e

Stereo in the Presence of Specular Reflection

Dinkar N. Bhat
Department of Computer Science
Columbia University
New York, NY 10027
bhat@cs.columbia.edu

Abstract

The problem of accurate depth estimation using stereo in
the presence of specular reflection is addressed. Specular re-
flection, a fundamental and ubiquitous reflection mechanism,
is viewpoint dependent and can cause large intensity differ-
ences at corresponding points, resulting in significant depth
errors. We analyze the physics of specular reflection and the
geometry of stereopsis which led us to a relationship between
stereo vergence, surface roughness, and the likelihood of a
correct match. Given a lower bound on surface roughness,
an optimal binocular stereo configuration can be determined
which mazximizes precision in depth estimation despite spec-
ular reflection. However, surface roughness is difficult to es-
timate in unstructured environments. Therefore, trinocular
configurations, independent of surface roughness, are deter-
mined such that at each scene point visible to all sensors, at
least one stereo pair can compute produce depth. We have
developed a simple algorithm to reconstruct depth from the
multiple stereo pairs.

1 Introduction

Stereo is a direct and passive method of obtaining three-

dimensjonal structure of the visual world which makes it
attractive for applications like autonomous navigation and

surveying. The robustness of a stereo system is characterized
to a large extent by its ability to obtain accurate depth esti-
mates of scenes comprising objects with different reflectance
properties.

The stereo correspondence problem [1] is inherently under-
constrained. Therefore, constraints have to be imposed by
making assumptions regarding scene reflectance and struc-
ture. A common assumption is that intensities at corre-
sponding points in the images are identical. Based on this
supposition, various search based strategies have been de-
veloped which correlate image regions (area-based) [9], or
image features (feature-based) [6]. However, this assumption
is valid only when the surfaces in the scene are Lambertian.
Corresponding point intensities are notidentical in the pres-
ence of specular reflection, the specular intensity at any scene
point being dependent on the viewing direction. This effect
is more clearly manifest on smoother surfaces where high-
lights — bright regions due to specular reflection — shift on
the surface even with slight changes in viewpoint. Thus,
corresponding regions in stereo images can be poorly cor-
related, causing area-based schemes to compute incorrect
depth. Similarly, when highlights are assumed to be real
scene features and matched, feature-based schemes can fail.
Tigure 1 shows a stereo pair of a rendered cup, and depth
obtained along two scanlines; one including a highlight and
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the other away from it. Depth was computed using a corre-
lation based a.lgorlthm hence erroneous at points where cor-
responding intensities are vastly different. Our paper deals
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Figure 1: Rendered stereo pair and depth computed along
two scanlines. {a) Left image; (b) Right image; (c¢) Depth
along a scanline including the highlight; (d) Depth along a
scanline away from the highlight. Large depth errors are
observed in (c).

with accurate depth estimation in the presence of specular
reflection which is abundant in real scenes.

To overcome the problem of depth errors due to strong
highlights, Brelstaff and Blake [4] suggested excising them
from images before matching. Removal of highlights is diffi-
cult in images of real scenes and is an active area of research
[7]. Ching et al [5] developed an empirical correlation based
technique to detect and avoid specular reflection when the
camera is active. On a different note, Blake [3] related the
movement of a highlight to the Hessian of the surface which
describes local surface geometry. The above techniques as-
sume ldeal specular reflection which is only an extreme case
as surface roughness tends to zero.

Current stereo algorithms are therefore seriously deficient
in dealing with specular reflection. In this paper, we ad-
dress the problem of precise depth estimation in the pres-
ence of specular reflection from surfaces with macroscopic
roughness. First, we seek an optimal binocular stereo con-
figuration such that intensity differences at corresponding
points is limited, while depth resolution is maximized. The
optimal configuration is determined independent of surface
normal and source direction, and its parameters are shown
to be a function of surface roughness. Therefore, for a scene
where the lower bound on roughness can be estimated -~ quite
possible in structured environments — the two cameras can
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be positioned so as to mininize mismatches without losing
depth precision.

Next, we seek to avoid estimation of surface roughness since
the measurement of surface roughness is often 1mpractical.
We determine trinocular configurations whose parameters
are independent of surface roughness. The important char-
acteristic of these configurations is that for each scene point
in the common field of view of the sensors, at least one binoc-
ular pair provides the correct depth estimate. We have devel-
oped a practical correspondence algorithm to extract correct
depth estimates of scene points from different pairs so as to
yield an accurate depth map of the scene.

Our approach considers specular reflection from rough sur-
faces in the context of stereo. All previous methods have im-
plicitly (5] or explicitly [3] assumed ideal specular reflection.
We do not attempt to avoid or detect the immediate arti-
facts of specular reflection like strong highlights but rather
perform accurate matching in their presence. Thus, prepro-
cessing of images, like removal of highlights, is avoided. Our
approach is not limited by any specific reflectance model or
to any correspondence scheme. It is therefore easy to incor-
porate into existing stereo algorithms.

2 Reflection Mechanisms

Surfaces exhibit two forms of reflectance - diffuse and spec-
ular. Diffuse reflection occurs due to subsurface scattering of
light. It is often assumed to be Lambertian, an assumption
shown to be incorrect for surfaces with macroscopic rough-
ness [10]. Nonetheless, the change in diffuse component with
viewing direction is generally much less pronounced than the
change in specular component.

2.1 Specular Reflection

Specular reflection occurs at the boundary between surface
and medium. It comprises of two components - a spike and a
lobe [8]. We do not deal with surfaces smooth in comparison
to the wavelength of incident light as they are rare in real
scenes. Hence, specular reflection refers to the lobe only.
The specular lobe spreads in directions other than and in-
cluding the specular direction, the width of the distribution
depending on the roughness of the surface. This is described
by the Torrance-Sparrow model [11] which is briefly outlined
below.

A surface is viewed as a collection of planar microfacets,
each behaving like a perfect mirror. A rough surface can be
modelled using a probability distribution for the slopes of the
microfacets. The slope distribution model uses a parameter
o which represents surface roughness. A smoother surface
is characterized by a lower value for ¢. Using this surface
model, the specular intensity I, at any point was shown as:

1, = BLS L (o (b w)?)
. 43
S TR ] W

where 4, § and 7 are unit vectors pointing along the viewing,

source and normal directions, respectively; h is the bisector
of ¥ and §, G is the Geometrical Attenuation Factor, and
F is the Fresnel’s coefficient. KA, accounts for the gain of
the sensor measuring intensity, the source strength, normal-
ization factors in the specular intensity expression, and the
reflectivity of the surface. From (1), it can be deduced that:
(a) when the surface is smooth, the distribution of I is con-
centrated in a small region around the specular direction,
and (b) as the surface becomes rougher, the peak value of
I decreases and the distribution of I'; widens.

2.2  Implications for Stereo

The total image intensity I, for any point in the scene is
given by the sum of diffuse and specular intensity compo-
nents. Due to variation in each component with viewing
direction, the total intensities of corresponding points in the
stereo images are different. But, since the change in diffuse
component is much smaller than the change in specular com-
ponent, it follows that the overall intensity difference laif s is
approximately equal to the difference in specular intensities:

(2)

where, I} and I? are the specular intensities of the point in
the two stereo imagesl. laif ¢ varies over the scene as the sur-
face normal and roughness are generally not constant. The
local variance of I4isy (in a window, for example) could be
large if the viewing directions are chosen arbitrarily, result-
ing in wrong matches while computing stereo correspondence
using linear correlation methods [2].

Laigs = |1t = I?]

Figure 2: A binocular stereo configuration. Note that the
specular intensity is different in the two sensors.

Figure 2 shows a binocular stereo configuration operating
at a point with some surface roughness. The question then
is: How far apart can the the viewing vectors be located
at which l4ij; exceeds a threshold? This upper limit is
bound to be smaller for smoother surfaces since an equiv-
alent change in viewing direction can cause a comparatively
large change in I;(Equation 1). We seek to ascertain this
limit independent of surface normal and source direction
since these are indeterminable except in highly structured
environments.

3 Vergence

We discuss how specular intensity difference at scene points
can be affected by camera parameters. When points are pro-
jected orthographically, as shown in Figure 3, corresponding
rays are parallel to their respective optical axes. Thus, the
angle between projected rays from all points in the scene
can be simultaneously varied, by changing camera vergence
0 alone. 8, is termed as point vergence. Point vergence
is a controllable parameter, independent of surface normal,
and affects specular intensity difference at scene points. The
relation between point vergence and camera vergence for
orthographic projection is simply, §» = § = f + f2. In
the case of perspective projection, viewing direction at each
point in the scene, varies with respect to either viewpoint,
i.e point vergence varies across the scene. To define a single

1We assume the scene is illuminated by a light source whose
direction is fixed but unknown, the gain of the stereo cameras
are identical while obtaining the images, and the response of each
camera is linear with respect to scene radiance.
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Figure 3: Point vergence and camera vergence under ortho-
graphic projection.

controllable parameter which affects specular intensity dif-
ferences over the scene, point vergence can be averaged over
a workspace®. This mean value is called the field vergence.
If the workspace is defined explicitly in world coordinates,
then a relation can be obtained between the field vergence
and baseline [2]. Therefore, the baseline indirectly controls
Iaigg over the workspace.

Hereon, we will refer to both point vergence and field ver-
gence as simply vergence. Vergence is related to depth res-
olution, an important design parameter. Depth accuracy,
and hence resolution, are limited by spatial image quanti-
zation amongst other factors. The depth resolution attain-
able at any point is directly proportional to vergence {2],
assuming quantization is the primary cause for matching
errors. Achieving maximum depth resolution therefore con-
flicts with the requirement of minimizing intensity difference
over the scene.

4 Binocular Stereo

Determining the maximum acceptable vergence in the pres-
ence of specular reflection can be formulated as a constrained
optimization problem, as described in this section. We use
a left-handed coordinate system (Figure 4) with every scene
point mapped to the origin O, and its surface normal is de-
scribed by a unit vector # pointing away from O. The aim is
to attain maximum vergence in order to achieve best depth
resolution. Hence, a suitable objective function fop; is:

(3)

To limit specular intensity difference I4ify at every point in
the scene, the following constraint (c¢1) is imposed:

fob; = 1 -2

laigy <T (4)
where T is a threshold. From a statistical perspective, re-
stricting Idiff amounts to limiting the variance of specu-
lar intensity difference in any local region [2]. The cameras
are restricted to lie in the positive x-z plane, and tilt sym-
metrically about the z-axis. These constraints (¢2) can be
expressed as:

= G-57=0
= G2-kE>0

>
Frut Y

(5)

2The workspace could be the entire stereo field of view.

y

Figure 4: Coordinate system used for the stereo problem.
Each scene point is mapped to the origin (O) of the coordi-
nate system.

where 2, 7 and k are unit vectors along the x,y and z axes,
respectively. To avoid grazing incidence and viewing angles,
constraints (c3) are imposed:

by R, Dp-h, §o0 >0

(6)
The optimization problem® can now be stated as:

fobj

subject to constraints : (cl,c2,c3)

Minimzize :
(7
The variables are 9, #2, § and 7. Solving the above problem,
the optimal viewing directions 477* and 957 and hence the

optimal vergence #3*, can be obtained independent of § and
n.

To demonstrate a particular solution, the expression for
specular intensity given by (1) is used in constraint (cl).
Dividing both sides by K, the constraint can be written as:

Id.‘ff/K3<T/K3 (8)

It can be seen that T/ K is an independent parameter. We
call it the relative threshold which is related to image cor-
respondence. Roughness o is also unconstrained because
surfaces in the scene are unknown. Thus, the optimal ver-
gence 8,°Pt is a function of surface roughness o and relative
threshold T/ K.

The optimization problem is solved numerically and the
relationship obtained between 8,7, o and T/K, is shown
in Figure 5. The salient features of this relationship are:

¢ The optimal vergence increases with roughness. The
reason is that Iuiss weakens with increasing roughness
allowing larger vergence. The surface progressively be-
haves in a diffuse manner, and thus the effects of spec-
ular reflection on matching diminish.

o The optimal vergence also increases with relative
threshold. This is perceivable because a larger thresh-
old permits a larger variation in I5.

3The dot product of the two viewing vectors represents the
cosine of point vergence. Therefore, minimizing the value of the
dot product amounts to maximizing vergence.

1088
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Figure 5: Graph illustrating the relationship between
roughness, relative threshold and optimal vergence.

The monotonically increasing relationship of vergence with
roughness implies that if the lowest roughness value in the
scene is known, then the corresponding optimal vergence can
be used for stereo. Arguing similarly, a conservative lower

bound for the relative threshold is sufficient to sufficient to
configure a system that produces low intensity difference

for all scene points. Variations to the general problem can
now be considered by modifying the constraints, however
the approach to determine the optimal stereo configuration
remains unchanged. For example, the normal vectors at all
points could be constrained to lie in one plane, i.e all objects
have translational symmetry and oriented appropriately.

Since we do not have a closed-form expression for optimal
vergence in terms of relative threshold and roughness, we

purstued a functional approximation. If 6~U0pt approximates
9,°P", then

goovt_ @ (T/Ks,)2 o
Y T (T/K)? 4 bo?

where a and b are constants obtained numerically [2].

(9)

To make the relationship in Figure 5 usable, a correspon-
dence operator is required which is sensitive to changes in the
relative threshold and degrades gracefully. The normalized
correlation coefficient (NCC) measures the degree of linear
relationship between intensities in image windows. It is in-
variant to scaling of the intensities in the windows. With
two matching windows W in the two images, containing N
pixels and having intensities I§"J) and Ig"J), NCC =1 if
Ig"J) = Ig"J),(i,j) € W, ie if the corresponding surface is
Lambertian*. However, due to specular reflection the inten-
sities are not equal, hence NCC deviates from 1. The devia-
1(',1)1:1(h.7) 9
assuming that all points in each window are identically
scaled in specular intensity by K. Since we limit the in-
tensity difference at all corresponding points by T, it follows
that B < (T/K.)?; thus, NCC is sensitive to changing rel-
ative threshold. A closely related stereo operator, the sum
of squared differences (SSD), can also be made sensitive to
variations in relative threshold [2].

tion is estimated by E, where F o< Z(i j)ew(

4 We ignore noise, and geometrical distortion in the windows.

The exact value of the relative threshold when mismatches
begin to occur (the breaking threshold) depends on diffuse
texture of the surface which are diverse, making its estima-
tion a hard problem. Note that this problemn is inherent to
stereo matching, and it is only natural that the threshold
appears in our formulation. Adopting a conservative lower
bound for the relative threshold results in small vergence
which in turn implies poor depth resolution. We will show
that the problem can be mitigated by using the trinocular
stereo approach.

5 Experiments

We illustrate the effect of vergence on stereo matching us-
ing surfaces with different roughness. For these experiments,
we use a 5 degree of freedom SCARA (Adept) robot (see Fig-
ure 6). The end-eftector is equipped with a camera to obtain
We use two uniformly rough

different viewing directions.

Figure 6: The experimental setup. (a) Diagram of a robot
with a camera fixed to its end-effector. The coordinate sys-
tem is also shown; (b) A photograph of the setting.

cylindrical objects wrapped with different surfaces (see Fig-
ure 7); a gift wrapper and a roughened xerox quality paper.
Their surface roughness was measured [2], and the values
obtained are o = 3.5° and o = 6.3°, respectively. It can be
also be seen from the the images in Figure 7.

In order to use approximately the same relative threshold,
similar random patterns on the surfaces were marked. Im-
ages obtained at equal angles about the z-axis are matched
along scanlines containing texture®. For each surface, depth
obtained along a scanline at different vergence values is
shown in Figure 7. It can be seen that for each surface large
depth errors are computed at larger vergence: 8.0° and 11.0°
respectively, although a higher vergence is acceptable for the
rougher surface. For the smoother surface, the mismatches
are confined to the highlight region over which the variation
of Igify is large.

6 Trinocular Stereo

While binocular stereo as described earlier is viable in
structured environments where surface roughness can be es-
timated, it is not generally practical. Further, if the vergence
corresponding to the lowest roughness estimate in the scene
is used, then the depth resolution obtained for rougher sur-
faces is suboptimal. Thus, we seek an alternative scheme.

Figure 6 shows schematics of a trinocular system configured
such that the intensity difference at a point, with varying
surface roughness, is constrained to a threshold in at least
one pair of views. Therefore, depth of the point can be

5We have imposed the scanline epipolarity constraint by en-
suring that the robot moves in the x-z plane only, and by using
imaging optics that approximates orthographic projection.



(a) 0 = 3.5° (d) ¢ =6.3°
Depth
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Figure 7: Effect of varying vergence on correspondence. (a-
¢) Image of the object with gift wrapper surface and depth
obtained along a scanline using the vergence values shown.
(d-f) Image of the object with rongh xerox paper surface and
depth obtained along a scanline using the vergence values
shown. Notice that for both surfaces, depth is incorrectly
recovered at larger vergence, although a relatively higher
vergence is acceptable for the rougher surface.

accurately computed in at least one stereo pair, regardless
of surface roughness. While the configuration need not be
limited to three sensors [2], increasing the number of sensors
makes stereo implementation cumbersome. We analyze a
planar symmetric trinocular stereo system (see Figure 9)
with o as a single configurable parameter. Therefore, the
following geometrical constraints (d1) hold:

) -0y = Da-03
-k, G R, 3R > 0
'i)m .; = 0) m=1)213 (10)

For any scene point, J4ify must not be too large in at least
one stereo pair. This constraint (d2) can be expressed as:

(11)

Note that the two views which satisfy the above constraint
can change from one scere point to the next. Therefore,

ML~ <T), k#4,1<i,k<3

Figure 8: A trinocular configuration illustrated on three
surfaces with o1 < 02 < 03. (a) |13 12| < T, (b) |IZ =13 <
T,and () I} = I2| < T, |I? -} < Tand |1} - I2] < T.

L §C #R

Figure 9: Layout of a trinocular configuration with the cam-
eras labelled as L, C and R.

if the constraint is satisfied for all scene points, then an
algorithm can be designed that switches between different
stereo pairs to construct a complete and accurate depth map.

We analyze the following problem — Determine those values
of the trinocular vergence parameter o which satisfy the con-
straints d1 and d2. Like in the case of binocular stereo, the
relative threshold T/ Ks and the roughness o are free param-
eters. The problem is solved numerically, and Figure 10(a)
illustrates the corresponding solution space (« vs o) for a
given value of T/ K. The unshaded region marked A denotes
unacceptable vergences while the shaded region represents
acceptable vergence values. Notice that all @ > o are
acceptable values for any roughness value. In other words,
aP" denotes that vergence beyond which it is ensured that
the intensity difference does not exceed the chosen value of
threshold in at least one pair of views for any scene point.
This is true for arbitrary surface roughness. o is termed
as the minimum acceptable vergence. Figure 10(b) illustrates
the variation of o°?* with T/ K,. The monotonically decreas-
ing relationship suggests that a conservative lower bound for
T/ K will give good depth resolution unlike binocular stereo.
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Another advantage of trinocular stereo is that the depth res-
olution obtainable is greater than its binocular counterpart
for smoother surfaces since o°pt is much higher than the
corresponding #2P'. 14 can be observed that the binocular
stereo solution is subsumed in Figure 10.
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Figure 10: The trinocular stereo solution space. (a) o — &
plot with relative threshold (T/K,) = 0.06. Region B de-
notes the region o > a?* where all vergences are acceptable.
(b) Variation of «P* with T/ K.
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7 Reconstruction

This section describes an algorithm for matching three
views obtained using a configuration with o > o“?*. The
three designated stereo image pairs are, (L, R), (C, R) and
(L,C). The essence of the algorithm lies in determining
which of the three stereo pairs provides a “good” depth es-
timate for any point in the scene.

To evaluate goodness of a match, two confidence tests are
used: (i) C1: Compare the NCC value obtained with a pre-
defined threshold. Only if the normalized correlation value
is higher, accept the match. At a wrong match, texture and
shading between the windows being different, similarity is
expected to be poor. (i) C2: Let I and I, denote two
stereo images. If zp is the current match in image I for
pixel z, in I1, then reverse the search and find the corre-
sponding pixel for zp by searching in [;. This match must
coincide with z, if zp and zq are corresponding points.

Reconstruction Algorithm:

(1) Initialize the current stereo pair to (L, R). The reason
for choosing this pair is that it ylelds maximum vergence
thereby providing good depth resolution.

(2) Choose a pixel zz in L with sufficient neighbouring tex-
ture, and perform the following steps:

(2.1) Find a matching pixel in R. Using confidence tests
C1 and C2, evaluate the goodness of match. If the match is
good, compute depth and go to step 2. If not, the current
stereo pair (L, R) cannot be used for matching pixet z 1, and
then perform the following steps:

{2.1.1) Set (L, C) as the current stereo pair, and find the
corresponding pixel for z; in C. Evaluate the confidence
of matching using C1 and C2. If the match is good, then
compute the corresponding pixel g in image R by trans-
formation. Compute depth using z; and zr and go to step
2. If the match is not good, then the current stereo pair too
has failed to establish correspondence, and hence perform
the following step:

{2.1.1.1) Set (C,R) as the current stereo pair. If S is
the search range, find that pixel z¢ in C within the range
{zr — S,z1 + §) which matches well with zg in R, and
together map onto z; when transformed into the image co-
ordinate system of L. The mapping under orthographic pro-
jection is given in [2]. Thus, we establish consistent corre-
spondence for z 1 in the three images. Compute depth using
zr and zr and go to step 2. If no such consistent correspon-
dence can be established, then depth cannot be computed
at pf)int z1, hence go back to step 2 for processing the next
pixel.

Note that the complexity of the algorithm is of the order of
simple linear correlation computed twice over every pixel for
which depth is being computed. The complexity increases in
proportion to the number of switches between stereo pairs. If
the surface geometry is known, then the switching sequence
and the total complexity can actually be evaluated [2].

8 Experiments

We present trinocular stereo experiments with objects of
different roughness. Here we do not estimate surface rough-
ness as required in the case of binocular stereo. Figure 6
shows the photograph of the experimental stereo setup used.
As with the experiments on binocular stereo (section 5), dif-
ferent vergence values are obtained by moving the camera in
a circle about a center close to which objects are placed.

Figure 11 shows trinocular stereo images of an egg-shaped
object. The object is relatively rough, as is perceivable from
the spread out highlight region. Notice that the specular
region shifts in the image space differently from the neigh-
boring texture. The images were obtained using o = 7.5°,
i.e the binocular vergence with the left and right images is
15.0°. This value was chosen to keep search ranges rela-
tively small. A large value for o will necessitate a coarse
to fine matching strategy which we have not implemented
currently. We used a single distant light source in order to
keep the experiments consistent with the theory. The per-
formance of the reconstruction algorithm is first illustrated
on one scanline. Figure 12 compares our algorithm with
naive binocular stereo matching (using views L and R). It
can be seen that our algorithm works well demonstrating
robustness to specularities. A complete depth map is shown
in Figure 13.

The second scene (Figure 14) contains two objects with
different surfaces: a vase shaped object whose roughness
varies over the surface, and a cylindrical object with un-
known roughness. Again, @ = 7.5° was used to capture the
trinocular images. Figure 15 illustrates the depth map of
the scene produced by the reconstruction algorithm. The ex-
periments demonstrate that the algorithm works reasonably
well in the case of objects with different reflectance char-
acteristics, an essential requirement for a practical stereo
algorithm.

9 Conclusion

We conclude our paper by summarizing its main results
and contributions :

¢ We have developed a physically based approach for re-
liable stereo in the presence of specular reflection.

o A scene independent binocular stereo solution was ob-
tained by minimizing intensity differences at corre-
sponding points while maximizing depth resolution.

The solution was shown to be a function of surface
roughness. Hence, this configuration is usable in struc-

tured environments where roughness can be assessed.
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(a) Left (L) (b) Center (C) (c) Right (R
Figure 11: Trinocular stereo images of an egg-shaped ob-
ject, obtained using @ = 7.5°. The images are gamma cor-

rected to enhance contrast for display.

Dxpth Depth

Fixel Position Pixel Position

(a) (b)

Figure 12: Depth computed for the egg shaped object along
a scanline, (a) using views L and R; and (b) using the pro-
posed reconstruction algorithm which uses all three views.

e Trinocular stereo configurations were derived to obvi-
ate the need for surface roughness measurement. These
configurations can be used in scenes containing un-
known objects with possibly varying reflectance prop-
erties.

We have developed a simple algorithm for reconstruct-
ing accurate depth maps from three views of a scene
that include specular reflections from surfaces of un-
known roughness.
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