
Hardware in Haskell: Implementing Memories in a
Stream-Based World

Richard Townsend Martha A. Kim Stephen A. Edwards

Columbia University, Department of Computer Science
Technical Report CUCS-017-15

September 21, 2015

ABSTRACT
Recursive functions and data types pose significant chal-
lenges for a Haskell-to-hardware compiler. Directly translat-
ing these structures yields infinitely large circuits; a subtler
approach is required. We propose a sequence of abstraction-
lowering transformations that exposes time and memory in
a Haskell program, producing a simpler form for hardware
translation. This paper outlines these transformations on a
specific example; future research will focus on generalizing
and automating them in our group’s compiler.

1. INTRODUCTION
We present a sequence of transformations that converts

a specific Haskell program into a form permitting simple,
syntax-directed translation into SystemVerilog (a standard
hardware description language). These transformations rep-
resent the flow of our prototype Haskell-to-SystemVerilog
compiler. We treat programs as having strict semantics
instead of Haskell’s usual lazy on-demand policy and only
consider programs that produce identical results under both
semantics.

data List a = Cons a (List a) | Nil

main :: List Int

main = append (Cons 1 (Cons 2 Nil))

(Cons 3 Nil)

append :: List a → List a → List a

append z y = case z of

Nil → y

Cons x xs → Cons x (append xs y)

The program used throughout the paper is shown above;
we employ a pidgin Haskell notation to mirror our com-
piler’s intermediate representation [7]. The main variable
defines the program’s output: the concatentation of two in-
teger lists, each implemented with a polymorphic, recursive
List data type. The append function traverses the first list,
leaving new Cons instances behind:

append (Cons 1 (Cons 2 Nil)) (Cons 3 Nil)

= Cons 1 (append (Cons 2 Nil) (Cons 3 Nil))

= Cons 1 (Cons 2 (append Nil (Cons 3 Nil)))

= Cons 1 (Cons 2 (Cons 3 Nil))

Representing append as purely combinational would re-
quire an infinitely large circuit since the number of recur-
sive calls is unbounded and each requires a copy of the case

expression’s logic. Incorporating a register-based feedback
loop prevents this logic explosion, but two issues remain:
arbitrating between recursive calls and Cons construction,
and storing each element of the first list as we recurse. Fur-
thermore, sequential circuits need a clock, but our program
has no notion of time.

We circumvent these problems with three transformations:
rewriting the function in Continuation-Passing Style (CPS)
ensures that all recursive calls complete before Cons con-
struction begins (Section 2), introducing an infinite Stream
data type provides a clock (Section 3), and adding a stack
provides storage for the first list’s data (Section 4).

The unboundedness of the List data type presents an-
other challenge. We implement data type instances with
statically-sized bit vectors, but our compiler cannot bound
the length of an arbitrary List. We mitigate this issue by re-
placing data type recursion with explicit pointers and defin-
ing a heap to manage them. The pointers will refer to heap
locations, and functions will pass pointers instead of fully
realized data structures (Section 5).

The transformations in Section 2 and the syntax-directed
translation to SystemVerilog have been generalized and au-
tomated within our compiler [8]. Here, we focus on the
introduction of streams and memories to implement the re-
cursion in our specific example.

2. PRE-STREAM TRANSFORMATIONS
We begin by removing polymorphism by specialization

(done, e.g., in the MLton compiler [1]): in this example, we
restrict lists to integers. We keep the same names here; in
practice our compiler would rename the List type to List Int
to distinguish it from other specialized variants.

data List = Cons Int List | Nil

main :: List

append :: List → List → List

The next pass converts recursive functions into tail form
by rewriting them in Continuation-Passing Style [2, 6]. A
CPS function takes an extra “continuation” argument k that
describes what to do with the result of each call. The initial
continuation returns the function’s result; subsequent con-
tinuations use each call’s result to construct a new Cons and
pass it to the previous continuation k. We apply this chain
of continuations to y in the base case, resulting in the final
concatenated list.

main :: List

main = append (Cons 1 (Cons 2 Nil))

(Cons 3 Nil)

(λresult → result)

append :: List → List → (List → List) → List

append z y k = case z of

Nil → k y

Cons x xs → append xs y (λl → k (Cons x l))

To avoid anonymous functions in hardware, we perform
a lambda-lifting pass [5] that names each continuation as
a top-level function (here, c1 and c2) and adds free vari-
ables as formal arguments; these precede the result argu-
ment passed to every continuation.

main :: List

main = append (Cons 1 (Cons 2 Nil))

(Cons 3 Nil)

c2

append :: List → List → (List → List) → List

append z y k = case z of

Nil → k y

Cons x xs → append xs y (c1 x k)

c1 :: Int → (List → List) → List → List

c1 x k l = k (Cons x l)

c2 :: List → List

c2 result = result

We merge the continuation functions into append with
the Continuation and Action data types: the former rep-
resents the partially applied continuations, while the latter
partitions append ’s behavior into recursive calls (Call) and
continuation evaluation (Ret).

data Continuation = C1 Int Continuation | C2

data Action = Call List List Continuation

| Ret Continuation List

main :: List

main = append (Call (Cons 1 (Cons 2 Nil))

(Cons 3 Nil)

C2)

append :: Action → List

append action = case action of

Call Nil y k → append (Ret k y)

Call (Cons x xs) y k → append (Call xs y (C1 x k))

Ret (C1 x k) l → append (Ret k (Cons x l))

Ret C2 l → l

Append now operates in two phases: Calls push the first
list’s elements into a stack of continuations, then Rets pop
the values from the continuations onto the head of the result.
These transformations leave the semantics of the program
unchanged.

Below, we illustrate the behavior of this variant using the
more concise Haskell list notation. E.g., [1,2] represents
Cons 1 (Cons 2 Nil).

append (Call [1,2] [3] C2)

= append (Call [2] [3] (C1 1 C2))

= append (Call [] [3] (C1 2 (C1 1 C2)))

= append (Ret (C1 2 (C1 1 C2)) [3])

= append (Ret (C1 1 C2) [2,3])

= append (Ret C2 [1,2,3])

= [1,2,3]

3. THE STREAM DATATYPE
The final append function above resembles a finite state

machine’s transition table: given a current Action on the
left, generate a new Action on the right or return a final
result. Each transition can be computed with combinational
logic, but the unbounded nature of the recursion demands a
sequential circuit.

Describing sequential circuits requires a notion of time.
We express the behavior of signals over time using a poly-
morphic, recursive Stream data type inspired by the Lustre
language [3]. We follow the implementation of Hinze [4]:

data Stream a = � a Stream a

We construct a Stream instance with the (infix) data con-
structor “�”, called delay, which prepends a value of type a
to a Stream carrying elements of the same type. The lack of
a base case in the type definition captures the infinite aspect
of streams; every element in a Stream is always followed by
another. Ultimately when we synthesize hardware, each �

operator becomes a hardware register [8]. We only permit
streams of bounded types since they are meant to model the
behavior of finite groups of wires over time. In particular,
we do not allow streams of streams.

The code snippet below illustrates two streams defined
with infix notation: x is the Boolean stream True False False
True False False . . . , and y is x delayed by a cycle: True True
False False True False False

x = True � False � False � x

y = True � x

Before introducing streams into our program, we first make
append truly combinational. Each Action argument replaces
its recursive call, and a new NOP action symbolizes the func-
tion’s termination. The Start action triggers append ’s first
Call; this will be useful when we incorporate memories into
our program.

data Action = Call List List Continuation

| Ret Continuation List

| Start

| NOP

append :: Action → Action

append action = case action of

Call Nil y k → Ret k y

Call (Cons x xs) y k → Call xs y (C1 x k)

Ret (C1 x k) l → Ret k (Cons x l)

Ret C2 l → NOP

NOP → NOP

Start →
Call (Cons 1 (Cons 2 Nil)) (Cons 3 Nil) C2

We now introduce sMap, which applies a (combinational)
function to a stream. Later, we will use other list-inspired
stream functions.

sMap :: (a → b) → Stream a → Stream b

sMap f (a0 � a1 � a2 � ...) =

f a0 � f a1 � f a2 � ...

We express the behavior of append over time using app-
Stream:

appStream :: Stream Action

appStream = sMap append (Start � appStream)

This recursive definition gives

appStream = append Start �

append (append Start) �

append (append (append Start)) � . . .
= Call [1,2] [3] C2

� Call [2] [3] (C1 1 C2)

� Call [] [3] (C1 2 (C1 1 C2))

� Ret (C1 2 (C1 1 C2)) [3]

� Ret (C1 1 C2) [2,3]

� Ret C2 [1,2,3]

� NOP

� . . .

This stream contains the arguments of the sequence of func-
tion calls at the end of Section 2. This is a syntactic iso-
morphism: each “= append” call listed earlier becomes “�”
here: the sequence of reductions is performed in successive
clock cycles. We retrieve the actual result of append with a
projection function:

main :: List

main = result appStream

result :: Stream Action → List

result (Ret C2 l � _) = l

result (_ � s) = result s

4. CONTINUATIONS ON THE STACK
We now consider the representation of recursive data types

in hardware. Our general solution uses explicit pointers and
a heap, but we can do better for the Continuation type.

Because our Action-based append function models recur-
sive calls, continuations exhibit a stack discipline: each Call
pushes a new continuation on the stack that holds the next
input list element; each Ret pops the continuation to build
Cons instances. An explicit stack orders these continuations
properly, obviating the need for a recursive type definition:

data Continuation = C1 Int | C2

The memory function—a primitive in our compiler—is
the core component of our stack; it models memory with a
stream of arrays that represents the state of memory over
time. Here we specify that the memory array has three
entries, intially populated with dummy C2 continuations.
Writing to memory generates a new array on the following
cycle, reflecting the change in memory; reading does not
affect the array stream.

We interact with memory via a stream of memory opera-
tions (memOps): MemRead reads a specified address (Addr
represents an arbitrary numeric type), while MemWrite writes
a value and returns the previous contents at that address.
Memory outputs a stream of continuations (stOut), where
the ith continuation is the result of the i−1st memory opera-
tion. To avoid undefined behavior, the function outputs the
dummy argument (here, C2) as its initial stream element.

data MemOp val = MemRead Addr

| MemWrite Addr val

stOut :: Stream Continuation

stOut = memory 3 C2 memOps

We define memOps with the sZipWith function, which
applies a two-argument function pointwise to two streams.

sZipWith :: (a → b → c) →
Stream a → Stream b → Stream c

sZipWith f (a1 � a2 � ...) (b1 � b2 � ...) =

f a1 b1 � f a2 b2 � ...

Each cycle, stackOp observes the current action and stack
pointer to determine the appropriate memory operation:
Calls write continuations, Rets read them, and other actions
(Start and NOP) generate dummy reads where we ignore the
output.

memOps :: Stream (MemOp Continuation)

memOps = sZipWith stackOp appStream sp

stackOp :: Action → Addr → MemOp Continuation

stackOp action addr = case action of

Call _ _ k → MemWrite addr k

Ret _ _ → MemRead addr

_ → MemRead 0

The sp stream implements the stack pointer with a post-
increment, pre-decrement policy. If the current action is a
Call, push increments the pointer after the associated write
has been issued; we impose this delay by prepending the
zipped push stream with an initial value of 0. Conversely,
a Ret decrements the pointer before the corresponding read
occurs.

sp :: Stream Addr

sp = sZipWith pop appStream

(0 � sZipWith push appStream sp)

pop :: Action → Addr → Addr

pop action addr = case action of

Ret _ _ → addr - 1

_ → addr

push :: Action → Addr → Addr

push action addr = case action of

Call _ _ _ → addr + 1

_ → addr

This stack design is easily implemented in hardware, as
shown in the block diagram below. Wires carry stream val-
ues, and blocks of combinational logic implement functions.
The delay operator (�) becomes a register driven by a multi-
plexer that sets the stack pointer to 0 on reset and otherwise
passes the output of push to pop.

push

0

pop stackOp
sp

memory stOut

appStream

reset

memOps

Connecting the stack to append is simple. We first re-
move the “continuation” field from instances of C1 (since the

stOut compFlow appStream memOps

C2 Start Call . . . Write 0 C2
C2 Call [1,2] [3] C2 Call . . . Write 1 (C1 1)
C2 Call [2] [3] (C1 1) Call . . . Write 2 (C1 2)
C2 Call [] [3] (C1 2) Ret . . . Read 2
C1 2 Ret (C1 2) [3] Ret . . . Read 1
C1 1 Ret (C1 1) [2,3] Ret . . . Read 0
C2 Ret C2 [1,2,3] NOP Read 0

Figure 1: The behavior of our stream-based program
with an explicit stack. Each row represents a clock
cycle; each column represents a stream; time goes
from top to bottom. Note that the compFlow stream
embodies the evaluation of append shown at the end
of Section 2.

stack will handle the link), and assign each generated Ret a
dummy C2 continuation. The real continuations now come
from the stack; we use mergeStack to replace the dummies
and leave other actions unchanged. The resulting compFlow
stream represents the flow of computation in our program,
requiring a redefinition of main to obtain the final result.

append :: Action → Action

append action = case action of

Call Nil y _ → Ret C2 y

Call (Cons x xs) y _ → Call xs y (C1 x)

Ret (C1 x) l → Ret C2 (Cons x l)

Ret C2 l → NOP

NOP → NOP

Start →
Call (Cons 1 (Cons 2 Nil)) (Cons 3 Nil) C2

appStream :: Stream Action

appStream = sMap append compFlow

compFlow :: Stream Action

compFlow = sZipWith mergeStack

(Start � appStream) stOut

mergeStack :: Action → Continuation → Action

mergeStack action k = case action of

Ret _ n → Ret k n

_ → action

main :: List

main = result compFlow

Figure 1 shows how these streams behave over time, with
the order of columns following the flow of data. First, ap-
pend uses compFlow to produce appStream, which the stack
machinery interprets to generate memOps. We then feed
memOps into the stack memory, producing stOut in the
next cycle. Finally, mergeStack combines stOut and the last
value of appStream to form compFlow.

Other than the continuations, compFlow is identical to
appStream from Section 3; by design, introducing a stack
has not changed the program’s semantics.

5. LISTS ON THE HEAP
In general, a stack cannot handle multiple lists, such as the

two used in append, because each stack element necessarily

has at most one predecessor and one successor. Instead,
we manage append ’s lists on a simple heap with no garbage
collection.

Our heap stores non-recursive list objects, which now con-
sist of an integer payload and a pointer to the next element
in the list (the Addr type).

data List = Cons Int Addr | Nil

Writing a list object to the heap returns a pointer to the
object; this makes the heap subtly different from a memory.
The interface to our heap consists of two streams: an input
that requests either a read, a write (allocation), or no oper-
ation; and an output that returns either the requested list
object or the address of a newly allocated object.

data HeapIn = Read Addr

| Write List

| InNOP

data HeapOut = Rout List

| Wout Addr

5.1 Implementing a heap
For this example, we define a small, 8-cell heap with a

new memory instance driven by the heapOps stream. The
wrap function inspects each memory operation and its result
in the same cycle, generating hOut : a stream of HeapOut
values. If the previous command was a read, then the re-
sultant List is wrapped in a Rout. Given a write, we wrap
the address used in a Wout and ignore the output of the
memory.

hOut :: Stream HeapOut

hOut = sZipWith wrap (MemRead 0 � heapOps)

(memory 8 Nil heapOps)

wrap :: MemOp List → List → HeapOut

wrap memop val = case memop of

MemRead _ → Rout val

MemWrite addr _ → Wout addr

The heapOp function translates HeapIn commands into
memory operations. Reads and Writes become MemReads
and MemWrites, the latter using the current heap pointer
as its address. Unlike the stack, the heap is not assigned to
a single function; a simple arbiter chooses which command
to pass to the heap each cycle, forming the inputs stream.
We define the arbiter and inputs in Section 5.2.

heapOps :: Stream (MemOp List)

heapOps = sZipWith heapOp inputs hp

heapOp :: HeapIn → Addr → MemOp List

heapOp input hptr = case input of

Read addr → MemRead addr

Write val → MemWrite hptr val

InNOP → MemRead 0

Our allocation scheme is näıve: we simply increment the
heap pointer after each Write. This is sufficient for our ex-
ample; a realistic heap with garbage collection remains fu-
ture work.

hp :: Stream Addr

hp = 0 � sZipWith update inputs hp

update :: HeapIn → Addr → Addr

update input addr = case input of

Write _ → addr+1

_ → addr

The block diagram of our heap resembles our stack:

heapOp memory

wrap hOut

MemRead 0
reset

update

inputs

reset
0

hp

5.2 The heap controller
Before append can perform any computation, its intial

list arguments must be built on the heap. We will define
two “builder” functions to construct these arguments, which
presents a new challenge: multiple functions contending for
heap access.

We tackle this problem with a heap controller, which has a
number of responsibilities. Given three input streams (gen-
erated by append and the two builders), the controller first
arbitrates among them, selecting one command to pass to
the heap each cycle. After executing the command, it bun-
dles the result with a set of controls describing which func-
tion received heap access. It then sends the bundle to the
three functions, dictating their behavior on the next cycle.
When both builders have terminated, we also use the bundle
to send append its initial pointer arguments.

5.2.1 Arbitration
We zip all heap inputs into a single stream (allInputs)

before passing them off to the controller. The sZip function
constructs a stream of tuples from two stream arguments.
The argument streams may carry different types, so zipping
a stream of tuples with another stream of heap inputs is
acceptable. The heap input streams b1, b2, and funcOps
come from the two builders and append, respectively; they
will be defined in Section 5.3.

sZip :: Stream a → Stream b → Stream (a,b)

sZip (a1 � a2 � ...) (b1 � b2 � ...) =

(a1,b1) � (a2,b2) � ...

allInputs :: Stream ((HeapIn,HeapIn),HeapIn)

allInputs = sZip (sZip b1 b2) funcOps

We generate the inputs stream referenced in our heap
design by mapping an arbitration function over allInputs.
Since append cannot execute without its initial arguments,
arbitrate prioritizes the builders’ Write commands (neither
builder ever reads). Append obtains heap access once both
builders have finished.

inputs :: Stream HeapIn

inputs = sMap arbitrate allInputs

arbitrate :: ((HeapIn,HeapIn),HeapIn) → HeapIn

arbitrate inTup = case inTup of

((Write l,_),_) → Write l

((_ ,Write l),_) → Write l

(_ ,input) → input

5.2.2 Collecting append’s intial arguments
We use a trick to capture the list pointers to be passed

to the core append function: our builders (the processes
responsible for constructing on the heap the two lists to
be appended) issue InNOPs after their last Write; thus, a
builder sends its first InNOP in the same cycle that hOut
carries one of append ’s intial pointer arguments.

We use this observation to define getPtr, which maintains
the state of append ’s pointers with a tuple of Maybe Addr
types. The initial (Nothing,Nothing) tuple indicates that
neither pointer is ready; the args stream carries this tuple
until the first builder terminates. We wrap that builder’s
final pointer (p) in a Just and maintain the resultant tuple
until the second builder sends its first InNOP. We pass the
final tuple of Justs to append, which will issue a Read to
commence execution. This generates a Rout, resetting args
to a tuple of Nothings.

sZipWith3 :: (a → b → c → d) →
Stream a → Stream b →
Stream c → Stream d

sZipWith3 f (a1 � ...) (b1 � ...) (c1 � ...) =

f a1 b1 c1 � ...

args :: Stream (Maybe Addr,Maybe Addr)

args = sZipWith3 getPtr allInputs hOut

((Nothing,Nothing) � args)

getPtr :: ((HeapIn,HeapIn),HeapIn)

→ HeapOut

→ (Maybe Addr,Maybe Addr)

→ (Maybe Addr,Maybe Addr)

getPtr hInputs output prevArgs = case output of

Wout p → case hInputs of

((InNOP,Write _),_) → case prevArgs of

(Nothing,Nothing) → (Just p,Nothing)

_ → prevArgs

((InNOP,InNOP),_) → case prevArgs of

(Just arg1,Nothing) → (Just arg1,Just p)

_ → prevArgs

_ → prevArgs

_ → (Nothing,Nothing)

5.2.3 Encoding the heap’s behavior
Our heap-reliant functions depend on information hidden

within the controller: which command the arbiter selected,
the result of that command, and the state of append ’s intial
arguments. We introduce three new data types to encode
this information.

The Message data type uses three variants to commu-
nicate with individual functions: Ack and Nack indicate
whether a function received heap access on the previous cy-
cle or not, while Ready carries the initial pointer arguments
to append.

data Message = Ready Addr Addr

| Ack

| Nack

We assign Messages to functions with the Controls data
type: the first two Messages are for the builders and the

third is for append. These functions always inspect their
assigned Message field, ignoring the others.

data Controls = C Message Message Message

The Master data type carries these controls along with
the heap’s output to each function.

data Master = M Controls HeapOut

The cmndGen function generates the appropriate mes-
sages on each cycle, yielding a stream of Controls (con-
trols). If both builders have terminated, we collect their
final pointers in a Ready message for append. Otherwise,
we use allInputs and our arbitration scheme (prioritize the
builders) to determine which function obtained heap access
on the previous cycle; we send an Ack to that function and
Nacks to the other two. The inital C Nack Nack Nack in-
dicates that no function accessed the heap before the first
cycle.

controls :: Stream Controls

controls = C Nack Nack Nack �

sZipWith cmndGen allInputs args

cmndGen :: ((HeapIn,HeapIn),HeapIn)

→ (Maybe Addr,Maybe Addr)

→ Controls

cmndGen inTup argTup = case argTup of

(Just p1,Just p2) → C Nack Nack (Ready p1 p2)

_ → case inTup of

((Write _,_),_) → C Ack Nack Nack

((_,Write _),_) → C Nack Ack Nack

_ → C Nack Nack Ack

We bundle controls with hOut to form the heap con-
troller’s output stream cOut :

cOut :: Stream Master

cOut = sZipWith M controls hOut

Here is the block diagram of the full controller:

getPtr cmndGenreset

(Nothing,Nothing)

M cOutreset
C Nack Nack Nackheaparbiter

allInputs

5.3 Communicating with the controller
The builders use the heap controller’s output to generate

their input streams. Both send Write Nil commands until
receiving an Ack, at which point they use the heap’s output
to determine which element to write next. This function-
ality relies on previous design decisions (the simple write-
increment heap pointer, fully building one list argument be-
fore the other) and the fact that both of append ’s arguments
were hardcoded in our example.

b1 :: Stream HeapIn

b1 = sZipWith build1 cOut (Write Nil � b1)

build1 :: Master → HeapIn → HeapIn

build1 controller hIn = case controller of

M (C Nack _ _) _ → hIn

M (C Ack _ _) (Wout 0) → Write (Cons 2 0)

M (C Ack _ _) (Wout 1) → Write (Cons 1 1)

_ → InNOP

b2 :: Stream HeapIn

b2 = sZipWith build2 cOut (Write Nil � b2)

build2 :: Master → HeapIn → HeapIn

build2 controller hIn = case controller of

M (C _ Nack _) _ → hIn

M (C _ Ack _) (Wout 3) → Write (Cons 3 3)

_ → InNOP

Before updating append and its associated functions, we
modify the Action type to reflect the heap’s presence. We
remove the Start action entirely; the Ready message serves
the same purpose. The heap supplies append ’s list argu-
ments, so we replace Call’s list fields with pointers. We
cannot modify Rets similarly; the first Ret generated carries
a pointer, while the rest carry new list elements. We use
the Write and Read variants of the HeapIn type to encode
this distinction: Writes pass new list elements directly to
the heap, while a Read carries the first Ret’s pointer back
into append.

data Action = Call Addr Addr Continuation

| Ret Continuation HeapIn

| NOP

The getOp function translates these actions into heap in-
puts. Calls use their pointers to issue Reads, Rets already
carry the appropriate heap command, and NOP actions cor-
respond to InNOP heap inputs.

funcOps :: Stream HeapIn

funcOps = sMap getOp appStream

getOp :: Action → HeapIn

getOp action = case action of

Call ref _ _ → Read ref

Ret _ heapIn → heapIn

NOP → InNOP

We connect append to the heap controller’s output by
passing cOut as another stream argument and substituting
sZipWith for sMap. Since the Start action no longer exists
and append cannot execute until its arguments are ready,
we use NOP as compFlow ’s intial action.

appStream :: Stream Action

appStream = sZipWith append cOut compFlow

compFlow :: Stream Action

compFlow = sZipWith mergeStack

(NOP � appendStream) stOut

The append function now determines the next action based
on up to four factors: the previous action, a message from
the heap controller, the heap’s ouput, and a continuation
from the stack. The control message takes precedence: a
Nack tells append to repeat its previous action, Ready trig-
gers append ’s first Call, and an Ack indicates that append
should generate its next action.

Once execution has begun, append inspects the heap’s
output and the previous action to determine its current
state. If the previous Call read out a Cons, we generate
another Call that wraps the data x in a continuation and
passes the next pointer xs to the heap. Otherwise, we use a
Read to carry the second list’s pointer y in a Ret; we ignore
the Rout on the following cycle, instead extracting y from
the passed Read to generate the first new Cons. Subsequent
Rets use the pointers p from the heap to construct new Cons
cells until the stack pops a C2 continuation.

append :: Master → Action → Action

append controller action = case controller of

M (C _ _ cmnd) heapOut → case cmnd of

Nack → action

Ready l1 l2 → Call l1 l2 C2

Ack → case heapOut of

Rout l → case action of

Call _ y _ → case l of

Nil → Ret C2 (Read y)

Cons x xs → Call xs y (C1 x)

Ret (C1 x) retVal → case retVal of

Read y → Ret C2 (Write (Cons x y))

_ → NOP

NOP → NOP

Wout p → case action of

Ret (C1 x) retVal → Ret C2 (Write (Cons x p))

_ → NOP

Figure 2 depicts the behavior of our final program. We
again remove components of various stream elements for
clarity’s sake: we omit the HeapOut data constructors from
the hOut stream, distribute the messages from cOut into
three message streams M1, M2, and M3, and remove Maybe
constructors from the args stream (underscores represent
Nothings).

We focus on the builders for the first 6 cycles. The blue
components in a column specify the List written to the heap
on that cycle (the second field of each Cons is taken from
the hOut stream). When a builder issues its first InNOP,
we collect the pointer from the hOut stream and store it in
the args tuple (cycles 3 and 5). After cycle 5, both builders
issue InNOPs, args resets to a tuple of Nothings, and M1
and M2 carry Nacks. We thus omit these streams from the
rest of the table.

The controller passes the args pointers to append in cy-
cle 6 (we use tuple notation instead of a Ready), generating
appStream’s first Call. The Lists read out by each Call are
highlighted in red; the data and pointer from a Cons ap-
pear in memOps and heapOps, respectively. When a Nil is
read out in cycle 9, append generates a Ret with a Read 4
heap operation; we show this pointer again in cycle 10, here
highlighted in blue, to indicate its use in the first new Cons.

In cycle 12, hOut carries the pointer representing the final
list (6), and compFlow carries a C2 continuation in a Ret
(shown below the table in Figure 2). The output extracts
this pointer and returns it as the result of our program.
Future research will concern the implementation of a “heap
interpreter” that uses this pointer to reconstruct the full list
from the heap; this will validate that our transformations
do not modify the underlying computation of the original
program.

main :: Addr

main = output cOut compFlow

Cycle: 0 1 2 3 4 5
hOut: Nil 0 1 2 3 4

M1: Nack Ack Ack Ack Nack Nack
b1: Nil Cons 2 Cons 1 InNOP InNOP InNOP

M2: Nack Nack Nack Nack Ack Ack
b2: Nil Nil Nil Nil Cons 3 InNOP

args: (,) (,) (,) (2,) (2,) (2,4)
heapOps: W W W W W R

0 1 2 3 4 0

Cycle: 6 7 8 9 10 11
hOut: Nil Cons Cons Nil Cons 5
stOut: C2 C2 C2 C2 C1 2 C1 1

compFlow: NOP Call Call Call Ret (4) Ret
M3: (2,4) Ack Ack Ack Ack Ack

appStream: Call Call Call Ret Ret Ret
memOps: W W W R R R

0 1 2 2 1 0
C2 C1 1 C1 2

heapOps: R R R R W W
2 1 0 4 5 6

Cons Cons

compFlow = NOP � NOP � NOP � NOP � NOP � NOP

� NOP

� Call 2 4 C2

� Call 1 4 (C1 1)

� Call 0 4 (C1 2)

� Ret (C1 2) (Read 4)

� Ret (C1 1) (Write (Cons 2 4))

� Ret C2 (Write (Cons 1 5))

� . . .

Figure 2: The behavior of our stream-based pro-
gram using a stack and a heap. The table shows
the abbreviated contents of the streams encapsulat-
ing the program’s behavior; compFlow is shown in
detail below.

output :: Stream Master → Stream Action → Addr

output (M _ (Wout p) � _) (Ret C2 _ � _) = p

output (_ � s1) (_ � s2) = output s1 s2

Here is the block diagram of the final program:

build1

build2

Write Nil

Write Nil

heap

append
merge

NOP stack

getOp

6. CONCLUSIONS
We have presented a set of transformations that convert a

recursive Haskell program operating on recursive data types
into a form suitable for simple, syntax-directed translation
to SystemVerilog. The process of removing functional recur-
sion has already been automated in our Haskell-to-hardware
compiler, so we focused on the modifications that are still
under development: lifting a program into the world of
Streams, introducing explicit memory operations, and defin-
ing communication protocols among a program’s compo-
nents. The extended append example will serve as a tem-
plate for future research on a hardware implementation of
the heap and its controller.

7. REFERENCES
[1] M. Fluet. Monomorphise, Jan. 2015.

http://mlton.org/Monomorphise [Online; accessed
23-January-2015].

[2] D. P. Friedman and M. Wand. Essentials of
Programming Languages. MIT Press, third edition,
2008.

[3] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.
The synchronous data flow programming language
LUSTRE. Proceedings of the IEEE, 79(9):1305–1320,
Sept. 1991.

[4] R. Hinze. Function pearl: Streams and unique fixed
points. In Proceedings of the International Conference
on Functional Programming (ICFP), Victoria, BC,
Sept. 2008.

[5] T. Johnsson. Lambda lifting: Transforming programs
to recursive equations. In Proceedings of Functional
Programming Languages and Computer Architecture,
volume 201 of Lecture Notes in Computer Science,
pages 190–203, Nancy, France, 1985. Springer.

[6] G. L. Steele. Rabbit: A compiler for Scheme. Technical
Report AI-TR-474, MIT Press, 1978.

[7] A. Tolmach, T. Chevalier, and T. G. Team. An external
representation for the GHC core language (for GHC
6.10), Apr. 2010.

[8] K. Zhai, R. Townsend, L. Lairmore, M. A. Kim, and
S. A. Edwards. Hardware synthesis from a recursive
functional language. In Proceedings of the International
Conference on Hardware/Software Codesign and
System Synthesis (CODES+ISSS), Amsterdam, The
Netherlands, Oct. 2015.

