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Abstract—Motion blur due to camera motion can significantly degrade the quality of an image. Since the path of the camera motion

can be arbitrary, deblurring of motion blurred images is a hard problem. Previous methods to deal with this problem have included blind

restoration of motion blurred images, optical correction using stabilized lenses, and special CMOS sensors that limit the exposure time

in the presence of motion. In this paper, we exploit the fundamental trade off between spatial resolution and temporal resolution to

construct a hybrid camera that can measure its own motion during image integration. The acquired motion information is used to

compute a point spread function (PSF) that represents the path of the camera during integration. This PSF is then used to deblur the

image. To verify the feasibility of hybrid imaging for motion deblurring, we have implemented a prototype hybrid camera. This prototype

system was evaluated in different indoor and outdoor scenes using long exposures and complex camera motion paths. The results

show that, with minimal resources, hybrid imaging outperforms previous approaches to the motion blur problem. We conclude with a

brief discussion on how our ideas can be extended beyond the case of global camera motion to the case where individual objects in the

scene move with different velocities.

Index Terms—Sharpening and deblurring, inverse filtering, motion, motion blur, point spread function, resolution, hybrid imaging.

�

1 INTRODUCTION

MOTION blur is the result of the relative motion between
the camera and the scene during the integration time

of the image. Motion blur can be used for aesthetic
purposes, such as emphasizing the dynamic nature of a
scene. It has also been used to obtain motion and scene
3D structure information [39], [7], [6], [24], [9], [41], [25],
[46], [33]. Motion blur has also been also used in computer
graphics to create more realistic images which are pleasing
to the eye [5], [31], [42], [3], [26], [10], [19]. Several
representations and models for motion blur in human and
machine vision have been proposed [40], [4], [12], [13].

Very often, motion blur is simply an undesired effect. It
has plagued photography since its early days and is still
considered to be an effect that can significantly degrade
image quality. Fig. 1 shows simulated examples of images
that are blurred due to simple motions of the camera. In
practice, due to the large space of possible motion paths,
every motion blurred image tends to be uniquely blurred.
This makes the problem of motion deblurring hard.

Motion blurred images can be restored (up to lost spatial
frequencies) by image deconvolution [17], provided that the
motion is shift-invariant, at least locally, and that the blur
function (point spread function, or PSF) that caused the blur is
known. As the PSF is not usually known, a considerable
amountof researchhasbeendedicated to theestimationof the
PSF from the image itself. This is usually done using the
method of blind image deconvolution [27], [37], [18], [2], [38],
[46], [8], [43], [45], [44]. PSF estimation andmotion deblurring
have also been addressed in image sequence processing, and
in spatial super-resolution algorithms [36], [2], [20], [32], as
well as in the context of temporal super-resolution [35].

Methods of blind image deconvolution generally as-
sumes that the motion that caused the blur can be
parameterized by a specific and very simple motion model,
such as constant velocity motion or linear harmonic motion.
Since, in practice, camera motion paths are more complex,
the applicability of the above approach to real-world
photography is very limited. Fig. 2 shows the result of
applying matlab’s blind image deconvolution to the image
shown in Fig. 1b. The resulting image is clearly degraded by
strong deconvolution artifacts.

Two hardware approaches to the motion blur problem,
which are more general than the above methods, have been
recently put forward. The first approach uses optically
stabilized lenses for camera shake compensation [14], [15].
These lenses have an adaptive optical element, which is
controlled by inertial sensors, that compensates for camera
motion. As shown in Fig. 3, this method is effective only for
relatively small exposures; images that are integrated over
durations that are even as small as 1/15 of a second can
exhibit noticeable motion blur due to system drift [30], [29].
The second approach uses specially designed CMOS sensors
[11], [21]. These sensors prevent motion blur by selectively
stopping the image integration in areas where motion is
detected. It does not, however, solve the problem of motion
blur due to camera shake during long exposures.

In this paper, we present a novel approach to motion
deblurring of an image. Our method estimates the contin-
uous PSF that caused the blur, from sparse real motion
measurements that are taken during the integration time of
the image, using energy constraints. This PSF is used to
deblur the image by deconvolution.

In order to obtain the required motion information, we
exploit the fundamental trade off between spatial resolution
and temporal resolution by combining a high resolution
imaging device (the primary detector) together with a simple,
low cost, and low resolution imaging device (the secondary
detector) to form a novel hybrid imaging system. While the
primary detector captures an image, the secondary detector
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obtains the required motion information for the PSF

estimation.
We have conducted several simulations to verify the

feasibility of hybrid imaging for motion deblurring. These
simulations show that, with minimal resources, a secondary
detector can provide motion (PSF) estimates with subpixel
accuracy. Motivated by these results, we have implemented
a prototype hybrid imaging system. We have conducted
experiments with various indoor and outdoor scenes and
complex motions of the camera during integration. The
results show that hybrid imaging outperforms previous
approaches to the motion blur problem.

Finally, we discuss the applicability of hybrid imaging to
the deblurring of motion blur caused by moving objects.
Moving objects present a much more complex blur problem
due to their blending with the background during image
integration. We show that hybrid imaging provides a
partial, yet significant step towards solving this problem.

2 FUNDAMENTAL RESOLUTION TRADE OFF

An image is formed when light energy is integrated by an
image detector over a time interval. Let us assume that the
total light energy received by a pixel during integrationmust
be above a minimum level for the light to be detected. This

minimum level is determined by the signal-to-noise char-
acteristics of the detector. Therefore, given such a minimum
level and an incident flux level, the exposure time required to
ensuredetectionof the incident light is inverselyproportional
to the area of the pixel. In other words, exposure time is
proportional to spatial resolution.When the detector is linear
in its response, the above relationship between exposure and
resolution is also linear. This is the fundamental trade off
between the spatial resolution (number of pixels) and the
temporal resolution (number of images per second).

This trade off is illustrated by the solid line in Fig. 4. The
parameters of this line are determined by the characteristics
of the materials used by the detector and the incident flux.
Different points on the line represent cameras with different
spatio-temporal characteristics. For instance, a conventional
video camera (shown as a white dot) has a typical temporal
resolution 30fps and a spatial resolution of 720� 480 pixels.

Now, instead of relying on a single point on this trade off
line, we could use two very different operating points on
the line to simultaneously obtain very high spatial resolution
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Fig. 1. Different camera motions lead to different motion blurs. Here, the unblurred scene shown in (a) is blurred using three different simulated
camera rotations about the “X” and “Y” axes. These blurring functions are depth invariant and for long focal lengths also shift invariant. In (b) and (c),
the scene is blurred by linear horizontal and vertical motions, respectively. In (d), the scene is blurred due to circular motion. In practice, the space of
possible motion paths is very large, which makes the problem of motion deblurring without prior knowledge of the motion, very hard so solve.

Fig. 2. Blind image deconvolution applied to the motion blurred image
shown in Fig. 1b. The strong deconvolution artifacts are the result of
incorrect PSF estimation.

Fig. 3. The use of a stabilized lens for reducing motion blur. The image
shown in (a) was taken by a hand-held camera using a 400mm
stabilized Canon zoom lens at 1/250 of a second; we can see that the
stabilization mechanism works very well for this speed, producing a
sharp image. In contrast, when the exposure time is raised to 1/15 of a
second, the stabilization mechanism drifts resulting in the motion blurred
image shown in (b). (Printed with permission of the photographer [29]).



with low temporal resolution and very high temporal
resolution with low spatial resolution. This type of a hybrid
imaging system is illustrated by the two gray dots in Fig. 4.
As we shall see, this type of hybrid imaging gives us the
missing information needed to deblur images with minimal
additional resources.

3 HYBRID IMAGING SYSTEMS

We now describe three conceptual designs for the hybrid
imaging system. The simplest design, which is illustrated in
Fig. 5a, uses a rigid rig of two cameras: a high-resolution still
camera as the primary detector and a low-resolution video
camera as the secondary detector. Note that this type of a
hybrid camera was exploited in a different way in [34] to
generate high-resolution stereo pairs using an image-based
rendering approach. In our case, the secondary detector is
used for obtaining motion information. Note that it is
advantageous to make the secondary detector black and
white sincesuchadetector collectsmore light energy (broader
spectrum) and, therefore, can have higher temporal resolu-
tion. Also, note that the secondary detector is used only as a
motion sensor; it has low resolution and high gain and is not
suitable for superresolution purposes [1]. While this is a very
simple design, performing the geometrical calibration be-
tween theprimaryandsecondarydetectors canbe trickysince
the image of the primary detector can be blurred. Moreover,
the primarydetector’s projectionmodelwill changewhen the
lens is replaced or the zoom setting is varied. This problem is
addressed by the following two designs.

The second design uses the same lens for both detectors by
splitting the imagewith a beam splitter. This design, which is
shown in Fig. 5b, requires less calibration than the previous
one since the lens is shared and, hence, the image projection
models are identical.Anasymmetric beamsplitter thatpasses
most of the visible light to the primary detector and reflects
nonvisible wavelengths toward the secondary detector, for
example a “hot mirror” [28], would be preferred.

A third conceptual design, which is illustrated in Fig. 5c,
uses a special chip layout that includes the primary and the
secondary detectors on the same chip. This chip has a high
resolution central area (the primary detector) and a low
resolution periphery (the secondary detector). Clearly, in
this case, the primary and the secondary detectors would

not have the same field of view. This is possible since we
assume that the motion is shift invariant. Note that such a
chip can be implemented using binning technology now
commonly found in CMOS (and CCD) sensors [16]. Binning
allows the charge of a group of adjacent pixels to be
combined before digitization. This enables the chip to
switch between a normal full-resolution mode (when
binning is off) and a hybrid primary-secondary detector
mode (when binning is activated).

4 COMPUTING MOTION

The secondary detector provides a sequence of images
(frames) that are taken at fixed intervals during the exposure
time. By computing the global motion between these frames,
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Fig. 4. The fundamental trade off between spatial resolution and temporal resolution of an imaging system. While a conventional video camera (white
dot) is a single operating point on the trade off line, a hybrid imaging system uses two different operating points (gray dots) on the line,
simultaneously. This feature enables a hybrid system to obtain the additional information needed to deblur images.

Fig. 5. Three conceptual designs of a hybrid camera. (a) The primary
and secondary detectors are essentially two separate cameras. (b) The
primary and secondary detectors share the same lens by using a beam
splitter. (c) The primary and secondary detectors are located on the
same chip with different resolutions (pixel sizes).



we obtain samples of the continuous motion path during the
integration time. The motion between successive frames is
limited to a global rigid transformation model. However, the
path, which is the concatenation of the motions between
successive frames, is not restricted and can be very complex.
We compute the motion between successive frames using a
multiresolution iterative algorithm that minimizes the
following optical flow based error function [22]:

argmin
ðu;vÞ
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where ð�x;�yÞ is the translation vector and � is the rotation
angle about the optical axis.

Note that the secondary detector, which has a short but
nonzero integration time, may also experience some motion
blur. This motion blur can violate the constant brightness
assumption, which is used in the motion computation. We
assume that the computed motion between two motion
blurred frames is the center of gravity of the instantaneous
displacements between these frames during their integra-
tion time. We refer to this as the motion centroid assumption.

5 CONTINUOUS PSF ESTIMATION

The discrete motion samples that are obtained by the
motion computation need to be converted into a continuous
point spread function. To do that, we define the constraints
that a motion blur PSF must satisfy, and then use these
constraints in the PSF estimation.

Any PSF is an energy distribution function, which can be
represented by a convolution kernel k : ðx; yÞ 7! e, where
ðx; yÞ is a location and e is the energy level at that location. The
kernel k must satisfy the following energy conservation
constraint:

Z Z
kðx; yÞ dx dy ¼ 1; ð3Þ

which states that energy is neither lost nor gained by the
blurring operation (k is a normalized kernel). In order to
define additional constraints that apply to motion blur PSFs,
we use a time parameterization of the PSF with a path
function f : t 7! ðx; yÞ and an energy function h : t 7! e.
Note that the functions f and h define a curve which
belongs to a subset of all possible PSFs. Due to physical
speed and acceleration constraints, fðtÞ should be contin-
uous and at least twice differentiable. By assuming that the
scene radiance does not change during image integration,
we get the additional constraint:

Z tþ�t

t

hðtÞ dt ¼ �t

tend � tstart
; �t > 0; tstart � t � tend � �t; ð4Þ

where ½tstart; tend� is the image integration interval. This
constraint states that the amount of energy which is

integrated at any time interval is proportional to the length
of the interval.

Given these constraints, and the motion centroid assump-
tion from the previous section, we can estimate a continuous
motion blur PSF from the discrete motion samples, as
illustrated in Fig. 6. First, we estimate the path fðtÞ by spline
interpolation as shown in Figs. 6a and 6b; spline curves are
used because of their smoothness and twice differentiability
properties, which satisfy the speed and acceleration con-
straints. In order to estimate the energy function hðtÞweneed
to find the extent of each frame along the interpolated path.
This is done using the motion centroid assumption by
splitting the path fðtÞ into frames with a 1D Voronoi
tessellation, as shown in Fig. 6b. Since the constant radiance
assumption implies that frames with equal exposure times
integrate equal amount of energy,we can compute hðtÞ (up to
scale) for each frame as shown in Fig. 6c. Note that all the
rectangles in this figure have equal areas. Finally, we smooth
hðtÞ andnormalize (scale) it to satisfy the energy conservation
constraint. The resulting PSF is shown in Fig. 6d. The end
result of the above procedure is a continuousmotion blur PSF
that can now be used for motion deblurring.

6 IMAGE DECONVOLUTION

Given the estimated PSF, we can deblur the high resolution
image that was captured by the primary detector using
existing image deconvolution algorithms [17], [23]. Since this
is the only step that involves high-resolution images, it
dominates the time complexity of the method, which is
usually the complexity of FFT. The results reported in this
paper were produced using the Richardson-Lucy iterative
deconvolution algorithm [17], which is a nonlinear ratio-
based method that always produces nonnegative gray-level
values and, hence, gives results that make better physical
sense than linear methods [17]. This method maximizes a
Poisson-statistics image model likelihood function, yielding
the following iteration:

ÔOðkþ1ÞðxÞ ¼ ÔOðkÞðxÞ � Sð�xÞ � IðxÞ
S � ÔOðkÞ

; ð5Þ

where: I is the measured image, ÔOðkÞ is the kth estimation of
the result, ÔOð0Þ ¼ I, and S is the convolution kernel (the
PSF). Given that I and S are everywhere positive, ÔOðkÞ

cannot be negative.

7 SIMULATION RESULTS

Prior to prototype implementation, two sets of simulation
tests were done in order to validate the accuracy of the PSF

estimation algorithm.
The first set addresses the accuracy of the motion

estimation as a function of frame resolution and gray level
noise. The second set illustrates the accuracy of the
computed path fðtÞ in the presence of motion blur. Both
our tests were conducted using a large set of images that
were synthesized from the 16 images shown in Fig. 7.

7.1 Motion Estimation Accuracy Test

In this test, we computed themotion between an image and a
displaced version of the same image (representing two
frames) using four different resolutions and four different
levelsofGaussiannoise for eachresolution.Thedisplacement
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used in the test was ð17; 17Þ pixels, and the noise level was
varied between standarddeviations of 3 to 81 gray levels. The
computed displacements of the downscaled images were
scaled back to the original scale and comparedwith the actual
(ground truth) values. Table 1 shows the test results. We can
see that subpixel motion accuracy was obtained for all tests
except the test with the lowest image quality of 80� 80 pixels
and noise standard deviation of 81 gray levels. This test
confirms the feasibility of using a low resolution detector to
obtain accurate motion estimates.

7.2 Path Accuracy Test

Here, we first generated a dense sequence of 360 images by
using small displacements of each image in the set shown in
Fig. 7, along a predefined path. We then created a motion
blurred sequence by averaging groups of successive frames
together. Finally, we recovered the path from this sequence
and compared it to the ground truth path. Table 2 shows the
results computed over a set of 16 synthesized sequences, for
different blur levels and different paths. We can see that
subpixel accuracy was obtained for all paths. Moreover, the
small standard deviation obtained for the different test
sequences shows that the different textures of the test images
have little effect on the accuracy of the path estimation.

8 PROTOTYPE HYBRID CAMERA RESULTS

Fig. 8 shows the prototype hybrid imaging system we have
implemented. The primary detector of the system is a
3M pixel ð2; 048� 1; 536Þ Nikon digital camera equipped
with a�6Kenko zoom lens. The secondary detector is a Sony
DV camcorder. The original resolution of the camcorder

ð720� 480Þ was reduced to 360� 240 to simulate a low

resolution detector. The two sensorswere calibrated using an

image that was captured using a tripod (without motion

blur).
Figs. 9 and 11 show results obtained from experiments

conducted using the prototype system. Note that the

exposure times (up to 4.0 seconds) and the focal lengths (up

to 884mm) we have used in our experiments far exceed the

capabilities of other approaches to the motion blur problem.
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Fig. 6. The computation of the continuous PSF from the discrete motion vectors. (a) The discrete motion vectors which are samples of the function
f : t 7!ðx; yÞ. (b) Interpolated path fðtÞ and its division into frames by Voronoi tessellation. (c) Energy estimation for each frame. (d) The computed PSF.

Fig. 7. The set of diverse natural images that were used in the
simulation tests.

TABLE 1
Scaled Motion Estimation Error between Two Frames (in Pixels)

as a Function of Resolution and Noise Level

This table shows that it is possible to obtain subpixel motion accuracy
from significantly low resolution and noisy inputs.

TABLE 2
Path Estimation Error, in Pixels, as a Function

of Path Type and Motion Blur

We can see that subpixel accuracy was obtained for all tests with very
little deviation between different test images.



In Figs. 9a, 10a, 11a, and 12a, we see the inputs for the
deblurring algorithm, which includes the primary detector’s
blurred image and a sequence of low-resolution frames
captured by the secondary detector. Figs. 9b, 10b, 11b, and
12b show the computed PSFs for these images. The path
shown in these figures is the camera motion, while the colors
code the percentage of the total energy at each point along the
path. Notice the complexmotion paths and the sparse energy
distributions in these PSFs. Figs. 9c, 10c, 11c, and 12c show the
deblurring results. Notice the details that appear in the
magnified subimages compared to the original blurred
images and the ground truth images shown in Figs. 9d,
10d, and 12d, that were takenwithout motion blur by using a
tripod. Also, notice the text on the building shown in the left
column of Fig. 11, which is completely unreadable in the
blurred image shown in Fig. 11a, and clearly readable in the
deblurred image show in Fig. 11c. Some increase of noise
level and small deconvolution artifacts are observed and are
expected side effects of the deconvolution algorithm. Over-
all, however, in all the experiments the deblurred images
show significant improvement in image quality and are very
close to the ground truth images.

9 APPLICABILITY TO DEBLURRING OF

MOVING OBJECTS

We now address the problem of motion blur due to an object
moving in front of a stationary (nonblurred) background.
This problem is difficult since the moving object “blends”
with the background and, therefore, it is not enough to know
theobject’s PSF todeblur the image; theblurredobjectmust be
separated from the background before it can be deblurred.
This blending effect is illustrated in Fig. 13. Figs. 13a and 13b
show the ground truth image and a simulated image with a
blurred moving object (balloons). Fig. 13c shows the part of
the image that contains the blurred foreground object. Note
that the blending of the foreground and the background is
clearly visible. Fig. 13d shows the result of deconvolving the
foreground object with the known PSF. The resulting image
has strong artifacts and does not look natural as seen in the
composite image in Fig. 13e. Note that we have assumed that
the extent of the blur and the shape of the mask used for
compositing the deblurred foreground and the clear back-
ground are known. However, it is not obvious how these can
be obtained from the blurred image in Fig. 13b without
additional information.

Assuming that the blending is linear, we can express the
correct deblurring operation in the presence of blending as:

O ¼ ðI � ðB �M � SÞÞ ��1 S þB � �MM; ð6Þ

whereO is the deblurred image, I is the blurred input image,
S is the PSF,��1 denotes deconvolution,M is a segmentation
mask for the shape of the foreground (nonblurred) object,
B is a clear and nonblurred background image, � denotes
2D convolution, and �XX is the complement of X.

Note that the deblurring given by (6) requires a back-
ground image which is not only nonblurred (this is an
assumption) but also void of any foreground moving object.
A clear backgroundcanbeobtained in severalways.Oneway
is to capture a picture of the backgroundwhen no foreground
objects are present. In scenarioswhere foreground objects are
alwayspresent, one cancapture a sequenceofhigh-resolution
images which are sufficiently sparse in time, and apply a
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Fig. 8. The hybrid camera prototype used in the experiments is a rig of
two cameras. (a) The primary system consists of a 3M pixel Nikon
CoolPix camera (b) equipped with a �6 Kenko zoom lens. (c) The
secondary system is a Sony DV camcorder. The Sony images were
reduced in size to simulate a low-resolution camera.

Fig. 9. Experimental results for indoor 3D objects scene. (a) Input images, including the motion blurred image from the primary detector and a
sequence of low-resolution frames from the secondary detector. (b) The computed PSF. Notice the complexity of its path and its energy distribution.
(c) The deblurring result. The magnified windows show details. (d) Ground truth image that was captured without motion blur using a tripod.



median filter to the sequence. The hybrid camera can provide
an accurate PSF for the moving object; this can be done by
applying a tracking algorithm to the low-resolution (high
frame-rate) sequence. Since we assume shift invariance, only
a single feature needs to be tracked. Hybrid imaging can also
provide a low-resolution mask (shape) of the foreground
object using the secondary detector’s image. This is true only
for the designed shown in Figs. 5a and 5b.

Fig. 14 shows how such a low-resolution mask can be
effective in deblurring the image shown in Fig. 13b image
using (6). Fig. 14a shows the blending mask M � S of the
foreground. Figs. 14b and 14c show the background
component B �M � S and the foreground component I �
ðB �M � SÞÞ of the blurred image. Fig. 14d shows the
deblurred foreground object and, finally, Fig. 14e shows the
composite deblurred image. We can see that the low-

resolution mask was effective in avoiding any undesired

blending of the foreground and the background.
The extension of this method to a blurred background

scenario, where it is possible to obtain a clear nonblurred, or

a clear deblurred image of the background, is straightfor-

ward. In this case, (6) becomes:

O ¼ ðI � ððB� SbÞ �M � SfÞÞ ��1 Sf þB � �MM; ð7Þ

where Sb and Sf are the PSFs of the background and the

foreground, respectively.

10 CONCLUSION

In this paper, we have presented a method for motion

deblurring by using hybrid imaging. This method exploits
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Fig. 11. Experimental results for outdoor building scene. (a) Input images, including the motion blurred image from the primary detector and a
sequence of low-resolution frames from the secondary detector. (b) The computed PSF. Notice the complexity of its paths and its energy distribution.
(c) The deblurring result. Notice the clarity of the text. (d) Ground truth image that were captured without motion blur using a tripod.

Fig. 10. Experimental results for indoor face scene. (a) Input images, including the motion blurred image from the primary detector and a sequence of
low-resolution frames from the secondary detector. (b) The computed PSF. Notice the complexity of its path and its energy distribution. (c) The
deblurring result. The magnified windows show details. (d) Ground truth image that was captured without motion blur using a tripod.



the fundamental trade off between spatial and temporal
resolution to obtain ego-motion information. We use this
information to deblur the image by estimating the PSF that
causes the blur. Simulation and real test results show that,
with minimal resources, hybrid imaging outperforms
previous approaches to the motion blur problem.

Our approach has several application. It can be applied to
aerial surveillance systems where vehicle translation, which
cannot be corrected by gyro-based stabilization systems, can
greatly reduce the quality of acquired images. The method
also provides a motion deblurring solution for consumer
level digital cameras. These cameras often have small yet
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Fig. 12. Experimental results for outdoor tower scene. (a) Input images, including the motion blurred image from the primary detector and a
sequence of low-resolution frames from the secondary detector. (b) The computed PSF. Notice the complexity of its path and its energy distribution.
(c) The deblurring result. (d) Ground truth image that was captured without motion blur using a tripod.

Fig. 13. Object blending problem. (a) Nonblurred ground truth image. (b) Synthetically blurred image. (c) Blurred foreground image. The nonmasked
area is exactly the blur object extent. Notice that the foreground is blended with the background. (d) Deblurring of the foreground object. The artifacts
due to blending are clearly visible. (e) Composite of the clear background with the deblurred foreground using a ground truth composite mask. The
resulting image does not look natural.



powerful zoom lenses, which makes them prone to severe

motion blur, especially in the hands of a amateur photo-

grapher. Since the method is passive, it can be implemented

by incorporating a low-cost chip into the camera such as the

one used in optical mice. This chip has low spatial resolution

and high temporal resolution, which can be used to obtain

the ego-motion information. The image deblurring process

can be performed automatically, or upon user request, by the

host computer that is usually used to download the images

from the camera. Alternatively, the deblurring function can

be incorporated into the camera itself, so that the user always

sees images of the highest (motion deblurred) quality.1 We

believe that our proposed method can be applied to various

domains of imaging, including, remote sensing, aerial

imaging, and digital photography.
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