
Challenges in Synthesizing Fast Control-Dominated Circuits

Cristian Soviani Stephen A. Edwards∗

Department of Computer Science
Columbia University, New York

Abstract

Presenting designers with higher-level specification languages
is one sure way to improve productivity, but the more abstract
the language, the higher the compiler’s optimization burden.

We consider generating efficient controller circuits from de-
scriptions written in Esterel. To understand the demands of
scalable optimization algorithms, we manually matched the re-
sults from sequential synthesis algorithms that produce good
circuits but are costly or impossible to run on large designs.

We hoped the high-level structure of Esterel would sug-
gest inexpensive, effective optimizations, but our results are
mixed. In the five examples we considered, many optimiza-
tions clearly could be automated cheaply, but we needed more
global information to match the quality of the existing auto-
matic techniques. This suggests an effective solution would
have to combine both local and (potentially costly) global tech-
niques.

1 Introduction

Increasing the productivity of digital designers remains a per-
petual challenge. One tried-and-true approach is to provide
them with a more abstract hardware description language and
let synthesis and optimization handle the time-consuming de-
tails. However, despite many valiant attempts at alternatives,
the industry remains stuck at the register transfer level (RTL).

We consider the problem of synthesizing algorithms with
complex control behavior expressed in high-level languages
that are otherwise very time-consuming to specify and verify
at the RT level. Thus we are considering a high-level synthe-
sis problem, but not the classical one that has focused primar-
ily on arithmetic-heavy signal processing algorithms (see, e.g.,
De Micheli [6]). More specifically, we attempt to answer what
sort of knowledge is needed about a program written in the
Esterel synchronous language [3] for it to be synthesized into
an efficient circuit. Unfortunately, for the highest performance
it appears necessary to have fairly detailed information about
what states the system can actually enter, a global, emergent
property that is usually quite costly to compute. This differs
from our earlier experience with software synthesis from Es-
terel [9], in which it turned out that the syntactic structure of
the high-level specification provided enough information to
greatly speed the generated code compared to that generated
directly from the netlist.

∗soviani, sedwards@cs.columbia.edu Edwards and his group is sup-
ported by an NSF CAREER award, a grant from Intel corporation, an
award from the SRC, and from New York State’s NYSTAR program.
http://www.cs.columbia.edu/˜sedwards

The most interesting aspect of Esterel, for the purposes of
this study, is its ability to specify concurrently-running, hierar-
chical FSMs. This can lead to very complex sequential behav-
ior (a consequence of the way concurrency can lead to state
explosion), and can be very succinct. Unfortunately, it is also
easy to express designs for which the usual (syntax-directed)
translation produces inefficient circuits. Although partially the
responsibility of the designer, it would be onerous to expect
the designer to always choose optimal idioms.

When we began this work, we conceived of it as a state en-
coding problem, i.e., by manually selecting a good state en-
coding, could we emulate the effects of aggressive sequential
synthesis (i.e., calculating reachable states, using them to de-
rive sequential don’t-cares, and doing combinational logic op-
timization along with some simple state re-encoding)? This
was a first step; if successful, our next step would be to de-
vise an algorithm for automatically selecting such an encod-
ing. As we expected, it was possible to produce good circuits
purely by choosing a good encoding: the logic optimization
algorithms were able to clean up the mess made by manu-
ally adding the appropriate re-encoding and decoding circuitry
and ultimately produce circuits as least as good as those from
(expensive) sequential optimization. However, after consider-
ing the encodings we chose, it became clear that their choice
was often guided by fairly detailed knowledge of the reachable
state sets, and that not having this information would almost
certainly lead to less efficient circuits.

But the news is not entirely bleak. While manually encoding
the five examples, we found many cases of local redundancy,
i.e., that could be found through inexpensive algorithms that
did not have to consider inter-machine interactions.

In the last section, we conclude that we need a synthesis
technique consisting of local, peephole optimizations followed
by judiciously-applied global optimization. In the following
sections, we discuss how we conducted the experiments that
lead us to this conclusions, the details of the circuits we opti-
mized, and the structures we found in the process.

2 Related Work

Multi-level combinational logic optimization [5] was the key
that enabled the synthesis of efficient circuits from high-level
descriptions, and of course the obvious next step was to ex-
tend it to synthesizing sequential circuits [16]. However, de-
spite many years of research on sequential circuit synthesis
and high-level synthesis [6], the industry remains stuck using
register-transfer level specifications and multi-level combina-
tional logic optimization.

Sequential optimization is much more challenging than its
combinational counterpart. One difficulty is that it contains
combinational optimization as a subroutine, so successful al-
gorithms, such as De Micheli et al.’s KISS [7] need to consider
how the combinational part of the generated circuit will be op-
timized. De Micheli’s KISS and Villa et al.’s NOVA [19] target
two-level implementations; Devadas et al.’s MUSTANG [8]
and Lin et al.’s JEDI [12] target multi-level implementations.
Bergamaschi et al. [1] show how such algorithms can be incor-
porated into datapath-centric high-level synthesis.

These algorithms also suffer from a severe scaling problem
because they require an explicit representation of states and
transitions. While this usually is practical for a single FSM,
it often is not for FSMs running concurrently, which together
can have exponentially many more states than the originals.

Other approaches have tried to side-step the scalability is-
sue by working directly on the circuit structure. Leiserson and
Saxe’s retiming [11] scales very well, but only addresses tim-
ing and, by design, does not change the structure of the logic.
Retiming and resynthesis [13, 16] exposes more opportunities
for logic optimization using retiming, but is largely a heuristic
and is a somewhat awkward way to re-encode a state machine.

To date, Touati and Berry [18] and Sentovich, Toma, and
Berry [17] have come closest to addressing the problem we
wish to solve. They propose an algorithm that uses informa-
tion about the reachable state set to merge otherwise redun-
dant latches in circuits generated from Esterel programs. This
works particularly well with the sparse encoding generated by
the standard synthesis algorithm [2], but is rather brute-force
since it requires a complete symbolic state-space traversal.

Our goal, therefore, is to achieve results akin to Sentovich
et al. without having to resort to performing complete state
reachability. What follows is a discussion of how we were able
to do this manually and the things we found along the way.

3 Methodology

For five examples, ranging from a simple six-bit Gray code
counter to a fairly sophisticated bus controller, we compared
the quality of two circuits. We synthesized the first circuit by
sending the unoptimized output of the Esterel V5 compiler to
the blifopt script in SIS [15, 16], which performs aggressive
sequential optimization by symbolically computing the reach-
able state set and using it to derive sequential don’t-cares that
are used for combinational logic optimization. For the second
circuit, we used CEC, the Columbia Esterel Compiler, to pro-
duce a circuit essentially the same as that from V5, then man-
ually massaged the generated BLIF file by removing the orig-
inal set of flip-flops, added our own, adding encoding and de-
coding logic, and passed this to SIS for purely combinational
optimization. Finally, to validate our encoding, we ran VIS [4]
to verify that the circuits were sequentially identical.

Both Esterel compilers use Berry’s standard structural trans-
lation [2] of Esterel into hardware, which encodes independent
FSMs using a one-hot-like code; separately-running FSMs are
given independent state registers. Such a technique generates
fairly fast circuits, but usually with substantial sequential re-
dundancy that we found could slow the circuit.

example lines synthesis levels look-up latches
of code method of logic tables

graycounter 91 V5 + blifopt 5 66 27
manual 4 51 17

abcdef 142 V5 + blifopt 5 114 25
manual 3 128 8

mem-ctrl 80 V5 + blifopt 3 24 16
CEC + comb 3 52 17
CEC + blifopt 3 27 15
manual 2 31 13
Original VHDL 2 17 11

mem-ctrl2 36 V5 + blifopt 2 17 8
CEC + comb 2 23 9
CEC + blifopt 2 18 8
manual 2 14 3
JEDI + comb 2 14 3

tcint 689 V5 + blifopt 5 93 52
manual 3 118 52

Table 1: Synthesis results for the examples.

3.1 Sequential Optimization: Blifopt

Our automatic path takes a circuit from the Esterel V5 com-
piler, feeds it to SIS, and runs the blifopt script, developed by
Sentovich et al. [17]. The main power of blifopt comes from
extracting the sequential don’t-care information from the net-
work by computing the circuit’s set of reachable states symbol-
ically (using BDDs) and running a sequence of algorithms that
take advantage of it: full-simplify, which optimizes nodes using
the Espresso algorithm, equiv-nets, and remove-latches. Each
algorithm treats unreachable states as don’t-care conditions on
the inputs to the combinational part of the circuit, which is
well-known to work well at simplifying the logic.

Computing and using sequential don’t-cares is very pow-
erful, but the remove-latches adds yet another dimension of
flexibility by performing local state re-encoding using the al-
gorithm of Sentovich, Toma, and Berry [17]. Briefly, due to
the one hot original encoding in the Esterel circuit, there is a
lot of register redundancy; the algorithm can remove certain
registers if their function can be easily recomputed using the
remaining ones. Generalizations have been proposed, but the
algorithm remains an incremental optimization.

3.2 Manual Encoding

In our manual flow, we ran the Columbia Esterel Compiler
(CEC), removed the latches from the generated BLIF file, and
added our own latches and encoding/decoding logic and se-
quential don’t-care information. In particular, we did not mod-
ify any of the combinational logic generated by the compiler.
As a result, our hand-massaged circuit is initially worse than
one that uses the standard encoding, but we then ran the same
combinational optimization step we used in our automatic flow
(i.e., skipping the remove-latches operation).

module Bit:
input CLK;
output B, CY;
loop
await CLK;
abort sustain B when CLK;
emit CY;
abort sustain B when CLK;
await CLK;
emit CY

end loop
end module

Figure 1: Esterel code for one of the bits in the Gray counter.

g0

D Q

D Q

g1

D Q

D Q

D Q

D Q

h3

h2

h1

h0

Orig. New
1000 00
0100 01
0010 11
0001 10

(a) (b) (c)

Figure 2: For graycounter, (a) original state storage for each
bit’s FSM, (b) manually-designed encoding/decoding cir-
cuitry, and (c) its truth table.

4 Experiments

For each of the five circuits we analyzed, we found a better
state encoding that lead to faster circuits with fewer registers
(see Table 1), beating what blifopt was able to find using its
reachable state analysis and combinational optimization. This
is promising: it suggests there could exist an algorithm that
could noticeably improve the quality of circuits just by choos-
ing a suitable state encoding.

However, to reach these levels of quality, we needed fairly
deep insight into each of these circuits to choose a better state
encoding. In the sections that follow, we describe each of these
circuits and how we chose our good encoding.

4.1 Graycounter

This example is a simple six-bit Gray-code counter with an
alarm. The Esterel code is written in a ripple-carry style (each
bit looks like Figure 1), so the default translation produces
fairly deep logic. Each one-bit machine has four states, and
each alarm machine is a two-state FSM.

Although the counter’s state could be encoded using six bits,
we found instead that re-encoding each four-state FSM using
a pair of bits was superior. Figure 2 illustrates the transforma-
tion. We also re-encoded each two-bit alarm FSM with a single
flip-flop.

We manually computed all remaining sequential don’t-cares
and added them to the BLIF file. The resulting circuit was
smaller, faster, and used fewer flip-flops than what blifopt was
able to obtain (Table 1). Here, the manual re-encoding was
easy and could be done locally because the circuit was regular.

module ONE_BUTTON:
input BUTTON, LOCK;
output SELECTED_ON, SELECTED_OFF;
output LOCKED_ON, LOCKED_OFF;
inputoutput SELECTED, LOCKED, UNLOCKED;

emit SELECTED_OFF; emit LOCKED_OFF;
loop
trap WAIT_FOR_SELECTION in

trap NOW_SELECTED in % Wait to be selected
loop
abort

await BUTTON do % S1
exit NOW_SELECTED % We were pressed

end await
when LOCKED; % We have been locked out
await UNLOCKED % S2: Wait to be released

end end;

loop % Selected or locked
emit SELECTED_ON; % We were selected
emit SELECTED; % Disable other buttons
abort
await % S3

case BUTTON % User disabled us or
case SELECTED % other button pressed

end await;
emit SELECTED_OFF; % We lost the selection
exit WAIT_FOR_SELECTION

when LOCK;

emit LOCKED_ON; % We are now locked and
emit SELECTED_OFF; % no longer selected.
emit LOCKED; % Lock out others and
await LOCK; % S4: wait for unlock
emit LOCKED_OFF; % Announce it and
emit UNLOCKED % release other buttons.

end end end end
end module

Figure 3: Esterel source for one button of the abcdef example.
The BUTTON input toggles its selection when the system is
unlocked, and LOCK locks the most-recently selected button
until LOCK is pressed again.

4.2 Abcdef

The inputs for this model, a simple user interface, are six but-
tons labeled A through F and one labeled LOCK. Figure 3 is
the code for one button. Each is in one of four states: wait-
ing to be selected (S1), unselected and waiting to be unlocked
(S2), selected and waiting to be locked or unselected (S3), and
selected and waiting to be unlocked (S4). The overall system
is composed of six such machines running concurrently and
communicating through the SELECTED, LOCKED, and UN-
LOCKED signals.

By design, the six machines are not independent: most com-
binations of states are unreachable. Specifically, SELECTED,
sent when a button is pressed and the system is not in the
“locked” state, causes all the other machines to become un-
selected. In fact, there are three types of states the system may
be in: all the machines in S1 (nothing selected); one machine in
S3 (selected), the others in S1; and one machine in S4 (locked),
the others in S2.

BOOT

A B F

Unlocked

Locked

C D E

Figure 4: Original 25-latch encoding for the abcdef example,
shown in an unreachable state. Each button can be in one of
four states, but together, all buttons must either be in one of
the unlocked states or in one of the locked states. Here, only F
is in the locked state.

BOOT Locked

A B C D E F

Figure 5: Our 8-latch encoding for abcdef example. One latch
indicates whether all buttons are locked or unlocked, and six
indicate which button is selected.

Instead of the default one-hot encoding, which assigns four
flip-flops to each button (Figure 4), we chose to use one flip-
flop to record whether any of the buttons are in the locked
state, and one flip-flop for each button to indicate whether it
is selected or locked (Figure 5). There is still some sequential
redundancy in our encoding (in particular, no two of A–F can
be set simultaneously); we manually added these sequential
don’t-cares to the BLIF file. Our encoding produced a much
faster circuit (Table 1) with one-third as many registers.

This design illustrates an emergent property—that at most
one button may be selected or locked simultaneously—that
is not obvious from the source code. Why the designer chose
this particular style to express the system is unclear. Although
it has the advantage of scaling (adding a button amounts to
adding another button process), it seems overly clever since
omitting, say, a single emit would violate the desired mutual-
exclusion property. Furthermore, knowing this property was
crucial in improving the quality of the circuit, and discovering
it would probably be challenging.

4.3 Memory controller

This arbitrates between a processor and a video system trying
to gain access to a shared memory and generates the control
signals for the RAM. It was written by an inexperienced Es-
terel coder who translated it from a VHDL implementation.

The circuit is approximately a simple FSM, but this is not
obvious from looking at the original VHDL, which was written
in a pure dataflow style using one-hot encoding. By contrast,
the Esterel is written as a collection of concurrent processes,

||
present [not rnw and onecycle] then

% now in xfer state
pause;
emit xfer;
emit rres;

end present
||
present [not rnw and not onecycle] then

% now in w state
await [not vreq];
% now in xfer state
pause;
emit xfer;
emit rres;

end present
||

Figure 6: Fragment of the memory controller source. The two
concurrent threads are actually mutually exclusive.

each apparently trying to reproduce a particular trace of the
original machine. This leads to substantial sequential redun-
dancy because it turns out that most of these traces cannot hap-
pen simultaneously (again, this is not clear from the VHDL,
which was coded knowing environmental constraints).

The initial encoding encoded twelve states with seventeen
latches. Naturally, most codes were unreachable or equivalent.
At some point, the designer became aware of this, as evidenced
by the comments, but did not change the code to reduce the
number of unreachable states.

Our manual re-encoding attempted to exploit this redun-
dancy, which led to some improvement (Table 1), but because
the structure of the initial circuit was so very different than the
original VHDL implementation, we were not able to devise
encoding/decoding logic to bring it to the level of the VHDL
original. We suspect that with an automatic tool (e.g., that
would establish sequential equivalence) we probably could get
it to that level, but this would be computationally expensive
and not very illuminating.

In this example, the high-level structure of the Esterel code
was outright misleading. Rather than containing a clever emer-
gent property like the abcdef example, it was poorly coded
and its correct behavior was almost an accidental side-effect
brought on by copying a working design.

4.4 Memory Controller Version Two

In fact, the first Esterel version of the memory controller had a
bug: the Esterel coder had inadvertently inserted an extra cycle
in one of the traces. So we rewrote the example from scratch,
making sure to match the behavior of the original (simpler)
VHDL implementation exactly and with an eye toward an ef-
ficient translation.

Even after only combinational optimization, the fixed mem-
ory controller was superior to all but the original VHDL imple-
mentation (Table 1). In fact, the effects of sequential optimiza-
tion were somewhat limited on this example. More impressive
were manual encoding and complete resynthesis using Lin’s
JEDI [12], which was possible because the controller is small.

pause; % to avoid problems at boot time!
loop

await % DMA request or SEL
case immediate [Fo_HF and DMAWrAddrRdy] do

run DMA_WRITE
case immediate [not Fi_HF and DMARdAddrRdy] do

run DMA_READ

case immediate SEL do % SEL : decode opcode
emit TagFlag;
trap ReadSharedEnd, WriteSharedEnd in

present [SEL and WRITE and not ADB24 and
ADB23 and not ADB22] then

run WPOM
else present [SEL and not WRITE and

not ADB24 and ADB23 and not ADB22] then
run RPOM; exit ReadSharedEnd

else present [SEL and WRITE and ADB24] then
run WPAM

else present [SEL and not WRITE and
ADB24] then

run RPAM; exit ReadSharedEnd
else present [SEL and WRITE and not ADB24

and ADB23 and ADB22] then
run WFIFO

else present [SEL and not WRITE and
not ADB24 and ADB23 and ADB22] then

run RFIFO; exit ReadSharedEnd
else present [SEL and not WRITE and not

ADB24 and not ADB23 and not ADB22] then
run RROM; exit ReadSharedEnd

else present [SEL and WRITE and not ADB24
and not ADB23 and ADB22] then

run WLCA
else present [SEL and not WRITE and

not ADB24 and not ADB23 and ADB22] then
run RLCA; exit ReadSharedEnd

else
halt

end end end end end end end end end

handle ReadSharedEnd do
% drive final data word on next cycle
emit pDriveTBC;
pause;
% send RDY and pHostDrives, wait one cycle
emit RDY;
emit pHostDrives;
pause

end trap
end await

end loop

Figure 7: Fragment of the tcint example: the selection cycle

4.5 Tcint

Tcint is a TurboChannel bus controller implemented in 680
lines of Esterel. Its main loop (Figure 7) begins by check-
ing ADDR, SEL, and WRITE to determine whether a cycle is
DMA read or write, or an operation directed to one of eleven
submodules (each controls a peripheral—such as a FIFO—that
is outside the model), and then starts a sub-machine as ap-
propriate. When these sub-machines terminate, the main loop
restarts. The decisions made in the main loop—a form of chip
select—are costly and time-critical.

The main selection module together with the eleven sub-
modules behaves as a large sequential FSM since it is impossi-
ble for two sub-modules to be active simultaneously. However,
several auxiliary FSMs run concurrently and exchange signals
with the main FSM. The timing of some of these signals (e.g.,
DMAWrAddrRdy and DMARdAddrRdy) is also critical.

BOOT

IDLE

4ADDR
SEL
WRITE

DMARDxx

DMAWRITExx

2
2

Decoders

selection cycle

Figure 8: The selection cycle in tcint: states with the same
color are equivalent. “Decoders” represents the combinational
next-state logic.

trap AckReceived in
await tick;
sustain TCRegOutCkDis

||
await immediate ACK;
exit AckReceived

end trap;
X=1

X=1

X=1

await tick;

sustain X;

Figure 9: Esterel fragment generating equivalent states and its
state transition graph.

We first chose an encoding that alleviated the critical paths.
We observed many of the states in the main FSM were equiv-
alent, mostly the last states of the various sub-modules. This
was unfortunate since most of these states appear the cycle
before a costly selection cycle, thereby making it necessary to
compute the logical OR of all these states in addition to decod-
ing the various address lines during a critical selection cycle
(Figure 8). We merged these states carefully, avoiding creating
any new critical paths while optimizing the existing ones. In
this case, the transformation was effectively a retiming.

We also found many equivalent states in auxiliary FSMs.
These derived from valid, but suboptimal, Esterel constructs.
Figure 9 illustrates such a case.

We also reencoded certain small FSMs with states that were
equivalent to the initial state (Figure 10). Here we considered a
more global reachability question. Since ConflictOnSEL is not
active in the boot state, the machine is guaranteed to remain in
the desired state after the first cycle.

We also found that detecting a valid selection state, which
can never occur in the initial state, had a false path coming
from the register used to represent the initial state. We added
this don’t-care explicitly and SIS cheerfully removed the use-
less signals from the critical paths.

At this point, the critical paths ceased to involve the main
selection logic, but timing problems remained for an auxil-
iary Moore FSM (DRIVE: Figure 11), which was driven by
many signals generated by the main FSM (pPamDrives, pRom-
Drives, pLcaDrives and pHostDrives).

loop
await ConflictOnSEL;
do
every immediate SEL do

emit RejectSEL
end

watching AcceptSEL
end loop

BOOT

C

C’

A

A’

C

C’

A

A’

BOOT

X=1 X=1

seq d/c : BOOT => C’

C = ConflictOnSEL

A = AcceptSEL

Figure 10: State merging using sequential don’t-cares: Con-
flictOnSEL is never asserted in the initial state.

loop
trap EndOfHostDrives in
await tick;
[sustain TCRegInOE
|| sustain ExtBufDir
|| sustain ExtBufOE]

||
await [pPamDrives or pRomDrives or pLcaDrives];
exit EndOfHostDrives

end;
present pPamDrives then
trap EndOfPamDrives in

await tick;
sustain ExtBufOE

||
await pHostDrives do exit EndOfPamDrives end

end
else present pRomDrives then
trap EndOfRomDrives in

await tick;
sustain RomOE

||
await pHostDrives do exit EndOfRomDrives end

end
else present pLcaDrives then
trap EndOfLcaDrives in

await tick;
sustain LcaOE

||
await pHostDrives do exit EndOfLcaDrives end

end
end end end

end

Figure 11: Fragment of tcint: the DRIVE FSM, which turns
out to run in lockstep with the main FSM.

Redundant signal emission

Main DRIVE

/B

/A

/C

/A

/B

/A

/D

/B/A

/D

/A

B/

A/

C/A/

D/

A/

Figure 12: An abstraction of the Main and DRIVE machines in
tcint. Coded as two independent machines, they actually oper-
ate in lockstep. Four control signals ensure that both machines
are both in a white state, both in a black state, etc. Wavy lines
represent multiple intermediate states and transitions.

% during first cycle :
% * start sustaining pWREQ: on the next cycle, we
% shall have WREQ and DMA address ready
% * prepare Lca drive for next cycle

emit pLcaDrives;
await tick;
% setup data path from pam to host
emit pPamDrives;
% ...
emit pHostDrives;

Figure 13: Excerpt from the DMA WRITE machine in Tcint.

We initially reencoded part of the main FSM to provide the
mentioned internal signals earlier. This was easy since the ma-
chine was not critical at those points, but this was not enough.

The key observation was that the DRIVE FSM ran in lock-
step with the main FSM. For each state of the main FSM,
DRIVE can be in only a certain state. Figure 12 shows an
abstraction of the problem in which the colors of the various
states depict the constraints.

Many control signals are irrelevant in certain states. This
was not obvious: the Esterel source suggested the machines
operated independently. After manually adding don’t-cares for
these cases, we finally obtained three levels of logic.

Sequential analysis turned out to be crucial in tcint, as there
were many unreachable and equivalent states and false paths.
Some of them were obvious from the Esterel source, but others
were more subtle, emergent properties that were critical.

To emphasize how much sequential redundancy there is in
tcint, only 2282 states are reachable, which is somewhat sur-
prising for a circuit with fifty-two latches. The more remark-
able result is that only 231 of these are actually unique. (Since
this example was small enough, we were able to use SIS’s
stg extract command to enumerate the states and the stamina
tool to minimize them.)

Since the main FSM in tcint actually runs in lockstep with
DRIVE, one signal emission is useless and can be removed.
This signal is asserted in the DMAWRITE submodule.

The “B” is the guilty signal; (Figure 13 shows the relevant
code); our signal is asserted by the “emit pPamDrives” state-
ment. It comes one cycle after “emit pLcaDrives,” so it is use-
less (when the module starts, DRIVE is in the “white” state).

5 Conclusions

We began this work by asking what information was necessary
to choose good state encodings for control-dominated circuits
expressed in the Esterel language. Our initial hypothesis [10],
based on our previous success with generating software from
Esterel using high-level information [9], was that consider-
ing the high-level structure of the Esterel program would be
enough and that we would not have to resort to performing an
exact, global state reachability computation.

Our results suggest we were half right: many of the exam-
ples had substantial local redundancy that could be detected
and corrected easily, i.e., without considering interactions be-
tween concurrently-running machines. However, to reach an
acceptable quality, we had to resort to more global analysis.

Overall, this suggests a two-pronged approach to the prob-
lem of optimizing complex sequential controllers: aggressive,
exhaustive local optimizations followed by a more global anal-
ysis and possibly even resynthesis. Seawright and Meyer [14]
propose a technique like this, but their starting point, a regular-
expression-like language, appears to have even higher levels of
sequential redundancy than is typical in Esterel programs.

An interesting question is how much responsibility should
be borne by the coder. Clearly, some ways of expressing be-
havior lead to more efficient circuits than others, but at the
same time, it is often more elegant to write the less efficient
version. For example, consider these sequentially equivalent
fragments:

pause;
sustain A vs.

loop
pause;
emit A

end loop

We found the more succinct version (left) in Tcint, but it
produces a less efficient circuit since it produces two (equiva-
lent) states whereas the right version only gives one. However,
the behavior of the left fragment is clearer and thus faster to
write, debug, and modify; it is what we would like to write. So
in this case, it should be the responsibility of the compiler to
find the more efficient implementation for the left fragment.

However, how far should the compiler’s reencoding respon-
sibility extend? Of the five examples we considered, abcdef
required the most aggressive analysis because, by design, the
system had a emergent property of mutual exclusion between
machines, something that requires inter-machine analysis to
discover. Now, this example had the property that the number
of states in the resulting machine grew very slowly with the
size of the example (i.e., linearly instead of exponentially), so
it would be feasible to have used explicit state enumeration to
discover this property. However, such a technique will fail in
general because of state explosion, so we need a clever heuris-
tic to tell us where and when to perform explicit state enumer-
ation. Seawright and Meyer [14] used a simple threshold, but
would a similar technique work for Esterel?

In the end, our experiments suggest that a mixture of algo-
rithms will be the solution to generating efficient state encod-
ings for complex controllers. Devising such algorithms, which
we have started to do, is the next step.

References

[1] R. A. Bergamaschi, D. Lobo, and A. Kuehlmann. Control opti-
mization in high-level synthesis using behavioral don’t cares. In
Proceedings of the 29th Design Automation Conference, pages
657–661, Anaheim, California, June 1992.

[2] G. Berry. Esterel on hardware. Philosophical Transactions of
the Royal Society of London. Series A, 339:87–103, Apr. 1992.
Issue 1652, Mechanized Reasoning and Hardware Design.

[3] G. Berry and G. Gonthier. The Esterel synchronous program-
ming language: Design, semantics, implementation. Science of
Computer Programming, 19(2):87–152, Nov. 1992.

[4] R. K. Brayton, G. D. Hachtel, A. Sangiovanni-Vincentelli,
F. Somenzi, A. Aziz, S.-T. Cheng, S. Edwards, S. Khatri,
Y. Kukimoto, A. Pardo, S. Qadeer, R. K. Ranjan, S. Sarwary,

T. R. Shiple, G. Swamy, and T. Villa. VIS: A system for verifica-
tion and synthesis. In Proceedings of the 8th International Con-
ference on Computer-Aided Verification (CAV), volume 1102
of Lecture Notes in Computer Science, pages 428–432, New
Brunswick, New Jersey, July 1996. Springer-Verlag.

[5] R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-
Vincentelli. Multilevel logic synthesis. Proceedings of the
IEEE, 78(2):264–300, Feb. 1990.

[6] G. De Micheli. Synthesis and Optimization of Digital Circuits.
McGraw-Hill, New York, 1994.

[7] G. De Micheli, R. K. Brayton, and A. Sangiovanni-Vincentelli.
Optimal state assignment for finite state machines. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems, CAD-4(3):269–285, jul 1985.

[8] S. Devadas, H.-K. Ma, A. R. Newton, and A. Sangiovanni-
Vincentelli. MUSTANG: State assignment of finite state ma-
chines targeting multilevel logic implementations. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems, 7(12):1290–1300, Dec. 1988.

[9] S. A. Edwards. An Esterel compiler for large control-dominated
systems. IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, 21(2):169–183, Feb. 2002.

[10] S. A. Edwards. High-level synthesis from the synchronous lan-
guage Esterel. In Proceedings of the International Workshop on
Logic Synthesis (IWLS), New Orleans, Louisiana, June 2002.

[11] C. E. Leiserson and J. B. Saxe. Retiming synchronous circuitry.
Algorithmica, 6(1):5–35, 1991.

[12] B. Lin and A. R. Newton. Synthesis of multiple level logic
from symbolic high-level description languages. In Proceed-
ings of IFIP International Conference on VLSI, pages 187–196,
Munich, West Germany, Aug. 1989. Elsevier.

[13] S. Malik, E. M. Sentovich, R. K. Brayton, and A. L.
Sangiovanni-Vincentelli. Retiming and resynthesis: Optimiz-
ing sequential networks with combinational techniques. IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 10(1):74–84, Jan. 1991.

[14] A. Seawright and W. Meyer. Partitioning and optimizing con-
trollers synthesized from hierarchical high-level descriptions. In
Proceedings of the 35th Design Automation Conference, pages
770–775, San Francisco, California, June 1998.

[15] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Mur-
gai, A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and
A. Sangiovanni-Vincentelli. SIS: A system for sequential cir-
cuit synthesis. Technical Report UCB/ERL M92/41, University
of California, Berkeley, May 1992.

[16] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Bray-
ton, and A. Sangiovanni-Vincentelli. Sequential circuit design
using synthesis and optimization. In Proceedings of the IEEE
International Conference on Computer Design (ICCD), pages
328–333, Cambridge, Massachusetts, Oct. 1992.

[17] E. M. Sentovich, H. Toma, and G. Berry. Latch optimization
in circuits generated from high-level descriptions. In Proceed-
ings of the IEEE/ACM International Conference on Computer
Aided Design (ICCAD), pages 428–435, San Jose, California,
Nov. 1996.

[18] H. Touati and G. Berry. Optimized controller synthesis using
Esterel. In Proceedings of the International Workshop on Logic
Synthesis (IWLS), Tahoe City, California, May 1993.

[19] T. Villa and A. Sangiovanni-Vincentelli. NOVA: state assign-
ment of finite state machines for optimal two-level logic im-
plementations. In Proceedings of the 26th Design Automation
Conference, pages 327–332, Las Vegas, Nevada, June 1989.

