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ABSTRACT
Hardware accelerators are one promising solution to contend with
the end of Dennard scaling and the slowdown of Moore’s law. For
mature workloads that are regular and have high compute per byte,
hardening an application into one or more hardware modules is a
standard approach. However, for some applications, we find that a
programmable homogeneous architecture is preferable.

This paper compares a previously proposed heterogeneous hard-
ware accelerator for analytical query processing to a homogeneous
systolic array alternative. We find that the heterogeneous and ho-
mogeneous accelerators are equivalent for large designs, while for
small designs the homogeneous is better. Our analysis explains this
counter-intuitive result, finding that the homogeneous architecture
has higher average resource utilization and lower relative costs for
the communication infrastructure.

CCS CONCEPTS
• Computer systems organization→ Architectures; Systolic
arrays; • Information systems → Database query processing.
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1 INTRODUCTION
With the end of Dennard scaling it is possible to shrink a transistor’s
size but not its power consumption. Accelerators have been widely
adopted to circumvent this constraint. Die area that would be other-
wise underused is instead invested in tailored, resource-efficient im-
plementations of critical applications [8, 16, 19, 20, 22, 44, 45]. Such
accelerators have been successfully deployed for a variety of work-
loads including machine learning training and inference [9, 12, 16],
web search [34], and network processing [7, 10].

Accelerators implement key computational blocks for an appli-
cation directly in hardware, thus offering high energy efficiency.
This approach avoids CPU overheads such as instruction fetch
and decode and exploits parallelism in the application [15]. We
examine analytical query processing [26, 37], a workload that has
drawn significant acceleration study, both for key computational
kernels such as partitioning [44] and hash joins [20], as well as
entire queries [1, 8, 31, 45].

This paper compares two accelerator architectures for this do-
main: one that hardens multiple application kernels into hetero-
geneous fixed function functional units and one that implements
the same set of functions via homogeneous programmable pro-
cessing elements. For the heterogeneous design, we analyze an
accelerator previously designed by our group: the Q100 [45, 46].
The Q100 targets full analytical queries, and is composed of a set
of highly efficient functional units. Each functional unit, or tile,
can execute a specific relational algebra operation on incoming
streams of data. The tiles communicate via an on-chip network
originally proposed to be a mesh [45] and subsequently refined to
a semi-custom topology [23]. To execute a particular query, one re-
configures the modules and adjusts the routing function in the NoC.
We compare and contrast this approach with a homogeneous sys-
tolic array design. The functional units in the homogeneous design
are equipotent, and can be individually programmed to collectively
implement the same operators as the Q100.

Our results show that the configurability in the homogeneous
design incurs per-operator power and area losses relative to the
Q100, with multiple homogeneous functional units often needed
to implement the function of a single Q100 tile. However, these
per-operator losses are recouped by selecting and sizing relational
operators on a per-query basis. On the communication side, because
most of the inter-functional unit communication in the homoge-
neous accelerator is between neighbors, a spartan interconnect is
sufficient. Ultimately, we find that the two designs offer comparable
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Figure 1: The Q100 [45] is a spatial architecture for the ac-
celeration of relational analytic queries. It contains amix of
compute modules, specialized units that perform relational
algebra operations. An instance of a Q100 accelerator can
have replicated compute modules to exploit parallelism in
the query. Themodules stream data via an on-chip network.

performance per area and power, with only subtle differences. Our
experiments show that, when area and power budgets are small,
the homogeneous approach is preferable.

We use a previously developed SQL compiler for the Q100 and
extend it to target the homogeneous design. The benefits of a full
software infrastructure are twofold: It demonstrates that software
support for these custom architectures is feasible, and it contributes
to a controlled comparison between the two architectures, mini-
mally influenced by software differences. The compiler differs for
the two targets only as strictly necessary in the backend. The fron-
tend – including, importantly, the query planner – is identical. This
limits our experimental analysis to the operations supported by
the Q100. Although either accelerator could be extended to cover
other primitives – via new Q100 tiles or instruction set extensions
for the homogeneous units – the experiments in this paper con-
trol for functional coverage. The homogeneous approach increases
software complexity due to increased degrees of freedom when
scheduling operations. We encountered this complexity when im-
plementing the homogeneous backend, and implemented a greedy
scheduler to demonstrate a viable solution. We also evaluate an
optimistic scheduler that relaxes some of the routing constraints.
Our measurements of the optimistic schedules reveal performance
headroom that more sophisticated heuristics might try to harvest.

While previous work has contended with the relationship be-
tween programmability and efficiency [15, 28, 36], it has always
presented the programmable designs as having a cost relative to
the specialized ones. To the best of our knowledge, this is the first
study to demonstrate comparable performance per area.

2 Q100 BACKGROUND
The Q100 [45, 46] is a spatial architecture that accelerates relational
analytic queries. It achieves speedups over a CPU by turning soft-
ware operations into hardware ones, processing multiple columns
at a time, and pipelining operations across fields in a column. For
background, we describe the key properties of the architecture
and its toolchain. This architecture is more fully detailed in other
papers [23, 45, 46].

Architecture. The accelerator, depicted in Figure 1, contains a
collection of heterogeneous hardware modules, called tiles. In all,
there are 9 types of Q100 tiles, each implementing a particular
relational operator (e.g., a Join, Sort). The minimal Q100 design
has one instance of each tile, but the desirable designs will have
multiple. The original Q100 paper carefully explored tile mix as
it is a key determinant of performance [45]. Tiles communicate
directly between producer and consumer via an on-chip network
which streams columns of data record by record. This network
allows any tile to communicate with any other. The original Q100
paper [45] used a mesh topology, but subsequent work presented a
methodology to automatically derive custom topologies that exploit
the communication patterns of the workload (e.g., Aggregator is
frequently a consumer of Joiner’s results) [23]. In the Q100, only
dedicated Reader andWriter tiles, called stream buffers in the origi-
nal paper, can speak to memory. Readers and Writers appear to the
other tiles as standard data producers and consumers respectively.

Query Planning. As in any database system, SQL queries must be
compiled to a query plan prior to execution. For this, we cannot sim-
ply use a standard DBMS plan as it is liable to include unsupported
operations.

A Q100 query plan is a directed acyclic graph in which each
node indicates an operation supported by the Q100 hardware, and
edges indicate producer-consumer dependencies between them.

We have developed an automated SQL compiler that generates
Q100 query plans as depicted in Figure 2. This compiler makes
every attempt to use the tiles available on the target system. For
this reason, synchronized subqueries, i.e. nested queries that use
values from the outer query, are implemented joining the parent
and nested query results. Standard database optimizations such as
re-ordering of joins are applied in the flow.

Because a plan may require more operators than an accelera-
tor has available, the subsequent scheduling step will divide the
execution of the plan into a series of sequential steps.

Scheduling. Query plans are next divided into a series of tem-
poral steps for execution. This schedule must respect the order
of operations indicated in the plan, i.e. a column’s producer must
execute before or in parallel to its consumer. Moreover, none of
the steps can exceed the available resources of the target Q100
instance. If, for example, the target contains five sorter tiles, the
scheduler can not schedule six sorts in a step. If an instruction in
the plan operates on more input columns than the tiles support,
the scheduler will automatically split it into multiple instructions.
Lastly, the scheduler maps each operation to a specific physical tile
for execution.

Like most DBMS query planners, this scheduler must execute
in real time; scheduling for the next time step while the Q100 de-
vice executes the current one. This produces accurate estimates of
column size that in turn affect scheduling decisions. Exhaustive
approaches [30] are thus not viable. Instead the scheduler uses a
greedy longest-job-first heuristic which on average achieves within
5% of the best schedule obtained via a semi-exhaustive search [23]
for the TPC-H benchmark. When multiple tiles are available to exe-
cute a given instruction, the scheduler selects the tile that requires
the fewest network hops to route all of the input data streams.

763



Master of None Acceleration ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

SELECT EmployeeID, 
FirstName, LastName, 
HireDate, City 
FROM Employees
WHERE City = 'London'
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Figure 2: Our toolchain is able to automatically compile SQL queries into query plans that can execute on the Q100. As a
first step for execution, operations are re-ordered with the objective of producing better schedules that group operations with
similar latency. This reordering must still satisfy producer-consumer relationships between instructions. Finally, operations
are mapped to a physical module in the device. Since a generic query plan might call for more resources than available in the
hardware, the scheduler divides the execution into sequential steps. The mapping process is aware of the NoC topology and
tries to minimize the number of hops needed to route all data flows.

3 MOTIVATION
In the Q100 architecture we find a tension between the variabil-
ity of the computational requirements of the workload and the
immutability of the fixed-function tiles. SQL queries can vary in
their relational algebra operators, the order of the operators, and
the dependencies between them. While the tiles of the Q100 are
individually highly efficient, they require external orchestration to
support variable demand, leading to two phenomena that decrease
overall efficiency.

First, runtime utilization of the Q100 tiles is low. Figure 3 shows
the average idle tile area for each TPC-H query. Since a Q100 de-
sign can be configured with an arbitrary tile mix, Figure 3 shows
measurements from a set of Pareto-optimal designs, hence the error
bars. The reason for the idleness is the variability in computational
requirements within and across TPC-H queries. While clock and
power gating can recoup most of the power associated with un-
used area, it still represents a resource that is not contributing to
performance.

Table 1 enumerates four forms of variability, illustrating the
reduced utilization that arises when an individual query meets an
architecture designed for the general case query. Tiles may not be
needed in a given time step, they could process less data than others
and thus have to wait, they may be slowed by congestion in NoC
links, or finally, an instruction might utilize fewer inputs than the
hardware tile provides, leaving a fraction of the tile idle.

In Figure 4 we see all these factors at play in the TPC-H queries.
Each query exercises the Q100 system in a different way, resulting
in a different usage pattern. As in Figure 3, we profile a Pareto-
optimal set of Q100 designs. The bigger error bars here reflect the
diversity of fits of query to hardware.

The second hidden overhead in the heterogeneous, fixed func-
tion Q100 is the interconnect. In the Q100 a large fraction of the
area goes to the interconnect that supports all-to-all communica-
tion (30-50% for Pareto optimal tile mixes). Moreover, links can
become oversubscribed and therefore slowdown the entire compu-
tation (Table 1). Our previous work on interconnect specialization
techniques [23] shows that is possible to reduce interconnect size
and/or conflicts. However, for this study we rely only on standard
topologies since the specialization techniques we developed create
an heterogeneous NoC which might affect placement and routing
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Figure 3: A large fraction of the Q100 area is idle when exe-
cuting TPC-H queries.

significantly. Since we are evaluating a large number of designs,
placing and routing each one would be prohibitive.

However, the Q100 architecture also suggests an opportunity.
When implemented in hardware, relational algebra operators share
similar datapaths. For example, aggregators contain an adder simi-
lar to the one found in the ALU. The compare and swap logic in a
sort tile is similar to the one in a merge. This suggests that a com-
pound tile, configurable to perform all operations, might be a viable
alternative. This is the approach we take with the homogeneous
system described in the next section.

4 HOMOGENEOUS ARCHITECTURE
We have developed a homogeneous, programmable dataflow archi-
tecture, that supports the same relational operators as the Q100.
This homogeneous system, depicted in Figure 5 is composed by
a grid of small programmable processing elements (or PEs). Each
PE is connected to four neighbors via latency insensitive channels.
Data can flow horizontally in either direction, but vertically it trav-
els only top to bottom, creating a systolic-array-like system. A row
of Reader elements sits at the top of the array, and a row of Writer
elements sits at the bottom. These units behave like their Q100
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Idle tiles occur when the query does not use all available tiles. This results from variation between queries or phases of
a query. For example, analytical queries tend to filter inputs at the start and aggregate at the end, leaving aggregators
idle at the start and filters idle at the end.

Input mismatch happens when an operator processes fewer inputs than are provisioned in a tile. For example, a sorter
that can process up to six inputs is over-provisioned for sorting two. Roughly one third of that tile will actually be in use.
This happens, for example, in Q22 which operates on a small number of columns from each table.

When a link in the interconnection network is in high demand, there is interconnect congestion, and all tiles involved
in the congested flows are slowed down. Since each time step finishes when the last tile completes, this network
congestion can ripple out and degrade performance. Congestion tends to occur when there are many active tiles, as seen
in Figure 4 where congestion is highest when idle tiles are lowest.

Load imbalance arises when instructions with different running times or duty cycles are scheduled in the same time
step. Consider, for example, a highly selective filter that feeds some consumer. The consumer will sit mostly idle awaiting
the occasional token that passes through the filter.

Table 1: Four ways that query variability contributes to reduced utilization of a fixed set of resources. In the cartoons, darker
shading indicates higher utilization, and arrow thickness indicates data volume.
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Figure 4: Attribution of idle area-time in the Q100 to different causes.

counterparts and are responsible for reading and writing memory.
Streams of data are read from the top, percolate through, and are re-
ceived at the bottom byWriters which store the results – sometimes
final, sometimes intermediate – back to memory.

The detail on the right side of Figure 5 shows the three principal
components of each PE. Data tokens arrive from either the North,
East or West and are routed to the compute core. Data streams are

32 bits wide, the same as the Q100. The 8-bit control streams run
parallel to the data streams and operate independently. These carry
metadata and control information, e.g. boolean conditions evaluated
by one module on a given column that have to be transmitted to
another processing element to filter a second column.

The compute core of a PE can consume up to two data and con-
trol tokens per cycle and produce up to two data tokens and two
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Figure 5: Homogeneous system architecture. Each process-
ing element operates independently. Within each PE com-
pute and communications modules are also independent.
The memory subsystem is equivalent to the one used in the
Q100.
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Figure 6: Compilation for our homogeneous design re-uses
the Q100 fronted. After an ordering is found for the Q100
instructions each one is compiled into a graph of micro-ops.
These are then mapped – over multiple time steps – to the
processing elements in the homogeneous system.

output control tokens. The compute core is configurable, execut-
ing essentially one instruction continuously until the device is re-
programmed. Similarly to the Triggered Instructions [32] dataflow
architecture, instruction in the homogeneous design fire when all
necessary inputs are available, and there is space in output buffers
of the PE.

In total, there are 43 instructions in the homogeneous ISA. These
comprise standard arithmetic instructions, e.g. addition, subtraction,
multiplication, as well as more complex ones that target database
workloads, e.g., a merge of two input streams conditional on an
input control stream. Like the Q100, the homogeneous system sup-
ports only integer operations and assumes that either the query
can be executed with fixed point precision or the CPU will have to
step in. While the PE of the homogeneous system could easily be
extended to support more operations, so too could the Q100 with
new tiles. Any differences in coverage was liable to be an artifact of
our choices, so for these comparisons we match coverage, weighing
the merits of each architecture on precisely the same workload.

Each output port of a PE can be connected via a configurable
interconnect to the input port of another PE. The destination PE
need not be a neighbor, provided the interconnect is able to route
the flow without conflicts with other communications. Multicast
to multiple PEs is possible and is supported in the routers which
duplicate packets and transmit them to multiple outputs at once.
The routing logic in each PE is separate from the compute core so
that a PE can route tokens while computing. The network uses cir-
cuit switched flow control, and any tokens received on a particular
network input are forwarded to the configured output until the
design is reconfigured.

Since PEs have equal computational capabilities they can all
be employed for any operation. Relational algebra operators in a
query plan can be mapped to any combination of PEs, with only
the necessary number of PEs used for each operation.

Since all PEs are equipotent, we try to schedule instructions
to neighboring PEs. This allows us to reduce power consumption

of the interconnection network. Furthermore, it allows us to use
more area/power efficient circuit switched routers compared to the
packet switched routers used by the Q100, 5.9X smaller and 3.8X
lower power.

5 HOMOGENEOUS COMPILATION BACKEND
To ensure a controlled comparison, we re-use the front end of the
Q100 compiler for both systems. The homogeneous backend, de-
picted in Figure 6 picks up from the point where the Q100 query plan
has been sorted according to the longest-job-first heuristic. Each
operator that appears in a Q100 query plan is translated into a graph
of instructions for the homogeneous PEs. We will call these small
instructions micro-ops, and “instructions” will continue to mean
Q100 operations. These micro-ops have inter- and intra-instruction
producer consumer relations. The number of micro-ops generated
per Q100 instruction depends both on the instruction type and the
number of its input/outputs. For example, a Join instruction will
translate to as many micro-ops as it has input columns.

Mappingmicro-ops to a homogeneous device ismore challenging
than mapping Q100 instructions to a Q100 device, as any PE in the
homogeneous device can execute any micro-op. There are a large
number of possible mappings for each instruction and each one
might affect the mapping of subsequent instructions that operate
on the same data.

We generate a set of mappings from micro-ops to PEs using
simulated annealing, i.e. repeatedly applying random permutations
to the best known solution. A mapping is invalid if data dependen-
cies cannot be routed. For simplicity, the backend requires that all
micro-ops in an instruction be scheduled at the same time.

This process is repeated for each Q100 instruction – in the order-
ing provided by the Q100 scheduler – until there are no more PEs
or instructions available. The lack of available instructions does not
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automatically mean that the query is done. Due to the producer-
consumer relations in a query plan, only a subset of instructions
are eligible for scheduling at any given time.

As a cost function for each evaluated mapping, we count the
number of network routing rules that must be introduced. Minimiz-
ing this metric reduces both router utilization and path length. It
will prefer mappings where producer and consumer micro-ops are
close together as long paths will require adding more rules along
the route.

Given the large space of possible mappings, of which many are
nonsensical (e.g. mapping two connected micro-ops to opposite cor-
ners of the homogeneous mesh), we kickstart the process by using
predetermined “shapes” for each Q100 instruction. These shapes are
mapped rigidly (if possible) to the device in the first_map method
in the pseudocode below. Later the best mapping has one or more
of its instruction swapped with a random adjacent location in the
tweak_map method. This pass, similar to a peep-hole optimiza-
tion, could cause the introduction of empty spaces in the mesh or
exchange the location of two micro-ops, eliminating possible rout-
ing conflicts and/or reducing cost. After a predetermined number
of mappings are evaluated, the least expensive valid mapping is
selected and the PEs marked as used.

Algorithm 1 Homogeneous Micro-op Mapping

1: procedure Map(inst , device)
2: inst_дraph ← inst_to_дraph(inst )
3: best_map ← null
4: best_cost ← In f
5: for i ← 1,max_tries do
6: map ← null
7: if i = 1 then
8: map ← f irst_map (inst_дraph,device )
9: else
10: map ← tweak_map (best_map,device )
11: end if
12: if map = null then
13: break
14: else
15: tries ← tries + 1
16: cost ← compute_cost (map,device )
17: if cost < best_cost then
18: best_map ←map
19: best_cost ← cost
20: end if
21: end if
22: end for
23: return best_map
24: end procedure

We recognize that by considering only one instruction at a time,
this algorithm may find local minima. It could be beneficial to
change the order in which instructions are scheduled or use more
complex heuristics rather than random choice to create possible
mappings. While we do not evaluate more complex solutions, we
will quantify in Section 7 how much performance may be left on
the table due to sub-optimal mapping.

6 METHODOLOGY
In order to evaluate and compare the Q100 and homogeneous archi-
tectures we have developed an RTL implementation for both. Both
architectures share a common cycle level simulator infrastructure
as well as identical synthesis flow.

Q100 Hardware. The RTL implementation of the Q100 has been
refreshed with respect to the original paper [45] with the main
difference being the presence of a Merge tile instead of a Partitioner
tile. This slightly modified design has already been utilized in follow
up work on NoC specialization [23].

For the Q100 NoC, we use an open-source router implementa-
tion [2]. NoCs for the Q100 are packet switched and use reverse
credit flow. Reverse credit flow and additional buffer slots are used
in the Q100 to avoid application deadlock when different modules
share a link. We decided not to use previously published techniques
to optimize the NoC topology of Q100 designs [23] as it would be
infeasible to place and route a custom NoC for each of the thou-
sands of Q100 tile mixes that we wish to evaluate. Therefore, we
restrict our analysis to standard NoC topologies.

Homogeneous Hardware. The processing element for the homo-
geneous architecture has been designed for the purpose of this
study. The NoC for the homogeneous design uses a single circuit
switched plane each for its data and control networks. The router
for this circuit switched NoC has been developed in house.

While the different NoCs may at first appear to complicate the
comparison, we have tried to pick the most suitable network for
each architecture. The Q100 expects that any tile be able to stream
data to any other tile and our measurements suggest the network
already limits some queries on the Q100. Therefore, the circuit
switched network in the homogeneous design would likely hurt
performance even more as only a few circuits could be established
before all of the physical links were occupied. This would prevent
the Q100 from maximizing its utilization of the available physi-
cal tiles. Similarly a packet switched NoC is unnecessary for the
homogeneous design as communication mostly happens between
endpoints that are spatially close.

Logic Synthesis and Power Estimation. We synthesized netlists for
each module and PE using Synopsys Design Compiler (2013.12-SP1)
and TSMC 65 nm general-purpose CMOS standard cells. For both
designs, we ran at maximum frequency using nominal Vdd with
the low threshold voltage version of the libraries. We use clock
gating for both systems and therefore only consider static power
consumption for idle processing elements, tiles, or routers during
a time step. Since a significant fraction of the area could be idle
depending on the input query, one could argue that both systems
would benefit from power gating on a module by module basis.
This would result in a non trivial area and power overhead due to
the small size of most Q100 modules and the homogeneous PE. Due
to the small impact of static power at our operating point (less than
10% of total power), and the aforementioned issues, we decided not
to use power gating in either system.

For each hardware module, we extracted gate-level activity fac-
tors. The resulting fully annotated netlist-level VCD was used as a
dynamic activity input into for the Synopsys PrimeTime (2013.12-
SP1) fine-grain power and timing modeling software. We report
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Figure 7: On a per operator per column basis the homoge-
neous design incurs area and power overheads. Here the
Q100 tiles are sorted from smallest to largest, and we find
that the homogeneous overheads is largest for the smaller
tiles.

pre-extraction results, but use a uniform wire-load model of 2 fF for
all local nets. We characterize each module in isolation and later
combine them to compute the total static and dynamic power. In
each time step we use the computed static power for the inactive
modules and the dynamic power for the active ones.

Simulation Infrastructure. All cycle counts are obtained using
an in house cycle-level simulator. The scheduler described in the
previous section is embedded in the simulator and governs the
execution of each query plan. For all homogeneous experiments,
the mapping algorithm described in Section 4 attempts at most 100
diverse mappings.

Since our homogeneous instruction mapping algorithm is not
exhaustive we consider an “ideal” homogeneous mapper. This map-
per takes into account only the number of available processing
elements and does not evaluate the routing necessary to satisfy
each micro-op producer consumer relationship. This effectively
sets an upper limit on the performance of a mapping algorithm
for our homogeneous device. This upper bound is equivalent to
assuming as many circuit switched interconnection planes as nec-
essary to ensure maximum throughput. Notice that micro-ops are
arranged in a partial order, similarly to instruction in a Q100 query
plan. Therefore they are agnostic to the latency in communication
between them.

All our tests are performed on TPC-H, the most widely used
benchmark for query processing analytic workloads [4], both in
academia and industry. We used scaling factor 0.01 (a 10MB data-
base) to have manageable simulation times. Our infrastructure sup-
ports 19 out of 22 queries, and we do not account for time spent in
unsupported operations. Since both systems use the same streaming
memory interface and subsystem, changing the size of the workload
should affect both architectures equally. Finally, we assume that a
single query is executed by either accelerator at a time. Therefore,
latency correlates directly to throughput of the system. We suspect
this assumption is reasonable as having multiple queries run on the

Q100 would exacerbate network congestion and complicate sched-
uling, but might mitigate the observed underutilization. However,
we have not explicitly measured those scenarios.

Design Space Exploration. Since Q100 performance is highly tied
to the selection of hardware modules, we evaluated more than
4000 Q100 configurations and focus on the Pareto optimal points
for further evaluation. For the homogeneous design we sweep
mesh size from 10x10 to 48x48 PEs. For both designs we set an
upper limit of 120mm2 and 10W of power. We believe these are
reasonable ranges considering that this power budget excludes
clock tree and parasitics (since we do not perform place and route),
and the memory subsystem (which is identical in the two designs).
Our upper limit of 120mm2 for the die is fairly large, and close to
that of a two core Intel Xeon 3050 processor at 65nm. While our
analysis considers only a single accelerator die, other techniques
could derive a Total Cost of Ownership (TCO) optimal ASIC [25].

7 COMPARISON OF Q100 AND
HOMOGENEOUS DESIGN

In this section we want to understand which accelerator design has
better performance given an area/power budget and why. Figure 7
shows how, taken singularly, each Q100 module is more efficient
than a homogeneous PE. This is of course an intuitive result since
each homogeneous processing element can be programmed to per-
form any operation. Furthermore, the Q100 maximum operating
frequency is higher (1100MHz) than that of the homogeneous de-
sign (950 MHz).

However, when looking at the whole system, we find their per-
formance is similar. The homogeneous design recoups lost per-
operator performance with increased utilization and more efficient
communication. From Figure 8 we see that the homogeneous is
comparable to the Pareto optimal Q100 designs in terms of perfor-
mance for most area budgets. But, when the area budget is small,
it outperforms the Q100. This edge at low area makes sense, as
the homogeneous resources are interchangeable and readily scale
down. At the small end, the heterogeneous design is more restric-
tive as it requires at least one of each tile. We find similar results
when power is the objective resource (Figure 9). The homogeneous
design provides comparable performance at most power budgets
and improvements under small ones. In Figure 10 we can see a
more detailed comparison on a query by query basis that shows
the relationship between the two accelerators is query dependent.

Figure 11 differentiates the Q100 designs by interconnect topol-
ogy. Devices that use a ring tend to be smaller but incur penalties
in terms of running time. While it is possible to construct Q100
designs with a wide range of relative interconnect and tile areas,
the Pareto optimal ones all dedicate a relatively large share of the
design area to the NoC. In all cases, this is a larger proportion of
area than in the homogeneous designs, where the proportion is
fixed via the one-to-one pairing of routers and PEs. In Figure 12
we can also see that the reduced NoC area in homogeneous cor-
responds to a lower ratio of power spent in this component. The
homogeneous design invests fewer resources on communication
than the heterogeneous Q100 does.

Lastly, the homogeneous design is able to use a larger fraction
of its area at any given time. Figure 13 shows that utilization is
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Figure 8: Performance/Area comparison of homogeneous
and Q100 implementations
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Figure 9: Performance/Power comparison of homogeneous
and Q100 implementations.
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Figure 10: Relative performance of the Q100 and homogeneous designs depend on the query.

on average higher on a homogeneous device than on Q100. If an
ideal mapping of micro-ops to PE were attainable at every time
step, utilization would be even higher. Figure 14 shows the speedup
attainable by the ideal mapping algorithm over our probabilistic
algorithm. There is significant variability depending on the size
of the homogeneous device considered with larger system bene-
fiting more from the increased utilization. While our scheduler is
sub-optimal, what we think is interesting is that there is a large per-
formance gap that could be bridged at least partially with software
techniques.

In addition to increased tile utilization, there are other dynamics,
not directly measured, but that are captured and contribute to the

overall performance. The homogeneous design exposes commu-
nication routing explicitly. If an instruction cannot be routed in
the network, it is forced to a different time step. By contrast, the
Q100 architecture does not expose limitations on communication. It
instead exposes function, requiring instructions to execute on their
corresponding functional tiles. The homogeneous hardware, for all
its rigidity around communication, is flexible about computation.
The hardware does not specify the type or size of any operator,
instead exposing an ISA to program them.

As summarized in Table 2, our principal finding is that the pro-
grammability of the homogeneous design allows it to better adapt
the architecture to variations in the workload, in this case varia-
tions across and within queries. While the heterogeneous approach
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Figure 13: Unused Area-Time by both devices under exam. We can see that homogeneous makes a better use of the available
resources.

is significantly more performant on a per operator basis, problems
seem to crop up when composing a more general purpose mix
of heterogeneous components to accelerate queries with varying
demands. At that point, our results suggest that a homogeneous
mix of general purpose components should be considered as an
alternative. When area budgets are large, an accelerator with low
utilization still ends up using a lot of resources, and we find the
approaches are comparable. Lastly, we wish to highlight the sce-
narios that are not covered here. Most prominently, we offer no
conclusion about accelerators running multiple queries at once or
scenarios where the accelerator functionality varies.

8 RELATEDWORK
The tension between programmability and efficiency is a longstand-
ing subject of study in the architecture community. Hameed et
al.’s seminal paper analyzed the benefits of increasing specializa-
tion [15]. As their title suggests they analyze the inefficiencies of
software running on general purpose CPUs, whereas we analyze

the inefficiencies that can arise in specialized hardware. Subsequent
work by the same group highlighted how it is possible to create
an architecture for convolution workloads that approximates the
performance of a fully specialized hardware design [36]. Nowatzki
et al. performed a study re-targeting proposed accelerators to a
custom accelerator substrate they designed [28]. This work shows
a significant cost (4X area and power) to pay for programmabil-
ity. There has been previous work that highlighted diminishing
returns for ISA customization [11]. While there are similarities in
message, the setting is restricted to microarchitectural changes
to a processor pipeline, instead of the much larger architectural
design space we have evaluated. A common thread in all of these
studies is the notion that programmability has a cost; creating a
programmable architecture for a workload will incur a hopefully
modest penalty compared to an ASIC implementation. To the best
of our knowledge we are the first to show how programmability
can be beneficial for performance when the workload at hand has
sufficient computational variability.
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Figure 14: Comparison of our probabilistic homogeneous
scheduling algorithm with an ideal scheduler. Significant
performance improvements could be obtained by better soft-
ware scheduling.

Homogeneous
wins

→ Small designs, for the reasons outlined
in Table 1 and the ability to scale down
more gracefully

Heterogeneous
wins

→ Scenarios where the target workload is
dominated by a small number of impor-
tant or frequent queries that are known
in advance

Doesn’t matter → Large designs, where both architectures
are subject to diminishing returns

Don’t know → Scenarios where multiple queries can
run concurrently

→ Scenarios with different implemented
functionality in the two designs

Table 2: Summary of findings.

Databases and their operations are established acceleration tar-
gets. Kung et al. first suggested using systolic arrays to accelerate
database workloads [21] in 1980, however, high performance im-
provement of CPUs year after year made the development of ASICs
for this kind of computation unappealing [5]. The end of Dennard
scaling spurred the more recent interest in this topic. Single critical
targets including partitioning [44] or hash-joins [20] have been
evaluated for acceleration as ASICs with high expected benefits.
A recent proposal used a similar architecture to ours [6] but was
limited to acceleration of nested loop join in analytical query pro-
cessing. Industry too, has examined database acceleration. Oracle,
for example, proposed a many core architecture [1]. It differs from
our design as its cores have a standard Von-Neumann architecture
and data is received from a DMA engine rather that passed in a
dataflow manner from one PE to the other.

There has been also interest in FPGA acceleration of DBMSs with
proposals targeting the storage engine [17, 43] to entire queries [8].
In industry, Baidu recently showed results from an FPGA database
accelerator that closely resembles the Q100 [31] while FPGAs are
now routinely deployed in datacenters [35]. FPGAs provide clear
benefits in a datacenter scenario since they can be re-configured
to adapt to changing workloads. On the other hand, if maximum
performance or power is necessary, ASICs remain the best solu-
tion, and it seems likely that they will all co-exist in datacenter
deployments.

There have already been deployments of ASICs in the datacenter,
most notably targeting machine learning inference [16] or train-
ing [9]. As previously mentioned these are ideal workloads for
acceleration due to the high compute per byte and their regular
control flow structure. On the other hand, it has been shown that
no single workload dominates in a datacenter, and there is a long
tail of workloads [18]. These might include applications with high
control flow divergence and that are memory latency bound such
as information retrieval or memory throughput bound such as
the OLAP workloads that we analyzed in this paper. Another in-
teresting example is video transcoding at datacenter scale which
has been analyzed recently [24]. While we might think of video
transcoding as a perfect candidate for ASIC acceleration, that study
highlighted how there is enough irregularity in the workload that
current hardware accelerators risk imposing quality/performance
tradeoffs.

Coarse-grained reconfigurable architectures – similar to the sys-
tolic array architecture we use here – have been an active area of
research in computer architecture since the early 1990s. Interest
in these architectures tends to wax and wane over time, but they
remain a compelling design point to explore despite lack of wide-
spread commercial adoption [3, 13, 14, 27, 29, 32, 33, 38–42, 47].
CGRAs differ from one another mainly in the way they control
instruction execution on their PEs. Some require all operations and
data movement to happen in global lockstep [13, 27, 40]. Others
map circuit-switched dataflow networks onto an array of PEs with
local control consisting only of if-then-else predication [14, 39, 41].
Finally, some designs give PEs complete local autonomy to execute
sequential routines covering their designated portion of a spatial
program [3, 32, 42, 47].

Stream-dataflow [29] and Triggered Instructions [32] are the
closest proposals to the homogeneous architecture we evaluate
here. Stream-dataflow operates explicitly on memory streams fed
into and read from the reconfigurable fabric by external stream read-
ers and stream writers [29]. Our homogeneous PEs use triggered-
instruction-like operand-availability as a criterion for instruction
scheduling [32] and can thus tolerate arbitrary data latencies. The
tags that are added to each data channels are the closest in spirit to
our independent control plane. Neither is optimized for database
applications in the ways that our homogeneous design is.
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9 CONCLUSIONS
Accelerator designers always face a choice as to how far and in
what way to specialize their architecture.We have examined two ap-
proaches to architectural specialization for analytical query process-
ing. The first embodied by the previously proposed Q100 accelera-
tor [45], exposes a heterogeneous collection of highly-tailored func-
tional units. The second exposes a homogeneous array of equipotent
functional units. Although individual operators are far more effi-
cient on the first accelerator, we find that the two approaches offer
comparable performance at most area and power budgets. When re-
sources are constrained, we find that the homogeneous approach is
more efficient. The variability of computational requirements over
time in the workload explains these results. The programmable ar-
chitecture can adapt more easily to these changes leading to higher
resource utilization and a lower cost for communication. We believe
that the results presented here could extend to other applications
that have similar computational properties. This would motivate
further research in non Von-Neumann architectures together with
their software support.
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