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The depth resolution achieved by a continuous wave time-of-�ight (C-ToF)

imaging system is determined by the coding (modulation and demodula-

tion) functions that it uses. Almost all current C-ToF systems use sinusoid

or square coding functions, resulting in a limited depth resolution. In this

paper, we present a mathematical framework for exploring and characteriz-

ing the space of C-ToF coding functions in a geometrically intuitive space.

Using this framework, we design families of novel coding functions that

are based on Hamiltonian cycles on hypercube graphs. Given a �xed total

source power and acquisition time, the newHamiltonian coding scheme can

achieve up to an order of magnitude higher resolution as compared to the

current state-of-the art methods, especially in low SNR settings. We also de-

velop a comprehensive physically-motivated simulator for C-ToF cameras

that can be used to evaluate various coding schemes prior to a real hard-

ware implementation. Since most o�-the-shelf C-ToF sensors use sinusoid

or square functions, we develop a hardware prototype that can implement a

wide range of coding functions. Using this prototype and our software sim-

ulator, we demonstrate the performance advantages of the proposed Hamil-

tonian coding functions in a wide range of imaging settings.

CCS Concepts: • Computing methodologies → Computational pho-

tography; 3D imaging;

Additional Key Words and Phrases: Computational time-of-�ight imaging;

Low-power 3D cameras; Hamiltonian cycle; Gray codes

1 INTRODUCTION

Time-of-�ight (ToF) cameras have fast emerged as the preferred 3D

imaging technique in several scienti�c and consumer applications,

including robot navigation, motion capture, human computer in-

terfaces, and 3D mapping. Especially popular are continuous-wave

ToF (C-ToF) or indirect ToF imaging systems [Lange 2000; Payne

1973], which consist of temporallymodulated light sources and sen-

sors, as shown in Figure 2. These sensors need only low-cost and

low-power components, do not require a large baseline for mea-

suring depth, and thus, can potentially measure accurate 3D shape

over a large range of stando� distances. Due to these inherent ad-

vantages, C-ToF imaging systems are increasingly being commer-

cialized as low-cost commodity sensors, such as Microsoft Kinect,

PMD and SoftKinectic.

One of the key limitations of current C-ToF cameras, however, is

the limited depth resolution, especially in low signal-to-noise ratio

(SNR) scenarios. Imagine a user wearing an augmented reality head-

set equippedwith a low power ToF depth camera. For her to achieve

a realistic immersive experience, the camera must measure the 3D

structure of the surroundings with very high resolution. Imagine

an interplanetary rover navigating a rough terrain. It is critical for

the camera to resolve �ne details such as bumps on the terrain to
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navigate safely. Although the spatial resolution continues to rise

with advances in sensor technology, the depth resolution is funda-

mentally limited by noise, especially photon noise. An example is

shown in Figure 1 (c-d). An object is imaged using a C-ToF system

with a low-power source, resulting in low SNR and large depth er-

rors. One way to increase the SNR is to use more light power or

to increase the capture time. Unfortunately, this is not always pos-

sible. Most devices, especially in consumer and outdoor settings,

often operate on a tight power and time budget.

Given a �xed energy and time budget, the depth resolution

achieved by a C-ToF imaging system is determined by the coding

(modulation and demodulation) functions that it uses. This raises

a natural question:What are the optimal coding functions for C-ToF

imaging? Despite a lot of theoretical and engineering advances in

C-ToF imaging over the past four decades, this fundamental ques-

tion has received surprisingly little attention. Almost all current

C-ToF systems use sinusoid or square codes, which are sub-optimal

in their ability to achieve high depth resolution (Figure 1 (d)).

In this paper, we address the above question by establishing a

theoretical foundation for analysis and design of C-ToF imaging

systems. We develop a coding space theory of C-ToF imaging, and

de�ne optimality of coding functions in terms of a mean depth er-

ror metric. Although this optimality criteria can be de�ned con-

cisely, determining the optimal solution requires solving a high

dimensional and computationally intractable global optimization

problem. Our key theoretical contribution is to derive a novel depth

precision metric based on a �rst order di�erential analysis of the

C-ToF image formation equation. This new metric allows us to ex-

plore the space of C-ToF coding functions (including non-analytic

functions) in an intuitive, geometric space. This serves two pur-

poses. First, this results in conceptual uni�cation of seemingly dis-

parate C-ToF methods. Previously, di�erent C-ToF coding schemes

have been analyzed separately, with concrete performance metrics

available only for speci�c schemes (e.g., sinusoid homodyne cod-

ing [Lange and Seitz 2001]). Using our framework, we can evaluate

the performance of seemingly disparate coding techniques (e.g., si-

nusoid, square, triangle) on a uni�ed platform.

Second, perhaps more importantly, our framework enables de-

signing families of novel coding functions which are derived from

Hamiltonian cycles on hypercube graphs. These Hamiltonian cod-

ing functions, as shown in Figure 1 (a), are tightly related to the

theory of Gray codes [Gray 1953], and achieve substantially higher

(up to 10 times) depth resolution as compared to existing schemes,

especially in low SNR scenarios, given the same total capture time,

total power, and depth range. For instance, while current schemes

achieve a resolution of approximately 1 centimeter at a distance

of 5 − 10 meters with commodity hardware, Hamiltonian coding

scheme can achieve a resolution of ∼ 1 millimeter. An example re-

sult is shown in Figure 1 (e).
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(a) Proposed Hamiltonian

ToF coding functions

(b) Hardware prototype to implement

Hamiltonian ToF coding functions

(c) Scene illuminated

by a low-power source

(d) 3D scan using

sinusoid codes

(e) 3D scan using

Hamiltonian codes

Fig. 1. Hamiltonian time-of-�ight (ToF) imaging. (a) We propose a novel family of Hamiltonian ToF coding functions, which achieve up to 10 times

higher depth resolution as compared to existing methods such as sinusoid coding, especially in low SNR se�ings. (b) We have developed a prototype ToF

system for implementing the Hamiltonian coding functions. (c) A mannequin face was imaged using a low power light source. (d) 3D imaging results using

conventional sinusoid coding has large errors because of low source power. (e) With the same total source power and capture time, Hamiltonian codes can

accurately recover the overall shape, including facial features such as nose, lips and eyes.

We also develop a comprehensive physically-motivated simula-

tor that can be used to evaluate the performance of C-ToF coding

schemes, prior to a hardware implementation. This simulator can

facilitate research in the fast growing �eld of ToF imaging where

availability of appropriate hardware is often a bottleneck. Finally,

since most commodity C-ToF sensors use sinusoid or square coding

functions, we develop a hardware prototype system (Figure 1 (b))

that can implement a wide range of C-ToF coding functions, includ-

ing the proposed Hamiltonian scheme. We demonstrate the perfor-

mance gains of the Hamiltonian scheme using exhaustive simula-

tions as well as real experiments in a variety of imaging settings.

2 RELATED WORK

Impulse Time-of-Flight Imaging: Impulse (or direct) ToF sys-

tems [Goldstein and Dalrymple 1967; Koechner 1968] estimate

scene depths by emitting a short light pulse into the scene, and

directly measuring the travel time of the re�ected pulse. Impulse

ToF method formed the basis of the �rst LIDAR systems nearly 50

years ago. Several current commercial range estimation systems

(e.g., Velodyne sensor) are based on the impulse ToF method as

well. Although conceptually simple, the main limitation of impulse

ToF techniques is the high cost of its components (e.g., high-speed

sensors) and large bandwidth requirements. Consequently, impulse

ToF systems are not practical for most consumer applications. The

focus of this paper is on C-ToF systems which require only low cost

components, and are fast becoming the method of choice for 3D

imaging in a wide range of applications.

Code design for C-ToF imaging: Most research towards op-

timizing the accuracy of C-ToF imaging methods has been lim-

ited to sinusoid coding, the most widely used C-ToF coding tech-

nique [Lange 2000], especially in consumer ToF devices (e.g., Mi-

crosoft Kinect). Recently, Payne et al. [2010] designed methods

for mitigating depth errors in sinusoid coding based systems if the

modulation functions are not perfectly sinusoid (e.g., due to the

presence of higher order harmonics).

In parallel, techniques based on a few other speci�c modula-

tion functions have been proposed, for example, square func-

tions [Grootjans et al. 2006], triangular functions [Ferriere et al.

2008], ramp functions [Kolb et al. 2010] 1 and pseudo random bi-

nary sequences [Grootjans et al. 2006]. The goal of this paper is to

develop a principled framework for exploring the complete space

of ToF coding functions in order to enable design of novel, high

performance C-ToF coding schemes.

3 MATHEMATICAL PRELIMINARIES

A C-ToF or an indirect ToF imaging system consists of a temporally

modulated light source, and a sensor whose exposure can be tempo-

rally modulated during integration time, as illustrated in Figure 2.

Let the radiant intensity of the source at time t beM(t), (0 ≤ M(t)).
The function M(t), called the source modulation function, could be

a continuous function such as a sinusoid [Lange 2000; Payne 1973],

or even an impulse train function [Kolb et al. 2010] 2.

Consider a sensor pixel p that images a scene point S. Let Γ(p) be
the scene distance at pixel p, i.e., the distance of scene point S from

the sensor and the source 3. We assume that there is no indirect

ormulti-bounce light component [Freedman et al. 2014; Heide et al.

2013; Kadambi et al. 2013; O’Toole et al. 2014], i.e., light from the

source bounces only once at a scene point and returns to the sensor.

Then, the radiance L(p, t) incident at pixel p at time t is given as:

L(p, t) = β(p)M
(
t − 2 Γ(p)

c

)
+ La(p) , (1)

where c is the speed of light. β(p) encapsulates the scene point’s

albedo and BRDF and light fall-o�. La(p) is the radiance compo-

nent due to an ambient light source (e.g., sun in outdoor settings).

Intuitively, the light emitted from the sourceM(t) is time-shifted by
2 Γ(p)
c due to propagation along the path: source→ scene→ sensor,

the intensity is scaled by β(p), and a constant o�set La(p) is added
due to ambient illumination.

The sensor exposure is temporally modulated according to the

demodulation function D(t), (0 ≤ D(t) ≤ 1). Both modulation and

1This waveform was used in commercial sensors from 3DV Systems.
2A C-ToF system using an impulse train source modulation function is di�erent from
impulse or direct ToF systems. In a direct ToF system, the time delay between the
emitted and received pulse is measured directly, requiring sensors with a large band-
width. In contrast, in a C-ToF system, the sensor measures the time delay indirectly by
measuring the temporal correlation, thus requiring a small number of measurements.
3We assume that the source and the sensor are co-located.
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demodulation functions are periodic. The demodulation function

(also called the sensor exposure function) can be physically real-

ized either by on-chip gain modulation [Schwarte et al. 1997] or by

external optical shutters [Carnegie et al. 2011].

The brightness B(p) measured at pixel p is given by the correla-

tion between the incoming radiance and the exposure function:

B(p) =
τ∫

0

D(t)L(p, t)dt , (2)

where τ is the sensor integration time. Substituting Eq. 1 into Eq. 2,

we get:

B(p) = β(p)
τ∫

0

D(t)M
(
t − 2 Γ(p)

c

)
dt +A(p) , (3)

where A(p) = La(p)
∫ τ
0
D(t)dt is the ambient component of the

measured brightness. Next, we de�ne F (Γ), (0 ≤ C(Γ) ≤ 1) as the
normalized correlation function between modulation and demodu-

lation functions:

F (Γ) =

∫ τ

0
D(t)M

(
t − 2 Γ(p)

c

)
dt

Mtotal
, (4)

where the normalization factor Mtotal =
∫ τ
0
M (t)dt is the total

�ux emitted by the light source towards point S during the sensor

integration time τ . Substituting Eq. 4 into Eq. 3, and slightly abus-

ing the notation by absorbing the constantMtotal within the scale

factor β(p), we get:

B(p) = β(p) F (Γ) +A(p) .
︸                              ︷︷                              ︸

Image Formation Equation for C-ToF Imaging

(5)

Eq. 5 is the image formation equation for C-ToF imaging. It expresses

the image intensity B measured at a sensor pixel in terms of the

three unknowns: (1) scene distance Γ, albedo factor β , and ambient

brightness component A.

Signi�cance of the normalized correlation functions: Eq. 5 in-

dicates that given an imaging scenario (de�ned in terms of albedos

β and ambient component A), a C-ToF imaging system can be com-

pletely characterized by its normalized correlation functions F (Γ),
which in turn depend only on the modulation and demodulation

functions. F (Γ) is independent of the scene properties (albedos,

ambient light) and device characteristics (sensor integration time,

light source power). Our goal in this paper is to (a) formalize a C-

ToF system’s performance in terms of its correlation functions, and

(b) design families of correlation functions that lead to novel, high

performance C-ToF systems.

4 CODING SPACE THEORY OF TOF IMAGING

The space of all possible values of unknowns Γ, β and A, can be

represented as a 3D unknown space, as shown in Figure 3.

Definition 1. [Unknown Point] A point U = [Γ, β ,A] in the

unknown space is called an unknown point. Each unknown point rep-

resents a 3 element unknown vector.

signal generator

source

( ): source 

modulation function

( ): sensor 

demodulation function
= : measured brightness

scene

S

ambient source

( )

Fig. 2. Image formationmodel of C-ToF imaging. A C-ToF imaging sys-

tem consists of a light source that illuminates the scene with time varying

intensity M (t ). The light reflected from the scene is captured by a sensor,

whose exposure is modulated during the integration time according to a

function D(t ), called the demodulation function. The intensity B(p) mea-

sured at a pixel p is given by the temporal correlation between the radiance

L(p, t ) incident at p, and the demodulation functionD(t ). The scene depth
Γ(p) at p can be estimated from three or more intensity measurements.

Since there are three unknowns, K ≥ 3 intensity measurements

[B1,B2, . . . ,BK ] need to be captured using K di�erent correlation

functions [F1, F2, . . . , FK ], corresponding to K di�erent pairs of

modulation and demodulation functions Mi and Di
4:

Bi (p) = β(p) Fi (Γ) +A(p)

The K-dimensional space of measured intensities [B1, . . . ,BK ] is
called the measurement space, as shown in Figure 3.

Definition 2. [MeasurementPoint]A pointB = [B1, . . . ,BK ]
in themeasurement space is a validmeasurement point if [B1, . . . ,BK ]
are the intensity measurements corresponding to an unknown point

U = [Γ, β ,A].

Definition 3. [Coding Scheme] A C-ToF coding scheme is de-

�ned as a function C : U → B from the set of unknown points U

to measurement points B. A coding scheme C is completely charac-

terized by a set of correlation functions [F1, . . . ,FK ], or equivalently,
by sets of modulation and demodulation functions [M1, . . . ,MK ] and
[D1, . . . ,DK ], respectively.

The process of recovering depths can be modeled as a decoding

functionD : B → U from the measurement space to the unknown

space, as shown in Figure 3. The decoding function could be an

analytic expression, a table look-up, or a statistical procedure (e.g.,

maximum likelihood estimation). If there were no image noise, then

given a measurement B, the decoding algorithm could accurately

recover the true unknown, and hence, the correct depth.

4For example, in conventional sinusoid coding [Lange 2000], both modulation and de-
modulation functions are sinusoids of the same frequency. We consider a general for-
mulationwhere the modulation and demodulation functions could have arbitrary func-
tional forms, as long as they adhere to the physical (e.g., non-negativity) constraints.
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E�ect Of Image Noise On Depth Recovery

Consider a coding scheme C that maps an unknown point U to

the true (noise-free) measurement point B = [B1, . . . ,BK ]. Let the
actual measurement B̂i be given as:

B̂i = Bi + ηi , (6)

where ηi = △Bi = B̂i −Bi is the noise in the intensity measurement

Bi . We assume the a�ne noise model including both read noise

and photon noise [Hasino� et al. 2010].ηi is modeled as a Gaussian

random variable with standard deviation σi , i.e., ηi ∼ N(0,σi ). Due
to noise, the decoding functionD estimates an incorrect unknown

point Û =
[
Γ̂, β̂, Â

]
, which results in depth errors △Γ =

���̂Γ − Γ

���. This
is illustrated in Figure 3. The expected depth error △ΓC(U) for an
unknown U and a coding scheme C, is given as:

△ΓC (U) =

∫

B̂

���̂Γ − Γ

��� p
(
B̂|B

)
dB̂ , (7)

where p
(
B̂|B

)
∼ N (B, Σ) is the probability distribution function

of the actual measured intensity B̂ =
[
B̂1, . . . , B̂K

]
. The covariance

matrix Σ is given by the amount of image noise. The integral is

taken over the K-dimensional measurement space.

Eq. 7 gives the expected depth error △ΓC (U) for a single unknown
point U. The mean expected depth error △ΓC is given by averaging

△ΓC (U) over the space of all unknowns:

△ΓC =
1

VU

∫

U

△ΓC (U) dU , (8)

where VU = (Γmax − Γmin) (βmax − βmin) (Amax − Amin) is the
volume of the space of unknowns (Γmin ≤ Γ ≤ Γmax , βmin ≤ β ≤
βmax , Amin ≤ A ≤ Amax ). Substituting Eq. 7 into Eq. 8, we get:

△ΓC =
1

VU

∫

U

∫

B̂

���̂Γ − Γ

��� p
(
B̂|B

)
dB̂dU

︸                                                   ︷︷                                                   ︸
Mean Expected Depth Error of a C-ToF Coding Scheme

(9)

The mean expected error is a global performance metric of a C-

ToF coding scheme. It is an intrinsic property of a C-ToF coding

scheme and is independent of choice of reconstruction method.We

de�ne the optimal coding scheme as the one that minimizes the

mean expected depth error over a given unknown space:

Copt = argmin
C

△ΓC . (10)

Although the optimality criteria can be expressed concisely,

�nding the optimal codes is a formidable constrained global opti-

mization problem, with no known analytical or closed form solu-

tions. It is computationally intensive to even evaluate this metric

numerically as it involves computing a double integral over high-

dimensional unknown and measurement spaces. This precludes

= [ , , … , ]= [ , , ]

noise decoding error

= [ , , ] = [ , , … , ]

Unknown Space

decoding

imaging

True Unknown Point

Estimated Unknown Point

True Measurement Point

Actual Measurement Point

Measurement Space

Fig. 3. Coding space theory of C-ToF imaging. The 3D space of all pos-

sible values of unknowns Γ (depths), β (albedo factors) and A (ambient

illumination component) is called the unknown space. The K -dimensional

(K ≥ 3) space of measured intensities is called themeasurement space. A C-

ToF coding scheme maps every unknown point U to a measurement point

B. However, due to noise, the actual measurement point B̂may be di�erent

from the true measurement point B. The decoding function maps B̂ to the

estimated unknown point Û, which results in depth errors |Γ − Γ̂ |.

the development of an e�cient numerical or an exhaustive search-

based optimization procedure as well due to prohibitively high

computational costs [Adam et al. 2016]. We take a di�erent ap-

proach. We derive a novel depth-precision metric based on �rst

order di�erential analysis of the image formation equation. This

metric has an intuitive geometric interpretation, and can be com-

puted extremely fast, leading to design of novel high performance

coding schemes.

5 A NOVEL DEPTH PRECISION METRIC

The analysis in the previous section is based on the relationship be-

tween depth error △Γ and intensity noise △B = B̂ − B = η. In this

section, we analyze the relationship between the corresponding dif-

ferential quantities ∂Γ and ∂B. Based on this analysis, we derive a

novel depth precision metric. We start by taking the partial deriva-

tive of the intensity Bi (in Eq. 5) with respect to Γ:

∂Bi

∂Γ
= β F ′

i (Γ) ,

where F ′
i (Γ) is the derivative of correlation function Fi (Γ). For ease

of exposition, we assume that the albedo factor β is independent of

the scene depths. In practice, β depends on scene depths due to dis-

tance fall-o�. Such depth dependence can be absorbed into the cor-

relation function Fi (Γ). The partial derivative of the measurement

vector B = [B1,B2, . . . ,BK ] is given as:

����
∂B

∂Γ

���� =

√√√ K∑

i=1

(
∂Bi

∂Γ

)2
= β

√√√ K∑

i=1

F ′
i (Γ)2 .

By rearranging terms, we get:

|∂Γ | = |∂B|

β

√∑K
i=1 F ′

i (Γ)2
. (11)
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This equation expresses the di�erential depth error |∂Γ | =
���̂Γ − Γ

���

due to small measurement noise |∂B| =
√∑K

i=1 ∂B
2
i , where ∂Bi =

B̂i −Bi . Since noise is random, both |∂B| and |∂Γ | are random vari-

ables, with standard deviations Ω and σΓ , respectively. Then, from

Eq. 11, it follows that Ω and σΓ are related as:

σΓ =
Ω

β

√∑K
i=1 F ′

i (Γ)2
. (12)

Next, we introduce χ = 1
σΓ

as a depth precision measure:

χ (U) = 1

σΓ
=

β

√∑K
i=1 F ′

i (Γ)2

Ω
. (13)

where χ (U) denotes the dependence of χ on the unknown point

U. Since χ is the inverse of depth standard deviation σΓ , intuitively,

larger the value of χ , lower is the overall depth error. χ (U), as de�ned
above, is the depth precision corresponding to a single unknown

point U. The mean depth precision χC of a coding scheme C is

given by averaging χ (U) over the space of all unknowns Γmin ≤
Γ ≤ Γmax , βmin ≤ β ≤ βmax and Amin ≤ A ≤ Amax :

χC =
1

VU

∫

U

χ (U) dU = 1

VU

∫

Γ

∫

β

∫

A

χ (U) dAdβ dΓ , (14)

where VU = (Γmax − Γmin) (βmax − βmin) (Amax − Amin) is the
volume of the unknown space. Substituting Eq. 13 into Eq. 14, and

simplifying with the assumption that the noise standard deviation

Ω =

√∑K
i=1 σ

2
i is constant 5, we get:

χC =

βmean

∫

Γ

√√√ K∑

i=1

F ′
i (Γ)2 dΓ

Ω Γr anдe
, (15)

where Γr anдe = Γmax − Γmin is the unambiguous depth range, and

βmean =
βmin+βmax

2 is de�ned as the mean albedo factor. In order

to understand the term inside the integral in the above equation,

we de�ne a new geometric construct called the coding curve.

Definition 4. [Coding Curve] Consider a coding scheme C de-

�ned by the correlation functions [F1, . . . ,FK ]. The coding curve

is achieved by plotting the values of the correlation functions

[F1(Γ), . . . ,FK (Γ)] in the K-dimensional space, as the depth Γ is var-

ied. Formally, the coding curve ΨC is de�ned as the following set of

points residing in K-dimensional space:

ΨC = {[F1(Γ),F2(Γ), . . . , FK (Γ)] | Γmin ≤ Γ ≤ Γmax } .

The coding curve is a geometric representation of a coding

scheme; given a scheme’s correlation functions, we can determine

its coding curve, and vice versa. For example, the coding curve of

5Strictly speaking, Ω is a function of image intensity, and varies for di�erent unknown
points. However, for simplicity,we assumeΩ to be a constant, the upper bound of noise
std over all possible measurement points.

sinusoid coding is a circle in K-dim space, as shown in Figure 4 (a),

for K = 3. A proof is given in the supplementary technical report.

Length of the coding curve: The length Lcurve of the coding

curve is given in terms of partial derivatives F ′
i :

Lcurve =

Γmax∫

Γmin

√√√ K∑

i=1

F ′
i (Γ)2 dΓ . (16)

Substituting Eq. 16 in Eq. 15, we get themain theoretical result of

the paper :

χC =
βmean Lcurve

Ω Γr anдe
.

︸                          ︷︷                          ︸
Depth Precision of a C-ToF Coding Scheme

(17)

Interpreting the Depth Precision Equation

Eq. 17 states that the depth precision χC of a coding scheme is di-

rectly proportional to its coding curve length. Intuitively, given a

set of unknown points, a longer coding curve spreads the measure-

ment points further apart in the measurement space, resulting in

lower depth errors due to noise during decoding. Thus, in general,

the coding curve length (and hence, the depth precision χC ) is in-
versely proportional to the mean depth error △ΓC . Longer the coding
curve of a coding scheme, larger is the value of χC , and lower the

mean depth error △ΓC 6. The coding curve and its length are sim-

ple and fast to compute geometric properties of coding schemes

(even non-analytic schemes), thus making them a compact repre-

sentation that can be used as a powerful design tool for developing

novel, high performance C-ToF coding schemes.

The depth precision χC is directly proportional to the mean

albedo factor βmean and inversely proportional to measurement

noise Ω. 7 This is not surprising, as higher the signal (proportional

to βmean ) received by the sensor and lower the noise, higher is

the achieved precision. Perhaps more interesting is the inverse re-

lationship between the depth precision and the depth range Γr anдe .

A small unambiguous depth range Γr anдe results in higher depth

precision (lower depth errors), and vice versa. Similar tradeo� be-

tween the depth range and depth error has been derived previously

for sinusoid coding [Lange 2000; Lange and Seitz 2001; Lange et al.

2000]. The depth precision equation derived above generalizes the

range vs. precision relationship for any valid C-ToF coding scheme,

and thus, allows comparing the performance of a general class of cod-

ing schemes on a common ground, by �xing the depth range Γr anдe
8,

scene albedo βmean and sensor noise Ω.
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Fig. 4. Coding curve representations of di�erent C-ToF coding schemes for K = 3. (a) Conventional homodyne sinusoid coding, (b) Square coding, (c)

Ramp or ‘light wall’ coding, (d) Double ramp coding, (e) Delta sinusoid coding, (f) The proposed Hamiltonian coding.
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Coding Scheme Coding Curve Curve Length Curve Length Curve Length Curve Length

(K = 3) (K = 4) (K = 5)

Single ramp Edge of 3D unit cube 1 1.00 − −

Double ramp Face diagonal of 3D unit cube
√
2 1.41 − −

Sinusoid Circle of radius
√
K

4
√
2

π
2

√
K
2 1.92 2.22 2.48

Square Regular non-planar (2K)-gon 2
√
K 3.46 4.00 4.47

Impulse sinusoid Circle of radius
√
K

2
√
2

π

√
K
2 3.84 4.44 4.96

Hamiltonian Hamiltonian cycle 2K − 2 (K is odd) 6.00 12.00 30.00

on unit hypercube 2K − 4 (K is even)

Table 1. Coding curve lengths of various C-ToF coding schemes. Coding curve lengths of existing schemes such as sinusoid and square are proportional

to
√
K , where K is the number of measurements. In contrast, coding curve length of the proposed Hamiltonian scheme increases exponentially as a function

of K . As a result, Hamiltonian coding achieves significantly higher depth precision as compared to existing schemes, especially as K increases. Please refer

to Sections 6 and 7 for detailed derivations of coding curve lengths.

6 CODING CURVES OF C-TOF CODING SCHEMES

In this section, we derive the coding curve lengths of several C-

ToF coding schemes, starting from their mathematical de�nitions in

terms of their correlation functions. Figure 4 and Table 1 summa-

rizes the results derived in this section. For fair comparisons, we

assume that the total source power Mtotal (area under the curve

of the modulation functions), exposure time and the unambiguous

depth range is the same for all coding schemes.

6.1 K-tap Conventional Sinusoid Coding

This is one of the most widely used coding schemes in commercial

C-ToF based depth cameras. Both the modulation and demodula-

tion functions are sinusoids of the same frequency (Figure 4 (a)):

Mi (t) = 0.5 + 0.5 cos (ωt)

Di (t) = 0.5 + 0.5 cos

(
ωt − 2iπ

K

)
, 1 ≤ i ≤ K

K-tap denotes that K measurements are captured, with the de-

modulation function phase-shifted (typically by an equal amount
2π
K ) between successive measurements, while the modulation func-

tion remains the same. Note that the modulation function is nor-

malized so that the area under the curve (for every period) is equal

to π . After substituting these in Eq. 4, and simplifying, we get the

expression for the normalized correlation functions:

Fi (Γ) = 0.5 + 0.25 cos

(
2ωΓ

c
− 2iπ

K

)
. (18)

6There are exceptions to this. If a coding curve is self intersecting or has sharp turns,

the di�erential analysis, which assumes that the derivatives
∂Bi
∂Γ

are continuous, does
not hold. Such a curve, despite being long, may result in large depth errors. See Sec-
tion 10 for an example and discussion. We will design coding curves that, in addition
to being long, are non self-intersecting and have continuous derivatives.
7Since noise Ω is approximately proportional to

√
βmean in photon-noise limited

regime, the depth precision χC is e�ectively proportional to
√
βmean .

8The depth range of a C-ToF system is given as Γr anдe =
cτper iod

2
, where τper iod

is the period of the modulation and demodulation functions.

Algebraic derivation of the coding curve length: Recall from

Eq. 16 that the coding curve length is given in terms of the deriva-

tives of the correlation functions. Taking the derivative of Eq. 18

with respect to depths Γ, we get:

F ′
i (Γ) = −0.25

(
2ω

c

)
sin

(
2ωΓ

c
− 2iπ

K

)

After substituting the above into Eq. 16, and simplifying, we get

the coding curve length of sinusoid coding:

Lsin
curve =

π

2

√
K

2
(19)

Geometric derivation of the coding curve length: The coding

curve for sinusoid coding, i.e., the locus of points [F1(Γ), . . . ,FK (Γ)],
as Γ is varied, is a circle in K-dimensional space. Please see the sup-

plementary technical report for a proof. The center of the circle is

the pointC = (0.5, 0.5, . . . , 0.5). The radius of the circle is rad(K) =√
K

4
√
2
. The coding curve length is Lsin

curve = 2π rad(K) = π
2

√
K
2 .

This is consistent with the algebraic derivation.

6.2 K-tap Square Coding

This coding scheme uses square waves instead of sinusoids, both

for modulation and demodulation functions:

Mi (t) = 0.5 + 0.5 sqr (ωt)

Di (t) = 0.5 + 0.5 sqr

(
ωt − 2iπ

K

)
, 1 ≤ i ≤ K

where sqr (t) function is the binary version of the sin(t) function:

sqr (t) =
{
1 if sin(t) > 0

−1 if sin(t) < 0

The correlation of two square functions is a triangle function. Thus,

the normalized correlation function for square coding is given as:

Fi (Γ) = 0.5 + 0.5 tri

(
2ωΓ

c
− 2iπ

K

)
,
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where the tri(t) function is shown in Figure 4 (b).

Geometric derivation of the coding curve length: Due to the

piecewise linear nature of the correlation functions, the coding

curve for square coding is a non-planar polygon in K-dimensional

space, as shown in Figure 4 (b). The centroid of the polygon is the

point (0.5, . . . , 0.5). The polygon has 2K sides, each with length

sideLenдth(K) = 1√
K

(see technical report for a proof). The total

length of the coding curve is:

Lsqr
curve = 2

√
K (20)

Observation: The coding curve length of square coding is 4
√
2

π ≈
1.8 times that of conventional sinusoid coding, for any K . This sug-

gests that given the same scene and imaging system characteristics,

square coding should achieve approximately 1.8 times high preci-

sion (lower error) as compared to sinusoid coding. We validate this

result using simulations and experiments later in the paper.

6.3 Other Coding Schemes

The coding curve representation can be used to analyze the entire

space of valid C-ToF coding schemes, such as ramp coding (also

known as the ’light wall’ scheme [Kolb et al. 2010]) where one of

the correlation functions is a ramp and the other two are constant

(Figure 4 (c)), double-ramp coding where two correlation functions

are opposing ramps (Figure 4 (d)), and impulse sinusoid coding

where the demodulation functions are sinusoids (same as conven-

tional sinusoid coding), but the modulation function is an impulse

train function (Figure 4 (e)). The coding curve lengths for these

schemes are given in Table 1. For detailed derivations, refer to the

supplementary technical report.

7 HAMILTONIAN TOF CODING

In this section, we use the coding curve representation to design a

family of novel high-performance C-ToF coding schemes. There are

three important desirable properties of a coding curve. First, since

the mean depth precision is inversely proportional to the coding

curve length, the curve should be long. Second, in order to ensure a

unique mapping between the unknown pointsU and measurement

points B, the coding curve should not be self-intersecting. Third, the

coding curve should preserve locality, i.e., the distance of points

measured along the curve should be proportional to the Euclidean

distance between two points. This property ensures that the inten-

sity partial derivatives ∂B
∂Γ

are continuous, and thus, small image

noise does not result in large depth errors during decoding.

A family of curves that has all these desirable properties is

Hamiltonian cycles on hypercube graphs. The hypercube graph

QK is the graph formed from the vertices and edges of the K-

dimensional hypercube. For example, the graph Q3 is formed on

a 3-D cube, and has 8 vertices (one for every cube corner) and 12

edges. A Hamiltonian cycle is a cycle (i.e., a closed loop) through

a graph that visits every vertex exactly once while traversing

the edges of the graph. Hamiltonian cycles are long, non-self

intersecting and have provably good locality preserving proper-

ties [Gotsman and Lindenbaum 1996]. This makes them an ideal

candidate as coding curves for C-ToF coding schemes.

Design of Hamiltonian C-ToF coding scheme: We propose a

family of C-ToF coding schemes called Hamiltonian coding which

have Hamiltonian cycles on hypercube graphs as coding curves. In-

tuitively, in the context of C-ToF imaging, these curves can be

thought of as maximal in a sense (although not provably optimal)

because they follow the edges of the coding cube, and cannot be

expanded further. The correlation functions are Hamiltonian func-

tions, where the ith Hamiltonian function hamiltK,i(t) is de�ned
as the value of the ith coordinate of points on a Hamiltonian cycle

of the K-dimensional unit hypercube. Figure 4 (f) shows the plots

of Hamilonitan functions hamiltK,i(t) for K = 3.

While constructing the Hamiltonian cycle based coding curve,

we exclude the origin 0K = [0, . . . , 0] and the diagonally oppo-

site vertex 1K = [1, . . . , 1] so that the coding curve does not pass

through these two vertices. This ensures that for every depth value

Γ, at least two of the correlation function values are di�erent, i.e.,

Fi (Γ) , Fj (Γ) for some index pair i, j. It has been shown that

a Hamiltonian cycle on this reduced set of vertices can be con-

structed 9. In general, there are several possible Hamiltonian cycles

on a hypercube graph, each inducing a di�erent coding curve and

coding scheme. One example Hamiltonian cycle on the reduced set

of vertices for K = 3 is shown in Figure 4 (f).

Geometric derivation of the coding curve length: The coding

curve of Hamiltonian scheme is a Hamiltonian cycle on the reduced

hypercube graph QK − [0K, 1K], whose length is equal to the num-

ber of cube vertices that the cycle traverses (2K − 2 if K is odd, and

2K − 4, if K is even). Thus, the coding curve length is:

Lhamilt
curve =

{
2K − 2 if K is odd

2K − 4 if K is even
(21)

The coding curve length for Hamiltonian scheme increases expo-

nentially as a function of K , whereas for existing schemes such as

sinusoid and square coding, the curve length is proportional to
√
K .

As a result, even for relatively small K , such as K = 5, the curve

length for Hamiltonian coding is an order of magnitude more than

conventional sinusoid coding (see Table 1 for a comparison of cod-

ing curve lengths of various schemes).

Relationship to Gray codes and robustness to noise: Gray

codes [Gray 1953] are a sequence of binary codes so that two succes-

sive codes di�er only in a single bit location, i.e., the Hamming dis-

tance between two adjacent codes is 1. This property makes Gray

codes highly robust to noise: if a sequence of Gray codes is used

to transmit information and a small number of bits get corrupted

(e.g., due to noise in a communication channel), the information can

still be recovered with minimal errors. Consequently, Gray codes

�nd applications in a diverse set of domains, including digital com-

munication [Gray 1953], circuit design [Wakerly 2005], and robust

structured light 3D scanning [Inokuchi et al. 1984].

Hamiltonian cycles on hypercube graphs are tightly related to

the theory of Gray codes. There is a one-to-one correspondence be-

tween the set ofK-bit Gray codes and the set of Hamiltonian cycles

on the hypercube graphs QK [Mills 1963]. The Hamiltonian coding

curves that we use to design our Hamiltonian coding scheme can

9This problem isNP-complete with no polynomial time algorithms. For graphs of small
sizes, we can �nd solutions using depth-�rst-search.
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be considered a continuous version of discrete Gray codes, and thus

inherit the strong robustness-to-noise properties of Gray codes.

7.1 Modulation And Demodulation Functions

In order to physically implement the Hamiltonian coding scheme,

we need to determine the source modulation functionsMi (t), (0 ≤
Mi (t)) and demodulation functions Di (t), (0 ≤ Di (t) ≤ 1) such
that their normalized correlation (Eq. 4) is equal to the Hamiltonian

functions hamiltK,i(Γ):

∫ τ

0
Di (t)Mi

(
t − 2 Γ

c

)
dt

Mtotal
= hamiltK,i(Γ), 1 ≤ i ≤ K (22)

where Mtotal =
∫ τ
0
Mi (t)dt is the total energy emitted by the

source during integration time τ .

Let hK,i [j], 1 ≤ j ≤ N be a vector representing the discrete

sampled version (with N equi-spaced samples) of the function

hamiltK,i(Γ). Similarly, let mi [j] and di [j] be discrete representa-

tions of the functions Mi (t) and Di (t). Then, the above system of

equations and inequations can be written in matrix form as:

�nd (mi, di)

such that
1

Mtotal
Cmidi = hK, i,

N∑

j=1

mi[j] ≤ Mtotal

0 ≤ mi[k], ≤ di[k] ≤ 1, 1 ≤ k ≤ N

where Cm is the N × N circulant matrix constructed from the vec-

torm. Since the equation contains product of the unknownsmi, di,

this is a non-linear problem, and in general, may not have a feasi-

ble solution. However, in the special case of light sources with large

peak instantaneous power mi[k] ≥ Mtotal , the above problem has

a simple solution:mi = [Mtotal , 0, 0, . . . , 0] (so that Cmi = Mtotal I,

where I is an identity matrix), and di = hK, i. This solution cor-

responds to using a normalized impulse train function Λ (ωt) (as
shown in Figures 4 (e-f)) as the modulation function, and the cor-

relation function itself as the demodulation function:

Mi (t) = Λ (ωt)
Di (t) = hamiltK,i (ωt) , 1 ≤ i ≤ K

Incorporating peak power constraints: The above solution as-

sumes that the light source has an in�nite peak power, and can

emit an ideal impulse (delta) train function. For such ideal sources,

the correlation function is simply factorized into a delta modula-

tion function, and a demodulation function equal to the correlation

function. However, this factorization is an idealized theoretical de-

scription, meant only for exposition.

In practice, sources have a �nite peak power, and we approxi-

mate the impulse modulation function by a short (height equal to

the peak power) but wider pulse (e.g., a Gaussian or a square) so

that the area under the modulation function (total emitted energy)

is the same as that of modulation functions for other schemes (e.g.,

sine and square). The resulting correlation function (using a shorter

and wider pulse) approximates the theoretical correlation function.

This is shown in Figure 15, which compares the theoretical vs. mea-

sured correlation functions in our experiments. This approximation

results in lower performance than theoretically predicted.

Ultimately, the performance will depend on the peak power of

the light source. Lasers and didoes such as those increasingly be-

ing used in ToF systems can emit short pulses with high peak

power [Adam et al. 2016; Kolb et al. 2010; Tadmor et al. 2014], but

low average power due to energy consumption constraints and

eye safety. Such sources can closely approximate an impulse mod-

ulation function, and thus, achieve high performance. For sources

with low peak power (e.g., low-cost LEDs), the performance gains

will be accordingly lower. For such sources, the performance could

be improved by solving the factorization as a constrained opti-

mization problem, where the goal will be to �nd (mi, di) that sat-
isfy all the physical constraints imposed by the hardware (includ-

ing system bandwidth constraints), while minimizing the error

| | 1
Mtotal

Cmidi − hK, i | |. Such device-aware factorization is an inter-

esting future research direction, but di�erent from the correlation

function theory and design, which is the main focus of this paper.

7.2 Depth Recovery Algorithm for Hamiltonian Coding

So far, we have discussed the coding function design aspect

of the Hamiltonian coding scheme. In this section, we pro-

vide an overview of the depth recovery (decoding) algorithm.

For any coding scheme, points on the coding curve F(Γ) =
[F1(Γ), F2(Γ), . . . ,FK (Γ)] are parameterized by the depth value Γ,

meaning there is a one-to-one mapping between Γ and points F(Γ).
Thus, given the measurement point B = [B1, . . . ,BK ], we can esti-

mate depth Γ by determining the corresponding coding curve point

F(Γ). From the image formation equation (Eq. 5):

B = β F(Γ) +A → F(Γ) = B − A

β
, (23)

where β and A are also unknown. In order to determine F(Γ) from
measurements B, we �rst estimate β and A.

Estimating unknowns β and A: The Hamiltonian coding curve

follows the edges of a unit cube. Suppose the coding curve point

F(Γ) lies on an edge between cube vertices Vl = [Vl,1, . . . ,Vl,K ]
and Vr = [Vr ,1, . . . ,Vr ,K ]. The coordinates of Vl and Vr are binary

(0 or 1), and di�er along only one index µ, i.e., Vl,µ , Vr ,µ . Then,

the coding curve point is given as F(Γ) = αVl + (1 − α)Vr, where

0 ≤ α ≤ 1 encodes the location of F(Γ) along the edge between

Vl and Vr. Note that for every Γ, Fmin and Fmax , the minimum

and maximum coordinates of the coding point F(Γ), are 0 and 1,

respectively. Let Bmin = β Fmin + A and Bmax = β Fmax + A

be the minimum and maximum measured intensities, respectively.

Since Fmin = 0 and Fmax = 1, it follows that Bmin = A and

Bmax = β + A. Thus, we can estimate β and A as A = Bmin and

β = Bmax − Bmin , where Bmin = min ([B1, . . . ,BK ]) and Bmax =

max ([B1, . . . ,BK ]) are computed from the measurements B. Once

β and A are estimated, we determine the coding point F(Γ) using
Eq. 23, from which, as discussed above, depth can be estimated. We

will release our MATLAB code of the depth recovery algorithms

for Hamiltonian and other coding schemes (sinusoid, square, ramp,

and double ramp), once the paper is accepted.
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Fig. 5. Mean expected depth errors of various C-ToF coding schemes. The mean expected depth error (Eq. 9) of various C-ToF coding schemes was

numerically computed using finite element methods over a depth range of [0 − 10] meters. For every coding scheme, the depth error decreases rapidly as

the source strength increases, and increases as ambient illumination increases. The proposed Hamiltonian scheme significantly outperforms existing coding

methods across a wide range of imaging se�ings.
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Fig. 6. Coding curve length vs. mean expected depth error. Compari-

son of the coding curve lengths and the inverse mean expected depth errors(
1

△Γ

)
for various coding schemes, for K = 3 and K = 5. The inverse mean

expected depth errors are plo�ed for several source strength and ambient

illumination values (one solid, colored plot for every source strength and

ambient illumination combination). Each plot is normalized by dividing by

the minimum value along the plot. The normalized coding curve lengths

of di�erent schemes are highly correlated with the corresponding inverse

mean expected depth errors: longer the coding curve of a scheme, lower

the mean depth error.

8 VALIDATION AND SIMULATIONS

In this section, we use numerical methods and simulations to com-

pare the relative performance of various C-ToF coding schemes,

with the same total capture time and emitted power.

8.1 Comparisons of Mean Expected Depth Error

The mean expected depth error △ΓC (Eq. 9) is a global measure

of the performance of a C-ToF coding scheme C. In order to com-

pare various coding schemes, we numerically computed their mean

expected depth errors by discretizing the unknown and measure-

ment spaces. We implemented an adaptive grid method to ensure

that this otherwise prohibitively expensive computation remains

tractable. We used the following parameters for our computations.

Scene depth range: Γmin = 0, Γmax = 10 meters. Image noise:

Gaussian noise, with a�ne noise model including photon noise and

sensor read noise of 20 electrons. Sensor integration time: 10 mil-

liseconds. Scene re�ectivity: Lambertian BRDF, albedo of 0 − 1.

Figure 5 shows the mean depth error for various coding schemes

for K = 3, 4, 5, as a function of the light source and ambient illu-

mination strengths. We considered a point light source with aver-

age strengths in the range of ∼ 10 − 1000 lumens. Ambient light

was assumed to be uniform over the scene, with strengths in the

range of 10 − 10, 000 lux. As expected, for every coding scheme,

the depth error decreases rapidly as the source strength increases,

and increases as ambient illumination increases. Hamiltonian cod-

ing scheme signi�cantly outperforms existing methods across all

settings, especially as K increases.

Correlation between coding curve lengths and mean ex-

pected depth errors: Figure 6 compares the coding curve lengths

(Lcurve ) and the inverse mean expected depth errors
(

1

△Γ

)
for var-

ious coding schemes. The inverse mean expected depth errors are

plotted for all the source strength and ambient illumination values

as used in Figure 5 (one solid colored plot for every source strength

and ambient illumination combination). Each plot is normalized by

dividing by the minimum value along the plot. For example, for

K = 3, each plot is divided by its values at the single ramp coding

scheme, and for K = 5, each plot is divided by its values at the

sinusoid coding scheme.

There are two main observations. First, the ratio of the mean

expected depth errors between two schemes is approximately con-

sistent over a wide range of source and ambient illumination

strengths. Second, perhaps more importantly, the normalized cod-

ing curve lengths of di�erent schemes are highly correlated with

the corresponding inverse mean expected depth errors. This shows

that, for these coding schemes, the coding curve length (and hence,

the depth precision χC ) is inversely proportional to the mean expected

depth error △Γ. As a result, the coding curve length can be used as

an intuitive and fast to compute surrogate metric for optimization

and design of novel, high performance C-ToF coding schemes.

8.2 Simulator for C-ToF Imaging

We have developed a physically motivated simulator for C-ToF

imaging, which can emulate any valid coding scheme, under a wide

range of scene con�gurations (di�erent geometries and re�ectance
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Fig. 7. Chain of steps for simulation of C-ToF imaging.We have devel-

oped a detailed simulator that simulates various steps of the C-ToF imag-

ing process, including light transport (light emission, propagation, reflec-

tion and shading) and sensor physics (demodulation, gain, saturation, ADC

noise, quantization). It uses a physically accurate a�ine noisemodel, includ-

ing both photon noise and sensor read noise. This simulator can be used to

emulateC-ToF imaging under a wide range of scene and sensor parameters.

properties) and sensor-source parameters (quantization, pixel size,

focal length, zoom, source brightness and modulation frequencies).

The simulator models di�erent steps of the image formation pro-

cess, including light emission and propagation, re�ection, sensor

demodulation and radiometric transformations (gain, saturation,

quantization) and noise (photon and read noise).

These steps are illustrated in Figure 7. This simulator can help

further research in the growing �eld of ToF imaging by facilitating

rapid evaluation of di�erent coding schemes. We will release the

code of our simulator upon acceptance of the paper. Figure 8 shows

depth recovery results for three imaging geometries, and various

coding schemes in a low noise setting (K = 5, source strength =

250 lumens, ambient strength = 250 lux), and a high noise setting

due to strong ambient illumination (K = 5, source strength = 80 lu-

mens, ambient strength = 2500 lux). The remaining imaging param-

eters are the same as described in the previous sub-section. Square

coding achieves an error ≈ 1.6 times lower than conventional si-

nusoid (the ratio of coding curve lengths is ≈ 1.8). The proposed

Hamiltonian coding achieves a mean depth error of about an or-

der of magnitude lower than conventional sinusoid coding in both

noise settings, consistent with the ratio of coding curve lengths. Fig-

ure 9 shows similar comparisons between various coding schemes

for K = 3. The relative performance of di�erent schemes is consis-

tent with the respective coding curve lengths.

Figure 10 shows the 3D imaging simulations for a face 3D model

in an outdoor setting with strong ambient light, resulting in large

photon noise. Although the large noise in sinusoid and square re-

constructions can be reduced by smoothing, the 3D details cannot

be recovered. In contrast, Hamiltonian coding recovers su�cient

details to potentially allow recognizing the identity of the face.

Comparisons with bandlimited Hamiltonian coding func-

tions: In practice, the Hamiltonian coding functions may be low-

pass �ltered due to bandwidth limitations of the hardware devices.

For instance, Figure 15 shows the Hamiltonian coding functions as

implemented on our hardware prototype. Due to bandwidth con-

straints, the higher order Hamiltonian coding functions are low-

pass �ltered, which may result in loss of performance. We have

incorporated bandwidth constraints in our simulator in order to
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Fig. 8. Comparisons between various schemes using simulations.

(Top row) We used our simulator to evaluate the performance of various

schemes on di�erent scene configurations (fronto-parallel plane with an

intensity staircase, a textured hemisphere, and a depth staircase). Middle

and bo�om rows show depth recovery comparisons in low noise and high

noise se�ings, respectively. Depths recovered by conventional sinusoid and

square coding have large RMSE (root mean square errors), with respect to

the ground truth. In contrast, the proposed Hamiltonian coding can recover

accurate shape despite high noise levels, using the same total light source

power and capture time as conventional schemes.

evaluate the performance of various ToF coding schemes on real-

world practical devices. Figure 11 shows depth recovery compar-

isons between ideal Hamiltonian coding functions, and bandlim-

ited Hamiltonian functions (as output by our hardware prototype).

The performance degrades by a factor of approximately 1.5− 3, de-

pending on the SNR level. This performance drop is consistent with

our experimental results, which are achieved on an un-optimized,

proof-of-concept hardware prototype.
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Fig. 9. Comparisons between various schemes using simulations for

K = 3. The same noise and imaging parameters are used as in Figure 8. The

relative performance of di�erent schemes in terms of the root mean square

depth error is consistent with the respective coding curve lengths (Table 1).
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Fig. 10. Shape recovery comparisons using simulations in a low SNR

scenario. (First row) Comparison of raw 3D shape measurements for a

face in strong ambient light, resulting in large photon noise. (Second row)

Comparisons a�er smoothing. The same total source power and capture

time, and smoothing parameters were used for all schemes. The numbers

in the square parentheses are the mean depth errors, with respect to the

ground truth.

8.3 Frequency Bandwidth Considerations

In the comparisons shown so far in Figures 8, 9 and 10, we used the

same fundamental frequency for all coding schemes (10MHz, corre-

sponding to an unambiguous depth range of 15 meters). Although

the fundamental frequency is 10 MHz., coding functions for non-

sinusoid schemes such as square and Hamiltonian contain higher

frequency components. It is well known that the depth precision

achieved by sinusoid coding schemes is directly proportional to the

modulation frequency [Lange 2000]. However, high frequency sinu-

soids also limit the unambiguous depth range due to phase wrap-

ping [Lange 2000]. For example, a 120 MHz. sinusoid can measure
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Fig. 11. Performance of bandlimited Hamiltonian coding scheme.

Comparisons between ideal Hamiltonian coding, and bandlimited Hamil-

tonian functions (as output by our hardware prototype). The performance

degrades by a factor of approximately 1.5− 3, depending on the SNR level

(low noise on le�, and high noise on right). This performance drop is con-

sistent with our experimental results.

depths only in a small ( ∼ 1 meter) range. Due to this fundamen-

tal tradeo� between depth precision and range, several commercial

TOF systems (e.g., Microsoft Kinect v2 [Microsoft-Kinect 2014]) use

multiple (at least two) frequency sinusoid coding [Droeschel et al.

2010], where a combination of low and high frequencies are used to

simultaneously achieve high depth precision, and large unambigu-

ous depth range. Speci�cally, phases from the high-frequency sinu-

soids provide high-precision, albeitwrapped (ambiguous), depth es-

timates. The phases corresponding to the low-frequency sinusoids

are used to unwrap the high-frequency phases, thus providing un-

ambiguous depth estimates over a large depth range. We call this

the multi-frequency sinusoid coding scheme.

A related approach is to use multiple high-frequency sinusoids,

wherein each high-frequency sinusoid’s phase individually pro-

vides precise but ambiguous depth information, but the phases are

combined to provide unambiguous depth information [Gupta et al.

2015]. This method is used commercially in Texas Instrument’s TI

OPT8241 ToF sensor [Texas-Instruments 2017]. We call this the

high-frequency sinusoid coding scheme (also called Micro ToF cod-

ing in [Gupta et al. 2015]).

Comparisons with multi-frequency sinusoid coding: Since

the proposed Hamiltonian coding functions have high-frequency

components, we perform comparisons with the above mentioned

multi-frequency and high-frequency sinusoid coding schemes.

Most of the energy (> 99%) of the Hamiltonian coding functions is

contained within the �rst 12 harmonics (e.g., within the frequency

range 10 − 120 MHz., for a fundamental frequency of 10 MHz.).

So, we compare with multiple frequency sinusoid schemes with

frequencies in the same range, i.e., 10 − 120 Mhz. Speci�cally, we

compare with a multi-frequency sinusoid scheme that uses two fre-

quencies (10 MHz. and 120 MHz.), and a high-frequency sinusoid

scheme that uses both high frequencies (110 MHz. and 120 MHz.).

For both schemes, we consider K = 5 measurements, with three

measurements for the lower frequency (phase-shifted by 2π
3 ) and

two measurements for the higher frequency (phase-shifted by π
2 ).

The precise but ambiguous depths estimated from higher frequency
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Fig. 12. Comparisons with multiple frequency sinusoid coding

schemes. We compare Hamiltonian coding with a multi-frequency sinu-

soid scheme that uses one low and one high frequency (10 MHz. and 120

MHz.), and a high-frequency sinusoid scheme that uses two high frequen-

cies (110MHz. and 120MHz.). The fundamental frequency of Hamiltonian

coding functions is 10MHz. (Top row) At low noise se�ings, both sinusoid-

based schemes have similar performance as that of the Hamiltonian coding.

(Bo�om row) However, at high noise (low SNR), both multiple frequency

sinusoid schemes su�er from large depth errors due to inaccurate phase

unwrapping, while Hamiltonian coding still achieves high depth precision.

sinusoids was unwrapped using standard phase unwrapping tech-

niques. In order to ensure fair comparisons, the total source energy

is also kept the same for all coding schemes.

Figure 12 shows depth recovery results for the two multiple fre-

quency sinusoid coding schemes. As before, we consider a low

noise setting (K = 5, source strength = 250 lumens, ambient

strength = 250 lux), and a high noise setting (K = 5, source strength

= 80 lumens, ambient strength = 2500 lux). At low-noise settings,

both multiple frequency sinusoid schemes have similar perfor-

mance as that of the Hamiltonian coding. However, at high noise

(low SNR), multiple frequency sinusoid schemes su�er from large

depth errors due to inaccurate unwrapping. While it may be pos-

sible to reduce the unwrapping errors by using sophisticated algo-

rithms based on spatial smoothness priors [Droeschel et al. 2010],

this usually comes at the cost of reduced spatial resolution and high

computational costs.

Figure 13 shows the root mean square (RMS) depth error of

various schemes (for the plane-with-intensity-staircase scene) as

a function of noise. At low noise, the performance of both the mul-

tiple frequency sinusoid schemes (multi-frequency sinusoid and

high-frequency sinusoid) is comparable to that of the Hamiltonian
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Fig. 13. Simulations based comparisons of various coding schemes

as a function of SNR. Root mean square (RMS) depth error of various

schemes (for the plane-with-intensity-staircase scene) as a function of

noise. Le� figure shows the errors on a linear scale. The right figure shows

the same plots on a log-scale. At low noise levels, the performance of both

multiple frequency sinusoid schemes is comparable to that of the Hamil-

tonian coding. However, as noise level increases (SNR decreases), their per-

formance degrades rapidly due to large phase unwrapping errors. On the

other hand, the performance of Hamiltonian coding degrades gracefully.
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Fig. 14. Hardware prototype. (a) Top view of the setup illustrating the

optical path from source to the scene (red arrows), and from the scene to

the sensor (green arrows), (b) Side view showing non-optical components

such as function generators and mixer.

coding. However, as noise increases, their performance degrades

rapidly due to large phase unwrapping errors. On the other hand,

the performance of Hamiltonian coding degrades gracefully.

9 HARDWARE PROTOTYPE AND RESULTS

Most commercial C-ToF systems (e.g., PMD, Microsoft Kinect) use

sinusoid or square modulation. In order to evaluate di�erent C-ToF

Publication date: June 2017.



0:14 • Gupta, M. et al

time

time

time

time

in
te

n
si

ty
in

te
n

si
ty

in
te

n
si

ty
in

te
n

si
ty

0

1

0

1

0

1

0

1

(a) Sinusoid Coding ( = 4)

measuredtheoretical

time

time

time

time

in
te

n
si

ty
in

te
n

si
ty

in
te

n
si

ty
in

te
n

si
ty

0

1

0

1

0

1

0

1

(b) Square Coding ( = 4)

measuredtheoretical

time

time

time

time

in
te

n
si

ty
in

te
n

si
ty

in
te

n
si

ty
in

te
n

si
ty

measuredtheoretical

0

1

0

1

0

1

0

1

(c) Hamiltonian Coding ( = 4)

0

1

0

1

0

1

time

time

time

time

time

(d) Hamiltonian Coding ( = 5)

measuredtheoretical

0

1

0

1

Fig. 15. Measured vs. theoretical correlation functions. Correlation functions (shown in red) for various coding schemes as implemented and measured

using our hardware prototype. The modulation functions are normalized so that the total emi�ed energy is the same for all schemes. Due to bandwidth

constraints of our current hardware prototype, the higher order Hamiltonian coding functions are low-pass filtered, resulting in loss of performance. This is

not a fundamental limitation, and can be mitigated with improved hardware implementation.
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Fig. 16. Depth estimation of a single scene point. (a) The sensor is used

to estimate the depth of a single scene point (center of a planar di�use

patch). The patch is placed on a translation stage so that its depth can be

varied in the range [2 − 3] meters. We estimated the depth of the patch

at several locations along the stage; at every location, the depth was es-

timated 104 times, and the root mean square (RMS) error was computed.

(b-c) Plots of RMS depth errors for sinusoid, square and Hamiltonian cod-

ing, as a function of the depth of the patch. Hamiltonian coding achieves

considerably lower depth errors as compared to existing methods.

coding schemes, we developed a hardware prototype that can im-

plement a wide range of C-ToF coding functions, including the pro-

posed Hamiltonian coding scheme. Our prototype, shown in Fig-

ure 14, is based on a single pixel point scanning setup. Our light

source is an 830 nm laser diode (Thorlabs L830P200) that can be

modulated with arbitrary waveforms by an external signal of up to

500 MHz bandwidth. The modulation signal is provided by a wave-

form generator, and ampli�ed by an RF ampli�er before being ap-

plied to the diode. The diode is operated at ∼ 15mW average power,

with approximately 40 times peak power (600 mW) available. Such

high peak power allows us to implement the impulse train mod-

ulation functions. The light emitted by the diode is collimated by

an aspheric lens, and passes through a pair of galvanometer steered

mirrors (ThorlabsGVS012), a scan lens and an objective lens before

reaching the scene. The re�ected light returns to the objective along

the same path as the illumination, and is focused onto a photodiode

(Menlo Systems, APD210) with a bandwidth up to 1 GHz 10. The

electronic signal is multiplied inside an RF frequency mixer with a

local oscillator signal (sensor demodulation function) generated by

the second channel of the waveform generator, and then integrated

using a low pass �lter. Finally, the signal is digitized by a National

Instruments USB − 6000DAQ .

To scan the beam we use a second function generator to gen-

erate driving voltages for the galvanometer actuated mirrors. The

galvanometer drivers provide feedback signals with voltages pro-

portional to the position of the x and y mirrors. These signals are

digitized by the DAQ unit along with each data sample. From this

data, an image is created by binning the collected data samples into

a two dimensional histogram with the x and y dimensions in the

scene forming the histogram axes. In our experiments, we use 400

bins along both axes, resulting in a spatial resolution of 400× 400.

Hardware limitations and future outlook: There are several

challenges associated with developing a prototype with only low-

cost o�-the-shelf components. The system bandwidth is currently

limited to 120 MHz by the waveform generator. We use the same

fundamental frequency for all our codes (10 MHz., corresponding to

an unambiguous depth range of 15 meters). Also, we ensure that the

total source power is the same for all coding schemes by using a light

meter. Figure 15 shows the correlation functions for various cod-

ing schemes as implemented on our prototype. Due to bandwidth

constraints, the light source cannot emit a perfect impulse function,

and the higher order Hamiltonian coding functions are low-pass �l-

tered, resulting in loss of performance. In future implementations,

we envision dedicated nonlinear circuits designed to generate spe-

ci�c codes at high speeds, which will potentially achieve close to

the theoretical performance.

10It is possible to develop a full-frame prototype system by using sensors based on im-
age intensi�er tubes that can be gain-modulated by arbitrary functions [Kawakita et al.
2004], or by using an array of photo-diodes [Shcherbakova et al. 2013]. We developed
a single photo-diode scanning setup due to its low cost and ease of implementation.
Our design speci�cations can lead to a future integrated solid state device (e.g., PMD,
Kinect) that can achieve real-time performance.
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(b) Depth errors vs. source strength

Fig. 17. Single point depth recovery for multiple frequency sinusoid

schemes. (a) The sensor is used to estimate the depth of a single scene

point, at a fixed distance of approximately 2 meters, at several SNR set-

tings. The SNR was varied by changing the e�ective light source strength

via a rotating neutral density filter wheel placed in front of the light source.

At every SNR se�ing, the depthwas estimated 104 times, and the root mean

square (RMS) error was computed. (b) RMS depth errors (linear scale on le�,

log-scale on right) as a function of source strength, for single-frequency si-

nusoid, multi-frequency sinusoid, high-frequency sinusoid, and the Hamil-

tonian coding schemes. As source strength decreases (SNR decreases), the

performance of multiple frequency sinusoid schemes degrades rapidly due

to large phase unwrapping errors.

Experimental Results

Depth recovery of a single scene point: The imaging setup con-

sists of a single planar di�use patchwhose depth is estimated by the

sensor, as shown in Figure 16. The patch is placed on a translation

stage so that its depth can be varied between 2 meters to 3 meters.

We estimated the depth of the patch at several locations along the

stage; at every location, the depth was estimated 104 times, and

the root mean square (RMS) error was computed. Figure 16 (b-c)

show plots of RMS depth errors for sinusoid, square and Hamil-

tonian coding, for K = 4 and K = 5, respectively, as a function

of the depth of the patch. Hamiltonian coding achieves consider-

ably lower depth errors as compared to existing methods. The im-

provements are lower than theoretical prediction because of our un-

optimized hardware prototype. As discussed earlier, the hardware

limitations are not fundamental, and larger improvements can be

achieved with optimized hardware implementation in the future.

Comparisons with multi-frequency sinusoid coding: The

imaging setup is similar to that of Figure 16, consisting of a sin-

gle planar di�use patch whose depth is estimated by the sensor, as

shown in Figure 17 (a). For this experiment, the patch was placed at

a �xed distance of approximately 2 meters. We estimated the depth

of the patch at several SNR settings; the SNR was varied by chang-

ing the e�ective light source strength, which was modulated by

a rotating neutral density �lter wheel placed in front of the light

sensor
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Fig. 18. Experimental results for 3D scanning of a depth staircase. (a)

The scene consists of three planar patches at di�erent depths so that they

forma ‘depth staircase’. The distance between the patches is 2.5 cms. (b) An

image of the scene from the viewpoint of the ToF sensor. (c) Comparison of

3D reconstructions recovered using sinusoid and Hamiltonian coding. The

sinusoid reconstruction has large noise; the underlying geometry is barely

discernible. In contrast, the depth staircase structure is clearly visible in

the Hamiltonian reconstruction. (d) A plot of the 3D reconstructions along

one image scan-line. Hamiltonian coding achieves approximately 5 times

lower mean depth error as compared to sinusoid coding, with the same

total capture time and source power.

source. At every SNR setting, the depth was estimated 104 times,

and the root mean square (RMS) error was computed. Figure 17 (b)

plots of RMS depth errors as a function of source strength (SNR), for

single-frequency sinusoid (10 MHz.), multi-frequency sinusoid (10

MHz. and 120 MHz.), high-frequency sinusoid (110 MHz. and 120

Mhz.), and the Hamiltonian coding schemes. For both multiple fre-

quency sinusoud schemes, we captured threemeasurements for the

lower frequency (phase-shifted by 2π
3 ) and two measurements for

the higher frequency (phase-shifted by π
2 ). As expected (and shown

previously via simulations in Figures 12 and 13), as source strength

decreases (SNR decreases), the performance of multiple frequency
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Fig. 19. Experimental results for 3D scanning of a plane. The 3D shape

of the scene (a planar surface, approximately 3meters from the sensor) was

measured at three di�erent noise levels, by varying the source strength. At

low noise, the multiple frequency sinusoid schemes can estimate depths

with high precision. However, at higher noise, phase unwrapping errors

due to noise result in large RMS errors, as indicated in the parentheses. In

comparison, Hamiltonian coding achieves precise depth estimates even at

high noise levels.

sinusoid schemes degrades rapidly due to large phase unwrapping

errors. On the other hand, the performance of Hamiltonian coding

degrades gracefully.

Results for 3D scanning: In our �rst 3D scanning experiment, the

scene consists of three planar patches at di�erent depths so that

they form a ‘depth staircase’, as shown in Figure 18. The distance

between the patches is 2.5 cms. Figure 18 (c) shows comparison of

3D reconstructions recovered using sinusoid and Hamiltonian cod-

ing. The same total exposure time and light source power was used

for both schemes. The sinusoid reconstruction has a mean depth

error of 1.14 cms. Consequently, the underlying geometry is barely

discernible. In contrast, the staircase structure is clearly visible in

the Hamiltonian reconstruction, which achieves approximately 5

times lower error as compared to sinusoid coding.

vertical ridge

scene sinusoid coding Hamiltonian coding

Fig. 20. Comparison of 3D scanning in low SNR scenarios. A dark vase

with low albedo is scanned using sinusoid and Hamiltonian schemes. The

sinusoid reconstruction has strong noise due to low SNR. Hamiltonian cod-

ing is able to recover the overall structure as well as fine details, such as

the vertical ridge on the vase. See Figure 1 for another comparison.

Figure 19 shows 3D scanning comparisons for multiple fre-

quency sinusoid schemes. The scene consists of a single planar dif-

fuse wall, approximately 3 meters away from the sensor. The 3D

shape of the scene was measured at three di�erent noise levels (by

varying the source strength). At low noise levels, the multiple fre-

quency sinusoid schemes can estimate depths with high precision.

However, as noise increases, phase unwrapping errors due to noise

result in large depth errors, as indicated in the numbers in parenthe-

ses below each image. In comparison, Hamiltonian coding achieves

precise depth estimates even at high noise levels.

Figures 1 and 20 show 3D scanning comparisons in two relatively

low SNR scenarios: a face scanned with a low-power source, and

a low albedo dark object. Both objects were placed approximately

2 meters from the sensor. In both cases, sinusoid reconstructions

have strong noise, resulting in large depth errors. Hamiltonian cod-

ing is able to recover the overall structure as well as �ne details,

such as lips and eyes on the face, and the vertical ridge on the vase.

10 LIMITATIONS AND FUTURE WORK

Designing coding schemes with higher performance: Hamil-

tonian coding achieves substantial improvement over existing

methods, but is not provably optimal. The general framework pro-

posed in the paper can be used for designing novel schemes in the

future that potentially achieve better performance than Hamilton-

ian coding. For example, we have explored coding schemes based

on the family of space �lling Hilbert curves [Horn and Kiryati 1997;

Sagan 1994]. Due to their space-�lling properties, Hilbert curves

can have in�nite length. However, Hilbert curves don’t have the

other desirable properties of C-ToF coding curves. These curves

have sharp turns that manifest in poor locality preserving prop-

erties. Consequently, even small image noise can result in large

depth errors. While a detailed study of Hilbert curves based cod-

ing is beyond the scope of this paper, we have performed simula-

tions to evaluate Hilbert and Hamiltonian coding schemes. Our pre-

liminary results (provided in the supplementary technical report)

suggest that overall, Hamiltonian coding, given its strong locality

properties, outperforms Hilbert coding in most real-world scenar-

ios. In speci�c situations (very low noise), Hilbert coding can the-

oretically achieve better performance. An interesting direction of

Publication date: June 2017.



What Are Optimal Coding Functions for Time-of-Flight Imaging? • 0:17

future research is to design scene-adaptive ToF systems which uses

a di�erent family of codes depending on the noise levels.

Hardware constraints: The coding functions designed in the

paper so far do not explicitly account for hardware constraints

such as limited bandwidth. Increasingly, high frequency compo-

nents [Buxbaum et al. 2002] and sources that can admit large peak

power (low-cost laser diodes) are being used in C-ToF imaging sys-

tems. However, for systems with limited bandwidth and low peak

power, the codes designed in this paper may require low-pass �l-

tering and clamping, thereby resulting in lower performance. One

of the next steps is to incorporate bandwidth and peak power con-

straints while estimating the modulation and demodulation func-

tions (Section 7.1) so that they can maintain high performance

while respecting the practical hardware constraints.

Multi-path propagation: The image formation model in this

paper assumes that there is no multi-path light component (in-

terre�ections). Multi-path propagation is an important problem

for almost all active imaging systems, including continuous-wave

ToF. Several methods have been proposed to mitigate the (of-

ten large) depth errors due to multi-path propagation, including

epipolar imaging [O’Toole et al. 2015] and high-frequency cod-

ing [Gupta et al. 2015; O’Toole et al. 2014]. Since dealing with

multi-path is an orthogonal problem to increasing depth resolu-

tion, these methods for dealing with multi-path can be used in a

complementary manner to the proposed coding schemes. For ex-

ample, with the same multipath mitigation technique applied to

both Hamiltonian and sinusoid coding, Hamiltonian coding can po-

tentially achieve similar performance gains (as without multi-path)

over sinusoidal codes. This represents an exciting research direc-

tion. Another potential extension of our code design framework is

to account for global illumination and strong ambient illumination,

and to multi-camera arrays [Shrestha et al. 2016].

Incorporating scene priors in code design algorithms: The

depth error measures derived in this paper are scene agnostic;

they implicitly assume a uniform distribution of scene depths, albe-

dos and ambient illumination. In general, these distributions may

not be uniform. For example, scene depths may have a bi-modal

distribution (foreground and background objects). Furthermore,

we assumed that the scene albedo factor is independent of scene

depths. Incorporating scene priors, such as statistics of natural im-

ages [Torralba and Oliva 2003], and designing scene-adaptive code

optimization algorithms that account for the intensity fall-o� is an

interesting line of future research.
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Supplementary Technical Report for Paper

What are Optimal Coding Functions for Time-of-Flight Imaging?

In this technical report, we provide derivations and explanations supporting the content in the paper
submission titled “What are Optimal Coding Functions for Time-of-Flight Imaging?”

1 Proof of Coding Curve for Sinusoid Coding

Here, we prove that the coding curve for K-tap sinusoid coding, i.e., the locus of points [F1(Γ), . . . ,FK(Γ)],
as Γ is varied, is a circle in K-dimensional space. From Section 6.1 of the paper, the correlation function
Fi(Γ) for sinusoid coding is given as:

Fi(Γ) = 0.5 + 0.25 cos

(

2ωΓ

c
− 2iπ

K

)

. (1)

Consider the coding curve point F(Γ) = [F1(Γ), . . . ,FK(Γ)]. Distance d of point F(Γ) from the point
[0.5, . . . , 0.5] is given as:

d =

√

√

√

√

K
∑

i=1

(Fi(Γ)− 0.5)
2

(2)

= 0.25

√

√

√

√

K
∑

i=1

cos2
(

2ωΓ

c
− 2iπ

K

)

(3)

= 0.25

√

√

√

√

K
∑

i=1

1

2

(

1 + cos

(

4ωΓ

c
− 4iπ

K

))

(4)

= 0.25

√

√

√

√

K

2
+

1

2

K
∑

i=1

cos

(

4ωΓ

c
− 4iπ

K

)

(5)

= 0.25

√

K

2
(6)

=

√
K

4
√
2
. (7)

The above equation says that the distance of F(Γ) from the point [0.5, . . . , 0.5] is a constant, for every

value of Γ. Thus, the locus of points F(Γ) is a circle, with center = [0.5, . . . , 0.5], and radius d =
√
K

4
√
2
.

2 Proof of Coding Curve for Square Coding

In this section, we provide a proof sketch to show that the coding curve for square coding is a polygon with
2K sides, and that the length of each side is 1√

K
. The correlation functions for square coding are the shifted

triangle functions, as shown in Figure 1 for K = 3. Due to the piecewise linear nature of the correlation
functions, we can divide the range of the correlation functions into 2K (6 for K = 3) sub-intervals, so that
within each sub-interval, every correlation function varies linearly. The intervals are shown with black dotted
lines in Figure 1. The values of correlation functions within each interval trace out a line segment in the
K-dimensional space. Thus, the coding curve is a polygon with 2K segments (it is a closed curve because
the correlation functions are continuous and periodic).
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Figure 1: Figure supporting proof of coding curve for square coding (Section 2).

Deriving the side length: Within each sub-interval, the change in value of each correlation function is
1

K
, as illustrated by the horizontal red dotted lines in Figure 1. For K = 3, the change in value is 1

3
. Thus,

the length of the line segment corresponding to each interval is
√

∑K

i=1

1

K2 = 1√
K
. Thus, the total length of

the coding curve is 2K × 1√
K

= 2
√
K.

3 Algebraic Derivation of Coding Curve Length for Square Cod-

ing

In this section, we algebraically derive the coding curve length for square coding (a geometric derivation is
given in the main paper). This coding scheme uses square waves instead of sinusoids, both for modulation
and demodulation functions:

Mi(t) = 0.5 + 0.5 sqr (ωt)

Di(t) = 0.5 + 0.5 sqr

(

ωt− 2iπ

K

)

, 1 ≤ i ≤ K

where sqr(t) function is the binary version of the sin(t) function:

sqr(t) =

{

1 if sin(t) > 0

−1 if sin(t) < 0

The correlation of two square functions is a triangle function. Thus, the normalized correlation function for
square coding is given as:

Fi(Γ) = 0.5 + 0.5 tri

(

2ωΓ

c
− 2iπ

K

)

, (8)

where the tri(t) function is shown in Figure 2 (b).

Algebraic derivation of the coding curve length: From the main paper, the length Lcurve of the coding
curve is given in terms of partial derivatives F ′

i :

Lcurve =

Γmax
∫

Γmin

√

√

√

√

K
∑

i=1

F ′
i(Γ)

2 dΓ . (9)
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Taking the derivative of Eq. 8 with respect to depths Γ, we get:

|F ′
i(Γ)| =

1

2

(

2

π

)(

2ω

c

)

Substituting the above into Eq. 9, and simplifying, we get:

Lsqr
curve = 2

√
K (10)

This is consistent with the geometric derivation given in the previous section.

4 Coding Curve Lengths of Other Schemes

In this section, we derive the coding curves and coding curve lengths for several C-ToF coding schemes:
ramp coding (also known as the ’light wall’ scheme) where one of the correlation functions is a ramp and the
other two are constant, double-ramp coding where two correlation functions are opposing ramps, and impulse
sinusoid coding where the demodulation functions are sinusoids (same as conventional sinusoid coding), but
the modulation function is an impulse train function. The coding functions and coding curves for these
schemes are shown in Figure 2 (reproduced from the main paper for ease of reference).

4.1 Ramp Coding

In this coding scheme, also known as the ’light wall’ scheme, K = 3 measurements are taken. The modulation
and demodulation functions are given as (See Figure 2 (c)):

M1(t) = 0.5 + 0.5 sqr (ωt) , M2(t) = 0.5, M3(t) = 0

D1(t) = 0.5 + 0.5 sqr (ωt) , D2(t) = 1, D3(t) = 1

Ramp coding scheme is an example where the modulation and demodulation functions are not necessarily
phase-shifted versions of each other. The normalized correlation functions are given as:

F1(Γ) = 0.5 + 0.5 tri

(

2ωΓ

c

)

, F2(Γ) = 1, F3(Γ) = 0

Since F1(Γ) is a triangular function, it has a two-way depth ambiguity within every period. In order to avoid
the ambiguity, only the first half of F1(t) is considered, thereby giving it a ramp shape. In order to ensure
that the unambiguous depth range of ramp coding is the same as others, ramp coding uses square waves of

half the frequency, i.e., ωramp = ωsin

2
. The other two correlation functions are constants that are used to

account for the scene albedo factor and ambient illumination.

Geometric derivation of the coding curve length: Since two of the coding functions are constant, the
coding curve for single ramp coding is a straight line segment parallel to the F1 axis, i.e. one side of the unit
coding cube, as shown in Figure 2 (c). Thus, the coding curve length for ramp coding is:

Lramp
curve = 1 (11)

4.2 Double Ramp Coding

In the double ramp coding scheme, K = 3 measurements are taken. The modulation and demodulation
functions are square waves or constant functions, as shown in Figure 2 (d):

M1(t) = M2(t) = 0.5 + 0.5 sqr (ωt) , M3(t) = 0

D1(t) = 0.5 + 0.5 sqr (ωt) , D2(t) = D1

(

t+
π

ω

)

, D3(t) = 1
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By substituting the above in the definition of the correlation function (Eq. 4 in the main paper), the
normalized correlation functions can be derived as:

F1(Γ) = 0.5 + 0.5 tri

(

2ωΓ

c

)

F2(Γ) = 0.5 + 0.5 tri

(

2ωΓ

c
+ π

)

, F3(Γ) = 0

As in the case of ramp coding, F1(Γ) and Fs(Γ) are triangular functions, and have a two-way depth ambiguity
within every period. In order to avoid the ambiguity, only the first halves of F1(t) and F2(t) are considered,
thereby giving them ramp shapes of opposing inclinations, as shown in Figure 2 (d). In order to ensure that
the unambiguous depth range is the same as other schemes, double ramp coding uses square waves of half

the frequency, i.e., ωdoubleramp = ωsin

2
.

Geometric derivation of the coding curve length: Since one of the coding functions is constant, and
the other two are opposing ramps, the coding curve for double ramp coding is a diagonal of one of the faces
of the unit coding cube, as shown in Figure 2 (d). Hence, the coding curve length for double ramp coding is:

Ldoubleramp
curve =

√
2 (12)

4.3 K-tap Impulse Sinusoid Coding

In this scheme, we use sinusoid demodulation functions (same as conventional sinusoid coding), but an
impulse modulation function:

Mi(t) = Λ (ωt)

Di(t) = 0.5 + 0.5 cos

(

ωt− 2iπ

K

)

, 1 ≤ i ≤ K

where Λ(t) is a normalized impulse train function with period Tperiod = 2π and the area under the curve (for
every period) equal to π, same as in all other coding schemes. The function Λ(t) is illustrated in Figure 2
(e-f). Substituting the above in the definition of the correlation function (Eq. 4 in the main paper), we get:

Fi(Γ) = 0.5 + 0.5 cos

(

2ωΓ

c
− 2iπ

K

)

The above expression is similar to the that of the correlation functions for conventional sinusoid coding
(Eq. 1). The notable difference is that the amplitude of the sinusoid is 0.5, as compared to 0.25 as in
conventional sinusoid.
Geometric derivation of the coding curve length: As for conventional sinusoid coding, the coding
curve for impulse sinusoid coding is also a circle in K-dimensional space, similar to conventional sinusoid

coding. The center of the circle is the point C = (0.5, 0.5, . . . , 0.5). The radius of the circle is rad(K) =
√
K

2
√
2
,

which is twice that of the circle for conventional sinusoid (see Figure 2(e)). The coding curve length is given
as:

Limpsin
curve = π

√

K

2
(13)

Implications: The coding curve length of impulse sinusoid coding is twice that of conventional sinusoid
coding. Thus, the mean depth resolution achieved by impulse sinusoid coding is twice that of conventional
sinusoid coding, for any number of measurements K.
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Figure 2: Coding curve representations of different C-ToF coding schemes for K = 3. (a)
Conventional homodyne sinusoid coding, (b) Square coding, (c) Ramp or ‘light wall’ coding, (d) Double
ramp coding, (e) Delta sinusoid coding.
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(a) (b)

Figure 3: Hilbert curves and Hilbert functions. (a) A 3D Hilbert curve of order 2, (b) Hilbert coding
functions hilbi(t) for K = 5, based on the 3D Hilbert curve shown in (a).

5 Exploring Hilbert Curves Based C-ToF Coding Scheme

According to the depth precision equation in the paper, the depth precision achieved by a coding scheme is
proportional to its coding curve length. This raises a natural question: What are the limits on the coding
curve length? Can we design coding schemes with longer coding curves (and thus, higher precision) than the
proposed Hamiltonian coding scheme?

In order to address these questions, we explore a family of C-ToF coding schemes based on space-filling
curves, which are 1D curves that pass through points inside a unit K-dimensional cube. An example of
space-filling curves is the family of Hilbert curves (Sagan 1994). Hilbert curves have been deeply studied,
and find applications across diverse fields, including optimization (Sergeyev et al. 2013), combinatorics and
graph-theory (Bertsimas and Grigni 1988), database indexing (Lawder and King 2000) and wireless commu-
nication (Zhu et al. 2003). An example 3D Hilbert curve of order 2 is shown in Fig. 3 (a).

Limits on coding curve length: Due to their space-filling properties, it is possible to design Hilbert curves
with potentially infinite length. Consequently, it may appear that it is possible to design coding schemes
(based on Hilbert curves) that can potentially achieve infinite precision, which is not possible. Why does
the theoretical result derived in the depth precision equation in the paper predict infinite depth precision?
This is because the derivation in the paper is based on local differential analysis, implicitly using the first
order Taylor series expansion. For this analysis to hold, the depth derivatives of intensities ∂B

∂Γ
should be

well-defined and relatively small. However, higher order Hilbert curves (as shown in Figure 3 (a)) have
several folds and sharp turns. For such curves, the intensity gradients ∂B

∂Γ
can no longer be assumed to be

continuous.
Large intensity gradients manifest in poor locality preserving properties of higher order Hilbert curves,

i.e., there are points on these curves that are distant from each other along the curve, but the Euclidean
distance between them is small. Consequently, even small image noise can potentially result in large errors
in the estimated depth. While lower order Hilbert curves have good locality preserving properties and
can potentially achieve higher precision as compared to Hamiltonian coding, higher order Hilbert curves,
despite being considerably longer than Hamiltonian curves, in general, achieve lower precision (higher errors).
Figure 4 shows the mean depth error plots comparing a Hilbert coding scheme (with the Hilbert curve in
Figure 3 (a)) as its coding curve) and Hamiltonian coding. While Hilbert coding achieves higher performance
than Hamiltonian coding in low-noise scenarios (large source strength, low ambient illumination), in general,
Hamiltonian coding achieves superior performance.

Practical considerations and guidelines: Another practical constraint in implementation of Hilbert
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Figure 4: Comparison of Hilbert and Hamiltonian coding. The mean expected depth error of Hilbert
and Hamiltonian coding over a depth range of [0 − 10] meters. Hilbert coding schemes have large coding
curve lengths, and theoretically, can outperform Hamiltonian coding in low-noise scenarios (large source
strength, low ambient illumination). However, moderate to high noise can lead to large errors for Hilbert
coding.

coding is the large bandwidth requirements. Figure 3 (b) illustrate the Hilbert coding functions hilbK,o,i(t)
for K = 5 and o = 2, where hilbK,o,i(t) is defined as the value of the ith coordinate of points on a K-
dimensional Hilbert curve of order o. The Hilbert functions have significantly higher frequency bandwidth as
compared to Hamiltonian functions, thus potentially requiring more complex hardware. Overall, Hamiltonian
coding, given its large coding curve length, strong locality properties and ease of practical implementation,
should be preferred in most real-world scenarios. In specific situations (very low noise), Hilbert coding can
achieve better performance, given availability of appropriate hardware devices (e.g., high frequency sensor
demodulation). An interesting direction of future research is to design a scene-adaptive ToF system which
uses a different family of codes depending on the noise levels and system characteristics.
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