the domain at one or more
points, squeeze it, or locally change its shape and size.
They cannot, however, tear, fold, or reflect the domain.
Also, they do not create or destroy new regions. The
vector fields causing rubber deformations must be one-
to-one and continuous. More precisely, they must be
twice differentiable, C2. The mapping preserves the
topology of the image. It also maintain the intensity
values of the regions.

This class of deformations can be expressed in terms
of flow equations whose solutions (Spivak, 1965) give
rise to families of tranformations. A family or path of
transformations 7; is expressed as 7;(X) :D — R,
where X = (x, y) €D is a point in the image domain,
and r € R is the parameter of the transformation. We
assume that ¢ can vary continuously to give rise to a
continuous incremental process of infinitesimal trans-
formations. Transformations that arise in this manner
satisfy several properties. Clearly, they are differen-
tiable and give back the flow relations %’Tl = X, where
X 1is a vector field. Further, they include the identity
transformation, 7y = Id, a composition of two transfor-
mations gives a new transformation 7; o 7; = 7;,, and
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they are invertible. The inverse of 7; is given by 7_,.
This is because %7} + %T,, =X — X=0is equal to
zero. In other words, an image morphed by a differen-
tiable field can be transformed to give back the orig-
inal image. Transformations that satisfy these proper-
ties form a group (Rose, 1994). Some members of this
groups are rotations, scalings, and other more exotic
transformations we describe below.

The transformations of the images can be repre-
sented as an operation, or action (Rose, 1994), of a
group of transformations of 9% on images. An image
map L:D — R as a result of the action of a transfor-
mation becomes £ : D — 9R. In this work we will show
that to study the effect of transformations on the his-
togram of an image we only need to study the effect of
the corresponding vector fields (Spivak, 1965).

3.3.  Effect of Vector Fields on Image Domain

We would like to understand how transformations on
the plane affect the domain of the image and the his-
togram. In general, a vector field X changes the area
of an image and its histogram. To show this we break
up the image into differential regions dx dy. The differ-
ential regions that flow along the streamlines of a field
in general change their size and deform. This is shown
in Fig. 1 where the field acting on the image increases
the area around point O. The differential regions dx dy
that flow along the streamlines from an initial point I
close to point O to a final point F farther from point
O increase their size. Formally, the rate of change of
area per unit area is called divergence. Also, the final
size of differential regions is obtained by multiplying
the initial size by the determinant of the Jacobian of the
transformation, det%.

In Fig. 1 the divergence is greater than zero. There-
fore, the Jacobian is greater than one and thus, finally,
the value of the bins of the histogram associated with
intensities near point O are increased. More precisely,
the histogram is given by |, £-1(U) det 3737)%” dx dy, which
is different than the original given by Eq. (1). On the
other hand, if at point O of Fig. 1 the field was pointing
in the opposite direction, then the area would decrease
around Q. Thus, the value of the histogram bins associ-
ated with the intensities around O would also decrease.

A type of vector fields that arises in many applica-
tions is the gradient field (Marsden and Tromba, 1988)
of a certain function, H, given by

8H,+8H
= —1 —_—
ax ay

VH J: 2

/
/
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P

Figure 1. The area increases around the origin O. In other words,
the field has a positive divergence around the origin. The differential
areas that flow along the lines of the field from an initial point I close
to point O to a final point F farther from point O grow in size.

where V is the gradient, i is the unit vector along the
x axis, and j is the unit vector along the y axis. The
divergence of the gradient is the Laplacian. Some func-
tions H have zero Laplacian. Thus, they do not alter
the histogram, and are called harmonic. Not all func-
tions are harmonic. Instead, their vector fields contain
regions of both positive and negative divergence that, in
general distort the histogram. We will show, however,
that there is a class of gradient morphisms of non-zero
divergence that simply scale the amplitude of the his-
togram. Note that gradient fields, being continuous and
one-to-one, always preserve the topology of the image.

Gradient transformations can model the radial distor-
tion of a perfectly centered lens. Radial lens distortion
is modeled as (Weng et al., 1990; Swaminathan and
Nayar, 1999):

Ap =ksp* +ksp’ ©)

where p =./x2+ y? is the radial distance from the
principal point of the image, Ap is the radial distortion,
and k3 and ks are constants that depend on the particular
lens. By integrating Ap we obtain the corresponding
function Hj, that is

ok k
H,:/ Apdp = —p* + = p°
0

1 P “

where H, is the function of the gradient field of the
distortion.
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(a) Original (b) Gradient of (z2 4 y*)1-°

(22 +y%)m

(c) Gradient of sin ~—5 (d) Gradient of xy

(e) Gradient of z%y

Figure 2. In (a) we show the original image and in (b)-(e) we show four gradient morphisms of this image together with the functions
they correspond to. The gradient morphisms have a different histogram from the histogram of the original image. The actual dis-
tances between the histograms of these morphed images and the original image in (a) are shown in Table 2. Note that the origin of
the coordinate frame is the geometrical center of the original image, the x axis is horizontal, and the y axis is vertical.
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3.4.  Examples of Gradient Transformations

We implemented several gradient morphisms of the
test image shown in Fig. 2(a). Each one was derived
from a different function H. To implement them the
gradient field of the function was first computed with
Eq. (2). The image was then morphed by following
the tangent to the streamlines of the field with a large
number of small steps. This requires resampling of the
image, which was implemented using nearest neigh-
bor. We did not implement resampling with filtering
because that would introduce new intensity values not
present in the original histogram. Four examples of gra-
dient morphisms are shown in Fig. 2(b)—(e). Clearly,
the topology of the image in Fig. 2(c) is different than
that of Fig. 2(a). This is because the finite resolution
of the image makes regions that become very small
or very thin to disappear. Note that the morphed im-
ages were made rectangular by introducing a black
background.

The histograms corresponding to the gradient mor-
phisms were computed. Two of the histograms are
shown in Fig. 3 where the histograms of the red, green,

and blue channels are shown, respectively, from left
to right. In Fig. 3(a) we show the histogram of the
test image shown in Fig. 2(a). In Fig. 3(b) we show
the histogram of the gradient morphism of the image
shown in Fig. 2(c) that corresponds to the function
H = sin % For visualization purposes they were
normalized with respect to their most densely popu-
lated bin. Clearly, the two histograms are different. The
regions where the gradient field has divergence greater
than zero increase their contribution to the histogram,
whereas the regions that have negative divergence de-
crease their contribution. Note that the populated bins
in the histograms in Fig. 3(b) are a subset of those in
the histogram of the original image shown in Fig. 3(a).
This is because some of the regions disappeared, but
no new ones were created.

4. Image Independent Invariance of Histograms
in Vector Fields

We derive the class of transformations that preserve the
histogram of any image map L. Since the histogram is

(a) Histogram of original image in Fig. 2 (a)

M. |l| 1.| "™

bt wdl

(&2 4y*)n

(b) Histogram of gradient morphism obtained with sin *~—¢

Figure 3. Histograms of two of the images in Fig. 2. From left to right are the histograms of the red, green, and blue channels, respectively.
In (a) we show the histogram of the original image shown in Fig. 2(a). In (b) we show the histogram of the gradient morphism obtained with

2 2 . . . . . . ~ . . .
function sin W. The actual gradient morphism is shown in Fig. 2(c). We can see that the histogram of the gradient morphism is very

different than that of the original.



given by Eq. (1), we anlayze the transformations that
preserve the integral in Eq. (1) for all integration do-
mains £~ ! (U). For these transformations the histogram
remains invariant, independent of the image.

To analyze these transformations we again break up
the image into differential regions dx dy. If local size
is preserved everywhere, the value of the determinant
of the Jacobian of the transformation det% is one
for all differential regions. Consequently, the histogram
givenby [, ., det T

5 g ) dx dyis also preserved. On the
other hand, when the histogram is preserved for all
images L, it can be shown that the determinant has to
be unity everywhere. Therefore, the area is preserved.
More formally:

Proposition 1. Transformations T,(X) are locally
area preserving if and only if they preserve the his-
tograms of every image L.

This is proved in Section A.1 of the appendix.

In general, a vector field X contains both regions
of positive divergence that create area and regions of
negative divergence that destroy area. If there are no re-
gions of positive or negative divergence, however, the
differential regions flow and deform but do not change
their sizes. For example, in the field in Fig. 4 the dif-
ferential square dx dy moves from point I to point F,
while its size remains invariant. The determinant of the
Jacobian of such transformations is unity for all values
of ¢. The rate of change of area and the divergence are

P e P e e il sl e

e el el Tl el =l

Figure 4. This field does not have regions of positive and negative
divergence. Therefore, the areas of differential regions dx dy stay the
same as they move along the streamlines of the field from initial point
I to final point F.
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zero. The rate of area change for the entire image is
given by the integral of the divergence over the domain
of the image. That is, dlii(t’) li=t, = fvo divX dxdy, where
to is the initial time, V is the initial area, and v(¢) is
the area at time 7. If a field has zero divergence over
the entire image, for all 7, the total image area does not

change and vice versa. That is,

Proposition2. Transformations 7, with %’T, = X are
locally area preserving if and only if divX = 0.

This is proved in Section A.2 of the appendix.

It is also possible to generate all vector fields that
satisfy Proposition 2. To see this, take a function
H :D — R. The isovalue contours of this function are
given by H (x, y) =k, where k is a constant. The gra-
dient of H is normal to its isovalue contours and points
in the direction in which the area changes maximally.
If we rotate the gradient field at every point by 90°,
we obtain a new field, which is tangent to the iso-
value contours of H. Flow along isovalue contours
does not change the area, and the field has zero diver-
gence. Such fields are called Hamiltonian and the flow
along them is called phase flow. In 2D they are given
by:

where Ry is the antisymmetric rotation matrix [1)1 (1)],
and H is called the Hamiltonian function or energy
function of the field. An example is Fig. 5, where
Fig. 5(a) shows the function H = sin(xy) and its
contours around the origin. Figure 5(b) shows the
flow along the contours, that is the corresponding
Hamiltonian field. Moreover, the reverse also holds.
That is, if a field preserves the histogram of an image,
it is Hamiltonian. More formally:

Proposition 3. A vector field X (twice differentiable)
is divergence free if and only if it is Hamiltonian.

This is proved in Section A.3 of the appendix.

The if and only if Propositions 1-3 can be combined
to show that the histogram preserving transformations
arise as solutions to a particular family of vector fields
called Hamiltonian. More precisely:

Theorem 1. A family of transformations I; which
arise as the solutions to a vector field X preserve the
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(a) Isovalue contours
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(b) Hamiltonian field

Figure 5. The image in (a) shows the energy function H = sin(xy) and its contours around the origin. Brightness is proportional to function
value. The image in (b) shows the Hamiltonian field that corresponds to the flow along the isovalue contours of this function.

histograms of all images if and only if vector field X is
Hamiltonian.

Proof: Propositions 1 and 2 show that the histogram
is preserved if and only if the divergence of the field is
zero. In turn, this combined with Proposition 3 proves
the theorem. O

The determinants of the Jacobian matrices of Hamilto-
nian transformations, 7; (X), are always equal to unity.”
This is a consequence of the area preservation property
of Liouville’s theorem (Arnold, 1989), which is also
the if part of Proposition 2. Some examples of linear
Hamiltonian transformations are shown in Table 1. As
expected, the determinants of all the matrices in Table 1
are equal to unity.

Harmonic functions have both gradient and
Hamiltonian fields which are divergence free. There-
fore, the gradient field of a certain harmonic function,
H, is also Hamiltonian of some other energy function
H. For example, the harmonic function H = xy has a
gradient field which is also the Hamiltonian field of en-
ergy function H = (y? — x2)/2. This field causes shear-
ing and an example is shown in Fig. 2(d).

Table 1. The Jacobian matrices of some linear Hamiltonian
transformations.

Group Jacobian
cost sint
—sint cost
1 ¢t
Shears <0 1 )
t 0
0 1/t

The determinant of the matrices is equal to one. Note that ¢ is the
parameter of the transformation.

Rotations

Stretches

4.1. Examples of Hamiltonian Transformations

We show several examples of linear and non-linear
Hamiltonian morphisms in Fig. 6. Each one is derived
from a different energy function H. These morphisms
were implemented similarly to the gradient ones as de-
scribed in Subsection 3.4. The only difference was that
the field applied was the Hamiltonian, given by Eq. (5),
instead of the gradient.

In Fig. 6(a) we show the original image, which is
the same as the original image shown in Fig. 2(a). In
Fig. 6(b)—(i) we show eight morphisms together with
the energy functions they correspond to. The origin
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(b) 2® (c) %y

() (a2 +y?)15 (f)sin Lz.il'.ai}z

2 2
(g) sin —)—{I':y T gin E=Y)T (h) z* + y* = 3(22 + 4?) (i) sin Ete)T tg L

a

Figure 6. In (a) we show the original test image. In (b)—(i) we show eight Hamiltonian morphisms of this image and the energy functions
they correspond to. All Hamiltonian morphisms have the same histogram as that of the original image, up to spatial quantization error. The
actual distances between the histograms of these morphed images and the original image in (a) are shown in Table 2. Note that the origin of the
coordinate frame is the geometrical center of the original image, the x axis is horizontal, and the y axis is vertical.
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(a) Histogram of original image in Fig. 2 (a)

i |

il H

(b) Histogram of Hamiltonian morphism obtained with (z2.0 + y2)°7

i

(c) Histogram of Hamiltonian morphism obtained with z* + y* — 3(z2 + y?)

(d) Histogram of Hamiltonian morphism obtained with sin

il

&4y
20

Figure 7. The histograms of several of the images in Fig. 6. From left to right are the histograms of the red, green, and blue channels of the
images. In (a) we show the histogram of the original image shown in Fig. 2(a). In (b)—(d) we show the histograms of Hamiltonian morphisms.
The actual Hamiltonian morphisms are shown in Fig. 6(d), (h), and (i), respectively. Clearly, the histograms of the Hamiltonians are almost the

same as that of the original.

of the coordinate axes is the geometrical center of the
original image. As we can see the transformed images
are severely distorted.

We computed the histograms of the Hamiltonian
morphisms. Some of the histograms are shown in

Fig. 7; from left to right we can see the histograms of
the red, green, and blue channels of the image, respec-
tively. In Fig. 7(a) we show the histogram of the origi-
nal image shown in Fig. 2(a). In Fig. 7(b)—(d) we show
the histograms of the Hamiltonian morphism shown



Table 2. The effects of the Hamiltonian and gradient morphisms
on the histogram.

Function Hamiltonian Gradient
x3 0.488 16.763
(24 y2)07 1.870 121.000
x4y 1.302 265.641
24 yHls 2.820 42.609
sin &0 1.003 12.182
2
((sin 521 1.083 11188
R 6.865 13.229
xy 2.609 1.773

The histograms used were the three 1D R, G, and B histograms.
The second column shows the distance of the histogram of the
Hamiltonian morphism from the histogram of the original im-
age shown in Fig. 2(a). The third column shows the distance of
the histogram of the gradient morphism from the histogram of the
same original image. Note that xy is a harmonic functions and
that is why both its gradient and Hamiltonian fields do little. The
distance is the L norm of the distance between the histograms
divided by the number of histogram bins (3 x 256).

in Fig. 6(d), (h), and (i), respectively. Clearly, the his-
tograms of the Hamiltonian morphisms are the same as
that of the original image.

We compared quantitatively the effects of the gradi-
ent and Hamiltonian morphisms of the same function
applied on the same image. Actually, we compared the
1D R, G, and B histograms of the morphed images.
We used the test image shown in Fig. 6(a). The second
column of Table 2 shows the distance between the his-
togram of the original image and the histogram after the
Hamiltonian morphism. The third column shows the
distance between the histogram of the original image
and the histogram after the gradient morphism. The dis-
tance between two histograms is the L; norm divided
by the number of histogram bins (3 x 256). Clearly,
the distance due to the Hamiltonian morphisms is very
small. The non-zero distance is due to resampling un-
der spatial and color quantization. On the other hand,
the distance due to the gradient morphisms is much
larger than that due to the Hamiltonian ones. That is,
although Hamiltonian morphisms severely distort the
image, the histogram of the image remains practically
the same. On the other hand, these gradient transfor-
mations sometimes look like the original image, as in
Fig. 2(b), but severely distort the histogram. The only
exception are the morphisms of the harmonic func-
tion xy, where both its gradient and Hamiltonian fields
preserve the histogram. Note that the functions were
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multiplied by different constant factors in each mor-
phism to restrict the size of the morphed images.

4.2.  Histogram Scaling Transformations

A certain class of gradient transformations simply
scales the histogram. This occurs when the area change
is uniformly distributed throughout the image, that is,
when the divergence is spatially constant. The rate of
area change is given by the divergence and the fac-
tor by which the area changes is given by the deter-
minant of the Jacobian of the transformation. That is,
Proposition 2 can be extended to state that transforma-
tions locally scale the area by a constant factor if and
only if their divergence is constant. Since the histogram
is linearly dependent upon the area of the image, the
magnitude of the histogram is scaled by the factor the
image area is scaled. Moreover, the reverse also holds.
That s, if the histogram is always scaled for any image,
the size of any local region in the image is scaled by the
same factor. Hence, the divergence, being the rate of
change of area per unit area, is also constant. In other
words, we can generalize Theorem 1 to obtain:

Theorem 2. A family of transformations T, which
arises as the solution to a vector field X scales the his-
tograms of all images if and only if the vector field has
constant divergence for all t. The scale factors are the
determinants of the Jacobians of the transformations
at any point.

This is proved in Section A.5 of the appendix.

A simple family of transformations that satisfies
Theorem 2 are the spatial image scalings, that is ex-
pansions and contractions. These transformations are
given by vector fields k;xi+k,yj, where ki, and k;
are constants. Such vector fields are the gradients of
(% + %) within an additive constant. The effect
of such a field on the histogram is given in row 3 of
Table 2. Clearly superimposing a Hamiltonian vector
field on a scaling vector field does not change the effect
the scaling transformation alone has on the histogram.
It can also be shown that the reverse also holds. That
is, if a transformation scales the histogram it is the re-
sult of the superposition of a scaling and a hamiltonian
transformation. More formally:

Proposition 4. A family of transformations I, which
arises as the solution to a vector field X scales the
histograms of all images if and only if the vector field
is the superposition of a scaling vector field given by
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kixi+ ko yj and an arbitrary Hamiltonian field, where
ky, and k, are constants.

This is proved in Section A.5 of the appendix.

In this case the divergence is a linear map from a
vector to a scalar. The null space of this map are the
divergence free vector fields (Hamiltonian).

5. Applications and Significance
of Hamiltonian Fields

We first study the effect of some projection models on
the histogram. Clearly, perspective projection does not
preserve the histogram. The perspective projection of
planar surfaces whose normal is parallel to the opti-
cal axis, and rototranslations of such surfaces, how-
ever, simply scale the histograms. We will also use the
two theorems presented previously to show that weak
perspective projection and paraperspective projection
of planar surfaces scale the histograms. Furthermore,
rototranslations about any axis under these projection
models also scale the histograms. We also give some
more general cases that can be modeled as Hamilto-
nian. Finally, we discuss the significance of Hamil-
tonian transformations for the histogram particularly
when it is used as an image feature.

5.1. Histograms under Weak Perspective Projection

Consider a planar patch, with some texture on it, in
a space equipped with an XyZ coordinate frame. The
weak perspective projection of this patch is shown in
Fig. 8(a). The first stage of the projection is an ortho-
graphic projection and the second is a mapping on the
image plane. The orthographic projection can be done
either frontally or under some arbitrary tilt ¢. The ef-
fect of a tilt is to transform the frontal orthographic
projection with an affine transformation (Basri, 1996).
In this case the affine transformation is a composition
of shearing and scaling. The shearing is a Hamiltonian
transformation. According to Theorem 1 it does not
affect the histogram. The scaling, however, does alter
the histogram. In particular, according to Theorem 2,
it scales it by the determinant of the Jacobian of the
transformation, which is cos ¢.

The second stage, that is the mapping from the pro-
jection plane to the image plane, is a uniform scal-
ing. The determinant of its Jacobian is };—22 where f
is the focal length and z is the distance of the object
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(b) Paraperspective projection

Figure 8. In (a) we can see the geometry of weak perspective pro-
jection. A planar patch is projected under a tilt angle ¢. In (b) we
show the geometry of paraperspective projection. The skew angle of
the parallel projection is «, and the tilt of the object is ¢.

from the origin of the coordinate system. According to
Theorem 2 this is also the scale factor of the histogram.

The product m,, of the scaling factors of the two
stages is given by

2
my =152 ©)

This equation gives the overall scaling of the histogram
in weak perspective projection. That is, g,,, =mq,,
where g, is the histogram of the frontal projection of
the patch, and g,,,, is the histogram of the patch under
weak perspective projection.

5.2.  Histograms under Paraperspective Projection

The paraperspective projection of a planar patch is
shown in Fig. 8(b). The first stage of the projection is



a parallel projection towards the projection plane and
the second stage is a mapping from the projection plane
to the image plane. The parallel projection towards the
projection plane has a skew angle «. Similarly to weak
perspective projection, the determinant of the Jacobian
of the projection transformation is proportional to the
cosine of the tilt of the object. In parallel projection,
however, the projection axis is skewed. Therefore, the
relative tilt of the object is (¢ — o). Moreover, the size
of the projected image increases as a result of the
skew angle by a factor inversely proportional to cos «.
That is, the determinant of the Jacobian of the paral-
lel projection transformation is Cos(d’ 9 According to
Theorem 2 the histogram is scaled by this factor.

The second stage, that is the mapping to the image
plane is a uniform scaling. Similarly to weak perspec-
tive projection, this mapping scales the histogram by
’; . The overall scale factor m,, of the histogram is equal
to the product of the two scale factors and is given by

2
my = L2E@ ) -
z2cosw
That is, the histogram, g,,, of the patch under paraper-
spective projection is given by ¢q,, =m,q,, where g,
is the histogram of the frontal projection of the patch.
Note that paraperspective projection reduces to weak
perspective projection when the angle with the optical
axis « is zero.
For example, Egs. (6) and (7) show that the change in
the magnitude of the histogram of an object approach-
ing the image plane is a scale factor.

5.3.  Discussion on Significance of Hamiltonian
Transformations

We would like to discuss the significance of Hamilto-
nian transformations for computational vision. In par-
ticular:

e Several authors have suggested using histograms
for object recognition (Swain and Ballard, 1991;
Stricker and Orengo, 1995; Finlayson et al., 1996).
Furthermore, histograms are used extensively for im-
age indexing (Niblack, 1993; Bach et al., 1996) and
video retrieval (Smoliar and Wu, 1995) from visual
databases. In the context of recognition it has been
observed that histograms are robust to local image
deformations (Swain and Ballard, 1991; Finlayson
etal., 1996). The complete class of local vector fields
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with respect to which histogram recognition and in-
dexing systems are insensitive is the Hamiltonian.
Hamiltonian transformations can be used to compare
recognition systems based on histograms to recog-
nition systems based on other appearance features.
For example, to compare recognition based on inte-
sity histograms to recognition based on eigenspace
(Sirovich and Kirby, 1987; Turk and Pentland,
1991; Moghaddam and Pentland, 1995; Murase and
Nayar, 1995) we can investigate the sensitivity
of the eigenspace representation to Hamiltonian
transformations.

The histogram is equivalent by an invertible transfor-
mation to the generalized image entropies (Tsallis,
1988; Sporring and Weickert, 1999) and the mul-
tifractal spectrum of images (Halsey et al., 1986;
Sporring and Weickert, 1999). That is, Hamiltonian
transformations preserve both the generalized im-
age entropies of the image and its multifractal spec-
trum. In turn, both entropy (Jagersand, 1995; Wu
and Barba, 1998; Sporring and Weickert, 1999;
Bouzouba and Radouane, 2000) and multifractals
(Vehel et al., 1992; Arneodo et al., 1999) have been
used to characterize images and textures.

In a relevant image representation the image is
specified in terms of local histograms. Examples of
this representation include error diffusion (Ulichney,
1988; Anastassiou, 1989), scale-imprecision space
(Griffin, 1997), and locally orderless image repre-
sentation (Koenderink and Doorn, 1999). In this
case the local and global histograms of an image
remain invariant under local discontinuous transfor-
mations. The local but continuous transformations
which preserve both local and global histograms are
the Hamiltonian transformations. Such transforma-
tions preserve local topology as well. An example is
the transformation in Fig. 6(g).

Several image features are based on histograms. For
example, histograms have been combined with rep-
resentations of connectedness of image regions to
give features which combine color and spatial image
information (Pass et al., 1996; Smith and Chang,
1996). We expect such features to be insensitive
to Hamiltonian transformations, since Hamiltonian
fields preserve the connectedness of image regions.
For the same reason we expect image segmenta-
tion based on the histogram to be less sensitive to
Hamiltonian transformations (Glasbey, 1993).

In addition to the projection models discussed previ-
ously Hamiltonian transformations can model other
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specific cases of distortion. For example, shearing
that results from the distortion when the axes of a
CCD are not orthogonal is a Hamiltonian transfor-
mation. Such transformations can also model some
natural situations, for example, the flow of incom-
pressible fluids. The morphism in Fig. 6(f) shows
ripples or sinusoidal vibrations along a surface, and
the morphism in Fig. 6(d) resembles a whirlpool.

6. Image Dependent Invariance of Histograms
for Vector Fields

The Hamiltonian transformations that satisfy
Theorem 1 preserve the histogram of all images L. For
a particular image £, however, there is a more general
class of transformations that preserve its histogram.
These transformations preserve the histogram for only
a particular image.

In all cases, both image dependent and image inde-
pendent, the histogram is preserved when the following
equation is satisfied:

a7, (x
5(U, 1) = / det 22D 4 ay
£-1(U) 0x

= / dxdy ®)
L)

where v(U, ¢) is the histogram value in intensity bin U
as a function of parameter ¢. In the image independent
case, we showed that Eq. (8) holds when the size of the
image regions within or between all isovalue contours
containing regions within intensity intervals U remain
constant. That is, we assumed that the value of the Jaco-
bian for every differential region is equal to one. This
condition guarantees that the histogram is preserved.
It is, however, overly restrictive. More generally, it is
sufficient for a continuous field to preserve the total
size of the regions in an image inside isovalue con-
tours. That is, instead of forcing the divergence to be
zero everywhere within all isovalue contours, we just
require that the average value of the divergence be zero
within the isovalue contours. Since the histogram is
computed over the entire image domain, the histogram
is still preserved.

The change of the size of the region within an iso-
value contour as a result of a transformation depends
on the divergence of the field over that region. More
precisely, the rate of change of the size of a region is
given by the integral of the divergence over that region.
Therefore, if the integral of the divergence within all

isovalue contours is zero, the rate of change of area is
also zero and the contribution of all intensities to the
histogram does not change. This condition can be ex-
pressed both in terms of the divergence over regions
and in terms of line integrals of vector fields along the
contours of the regions. The relation between the two
is given by Gauss’s theorem (Marsden and Tromba,
1988). More precisely, the surface integral of the di-
vergence of a field over a certain region is equal to the
line integral of the field along the border of that region.
Therefore, the condition that the integral of the diver-
gence over a certain region be zero is the same as the
condition that the line integral along the borders of the
region be zero. That is:

Proposition 5. The histogram of a particular image
L is preserved as a result of a transformation T, and

Eq. (8) is satisfied if.
y§x —0.vC ©)

where C is an arbitrary isovalue contour of the image.

This is proved in Section A.4 of the appendix.

This proposition implies that for a given image there
is a class of fields that preserve its histogram, and,
vice versa, for a given field there is a class of images
whose histograms are preserved under the action of the
field.?

This proposition can model the rotation and transla-
tion of rigid bodies in front of a uniform background.
Such motion appears to be the result of cut and paste. It
can also occur, however, when within the windows of
motion the field is non-zero and continuous, and outside
the windows the field is zero. The windows of motion
are the regions in which the motion occurs. Image de-
pendent transformations* can also model some cases
of lens distortions. Such an example would be images
that consist of radially symmetric patterns scaled by
radial lens distortion. In general, the transformations
described in this section are significant for most of the
reasons for which the Hamiltonian transformation are
significant, as discussed in Subsection 5.3.

7. Local Topology of Vector Fields
and Histograms

The topology of vector fields can be determined by the
topology around fixed points in the fields (Andronov
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Figure 9. Possible topologies around fixed points of a field. In (a) the fixed point is called node. In (b) the topology is spiral and the fixed point
is called a focus. In (a) and (b) the orientation of the paths is away from the fixed points. In (c) we can see a saddle point. Finally, in (d) the fixed

point is called a center.

et al., 1973). That is, points where the field is zero. In
gradient and Hamiltonian fields the fixed points are the
critical points of the energy function. The images in
Fig. 6 contain several fixed points, for example, along
the vertical line x =0 in Fig. 6(b), and the central point
of the images in Figs. 6(d)—(e).

There are four different kinds of fixed points
(Andronov et al., 1973). The first kind is shown in
Fig. 9(a) and is called a node. In this case the inte-
gral curves are lines arranged radially around the fixed
point with one end on the fixed point (star-shaped).
The second kind is shown in Fig. 9(b) and is called
a focus. In this case the integral curves still have one
end on the fixed point. They form, however, spirals
around it. In these two cases the fixed points can be
sinks or sources depending on the direction of the in-
tegral curves. The third kind is shown in Fig. 9(c) and
is called a saddle point. Two ridges meet to create four
lines of fixed points. Finally, the fourth kind is shown
in Fig. 9(d) and is called a center. The integral curves
form closed paths around the fixed point.> For exam-
ple the circles % =n wheren=1,2,...shownin
Fig. 2(c).

Fixed points can be detected and classified using the
Poincarre’s winding number. This was introduced in
image processing by Sander and Zucker (1992) and by
Kass and Witkin (1987).

The topological structure around a fixed point has
a direct effect on the histogram. Fixed points of type
(a), and type (b) are sources or sinks that locally distort
the histogram. For example, the center of the image, or
principal point, in radial lens distortion (Weng et al.,
1990; Swaminathan and Nayar, 1999) is a fixed point
of type (a). When the field is linear, however, the his-
togram is simply scaled. On the other hand, fixed points

of type (c) and type (d) preserve the local histograms.
Such an example is shown in Fig. 2(d) where there is a
saddle point in the middle of the image.

Hamiltonian fields, which preserve the histogram
for all images, must only have fixed points of type
(c) and (d). The converse does not hold. That is, a
field with fixed points of type (c) and (d) is not neces-
sarily Hamiltonian. Transformations that preserve the
histogram relative to a particular image can have fixed
points of any type, including sources, sinks, and spi-
rals. This is because the effects of sources and sinks
can cancel out to preserve the histogram.

8. Summary and Future Work

In general, histogram preserving transformations can
be either orderless or the result of the action of contin-
uous fields. In this work we examined histogram pre-
serving transformations that are the result of the action
of continuous fields. For this purpose, we examined the
effect on histograms of transformations that result from
the action of general continuous fields. To analyze their
effect we assumed that the image was spatially contin-
uous and used the Lebesgue measure to compute its
area. Then, a measure was defined on the range of the
image map that gave its histogram. Using these models
we derived the complete classes of local image trans-
formations that preserve the histogram of all images up
to a scale factor of their magnitude.

We showed that local transformations that can be ex-
pressed as solutions to flow equations preserve the his-
togram of all images if and only if the divergence
of the vector fields is zero and that such fields are
Hamiltonian. Furthermore, the histogram of any image
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is scaled if and only if the divergence of the fields is
constant everywhere. We also examined a more general
condition that transformations should satisfy in order
to preserve the histogram of a particular image. We
then gave several examples of deformations that result
from Hamiltonian fields. The images were completely
deformed but their histograms remained the same. We
completed the analysis with a discussion of the relation
between the nature of the fixed points of a field and the
changes on local histograms.

We also discussed some applications as well as the
significance of these fields. They can model weak
perspective projection, paraperspective projection, and
image shearing. More generally, they can model the
flow of incompressible fluids and all continuous trans-
formations with respect to which histogram recog-
nition systems are insensitive. We also showed that
they can achieve an effect similar to that of error
diffusion.

This work could be extended in serveral ways. It
could be extended to volume preserving transforma-
tions for 3D data. The sensitivity of the histogram with
respect to non-Hamiltonian transformations could also
be studied. Furthermore, other image features may also
have classes of transformations with respect to which
they are invariant or have a small sensitivity. Such
features can be histograms of images resulting from
derivative filtering (Schiele and Crowley, 2000).

Appendix
A.l.  Proof of Proposition 1

Proposition 1 states that transformations 7;(x) are lo-
cally area preserving if and only if they preserve the
histograms of every image L.

Proof: The histogram of image £ transformed by 7,
is given by:

- 37, (X)
v(U, 1) = det —
L£-1(U) ax

where ©(U, t) is the histogram value for intensity bin
U as a function of parameter ¢, and det% is the
determinant of the Jacobian of the transformation.
Since the transformation is locally area preserving, the

determinant is equal to unity (Arnold, 1989); that is,

dxdy (10)

7,(x)

9x

det dxdy =dxdy. (11)

Therefore, the histogram of the transformed image
becomes

5(U, 1) =f dx dy. (12)
L71(U)

This histogram is the same as that of the original im-
age, hence, the histogram is preserved. Conversely, take
some set V C D of the image domain. We define an in-
dicator image function £ such that

R 1 ifandonlyif X €V,
Li(x) = (13)

0 otherwise.

Since the histogram of L; is preserved, we have:
fVo dxdy = fvl dx dy, ¥t, where V| is V after 7, is
applied. Region V) can be any local area, hence, 7; are
locally area preserving V. O

A.2.  Proof of Proposition 2

Proposition 2 states that transformations 7, with
%Z:X are loclly area preserving if and only if
divX =0.

Proof: The if part of this Proposition is Liouville’s
theorem (Abraham and Marsden, 1978; Arnold, 1989).
Take some set Vo CD of the image domain corre-
sponding to intensity interval U. After the application
of transformation 7, the area of V becomes:

5(U, 1) = / der T X
Vo

—dxdy (14)
ox
Take f =t —ty, When 7=t —t; is close to zero the
Jacobian can be expanded as in Liouville’s theorem in
Arnold (1989) to get

(U, D= [ A+7idivX +0G?*)dxdy (15)

Vo

where div is the divergence (Marsden and~ Tromba,

1988). This equation can be differentiated % P

= % | =1, to give:

dv(U, 1)
dt

:/ divXdxdy. (16)
t=ty Vo

Hence, if divX =0 then v(U,t)=VyVt. That is,
the transformations are locally area preserving. Con-
versely, if the family is locally area preserving we have

% =0 for all ¢t. Moreover, this holds for all V,



given by an indicator image as in Eq. (13). Therefore,
divX =0. m|

A.3.  Proof of Proposition 3

Proposition 3 states that a vector field X (twice dif-
ferentiable) is divergence free if and only if it is
Hamiltonian.

Proof: The divergence of the Hamiltonian is given

by:
) oH o0H
div(YH) = div| — — —
dy ox
_0°H  9’H _
T 9xdy  dydx

It follows from the equality of mixed partial derivatives
that the Hamiltonian fields are divergence free. More-
over, the reverse also holds. Take a vector field X =
fi+ gj which has divX = %—i—g—f =0. Because of the
definition of the Hamiltonian field X in Eq. (5), we first
define f = %—I; This gives H (x, y) = [3 f(x, ) dy.If
we also show that —%—IZ = g, H is the Hamiltonian of
the field. Indeed,

OH _ _/«V 0. 5) o

Cox dx

L [T0g(x. ) -2
y

where 1 holds because divX =0, and 2 follows from
the fundamental theorem of calculus. O

A.4. Proof of Proposition 5
This Proposition states that the histogram of a particular

image L is preserved as a result of a transformation 7;,
that is Eq. (8) is satisfied, if and only if:

7§ X=0,vC (17

where C is an isovalue contour of the image.

Proof: We can apply Gauss’s law (Marsden and
Tromba, 1988) in Eq. (17) to obtain

7§X:/ divX, =0 (18)
c v
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where 0V = C is an isovalue contour curve that is the
boundary of region V that can also be the union of many
disconnected regions. This equation holds for all z. It
can be substituted into Eq. (16) to show that the rate of
change of the area is zero for all 7. That is, the size of
regions V is preserved. In turn, Eq. (1) relates the size
of the regions to the histogram. It shows that when the
size of the regions is preserved, the histogram is also
preserved. O

This theorem could be generalized to cases where
the histogram of regions is scaled. This occurs when
the RHS of the integral of Eq. (18) is constant instead
of zero.

A.5.  Proof of Theorem 2

Theorem 2 states that a family of transformations 7;,
which arises as the solution to a vector field X, scales
the histograms of all images if and only if the vector
field has constant divergence for all ¢. The scale factors
are the determinants of the Jacobians of the transfor-
mations at any point.

Proof: We can generalize Proposition 1 to get that:
Transformations 1; locally scale the area if and only if
they scale the histogram of every image L. To see that
this is possible consider the fact that if the histogram is
scaled by a constant for any image L, it is also scaled
for any indicator image given by Eq. (13). Since the
indicator image can represent any local region, all local
areas are scaled by the same factor. The reverse can be
shown similarly. We can also generalize Proposition 2
to get that: Transformations 7; with %’Z =X locally
scale the area if and only if div X is constant. The rate
of change of area is proportional to the divergence.
Hence, if the divergence is constant, then the rate of
change of area is constant. That is, the area is scaled.
In turn, this implies that the rate of change of area
and the divergence are constant. The generalizations of
Propositions 1 and 2 are both if and only if. Therefore,
they can be combined to give the theorem.

Further, when the divergence is constant for all ¢ any
higher order derivatives of the function H must be zero,
since they are derivatives of constants. In turn, higher
order terms in the expansion of det 3%)(?") , as shown
in the integrand of Eq. 15, must also be zero. In turn,
this implies that the determinant of the Jacobian of the
transformation is also constant and can be factored out
of the integral in Eq. (10) to give the scaling factor of
the area. g
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Proposition 4 states that a family of transformation
7, which arises as the solution to a vector field X scales
the histograms of all images if and only if the vector
field is the superposition of a scaling field given by
(k;xi+ ko yj) and an arbitrary Hamiltonian field, where
ki, and k, are constants.

Proof: In this case the divergence is a linear map
from a vector to a scalar. The null space of this map
are the divergence free vector fields (Hamiltonian).
To see this consider a vector field X = k;xi+kyyj,
where k; and k; are constants. This field has divergence

_ . . k]xz k2y2 . .
k;o: =k + k; and is the gradient of (T + T) within

an additive constant. Suppose Y were some other vec-
tor field with the same constant divergence k,,,. Since
divergence is linear, the vector field Z =Y — X, where
X =k;xi+kyyj, must be divergence free. Hence, as
shown in Proposition 3, Z must be Hamiltonian. Thus,
every vector field Y that has constant divergence also
has the form Y =X + Z, where Z is a Hamiltonian
field, and X is as above. U

Notes

1. Different scales of a fractal image can also have the same global
histogram.

2. The product of two Hamiltonian transformations is another
Hamiltonian transformation, which still has Jacobian with unit de-
terminant. The product of two Hamiltonian transformations with
energy functions H; and H», however, commute if and only if the
Poisson bracket of the two functions, (H, H3), is locally constant
(Arnold, 1989).

3. If the RHS of Eq. (9) were constant, the histogram would simply
be scaled.

4. Image dependent histogram preserving transformations do not
necessarily commute with other fields, even Hamiltonian ones.
Two vector fields commute if and only if their Lie brackets
commute.

5. In some cases the integral curves can also form spirals that
have one end on the fixed point. The fixed point is then called
centrofocus.
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