
Compile-Time Analysis and Specialization of

Clocks in Concurrent Programs

Nalini Vasudevan1, Olivier Tardieu2, Julian Dolby2, and Stephen A. Edwards1

1 Department of Computer Science, Columbia University, New York, USA
{naliniv,sedwards}@cs.columbia.edu

2 IBM T.J. Watson Research Center, New York, USA
{tardieu,dolby}@us.ibm.com

Abstract. Clocks are a mechanism for providing synchronization barri-
ers in concurrent programming languages. They are usually implemented
using primitive communication mechanisms and thus spare the program-
mer from reasoning about low-level implementation details such as re-
mote procedure calls and error conditions.
Clocks provide flexibility, but programs often use them in specific ways
that do not require their full implementation. In this paper, we describe
a tool that mitigates the overhead of general-purpose clocks by statically
analyzing how programs use them and choosing optimized implementa-
tions when available.
We tackle the clock implementation in the standard library of the X10
programming language—a parallel, distributed object-oriented language.
We report our findings for a small set of analyses and benchmarks. Our
tool only adds a few seconds to analysis time, making it practical to use
as part of a compilation chain.

Keywords: Concurrency, Static Analysis, Synchronization, Clocks, X10, NuSMV

1 Introduction

The correct coordination and synchronization of concurrent tasks is one of the
major challenges of concurrent programming. Low-level primitives, such as locks
or compare-and-swap, can lead to optimum performance but they are hard to use
and error-prone. In this paper, we consider higher-level concurrency constructs
that are supplied in libraries and provide the user a richer, less error-prone ab-
straction. The usual disadvantage of general-purpose libraries is their generality:
their implementation includes code to handle all possible cases, which slows down
the relatively few cases each program uses.

We present an optimization technique that greatly reduces the performance
penalty of a general-purpose concurrency library. We statically analyze the use
of clocks—a form of synchronization barriers—in the Java-derived X10 concur-
rent programming language [1, 2] and use the results to safely substitute more
specialized implementations of these standard library elements.



A clock in X10 is a structured form of synchronization barrier useful for ex-
pressing patterns such as wavefront computations and software pipelines. Con-
current tasks registered on the same clock advance in lockstep.

Our static analysis technique models an X10 program as a finite automaton;
we ignore data but consider the possibility of clocks being aliased. We pass this
automaton to the NuSMV model checker [3], which reports erroneous usage of
a clock and whether a particular clock follows certain idioms. If the clocks are
used properly, we use the idiom information to restructure the program to use a
more efficient implementation of each clock. The result is a faster program that
behaves like one that uses the general-purpose library.

Our analysis flow has been designed to be flexible and amenable to supporting
a growing variety of patterns. In the sequel, we focus on inexpensive queries
that can be answered by treating programs as sequential. While analysis time
is negligible, speedup is considerable and varies across benchmarks from a few
percent to a 3× improvement in total execution time.

In summary, our contributions are

– a methodology for the analysis and specialization of clocked programs;
– a set of cost-effective clock transformations;
– a prototype implementation: a plug-in for the X10 v1.5 tool chain; and
– experimental results on some modest-size benchmarks.

After a brief overview of the X10 language in Section 2 and the clock library
in Section 3, we describe our static analysis technique in Section 4 and how
we use its results to optimize programs in Section 5. We present experimental
evidence that our technique can improve the performance of X10 programs in
Section 6. We discuss related work in Section 7 and conclude in Section 8.

2 The X10 Programming Language

X10 [1, 2] is a parallel, distributed object-oriented language. To a Java-like se-
quential core it adds constructs for concurrency and distribution through the
concepts of activities and places. An activity is a unit of work, like a thread in
Java; a place is a logical entity that contains both activities and data objects.

The async construct creates activities; parent and child execute concurrently.
The X10 program in Figure 1 uses clocks to recursively compute the first ten rows
of Pascal’s Triangle. The call of the method row on line 40 creates a new stream
object, spawns an activity to produce the stream values, and finally returns the
stream object to main. The rest of main executes in parallel with the spawned
activity, printing the stream values as they are produced.

Spawned activities may only access final variables of enclosing activities, e.g.,

final int a = 3; int b = 4;
async { int x = a; // OK: a is a final

int y = b; } // ERROR: b is not final

An X10 program runs in a fixed, platform-dependent set of places. The main
method always runs in place.FIRST PLACE ; the programmer may specify where
other activities run. Activities cannot migrate between places.



1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 120 120 45 10 1

1 public class IntStream {

2 public final clock clk = clock.factory.clock(); // stream clock
3 private final int[] buf = new int[2]; // current and next stream values
4
5 public IntStream(final int v) {

6 buf[0] = v; // set initial stream value
7 }

8
9 public void put(final int v) {

10 clk.next(); // enter new clock phase
11 buf[(clk.phase()+1)%2] = v; // set next stream value
12 clk.resume(); // complete clock phase
13 }

14
15 public int get() {

16 clk.next(); // enter new clock phase
17 final int v = buf[clk.phase()%2]; // get current stream value
18 clk.resume(); // complete clock phase
19 return v;
20 } }

21
22 public class PascalsTriangle {

23 static IntStream row(final int n) {

24 final IntStream r = new IntStream(1); // start row with 1
25 async clocked(r.clk) { // spawn clocked task to compute row’s values
26 if (n > 0) { // recursively compute previous row
27 final IntStream previous = row(n−1);
28 int v; int w = previous.get();
29 while (w != 0) {

30 v = w; w = previous.get();
31 r.put(v+w); // emit row’s values
32 }

33 }

34 r.put(0); // end row with 0
35 }

36 return r;
37 }

38
39 public static void main(String[] args){
40 final IntStream r = row(10);
41 int w = r.get(); // print row excluding final 0
42 while (w != 0) { System.out.println(w); w = r.get(); }
43 } }

Fig. 1. A program to compute Pascal’s Triangle in X10 using clocks

start 2: clock.factory.clock

25: async clocked

16: next

17: phase

18: resume

10: next

11: phase

12: resumeend

IntStream constructor IntStream get

IntStream put

Fig. 2. The automaton model for the clock in the Pascal’s Triangle example



final IntStream s = new IntStream(4);
async (place.LAST PLACE) { // spawn activity at place.LAST PLACE

// cannot call methods of s if LAST PLACE != FIRST PLACE
final int i = 3;
async (s) s.put(i); // spawn activity at the place of s; s is local => ok to deref

}

Activities that share a place share a common heap. While activities may hold
references to remote objects, they can only access the fields and methods of a
remote object by spawning an activity at the object’s place.

X10 also introduces value classes, whose fields are all final. The fields and
methods of an instance of a value class may be accessed remotely, unlike normal
classes. Clocks are implemented as value classes.

X10 provides two primitive constructs for synchronization: finish and when.
finish p q delays the execution of statement q until after statement p and all
activities recursively spawned by p have completed. For example,

finish { async { async { System.out.print(‘‘Hello’’); } } } System.out.println(‘‘ world’’);

prints “Hello world.” The statement when(e) p suspends until the Boolean con-
dition e becomes true, then executes p atomically, i.e., as if in one step during
which all other activities in the same place are suspended.3

X10 also permits unconditional atomic blocks and methods, which are spec-
ified with the atomic keyword. For example,

atomic { int tmp = x; x = y; y = tmp; }

3 Clocks in X10

Clocks in X10 are a generalization of barriers. Unlike X10’s finish construct,
clocks permit activities to synchronize repeatedly. In contrast to when constructs,
they provide a structured, distributed, and determinate form of coordination.
While a complete discussion of X10’s clocks is beyond the scope of this paper,
the following sections will demonstrate that clocks are amenable to efficient and
effective static analysis.

Figure 3 lists the main elements of the clock API. An activity must be reg-
istered with a clock to interact with it. Activities are registered in one of two
ways: creating a clock with the clock.factory.clock() static method automatically
registers the calling activity with the new clock. Also, an activity can register
activities it spawns with the async clocked construct.

final clock clk = clock.factory.clock();
async clocked(clk) { A1; clk.next(); A2; clk.next(); A3 }

async clocked(clk) { B1; clk.next(); B2; }
async { C; }
M1; clk.resume(); M1 2; clk.next(); M2;

A clock synchronizes the execution of activities through phases. A registered
activity can request the clock to enter a new phase with a call to next, which

3 X10 does not guarantee that p will execute if e holds only intermittently.



blocks the activity until all other registered activities are done with the current
phase, i.e., have called next or resume. For instance, in the program above, action
A1 must complete before action B2 can start. In other words, A1 and B1 belong
to phase 1 of clock clk ; A2 and B2 belong to phase 2. C, however, does not
belong to an activity registered with clk ; it may execute at any time.

The resume method provides slack to the scheduler.4 An activity calls resume
when it is done with the current clock phase but does not yet need to enter the
next. Unlike next, resume does not block the activity, and the activity must still
call next to enter the next phase. In the example above, while M1 must terminate
before A2 can start and A1 must terminate before M2 can start, M1 2 may start
before A1 completes and continue after A2 starts because of resume.

In Figure 1, the value at the pth column and nth row of this triangle (0 ≤

p ≤ n) is the number of possible unordered choices of p items among n. One
task per row produces the stream of values for the row by summing the two
entries from the row immediately above. Each stream uses a clock to enforce
single-write-single-read interleaving, so each task registers with two clocks: its
own and the clock for the row immediately above. The clocks ensure proper
inter-row coordination.

The phase method returns the current phase index (counting from 1). Fig-
ure 1 demonstrates this and also how activities can register with multiple clocks
(using recursion in this example).

Finally, activities can explicitly unregister from a clock by calling drop. Ac-
tivities are implicitly unregistered from their clocks when they terminate.

The operations of an activity on a clock modify the state of this activity
w.r.t. that clock. Figure 4 shows the behavior. The activity may be in one of
four states: Active, Resumed, Inactive, or Exception. Transitions are labeled with
clock-related operations: async clocked, resume, next, phase, and drop. For ex-
ample, an activity moves from the Active state to Resumed if it calls resume on
the clock. If it calls resume again, it moves to the Exception state. Any operation
that leads to the Exception state throws the ClockUseException exception.

3.1 Clock Patterns

We now describe the four clock patterns we currently identify. We believe that
our techniques can also be applied to find other patterns.

Our first pattern is concerned with exceptions: can an activity reach the
exception state for a particular clock? The default clock implementation looks for
transitions to this state and throws ClockUseException if they occur. Aside from
the annoyance of runtime errors, runtime checks slow down the implementation.
We want to avoid them if possible.

Our algorithm finds that the clocks are used properly in the program of
Figure 1, e.g., no task erroneously attempts to use a clock it is not registered
with. Therefore, it substitutes the default implementation with one that avoids
the overhead of runtime checks for these error conditions.

4 The resume method is typically used in activities registered with multiple clocks.



/∗ Create a new clock. Register the calling activity with this clock. ∗/
final clock clk = clock.factory.clock();

/∗ Spawn an activity registered with clocks clk 1, ..., clk n with body p. ∗/
async clocked(clk 1, ..., clk n) p

public interface clock {

/∗ Notify this clock that the calling activity is done with whatever it intended
∗ to do during this phase of the clock. Does not block. ∗/

void resume();

/∗ Block until all activities registered with this clock are ready to enter the next
∗ clock phase. Imply that calling activity is done with this phase of the clock. ∗/

void next();

/∗ Return the phase index. Calling activity cannot be resumed on the clock. ∗/
int phase();

/∗ Unregister the caller from this clock; release it from having to participate ∗/
void drop();

}

Fig. 3. The clock API

Active Resumed

Inactive Exception

register with c
c.resume

c.next

c.next, c.phase, or
async clocked(c)

async clocked(c)

any

c.drop c.resume or c.phase
c.drop

any

Fig. 4. The state of one activity with respect to clock c

We also want to know whether resume is ever called on a clock. This feature’s
implementation requires additional data structures and slows down all clock
operations. We discuss this and other optimizations in Section 5.

Activities often use clocks to wait for sub-activities to terminate. Consider

final clock clk = clock.factory.clock();
async clocked (clk) A1;
async A2;
async clocked (clk) A3;
clk.next();
A4;

Here, if A1 and A2 do not interact with clock clk, clk.next() requires activities A1
and A3 to terminate before A4 starts executing and nothing else. In particular,
A2 and A4 may execute in parallel. We want to detect sub-activities that are
registered with the clock yet never request to enter a new clock phase.

Finally, the default clock implementation enables distributed activities to
synchronize. If it turn out that all registered activities belong to the same place,
a much faster clock implementation is possible. Our Pascal’s Triangle program
is a trivial example of this since all activities are spawned in the default place.



4 The Static Analyzer

In this section, we describe how we detect clock idioms. We start from the
program’s abstract syntax tree, compute its call graph, and run aliasing analysis
on clocks. We then abstract data by replacing conditional statements with non-
deterministic choice. From the control-flow graph of this abstract program, we
extract one automaton per clock. This gives a conservative approximation of the
sequences of operations that the program may apply to the clock.

To a model checker, we feed the automaton for the control-flow of the program
along with an automaton model of the clock API and a series of temporal logic
properties, one for each idiom of interest. For each property and each clock, the
model checker either proves the property or returns a counterexample in the
form of a path in the automaton that violates the property.

We use the T.J. Watson Libraries for Analysis (wala) [4] for parsing, call-
and control-flow-graph construction, and aliasing analysis. We have extended
the Java frontend of wala to accommodate X10 and extract from the AST the
required automata in the form of input files for the NuSMV model checker [3].

We now describe the key technical steps in detail. We start with the construc-
tion of the automaton, then discuss the encoding of the clock API, the temporal
properties, and finally aliasing.

4.1 Constructing the Automaton

Figure 2 shows the automaton we build for the clock clk in Figure 1. Each oper-
ation on clk in the text of the program becomes one state, which we label with
the type of operation and its line number. Transitions arise from our abstraction
of the program’s control flow. We highlighted the fragments corresponding to
the constructor and methods of the IntStream class.

methods Each method body becomes a fragment of the automaton. Each call
of a method adds a transition to and from its entry and exit nodes. For
example, since get may be called twice in a row (lines 28 and 30), we added
the edge from its exit node “18: resume” to its entry node “16: next.” It may
also be called after put, looping from line 31 back to line 30, so we added an
edge from node “12: resume” to node “16: next.”

conditionals We ignore guards on conditionals and add arcs for both branches.
For example, the if on line 26 runs immediately after the async clocked on
line 25. The “then” branch of this if runs line 27, which starts with a call
to row that starts by constructing an IntStream (line 24) whose constructor
calls clock.factory.clock() (line 2). This gives the arc from node “25: async
clocked” to “2: clock.factory.clock.” The “else” branch is line 34, which calls
put, which starts with a call to next (line 10). This gives the arc to “10: next.”

async Because we are not checking properties that depend on interactions
among tasks, we can treat a spawned activity as just another path in the
program. When execution reaches an async construct, we model it as ei-
ther jumping directly to the task being spawned or skipping the child and
continuing to execute the parent. This is illustrated in Figure 5.



stmt1;
async clocked(c) {

stmt3;
}

stmt2;

stmt1

async clocked(c)

stmt3

stmt2 Fig. 5. Modeling async calls

In our Pascal’s Triangle example, this means control may flow from the
IntStream constructor exit point “2: clock.factory.clock” to the async con-
struct “25: async clocked” or ignore the async and flow back via the return
statement to the subsequent get method call in either main or row, i.e., node
“16: next.”

We give the NuSMV code for the automaton in an extended version of this
paper [5].

We build one automaton for each call of clock.factory.clock in the source
code, meaning our algorithm does not distinguish clocks instantiated from the
same allocation site. So we construct only one automaton for our example, even
though the program uses ten (very similar) clocks when it executes.

We have taken a concurrent program and transformed it into a sequential
program with multiple paths. Thanks to this abstraction, we avoid state space
explosion both in the automaton construction and in the model checker.

4.2 Handling Async Constructs with the Clock Model

Our model of clock state transitions—Figure 4—only considers a single activity,
but X10 programs may have many. As explained in Section 4.1, we model async
constructs with nondeterministic branches, so we have to extend the typestate
automaton for the clock to do the same.

Figure 6 shows the additional transitions necessary for handling async ac-
tions. We consider two cases: when analyzing clock c and we encounter async
clocked(c), the new activity stays either Active or Resumed. By contrast, if we
encounter an async not clocked on c, the new activity starts in the Inactive state
(arcs labeled just async).

We give the NuSMV code for the complete automaton in the extended version
of this paper [5].

Active Resumed

Inactive Exception

async clocked(c)

async

async clocked(c)

any async

async async

async clocked(c)

Fig. 6. Additional transitions in the clock state for modeling async operations



4.3 Specifying Clock Idioms

Once we have the automata modeling the program and clock state, it becomes
easy to specify patterns for NuSMV as temporal logic formulas.

Three patterns are CTL reachability properties of the form

SPEC AG(!(target))

where target is either the Exception state, a resume operation, or an async
clocked(c) node annotated with a place expression, that is, a remote activity
creation. See the extended version of this paper [5] for details.

We check for the fourth pattern—whether spawned activities ever call next
on the clock—by looking for control-flow paths that contain an async clocked(c)
operation followed by a c.next operation. The LTL specification is

LTLSPEC G(c next −> H(!async clocked c))

The extended version of this paper [5] gives the complete NuSMV input file
for the Pascal’s Triangle example.

4.4 Combining Clock Analysis with Aliasing Analysis

Clocks can be aliased just like any objects. Figure 7 shows an example of aliasing
of clocks in X10. We create two clocks c1 and c2. x can take the value of either
c1 or c2 depending on the value of n.

final clock c1 = clock.factory.clock();
final clock c2 = clock.factory.clock();
..
final clock x = (n > 1)? c1: c2;
x.resume();
x.next();
c1.next();

create c1

create c2

resume x

next x

next c1

Fig. 7. Top Left : Aliasing
clocks in X10, Top Right :
the corresponding control flow
graph, Bottom Left : our ab-
straction, Bottom Center : au-
tomaton for c1, Bottom Right :
automaton for c2

create c1

create c2

resume c1

next c1

resume c2

next c2

next c1

create c1

resume c1

next c1

next c1

create c2

resume c2

next c2

next c1

We could abstract the program into two control paths, one that assumes x =
c1 and one that assumes x = c2. However, this would produce a number of paths
exponential in the number of aliases that have to be considered simultaneously.

Instead, we chose to bound the size of our program abstraction (at the ex-
pense of precision) as shown in the bottom three diagrams of Figure 7. We con-
sider each clock operation on x in isolation and apply it non-deterministically to
any of the possible targets of x as returned by wala’s aliasing engine.



final clock c1 =
clock.factory.clock();

final clock c2 =
clock.factory.clock();

..
final clock x = (n > 1)? c1: c2;
async clocked(x, c1) {

x.next();
c1.next();

}

c1.next();

create c1

create c2

async clocked(x, c1)

next x

next c1

next c1

create c1

create c2

next c1 async clocked(c1, c1) async clocked(c2, c1)

next c2 next c1

next c1

Fig. 8. Asyncs and Aliases

Figure 8 shows how we extend this idea to async constructs. Our tool reports
that operations on clock c1 cannot throw ClockUseException. However, it fails
to establish the same for c2 because our abstraction creates a false path—next
c2 following async clocked(c1,c1).

5 The Code Optimizer

Results from our static analyzer drive a code optimizer that substitutes each
instance of the clock class for a specialized version. We manually wrote an op-
timized version of the clock class for each clock pattern we encountered in our
test cases; a complete tool would include more. Our specialized versions include
a clock class that does not check for protocol violations (transitions to the ex-
ception state) and one that does not support resume.

There is one abstract clock base class that contains empty methods for
all clock functions; each specialized implementation has different versions of
these methods that uses X10 primitives to perform the actual synchronization.
Our optimizer changes the code (actually the ast) to use the appropriate de-
rived class for each clock, e.g., c = clock.factory.clock() would be replaced with
c = clock.factory.clockef() if clock c is known to be exception-free.

The top of Figure 9 shows the general-purpose implementation of next. The
clock value class contains the public clock methods; the internal ClockState main-
tains the state and synchronization variables of the clock. The next method first
verifies that the activity is registered with the clock (and throws an exception
otherwise), then calls the select function to wait on a latch: a data structure
that indicates the phase. The latch is either null if next() was called from an
active() state or holds a value if next() was called from a resumed() state. The
wait function blocks and actually waits for the clock to change phase. The check
method decrements the number of activities not yet resumed on the clock and
advances the clock phase when all activities registered on the clock are resumed.

A basic optimization: when we know the clock is used properly, we can
eliminate the registration check in next and elsewhere. Figure 9 shows such
an exception-free implementation.



// The default implementation

class ClockState {

..
atomic int check() {

int resumedPhase = currentPhase;
if (remainingActivities−− == 0) {

// set the number of activities
// expected to resume
remainingActivities =

registeredActivities;
// advance to the next phase
currentPhase++;

}

return resumedPhase;
}

void wait(final int resumedPhase) {

when(resumedPhase != currentPhase);
} }

value class clock {

..
final ClockState state = new ClockState();

..
void select(nullable<future<int>> latch) {

if (latch == null) {

async (state) state.wait(state.check());
} else {

final int phase = latch.force();
async (state) state.wait(phase);

}

}

public void next() {

if (!registered())
throw new ClockUseException();

finish select(ClockPhases.put(this, null));
} }

// An exception−free implementation

public void next() {

finish
select(ClockPhases.put(this, null));

}

// For when resume() is never used

void select() {

async (state) state.wait(state.check());
}

public void next() {

if (!registered())
throw new ClockUseException();

finish select();
}

// For when a clock is only in a single place

void select(nullable<future<int>> latch) {

if (latch == null)
state.wait(state.check());

else
state.wait(latch.force());

}

public void next() {

if (!registered())
throw new ClockUseException();

select(ClockPhases.put(this, null));
}

Fig. 9. Various implementations of next and related methods

Accommodating resume carries significant overhead, but if we know the re-
sume functionality is never used, we can simplify the body of select as shown
in Figure 9. We removed the now-unneeded latch object and can do something
similar in other methods (not shown).

Figure 9 also shows a third optimization. Because clocked activities may
be distributed among places, synchronization variables have to be updated by
remote activities. When we know a clock is only used in a single place, we
dispense with the async and finish constructs.



Table 1. Experimental Results

Example Clocks Lines Result Speed Analysis Time

Up Base NuSMV

Linear Search 1 35 EF, NR, L 35.2% 33.5s 0.4s
Relaxation 1 55 EF, NR, L 87.6 6.7 0.3
All Reduction Barrier 1 65 EF, NR 1.5 27.2 0.1
Pascal’s Triangle 1 60 EF, L 20.5 25.8 0.4
Prime Number Sieve 1 95 NR, L 213.9 34.7 0.4
N-Queens 1 155 EF, NR, ON, L 1.3 24.3 0.5
LU Factorization 1 210 EF, NR 5.7 20.6 0.9
MolDyn JGF Bench. 1 930 NR 2.3 35.1 0.5
Pipeline 2 55 Clock 1: EF, NR, L

Clock 2: EF, NR, L
31.4 7.5 0.5

Edmiston 2 205 Clock 1: NR, L
Clock 2: NR, L

14.2 29.9 0.5

EF: No ClockUseException, NR: No Resume, ON: Only the activity that created the
clock calls next on it, L: Clocked used locally (in a single place)

6 Results

We applied our static analyzer to various programs, running it on a 3 GHz
Pentium 4 machine with 1 GB RAM. Since we want to measure the overhead of
the clock library, we purposely run our benchmarks on a single-core processor.
Table 1 shows the results. For each example, we list its name, the number of
clock definitions in the source code, its size (number of lines of code, including
comments), what our analysis discovered about the clock(s), how much faster the
executable for each example ran after we applied our optimizations, and finally
the time required to analyze the example. (The Base column includes the time
to read the source, build the IR, perform pointer analysis, build the automata,
etc.; NuSMV indicates the time spent running the NuSMV model checker. Total
time is their sum.)

The first example is a paced linear search algorithm. It consists of two tasks
that search an array in parallel and use a clock to synchronize after every com-
parison. The Relaxation example, for each cell in an array, spawns one activity
that repeatedly updates the cell value using the neighboring values. It uses a
clock to force these activities to advance in lockstep. The All Reduction Barrier
example is a variant on Relaxation that distributes the array across multiple
places. Pascal’s Triangle is the example of Figure 1. Our prime number sieve
uses the Sieve of Eratosthenes. N-Queens is a brute-force tree search algorithm
that uses a clock to mimic a join operation. LU Factorization decomposes a ma-
trix in parallel using clocks. We also ported the MolDyn Java Grande Forum
Benchmark [6] in X10 with clocks, the largest application on which we ran our
tool. Pipeline has three stages; its buffers use two clocks for synchronization.
Edmiston aligns substrings in parallel and uses two clocks for synchronization.



The Result column lists the properties satisfied by each example’s clocks.
For example, the N-Queens example cannot throw ClockUseException, does not
call resume, and uses only locally created clocks. Our tool reports the JGF
benchmark may throw exceptions and pass clocks around, although it also does
not call resume. In truth, it does not throw exceptions, but our tool failed to
establish this because of the approximations it uses. This reduced the speedup
we could achieve, but does not affect correctness.

The Linear Search, Relaxation, Prime Number Sieve, and Pipeline examples
use clocks frequently and locally, providing a substantial speedup opportunity.
Although our analysis found N-Queens satisfies the same properties as these, we
could improve it up only slightly because its clock is used rarely and only in one
part of the computation. Switching to the local clock implementation provided
the majority of the speedup we observed, but our 5% improvement on the already
heavily optimized distributed LU Factorization example is significant.

Our tool analyzed each example in under a minute and the model checker
took less than a second in each case. Most of the construction time is spent
in call- and control-flow graph constructions and aliasing analysis, which are
already done for other reasons, so the added cost of our tool is on the order of
seconds, making it reasonable to include as part of normal compilation.

7 Related Work

Typestate analysis [7] tracks the states that an object goes through during
the execution. Standard typestate analysis and concurrency analysis are disjoint.
Our analysis can be viewed as a typestate analysis for concurrent programs.
Clocks are shared, stateful objects. We therefore have to track the state of each
clock from the point of view of each activity.

Model checking concurrent programs [8, 3] is usually demanding because
of the potential for exponentially large state spaces often due to having to con-
sider different interleavings of concurrent operations. In contrast, our technique
analyzes concurrent programs as if they were sequential—we consider spawned
tasks to be additional execution paths in a sequential program—hence avoiding
the explosion.

Concurrency models come in many varieties. Vasudevan et al. [9] showed
that the state space explosion can also be avoided by carefully choosing the prim-
itives of the concurrent programming language. Unfortunately, this restricts the
flexibility of the language. Our work focuses on concurrency constructs similar
to those advocated by Vasudevan et al., but features like resume and aliased
clocks are absent from their proposal. We trade a more flexible concurrency
model against the need for further approximation in modeling the programs.

Static analysis of concurrency depends greatly on the underlying model.
Although X10 supports both message-passing-style and shared-memory-style
concurrency (in the case of co-located activities), we focus exclusively on its
message-passing aspects, as have others. Mercouroff [10] approximates the num-
ber of messages between tasks in CSP [11] programs. Reppy and Xiao [12] analyze



communication patterns in CML. Like ours, their work aims at identifying pat-
terns amenable to more efficient implementations. They attempt to approximate
the number of pending send and receive operations on a channel. Our work is
both more specific—it focuses on clocks—and more general: our tool can cope
with any CTL or LTL formula about clock operations.

Reppy and Xiao use modular techniques; we consider an X10 program as a
whole. A modular approach may improve out tool’s scaling, but we have not
explored this yet.

Analysis of X10 programs has also been considered. Agarwal et al. [13]
describe a novel algorithm for may-happen-in-parallel analysis in X10 that fo-
cuses on atomic sections. Chandra et al. [14] introduce a dependent type system
for the specification and inference of object locations. We could use the latter to
decide whether activities and clocks belong to the same place.

8 Conclusions and Future Work

We presented a static analysis technique for clocks in the X10 programming lan-
guage. The result allows us to specialize the implementation of each clock, which
we found resulted in substantial speed improvements on certain benchmark pro-
grams. Our technique has the advantage of being able to analyze a concurrent
language using techniques for sequential code.

We treat each clock separately and model subtasks as extra paths in the pro-
gram, much like conditionals. We abstract away conditional predicates, which
simplifies the structure at the cost of introducing false positives. However, our
technique is safe: we revert to the unoptimized, general purpose clock implemen-
tation when we are unsure a particular property is satisfied. Adding counter-
example guided abstraction refinement [15] could help.

We produce two automata for each clock: one models the X10 program; the
other encodes the protocol (typestate) for the clock. We express the automata in
a form suitable for the NuSMV model checker. Experimentally, we find NuSMV
is able to check properties for modestly sized examples in seconds, which we
believe makes it fast enough to be part of the usual compilation process.

In the future, we plan to check for properties such as deadlock, which would
involve considering interleavings rather than just the sequential analysis we cur-
rently use. For this reason we started with a powerful model checker like NuSMV.
We also want to investigate other applications, such as using clock information
from our static analyzer to refine pointer analysis of X10 programs.

Our current approach analyzes each clock as a whole. We may be able to
improve the granularity by analyzing the program on a statement-by-statement
basis. This would enable optimizing a clock operation at a particular line number
differently from the same operation at another line number if we know more
about the context of one operation compared to the other.



References

1. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von
Praun, C., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster
computing. SIGPLAN Not. 40(10) (2005) 519–538

2. Saraswat, V.A., Sarkar, V., von Praun, C.: X10: concurrent programming for
modern architectures. In: PPoPP ’07: Proceedings of the 12th ACM SIGPLAN
symposium on Principles and practice of parallel programming, New York, NY,
USA, ACM (2007) 271–271

3. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV version 2: An OpenSource tool for symbolic
model checking. In: Proceedings of the International Conference on Computer-
Aided Verification (CAV). Volume 2404 of Lecture Notes in Computer Science.,
Copenhagen, Denmark (July 2002) 359–364

4. IBM, et al.: T. j. watson libraries for analysis (2006) http://wala.sourceforge.net.
5. Vasudevan, N., Tardieu, O., Dolby, J., Edwards, S.A.: Analysis of clocks in x10

programs (extended). Technical Report CUCS–052–08, Columbia University, De-
partment of Computer Science, New York, New York, USA (December 2008)

6. Smith, L.A., Bull, J.M., Obdrzálek, J.: A parallel java grande benchmark suite.
In: Supercomputing ’01: Proceedings of the 2001 ACM/IEEE conference on Su-
percomputing (CDROM), New York, NY, USA, ACM (2001) 8–8

7. Strom, R.E., Yemini, S.: Typestate: A programming language concept for enhanc-
ing software reliability. IEEE Transactions on Software Engineering 12(1) (1986)
157–171

8. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on Pro-
gramming Languages and Systems 8(2) (1986) 244–263

9. Vasudevan, N., Edwards, S.A.: Static deadlock detection for the SHIM concurrent
language. In: Proceedings of the International Conference on Formal Methods and
Models for Codesign (MEMOCODE), Anaheim, California (June 2008)

10. Mercouroff, N.: An algorithm for analyzing communicating processes. In: Pro-
ceedings of the 7th International Conference on Mathematical Foundations of Pro-
gramming Semantics, London, UK, Springer (1992) 312–325

11. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Upper Saddle
River, New Jersey (1985)

12. Reppy, J., Xiao, Y.: Specialization of CML message-passing primitives. SIGPLAN
Notices 42(1) (2007) 315–326

13. Agarwal, S., Barik, R., Sarkar, V., Shyamasundar, R.K.: May-happen-in-parallel
analysis of x10 programs. In: Proceedings of Principles and Practice of Parallel
Programming (PPoPP), New York, NY, USA, ACM (2007) 183–193

14. Chandra, S., Saraswat, V., Sarkar, V., Bodik, R.: Type inference for locality anal-
ysis of distributed data structures. In: Proceedings of Principles and Practice of
Parallel Programming (PPoPP), New York, NY, USA, ACM (2008) 11–22

15. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement. In: Proceedings of the International Conference on Computer-
Aided Verification (CAV). Volume 1855 of Lecture Notes in Computer Science.,
Chicago, Illinois (July 2000) 154–169


