
Limits of Exact Algorithms For Inference ofMinimum Size Finite State MachinesArlindo L. Oliveira1 and Stephen Edwards21 Cadence European Laboratories/INESC-IST, 1000 Lisboa, Portugal2 UC Berkeley, Berkeley CA 94720, USAAbstract. We address the problem of selecting the minimum sized �nitestate machine consistent with given input/output samples. The problemcan be solved by computing the minimum �nite state machine equivalentto a �nite state machine without loops obtained from the training set. Wecompare the performance of four algorithms for this task: two algorithmsfor incompletely speci�ed �nite state machine reduction, an algorithmbased on a well known explicit search procedure and an algorithm basedon a new implicit search procedure that is introduced in this paper.1 Introduction and Related WorkWe address the problem of inferring the �nite state machine (FSM) with mini-mum number of states that is consistent with a given training set. This problemis important for the machine learning community because of the well knownconnections between hypothesis compactness and predictive accuracy.This problem is equivalent to the problem of determining if there exists ak-state DFA consistent with a set of labeled strings. This problem is known tobe NP-complete [7]. Finding an approximate solution, within any polynomialfactor, is also an NP-hard problem [12]. The problem can be solved in timepolynomial on the input size if all strings of length n or less are given [13], butremains NP-complete if a small �xed fraction of these strings are missing [1].The problem becomes easier if the algorithm is allowed to make queries orexperiment with the unknown machine. Angluin [2] and Schapire [14] proposedalgorithms that solve the problem in polynomial time by allowing the algorithmto ask membership queries.Bierman et al. [3, 4] proposed the best algorithm known to the authors forthe speci�c problem addressed here, where the learner has no control over thetraining set. This algorithm is briey described in section 3.Algorithms for the reduction of incompletely speci�ed �nite state machines(ISFSMs) can also be used to solve the problem addressed here. The reductionof incompletely speci�ed �nite state machines is a more general problem andis also known to be NP-complete [6]. This problem has been the subject ofextensive research and several implementations of the best known algorithms areavailable. The results section compares the performance of two special purposealgorithms with two algorithms for ISFSM reduction: stamina [8], the mostpopular program for the simpli�cation of �nite state machines and ism [10], animplementation of a similar algorithm that uses implicit enumeration techniques.

2 De�nitionsThe algorithms described in this chapter can be used with minor modi�cationsto induce either Mealy or Moore machines. Due to space limitations, we willdescribe only the more general case, the induction of Mealy machines. We de�nea �nite state machine with unspeci�ed transitions in the standard way:De�nition1. A �nite state machine is a tuple M = ��;�;Q; q0; �; �� where� 6= ; is a �nite set of input symbols, � 6= ; is a �nite set of output symbols,Q 6= ; is a �nite set of states, q0 2 Q is the initial \reset" state, �(q; a) : Q�� !Q [f�g is the transition function, and �(q; a) : Q� � ! �[f�g is the outputfunction.We will use q 2 Q to denote a particular state, a 2 � a particular input sym-bol and b 2 � a particular output symbol. Furthermore, � denotes an unspeci�edtransition while � denotes an unspeci�ed output.The domain of the second variable of functions � and � is extended to stringsof any length in the usual way. Let s = (a1; : : : ; ak) be a string of input symbolsand the notation �(q; s) denote the output of �nite state machine after sequences is applied in state q. The output of such a sequence is de�ned to be �(q; s) ����(�(� � ��(q; a1) � � �); ak�1); ak�. Similarly, �(q; s) denotes the �nal state reachedby a �nite state machine after a sequence of inputs (a1; : : : ; ak), is applied instate q. The �nal state is de�ned to be �(q; s) � �(�(: : : �(�(q; a1); a2) : : :); ak).To avoid unnecessary notational complexities, �(�; a) is de�ned to be equal to �and �(�; a) = �.De�nition2. A training set is a set of pairs f(s1; l1); : : : ; (sn; ln)g where eachpair (s; l) 2 �k�� represents one input string and the output observed for thatstring.If the output alphabet is the set f0; 1g the training set can be viewed asspecifying a set of accepted strings (the ones that output 1) and a set of rejectedstrings (the ones that output 0). Alternatively, the training set can be speci�edby one or more sequences where, at each time, the value of the input/outputpair is known. Both forms of training set descriptions are equivalent and canbe viewed as de�ning a particular type of incompletely speci�ed �nite statemachine, a Tree Finite State Machine (TFSM).De�nition3. A Tree Finite State Machine T is a �nite state machine satisfyingde�nition 1 and the following additional requirements:8q 2 Q n q0; 91s 2 �z s:t: �(q0; s) = q8q 2 Q; 8a 2 � �(q; a) 6= q0These requirements specify that the graph that describes the TFSM is a treerooted at state q0. A TFSM T is said to contain a string s if �(q0; s) 6= �.The output in a given transition bi = �(qi; ai) is said to be compatible withbj = �(qj ; aj) and denoted bi � bj i� bi = bj or bi = � or bj = �. The objectiveis to construct a machine M that exhibits a behavior equal to T for all strings

contained in T , where T is the TFSM that contains all strings in the trainingset and only these. Assume that M = (�;�;Q; q0; �; �), Q = fq0; : : : qkg andT = (�;�;Q0; q00; �0; �0), Q0 = fq00; : : : q0k0g unless otherwise stated.A machine M is consistent with a TFSM T if, for any input string s =(a1; : : : ; ak) contained in T , �(q0; s) � �0(q00; s). Given a speci�c mapping func-tion F : Q0 ! Q with F (q00) = q0 from the states in T to the states in M , itde�nes a valid solution i� it satis�es the following two requirements:De�nition4. A function F satis�es the output and transition requirements i�:8q = F (q0); �0(q0; a) � �(q; a) (1)8q = F (q0); F (�0(q0; a)) = �(q; a) (2)With these de�nitions, we can now state the following result:Theorem 1 For any machine M = (�;�;Q; q0; �; �) consistent with the tree�nite state machine T = (�;�;Q0; q00; �0; �0) there exists a mapping functionF : Q0 ! Q, F (q00) = q0, that satis�es the output and transition requirements.Proof: let sik = (ai1; ai2 : : :aik) be an arbitrary substring of some string si =(ai1; ai2 : : : aiz) contained in T and let the mapping function F be de�ned byF (�0(q00; sik)) = �(q0; sik).Consider now all strings sik+1 = (ai1; ai2 : : :aik+1) contained in T . By thehypothesis, �(q0; sik+1) � �0(q00; sik+1) and therefore the output requirement hasto be satis�ed (simply make q0 in expression (1) equal to �0(q00; sik)).Furthermore, since the strings sik+1 are themselves substrings of some stringcontained in T (or else no sik+1 contained in T exists, in which case the require-ment is automatically satis�ed), F (�0(q00; sik+1)) equals �(q0; sik+1) and thereforeF also meets the transition requirement. 2The result in this theorem is important because it is not valid, in general, ifthe incompletely speci�ed machine T is not a TFSM.Two states q0i and q0j in a �nite state machine T are incompatible if, forsome input string s, �(q0i; s) 6� �(q0j; s). The incompatibility graph represents thisinformation. The nodes in this graph are the states in Q0, and there is an edgebetween state q0i and q0j if these states are incompatible.A clique in the incompatibility graph gives a lower bound on the size ofthe minimum machine. By de�nition, pairs of incompatible states cannot bemapped to the same state and therefore, a clique in this graph corresponds toa group of states that must map to di�erent states in the resulting machine.Indentifying the largest clique in a graph is in itself an NP-complete problem[6]. A large clique (not necessarily the maximum one) can be identi�ed usinga simple branch and bound algorithm with an extra stopping condition. Thesize of the clique provides a lower bound on the number of states needed in theresulting machine. This lower bound is used as the starting point for both theexplicit and the implicit enumeration algorithms described below.

3 The Explicit Search AlgorithmThe explicit search algorithm implemented for the purpose of comparison isbased on the algorithm proposed by Bierman et al. [4]. It builds a �nite statemachine and a mapping function F by �tting transitions from the TFSM Tinto the machine M , one by one, forcing the transition (2) and output require-ments (1) to be satis�ed for all the transitions considered.The algorithm is started with a machine containing only the reset state. Atany time, the algorithm selects a transition in T and has to verify that transitionsin M generate outputs consistent with the transitions in T . Let q0s be the statewhere the transition under consideration origins and the transition under inputa be the one under consideration. Two main cases should be considered:A The choice of the mapping of the destination state is forced by an existingtransition, labeled with a. If this is the case, two things may happen:1) The output of the corresponding transition in M is consistent with theoutput of the transition in T . This means that the machine M is, so far,consistent with T .2) The output of the corresponding transition is not consistent with the out-put of the transition in T . In this case, some transition inM (not necessarilythis one) is wrong and the algorithm backtracks to the last point where ithad a choice.B There is no existing transition labeled with a, so any of the existing statesor a new state is a possibility. The algorithm picks one choice and proceeds.4 The Implicit Search AlgorithmThe implicit approach described in this section avoids the need to explicitlysearch for the right mapping function. It does so by keeping an implicit descrip-tion of all the mapping functions that satisfy the output and transition require-ments. This approach makes the implicit algorithm very simple to describe, butincurs the overhead imposed by the use of discrete function manipulation rou-tines. This overhead can be recovered if the regularities of the problem make theuse of an implicit enumeration technique more e�cient than an explicit one.To simplify the explanation, we assume that the output alphabet � is equalto the set f0; 1g. The approach can be easily applied to the more general case.4.1 Discrete Functions and Multi-valued Decision DiagramsThe discrete function manipulation needed to keep this implicit list of possiblemappings is performed using multi-valued decision diagrams to represent thediscrete functions involved. A full description of this technique is outside thescope of this work and only a brief introduction is made here. The reader isreferred to the work by Kam and Brayton [9] for a complete treatment of thesubject. The approach is based on the fact that any binary valued functionof k discrete variables, x1; x2; : : : ; xk F : P1 � P2 � � � � � Pk ! f0; 1g can berepresented by a Multi-valued Decision Diagram (MDD). An MDD is a rooted,

directed, acyclic graph where each non-terminal node is labeled with the name ofone variable. An MDD for F has two terminal nodes nz and no that correspondto the leaves of the graph. Every non-terminal node ni, labeled with variablexj, has jPjj outgoing edges labeled with the possible values of xj . Each of theseedges points to one child node. The value of F for any point in the input spacecan be computed by starting at the root and following, at each node, the edgelabeled with the value assigned to the variable tested at that node. The value ofthe function is 0 if this path ends in node nz and 1 if it ends in node no.A decision diagram is called reduced if no two nodes exist that branch exactlyin the same way and it is never the case that all outgoing edges of a givennode terminate in the same node [5]. A decision diagram that is both reducedand ordered is called a reduced ordered decision diagram. For a given variableordering, reduced, ordered MDDs are canonical representations for functionsde�ned over that domain.Packages for the manipulation of discrete functions using MDDs [9] allow theuser to realize, amongst others, the following operations:1) Creation of a function from an arithmetic relation. For example, f := (xi =xj) returns the function that is 1 for all points of the input space where xi = xj.2)Boolean combination of existing functions. For example, f := g ^ h returnsthe function that is 1 only when functions g and h are 1.4.2 Implicit Enumeration of SolutionsAn implicit list of the valid mapping functions F : Q0 ! Q can be directlymanipulated using simple Boolean operations. This list is kept by considering afunction F : QjQ0j ! f0; 1g de�ned as follows:De�nition5. F(x0; x1; : : : ; xjQ0j�1) = 1 for the point v0; v1; : : : ; vjQ0j�1 if themapping function F de�ned by F (q00) = v0; F (q01) = v1; : : : ; F (q0jQ0j�1) = vjQ0j�1induces a machine M with jQj states that satis�es the output and transitionrequirements in expressions (1) and (2).There is a one-to-one correspondence between each variable xi in the supportof F and each state q0i 2 Q0. Therefore, restrictions on valid mapping functionscan be written as restrictions on the variables xi. If two states in T , q0i and q0j,have to be mapped to di�erent states in Q, this is equivalent to the statementthat F can only be 1 for points where xi 6= xj.The transition and output requirements impose restrictions on the functionF . Let q0i and q0j be two states in Q0. For any two transitions out of thesestates that take place on the same input and have di�erent outputs, the outputrequirement forces the source states of the transition to be mapped to di�erentstates. Let �0(q0i; ai) = bi and �0(q0j; aj) = bj. Then, for Mealy machines thisrequirement translates into:(ai = aj) ^ (bi 6� bj)) xi 6= xj (3)Next-state determinism implies that, for any two transitions in the originalmachine that take place on the same input, the same assignment for the initial

states implies the same assignment for the �nal states. Let q0k = �0(q0i; ai) andq0l = �0(q0j; aj). This requirement translates into the restriction:(ai = aj ^ xi = xj)) (xk = xl): This can be rewritten as(ai = aj)) (xi 6= xj _ xk = xl) (4)Expressions (3) and (4) can be used to form F using the algorithm in �gure 1.This algorithm can be made more e�cient by using the incompatibility graphinformation to assign arbitrary but di�erent values to the states on a large cliqueof the graph.MainLoop()F := 1R := ; Stores the processed statesforeach q0i 2 Q0R := R [q0i Add this state to the listforeach q0j 2 Rforeach a 2 � s.t. �(q0i; a) 6= � ^ �(q0j; a) 6= �if �0(q0i; a) 6� �0(q0j; a) Output requirementF := F ^ (xi 6= xj)q0k := �(q0i; a)q0l := �(q0j ; a)if q0k 6= � ^ q0l 6= �F := F ^ �(xi 6= xj) _ (xk = xl)� Transition requirementreturn FFig. 1. Pseudo-code for the implicit enumeration algorithm5 Experimental ResultsWe performed the comparison between the four algorithms, using three simpletarget machines with no more than 8 states. For each machine, a number oftraining sets was generated, each training set consisting of a single random stringof length between 10 and 65. For each time point, the value of the output wasavailable, and, therefore, each training set was e�ectively equivalent to a set oflabeled strings with a size comprised between these two limits. The two generalpurpose algorithms considered are stamina and ism. The two special purposealgorithms are mmm, the explicit enumeration algorithm and iasmin, the implicitenumeration algorithm described in section 4.For each length considered, �ve training sets were generated. The variousprograms were then used to �nd the minimum machine consistent with each ofthe training sets. The leftmost graph in �gure 2 describes the growth in compu-tation time observed for the training sets derived from the �rst machine. Thebehavior observed in this graph is very similar to the behavior observed for theother two machines. Each point represents the average over the �ve di�erent

training sets generated for each given length. In all cases, state minimization al-gorithms require a time that increases exponentially in the length of the trainingset while iasmin and mmm show a less drastic increase. The di�erent behaviorobserved illustrates well the distinct exponential dependences o� the two ap-proaches: state minimization algorithms require time exponential in the size ofthe original training set, while the special purpose algorithms require time ex-ponential in the size of the �nal machine. It is also clear that mmm is much moree�cient than iasmin, but, for small problems, this is to be expected becauseiasmin has some overhead that is only recovered for larger problems.
0.01

0.1

1

10

100

1000

10000

10 20 30 40 50 60 70

se
co

nd
s

String length (machine 1)

Iasmin
Stamina

Ism
Mmm

none

20\%

40\%

60\%

80\%

all

4 6 8 10 12 14 16
states

Explicit, 20 strings
Implicit, 20 strings

Fig. 2. CPU time for the four algorithms with increasing training set sizes (left) andfraction of problems solved for randomly generated FSMS with a given size (right).To examine in more detail the relative performance of the algorithms based onexplicit or implicit search presented on sections 3 and 4 we performed anotherexperiment with a large set of randomly generated �nite state machines. Foreach randomly generated machine, the minimum equivalent �nite state machinewas identi�ed using standard logic synthesis techniques [11] and used to labelthe training sets. In total, 575 training sets were generated from 115 di�erentmachines. Each training set contained twenty strings of length 30. The original�nite state machines were reduced and unreachable states were removed beforethe experiments were run. Each program was given one hour and 256 Megabytesof memory to �nd the minimumconsistent machine in a DEC/alpha workstation.The rightmost graph in �gure 2 shows the fraction of the problems eachalgorithm was able to solve in the allotted time/space plotted as a function ofthe number of states in the minimummachine.6 Conclusions and Future WorkThe results presented show that general purpose algorithms for ISFSM reductioncannot be used e�ectively for FSM inference from samples, despite the fact thatthese algorithms are very e�ective in logic synthesis applications. The two specialpurpose algorithms addressed performed much better in the set of problemsstudied. The performance on the implicit enumeration algorithm was comparedwith the performance o� a well known explicit search algorithm. The results

obtained in a set of problems obtained with randomly generated FSMs showvery similar performances. This result is surprising because the two algorithmsuse very di�erent techniques and search the space of solutions using a totallydissimilar approach. It remains an open question whether the behavior observedimplies that this type of problems becomes intrinsically very di�cult when themachines reach 13 to 15 states, or whether alternative algorithms will be ableto be successful in at least a signi�cant fraction of machines of this size.Both algorithms have some potential for improvement. For the implicit enu-meration algorithm, it may be possible to use a di�erent representation as thesupport for discrete function manipulation. For the explicit search algorithm,more powerful search techniques may lead to interesting gains in performance.Because of the known complexity of the task, exact solutions for this problemare likely to be always limited on the size of the problems they can handle. How-ever, we believe that the use of alternative techniques like the ones describedhere will eventually push outwards the limits on the size of the problems thatcan be solved e�ectively.References1. D. Angluin. On the complexity of minimum inference of regular sets. Inform.Control, 39(3):337{350, 1978.2. D. Angluin. Learning regular sets from queries and counterexamples. Inform.Comput., 75(2):87{106, November 1987.3. A. W. Biermann and R. Krishnaswamy. Constructing programs from examplecomputations. IEEE Trans. on Software Engineering, SE-2:141{153, 1976.4. A. W. B. R. I. Biermann and F. E. Petry. Speeding up the synthesis of programsfrom traces. IEEE Trans. on Computers, C-24:122{136, 1975.5. R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEETransactions on Computers, 35:677{691, 1986.6. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to theTheory of NP-Completeness. Freeman, New York, 1979.7. E. M. Gold. Complexity of automaton identi�cation from given data. Inform.Control, 37:302{320, 1978.8. G. Hachtel, J.-K. Rho, F. Somenzi, and R. Jacoby. Exact and heuristic algorithmsfor the minimization of incompletely speci�ed state machines. In The Proceedingsof the European Design Automation Conference, 1991.9. T. Kam and R.K. Brayton. Multi-valued decision diagrams. Tech. Report No.UCB/ERL M90/125, December 1990.10. T. Kam, T. Villa, R. K. Brayton, and A. Sangiovanni Vincentelli. A fully implicitalgorithm for exact state minimization. Proc. Design Automat. Conf., 1994.11. Arlindo L. Oliveira and Stephen A. Edwards. Inference of state machines fromexamples of behavior. Technical report, UCB/ERL Technical Report M95/12,Berkeley, CA, 1995.12. L. Pitt and M. Warmuth. The minimum consistent DFA problem cannot be ap-proximated within any polynomial. J. ACM, 40(1):95{142, 1993.13. S. Porat and J. A. Feldman. Learning automata from ordered examples. In Proc.1st Annu. Workshop on Comput. Learning Theory, pages 386{396, San Mateo, CA,1988. Morgan Kaufmann.14. R. E. Schapire. The Design and Analysis of E�cient Learning Algorithms. MITPress, Cambridge, MA, 1992.

