
Reconstructing Pong on an FPGA

Stephen A. Edwards

Department of Computer Science, Columbia University

cucs–023–12, December 2012

Abstract

I describe in detail the circuitry of the original 1972 Pong video arcade game and how I
reconstructed it on an fpga—a modern-day programmable logic device. In the original

circuit, I discover some sloppy timing and a previously unidenti�ed bug that subtly a�ected

gameplay. I emulate the quasi-synchronous behavior of the original circuit by running a

synchronous “simulation” circuit with a 2× clock and replacing each �ip-�op with a circuit
that e�ectively simulates one. �e result is an accurate reproduction that exhibits many

idiosyncracies of the original.

1 Pong Circuit Description 2
1.1 �e Main Clock . 2

1.2 �e Horizontal Counter . 2

1.3 �e Vertical Counter . 5

1.4 Horizontal and Vertical Sync . 5

1.5 �e Net . 7

1.6 �e Paddles . 7

1.7 �e Score . 9

1.8 Horizontal Ball Control . 11

1.9 Vertical Ball Control . 15

1.10 Video Generation . 17

1.11 Sound . 17

1.12 Game Control . 19

2 Reconstructing Pong on an FPGA 21
2.1 Handling Quasi-Synchronous Circuits . 21

2.2 A Minimal Hardware Description Language 22

2.3 I/O on the Terasic de2 board . 25

3 Conclusions 26

1

Introduction

�is work started with a desire to play Pong, Atari’s 1972 video arcade game that e�ectively
launched the industry [11]. While I could have sought out one of the few remaining machines,

I chose instead to reconstruct it on an fpga, much as I had done for the Apple II computer [7]

and others have done for various other classic video arcade games [8].

Pong and other early games were implemented largely with discrete ttl chips, hence
my choice of an fpga. By contrast, most later games were processor-based and have been

successfully emulated in so�ware using an instruction-set simulator interacting with a high-

level ad hoc simulator for the video hardware [9]. While modern processors are vastly
faster than the roughly 7 MHz clock frequency of Pong and many have written Pong-like
programs in so�ware, my goal was precise (cycle-accurate) emulation. I ruled out doing so in

so�ware because I expect it would be di�cult to implement a so�ware circuit simulator able

to consistently run this fast.

However, while the Pong circuit is ostensibly synchronous, it is actually littered with ripple
counters, rs latches built from discrete nand gates, and �ip-�ops clocked from combinational

logic, all of which are anathema to robust fpga designs.

Below, I describe the circuit of the original Pong with a focus on its timing and analog
components (§ 1), then describe my technique for reconstructing it on a modern-day, fully

synchronous fpga (§ 2).

1 Pong Circuit Description

In addition to reading the schematics for Pong that can be found online (they appear to have
been scanned from service manuals), Dan Boris [4] presents an extensive description of the

circuit; much of what I write here is derived from his work, especially his division of the

circuit into sections. Arkush [15] also describes part of the circuitry in Pong, focusing closely
on how counters are used to control the position of the ball.

1.1 �e Main Clock
Figure 1 shows the main clock generator: a 14.318 MHz crystal oscillator1 driving a nand gate

driving a jk �ip-�ip that halves the frequency and generates a 50% duty-cycle square wave:

the 7.159 MHz master clock. 14.318 MHz is a common crystal frequency in video circuits

because it is four times the ntsc colorburst frequency of 315/88 MHz = 3.579545 MHz. Pong,
however, is black-and-white so another frequency could have been used.

1.2 �e Horizontal Counter
�e horizontal counter (Figure 2), built from two 7493s (f8 and f9) and a 74107 (f6), keeps

track of the horizontal position of the video beam.�e 7493 is a four-bit ripple counter built

from four negative-edge-triggered t �ip-�ops.

1
�e frequency is not labeled on the schematic, but multiple sources, including schematics of Pong clones,

con�rm this value.

14.318 MHz 100pF

330Ω 330Ω

C9e

7404

11 10
0.1µF C9d

7404

9 8

E6d
7400

12

13
11 F6a

74107

J
1

12

K
4

Q
3

Q
2

13

1

1

1

CLK

Figure 1:�e main clock oscillator.�is generates a 7.159 MHz square wave.

Abstractly, the eight-input nand f7 detects the count 256 + 128 + 64 + 4 + 2 = 454 and
causes the counter to reset, but the behavior is slightly more subtle, as shown in Figure 4.

Because the ripple counters are triggered on the negative edge of the clock but the output of

f7 is bu�ered by the positive-edge-triggered d �ip-�ip e7b, the count 454 is only seen for half

a clock period while the count 0 is seen for one-and-a-half clock periods because the hreset

signal only rises a�er the next rising edge of the clock, e�ectively surpressing the count on

the next falling edge of the clock.

�e period of hreset is thus 7.159 MHz/455 = 15.734 kHz, exactly the ntsc horizontal
frequency.

�e horizontal counter is one of the most active parts of the circuit, yet Alcorn used

slower, more problematic ripple counters instead of synchronous counters. Why he did this

is not clear; one hypothesis is that it was a cost-saving measure: 7493s were nearly half the

price of 74161s in 1975 [10].

�e use of ripple counters in the horizontal timing circuitry of these games appears to be

characteristic of Alcorn. Bushnell’s earlier, more complex, and far less successful Computer
Space (Nutting Associates, 1973) did use 74161s [12]. Alcorn designed [6] Atari’s 1973 successor
to Pong, Space Race [11], and again used 7493s [3]. Atari’s 1974 Pin Pong, not designed by
Alcorn, used synchronous counters (9316s) [2].

�e presence of ripple counters makes the timing of this circuit worth discussing. In

Figure 2, I drew some of the internal structure of the counters to help explain the behavior

of this circuit.�e outputs 1h...256h do not change simultaneously: they ripple, which can

be problematic for decoding particular columns. To decode 454 as needed, fortunately, the

delay is e�ectively modest because it is triggered by 2h going high, which occurs only two

�ip-�op delays a�er the falling edge of the 7.159 MHz clock—all the other signals went high

in a previous cycle and stay stable just before reaching a count of 454.

14

112 9 8 11

23
F87493

14

112 9 8 11

23
F97493

F6b
74107

J
8

9

K
11

Q
5

Q
6

10

F7
7430

1

11

12

5

6

2

3

4

8

E7b
7474

D
12

11
Q

9

Q
8

10

13

1
H

2
H

4
H

8
H

1
6
H

3
2
H

6
4
H

1
2
8
H

2
5
6
H

256H

1

1

HRESET

CLK

HRESET

Figure 2:�e horizontal counter:�is counts 0, 1, . . . , 454, generating a 15.734 kHz horizontal frequency.

E8
7493

CKA

CKB

R01R02

QA QB QC QD

14

1

12 9 8 11

23

E9
7493

CKA

CKB

R01R02

QA QB QC QD

14

1

12 9 8 11

23

D9b
74107

J
8

9

K
11

Q
5

Q
6

10

D8c
7410

9

10

11

8

E7a
7474

D
2

3
Q

5

Q
6

4

1

1
V

2
V

4
V

8
V

1
6
V

3
2
V

6
4
V

1
2
8
V

2
5
6
V

256V

1

VRESET

HRESET

VRESET

1

Figure 3:�e vertical counter:�is counts 0, 1, . . . , 261

CLK 7M

1H-256H 451 452 453 454 0 2 3

HRESET

HBLANK

1V-256V 261 0

VRESET

1V-256V 0 1

VRESET

1V-256V 1 2

VRESET

Figure 4: Behavior of the horizontal and vertical counters at the end of a horizontal line

1.3 �e Vertical Counter
�e vertical counter (Figure 3) is similar to the horizontal counter, but is clocked once per

�eld by the hreset signal generated by the horizontal counter and resets on a count of

1 + 4 + 256 = 261.�is gives a vertical refresh frequency of 15.734 kHz/262 = 60.05 Hz, which
is certainly close enough to 60 Hz for most monitors. A strictly compliant (interlaced) ntsc

signal actually has 525/2 = 262.5 horizontal line periods per �eld.
Again the 7493s are negative-edge triggered, so the vertical count changes when hreset

falls and is reset when hreset rises—see Figure 4.

1.4 Horizontal and Vertical Sync
Figure 5 shows the circuits for generating horizontal and vertical blanking and synchronization

signals.�ese are two rs latches built from discrete gates with some extra gating logic.

Part of the timing of the horizontal blanking latch is problematic. �e hreset signal

is not a problem because it comes directly from a �ip-�op triggered by the clock (e7b, see

Figure 2, so hblank falls quickly a�er the rising edge of the clock. However, for hblank to

rise, 64hmust be high and nand g5b looks for the rising edge of 16h (a count of 64+ 16 = 80).
�is is initiated by a falling edge on the 7 MHz clock and occurs a�er passing through �ve

�ip-�op stages (all of the f8 ripple counter and the �rst stage of f9). Below is an accounting

of delays based on numbers from ti’s 1988 data book [14].

G5b
7410

3

4

5

6
H5b
7400

4

5
6

H5c
7400

9

10
8

H5d
7400

12

13
11

16H

64H

HRESET

32H
HSYNC

HBLANK

HBLANK

F5c
7402

8

9
10

F5d
7402

11

12
13

H5a
7400

1

2
3

G5a
7410

1

2

13

12

VRESET

16V

8V

VBLANK

VBLANK

4V VSYNC

Figure 5: Horizontal and Vertical Blanking and Sync

CLK 7M

1H-256H 77 78 79 80 81 82

HBLANK

Figure 6: Behavior of hblank near the start of the line. Because of the ripple counters in the

horizontal counter, hblank rises a�er the next rising edge of the clock.

Path Typ. Max.

clk falling to 8H falling 46 ns 70

8H falling to 16H rising 10 16

16H rising to G5b-6 falling 7 15

G5b-6 falling to hblank rising 11 22

clk falling to hblank rising 74 123

However, the 7 MHz clock has a period of about 140 ns, meaning hblank rises a�er the
next rising edge of the clock. Figure 6 illustrates this.

hsync only goes low when hblank is low (horizontal counts 0–79) and 32h is high, i.e.,

from horizontal counts 32 to 63 inclusive.

Using similar reasoning, vblank goes low when vreset goes high: during line 0, and

high again at the start of line 16. vsync is only low when vblank is low, 4v is high, and 8v is

low: lines 4 through 7 inclusive.

F3b
74107

J
8

9

K
11

Q
5

Q
6

10

G3b
7400

4

5
6

G2b
7427

3

4

5

6

256H

CLK

256H

1

VBLANK

V4 NET

Figure 7: Circuit that generates the net

1.5 �e Net
�e net is a simple graphic object—a dashed line going down the center of the screen—that

does not a�ect gameplay. Figure 7 shows the circuit, which displays a vertical line in column

256 that alternates between four pixels on and four pixels o�. Before the horizontal counter

reaches 256, 256h is low and 256h is high, so f3b’s q is high. When the horizontal counter

reaches 256, 256h goes high, sending the output of g3b low, enabling g2b to pass v4 as the

net signal when out of vertical blanking. In the next cycle, since 256h was high and 256h was

low, f3b’s q falls, setting net low.

1.6 �e Paddles
Figure 8 shows the circuit generating the signals that indicate when (and hence where) each

player’s paddle is displayed.�ere are two identical circuits, one for each player. Each 555 is

wired as a one-shot triggered near the bottom of the screen; the paddle sets the delay time,

controlling on which line the one-shot expires.

Player 1’s paddle is a 5K potentiometer2 that forms a voltage divider feeding the control

voltage input of 555 timer b9. Internally, this pin is connected to a ladder of three 5K that sets

its nominal voltage to 2/3 Vcc ; the paddle input shi�s the control voltage away from this value.
�e 0.1µF capacitor on ctrl input bypasses the reference voltage to help keep it constant.
At rest, out is low and the diode clamps the 0.1µF capacitor to ground through the dis

pin. Pulling trg low turns on out and �oats dis, allowing the 56K �xed resistor and 50K

trim pot to charge the 0.1µF capacitor. When the voltage on thr reaches that on ctrl, out
goes low and the capacitor is again discharged through dis for another cycle. Figure 8 shows

a rough diagram of these waveforms.

While the exact period of the one-shot is a complex, nonlinear function, it is ≈ RC = 8.1ms
for R = 81K andC = 0.1µF.�e vertical refresh period is approximately 16ms, so with a suitable
setting of the 50K trim pot, and adjusting the paddle voltage divided, the one-shot period

should vary from the top to the bottom of the screen.

2
�is value is not marked on the original schematics; manuals and schematics of clones [1] con�rm this value.

B9
555

THR
6

DIS
7

TRG
2

CTRL
5

RST

4

OUT
3

470Ω
PADDLE 1

5K

0
.1µ

F

5
6
K

0
.1µ

F
5
0
K

C9b

7404

3 4
B7a
7400

1

2
3

B7b
7400

5

4
6

B8
7493

CKA

CKB

R01R02

QA QB QC QD

14

1

12 9 8 11

23

A7b
7420

9

10

12

13

8

1

+5

256V

14

+5

HSYNC

B
1

C
1

D
1

A9
555

THR
6

DIS
7

TRG
2

CTRL
5

RST

4

OUT
3

470Ω
PADDLE 2

5K

0
.1µ

F

5
6
K

0
.1µ

F
5
0
K

C9a

7404

1 2
B7d
7400

13

12
11

B7c
7400

9

10
8

A8
7493

CKA

CKB

R01R02

QA QB QC QD

14

1

12 9 8 11

23

A7a
7420

1

2

4

5

6

1

+5

256V

18

+5

HSYNC

B
2

C
2

D
2

H3a
7474

D
2

3
Q

5

Q
6

4

1

G3c
7400

10

9
8

G2c
7427

11

10

9

8

G2a
7427

13

2

1

12

4H

ATTRACT

128H

1

VPAD2

VPAD1

256H

256H

PAD1

PAD2

TRG

OUT

THR

Figure 8:�e paddle circuit. 555 timers a9 and b9 operate as one-shots triggered by 256v that select the top line of each

player’s paddle. Counters a8 and b8 and �ip-�op h3a make each paddle 15 lines high and 4 pixels wide.

However, Alcorn explains,

�e other—not hack—but, one of my lessons learned, is that if you can’t �x it,

call it a feature.�e paddles on the original Pong didn’t go all the way to the top.

�ere was a defect in the [circuit]—I used a very simple circuit, I had to, to make

the paddles, but they didn’t go to the top. I could have �xed it, but it turned out

to be important, because if you get two good players they could just volley and

play the game forever. And the game has to end in about three or four minutes

otherwise it’s a failure as a game. So that gap at the top, again—a feature. So that

was sort of a happy accident. [13]

Going higher on the screen corresponds to a shorter timeout, which in this circuit is

limited in part by how low the voltage can go on ctrl, which is a�ected by the internal 5K

resistor ladder.

While the 555’s out is high, the paddle is not displayed because the the output of B7a

stays high, pad1 stays low, and the four-bit ripple counter b8 is reset.

�e paddle starts to be displayed on the line where out �rst goes low and continues to be

displayed for the next fourteen lines. Here, both the output of inverter c9b and the output of

a7b are high, so vpad1 is low.�e output of a7b stays high until the counter reaches ��een.

b7b clocks it on the rising edge of hsync. On the count of ��een, the output of a7b falls

sending b8’s clock a high.�is is a glitch: the output of b7b falls, causing qa to rise, causing

the output of a7b to fall, which �nally causes the output of b7b to rise again. However, the

7493 only requires a 15 ns pulse on clka for proper operation and the delay from clka to qa

is typically 10 ns and the delay through a 7420 is typically 8 ns, so it should work.

�e three higher-order output bits of each paddle’s vertical counter are used to determine

the angle at which the ball bounces o� the paddle; see § 1.9.

Together, h3a and g3c determine the horizontal width and position of the paddle: the

output of g3c goes low between the rising edge of 128h (horizontal counts 128 and 384) and

the next rising edge of 4h (horizontal counts 132 and 388) to give a four-pixel-wide paddle.

�is occurs twice per line, once when 256h is low, displaying the le� paddle through g2c, and

once when 256h is high, displaying the right through g2a.

1.7 �e Score
Pong displays two two-digit scores in “seven-segment” style on the upper part of the screen.
Each player’s score is held in a decade ripple counter for the �rst digit augmented with a jk

�ip-�op to represent the tens digit. A switch controls whether the game ends when either

player reaches a score of 11 or 15.

At the core of the circuit is a 7448 bcd-to-seven-segment decoder, which was originally

designed to drive seven-segment led displays. In Pong, a pair of four-to-one multiplexers
steer one of the four score digits to the 7448, which feeds the decoded number into a bank of

seven nand gates that are each activated during a “segment” region on the screen. Finally,

H6a
7420

1

2

4

5

6
E6c
7400

9

10
8

D1f

7404

13 12
E1a
7400

1

2
3

D8a
7410

1

2

13

12

D8b
7410

3

4

5

6

B2a
7400

1

2
3

SW1A11

15

SW1B11

15

F5b
7402

6

5
4

C7
7490

CKA

CKB

R01 R02 R91 R92

QA QB QC QD

14

1

12 9 8 11

2 3 6 7

C8a
74107

J
1

12

K
4

Q
3

Q
2

13

F5a
7402

3

2
1

D7
7490

CKA

CKB

R01 R02 R91 R92

QA QB QC QD

14

1

12 9 8 11

2 3 6 7

C8b
74107

J
8

9

K
11

Q
5

Q
6

10

C6
74153

0 1 2 3 0 1 2 3
6 5 4 3 10 11 12 13

A

B

14

2
1G

2G

1

15

1Y 2Y
7 9

D6
74153

0 1 2 3 0 1 2 3
6 5 4 3 10 11 12 13

A

B

14

2
1G

2G

1

15

1Y 2Y
7 9

64H 32H D C B A

0 0 1111, 0001 when player one ≥ 10

0 1 Low four bits of player one's score

1 0 1111, 0001 when player two ≥ 10

1 1 Low four bits of player two's score

E3a
7427

1

2

13

12

E3b
7427

3

4

5

6

E2c
7410

9

10

11

8 E3c
7427

9

10

11

8
D2c
7402

8

9
10

G1a
7402

2

3
1

F2a
7425

1

2

4

5

6

C5
7448

A B C D

a b c d e f g

BI/RBO

RBI

LT

7 1 2 6

13 12 11 10 9 15 14

4

5

3

E5c
7427

9

10

11

8

C3d
7400

12

13
11

D2b
7402

5

6
4

E4b

7404

3 4

E5b
7427

3

4

5

6

E2a
7410

1

2

13

12
E4a

7404

1 2

E4c

7404

5 6

D4a
7410

1

2

13

12

D5c
7410

9

10

11

8

C4c
7410

9

10

11

8

D5a
7410

1

2

13

12

D4c
7410

9

10

11

8

D4b
7410

3

4

5

6

D5b
7410

3

4

5

6

D3
7430

12

5

4

1

2

11

6

3

8

a

b

c

d

e

f

g

4H 4H

8H

4V

4V

4V

4V

8V

8V

16V

HVID

HBLANK

MISS

ATTRACT

L R

STOP G

MISSED

S1A

S1A

S1A

S1B

S1B

S1C

S1C

S1C

S1D

S1D

S1E

S1E

S1E

S1E S1E S1E

1

S2A

S2A

S2A

S2B

S2B

S2C

S2C

S2C

S2D

S2D

S2E

S2E

S2E

S2E S2E S2E

0 0 0 0

SRST

SRST

1

1

1

1

1

0

0

0

0

32H

64H

0

0128H

256H

64H

32V

64V

128V

f

f

e

e

b

b

c

c

a

a

g

g

d

d

16H

4V

8V

4H

8H

16V

1
SCORE

Figure 9: Score circuitry: the outputs of f5b and f5a pulse when a player has scored; c7, c8a, d7, and c8b maintain the score; the

remainder displays the score as two two-digit seven-segment decimal numbers.

the output of these gates are fed into an eight-input nand gate that e�ectively sums them to

produce the �nal score display signal, which is mixed to produce a slightly dimmer display

than the signal for the ball, paddles, and net.

Starting from the top le� of Figure 9, hvid is low where the ball is present (see § 1.8), so

miss goes low when the ball reaches the horizontal blanking region (i.e., o� the le� or right

of the screen). When the game is not in attract mode, this causes the missed signal to go low,

sending the clock of either c7 or d7 high. If the ball was moving le� when this happens (i.e.,

past player one), R will be low, pulsing the clock of d7 high. When it falls, player two’s score

counter (d7) will increment.

Player one’s score counter consists of the four-bit ripple decade counter c6 and jk �ip-�op

c8a. A�er c7 reaches a count of nine, it will reset itself to zero on the next cycle, dropping qd

and causing c8a to toggle, indicating a score of ten. Player two’s score counter (d7 and c8b) is

wired similarly.

Nand gates d8a and d8b detect the end-of-game condition, dictated by sw1. In its “11”

position, the inputs to d8a and d8b �oat high, meaning stop g will rise when either player

reaches a score of 11. Similarly, when sw1 is in the “15” position, the �rst, third, and ��h bits

of the score must be one: a score of 15.

Depending on horizontal counter values 32h and 64h, four-input muxes d6 and c6 steer

either the low digit of each player’s score, 1 when the high-order bit of a player’s score is 1,

or 15 when it is zero, to the seven-segment decoder c5.�e 7448 turns o� all digits when fed

an input of 15, so this logic disables a leading zero.

Gates e3a, e3b, e2c, e3c, g1a, d2a, and f2a enable the outputs of c5 when the beam is over

the score area at the top of the screen.

Gates e4b, c3d, e5c, d2b, e5b, e4a, and e4c compute functions for displaying the segments

as shown on the map on the le� of Figure 9. Consider the output of d4b. It drives the output

of d3 high when g is high, 4v and 8v are high, 16v is low, and 16h is high.�is produces the

horizontal bar that appears above the midpoint as shown in the diagram. It turns out 16h

must be high for any segment to be visible; the constraints on 4v, 8v, 16v, 4h, and 8h vary

depending on the segment.

1.8 Horizontal Ball Control
To control the position of the ball, Pong uses a clever technique described in Bushnell’s 1974
patent [5] that involves running “position” counters at almost the same frequency as the

horizontal and vertical counters. In such a situation, the phase of these “position” counters
relative to the main horizontal counters determine where on the screen the ball will appear;

slight perturbations to the period of the position counters cause the ball to move.

Figure 10 shows the circuit responsible for the horizontal position of the ball.�is is built

around a nine-bit counter built from g7, h7, and g6b, which reloads itself when it reaches a

count of 511.

E1d
7400

12

13
11

F1
7493

CKA

CKB

R01R02

QA QB QC QD

14

1

12 9 8 11

23

G1d
7402

11

12
13

E1c
7400

9

10
8

H1a
7400

1

2
3

H1d
7400

13

12
11

G1c
7402

8

9
10

H1c
7400

9

10
8

H1b
7400

4

5
6

H2b
74107

J
8

9

K
11

Q
5

Q
6

10

H2a
74107

J
1

12

K
4

Q
3

Q
2

13

H4a
7400

1

2
3Hits H1-8 6

0�3 0 1

4�11 1 0

12� 0 0
11/MOVE

01/MOVE

10/MOVE

00/MOVE

C1d
7400

12

13
11

D1a

7404

1 2 H3b
7474

D
12

11
Q

9

Q
8

10

13

H4b
7400

4

5
6

H4d
7400

12

13
11

H4c
7400

9

10
8

MOVE LR AaBa Range Period Movement

0 � 01 138,. . . ,511 374 Stationary

1 1 0 1 1 139,. . . ,511 373 Left

1 0 1 1 0 137,. . . ,511 375 Right

E1b
7400

4

5
6

G7
9316

CLK

ENP

ENT

CLR

LD

QAQB QCQD

A B C D

RCO
2

7

10

1 14 13 12 11

9 3 4 5 6

15

H7
9316

CLK

ENP

ENT

CLR

LD

QAQB QCQD

A B C D

RCO
2

7

10

1 14 13 12 11

9 3 4 5 6

15 G6b
74107

J
8

9

K
11

Q
5

Q
6

10

G5c
7410

9

10

11

8

H6b
7420

9

10

12

13

8

HIT SOUND

RST SPEED

256H

VRESET

0

1

L

R

SC

HIT2

HIT1

1

1

1

CLK

SERVE

HBLANK

1

HVID

0 0 0 10 1

ATTRACT

ATTRACT

MOVE

Aa

Ba

Figure 10: Ball horizontal circuit. �e output, hvid, is asserted when the ball is visible in the current column. Four-bit counter F1

counts hits and speeds up the ball in response.�e duration of the MOVE signal controls how many pixels to move the ball le� or right.

Finally, the phase of the nine-bit counter formed by G7, H7, and G6b determines the horizontal position of the ball.

When the move signal is low, the horizontal ball counter stays in phase with the master

horizontal counters, in e�ect keeping the ball in the same horizontal position. When move is

low. h4b, h4c, and h4d set Aa and Bb, inputs to the synchronous four-bit counter g7 (a 9316,

pin compatible with the more familiar 74161 chip), to 0 and 1 respectively.�us, when the

horizontal ball counter reaches 511, the output of g5c goes low and the counter is loaded with

the value 010001010 = 128 + 8 + 2 = 138 on the next rising edge of the clock (h7’s rco falls
when this value is loaded, toggling G6b, which becomes a 0 because it was a 1 to activate g5c).

In this mode, therefore, it counts 138, 139, . . . , 511: a period of 374.

�e horizontal ball counter only advances on rising edges of the clock when hblank is

high since hblank drives g7’s ent input. From the discussion in § 1.4, this occurs during

horizontal counts 81, 82, . . . , 454: 374 times per line.�us, when move is low, the horizontal

ball counter stays in sync with the horizontal counters.

�e hvid signal indicates the position of the ball. It is asserted when the horizontal ball

counter has values 111111100–111111111, i.e., 508, 509, . . . , 511, making the ball four pixels wide.

When move is high, the horizontal ball counter resets to a slightly di�erent value, e�ec-

tively making the ball move le� or right. h3b, a d �ip-�op, controls the direction. When l is 1,

r is 0, Ba is 1, and Aa is 1, making the counter reset to 128 + 8 + 2 + 1 = 139.�is makes the
period one less then the duration of hblank, moving the ball to the le�.

Conversely, when move is high and l is 0, r is 1, Ba is 0 and Aa is 1, making the counter

reset to 128 + 8 + 1 = 137 and moving the ball to the right.
H3b makes the ball bounce o� the players’ paddles. When the le� paddle (player one)

touches the ball, hit1 goes low, setting h3B into a state where L=0 and R=1, thus sending the

ball right. Similarly, colliding with player two’s paddle sends the ball le�. Note that because

these signals set the direction of the ball, rather than change it, there is no danger of the ball

becoming trapped inside a paddle that suddenly appears from being moved very quickly.

H3b also makes the ball bounce o� the le� and right edges of the screen in attract mode.

�e sc signal pulses high for a few clock cycles when the ball goes o� the screen horizontally

(i.e., causing a score if the game were being played). In attract mode, c1d passes this pulse

through to h3b’s clock, causing it to toggle once when the ball hits the edge of the screen.

Ripple counter f1 counts the number of hits, which is used to increase the (horizontal)

speed of the ball. rst speed goes high brie�y during game play when one player scores a

point, resetting counter f1. A�er reset, qc and qd are low, setting e1c’s output high.�erea�er,

when hit sound pulses high (when the ball hits either paddle), it clocks f1. Once f1 reaches

a count of 8 + 4 = 12, e1c’s output goes low, inhibiting further counts until the next point.
�e output of counter f1 is decoded to control the clear inputs of jk �ip-�ops h2a and

h2b, which form a state machine that controls whether move is asserted on one, two, or three

lines per �eld, controlling the horizontal speed of the ball. Figure 10 shows the state transition

diagram for this machine, which is clocked on the falling edge of 256h except on the �rst

line of each �eld (when vreset is high), when nand gates h1b and h1c set the state of this

machine.

A6a

7450

1

13

9

10

8

A6b

7450

3

2

4

5

6

B6b

7450

3

2

4

5

6

D1c

7404

5 6

A5b
7474

D
12

11
Q

9

Q
8

10

13

A5a
7474

D
2

3
Q

5

Q
6

4

1

B5a
7474

D
2

3
Q

5

Q
6

4

1

A2a
74107

J
1

12

K
4

Q
3

Q
2

13

A4c
7486

9

10
8

A4b
7486

4

5
6

B6a

7450

1

13

9

10

8

B4
7483

A1A2A3A4 B1B2B3B4
10 8 3 1 11 7 4 16

Σ1 Σ2 Σ3 Σ4
9 6 2 15

C0 C4
13 14

C4a
7410

1

2

13

12

B3
9316

CLK

ENP

ENT

CLR

LD

QAQB QCQD

A B C D

RCO
2

7

10

1 14 13 12 11

9 3 4 5 6

15

A3
9316

CLK

ENP

ENT

CLR

LD

QAQB QCQD

A B C D

RCO
2

7

10

1 14 13 12 11

9 3 4 5 6

15
B2b
7400

4

5
6

E2b
7410

5

4

3

6 D2d
7402

11

12
13

A2B5A5A5 B4-A B4-B Range
a a a b 4321 4321

0 0 0 0 0000 0111 7,. . . ,255

0 0 0 1 0001 0111 8,. . . ,255

0 0 1 0 0010 0111 9,. . . ,255

0 0 1 1 0011 0111 10,. . . ,255

0 1 0 0 0100 0110 10,. . . ,255

0 1 0 1 0101 0110 11,. . . ,255

0 1 1 0 0110 0110 12,. . . ,255

0 1 1 1 0111 0110 13,. . . ,255

1 0 0 0 0111 0110 13,. . . ,255

1 0 0 1 0110 0110 12,. . . ,255

1 0 1 0 0101 0110 11,. . . ,255

1 0 1 1 0100 0110 10,. . . ,255

1 1 0 0 0011 0111 10,. . . ,255

1 1 0 1 0010 0111 9,. . . ,255

1 1 1 0 0001 0111 8,. . . ,255

1 1 1 1 0000 0111 7,. . . ,255

ATTRACT

1

1

1

B1

B2

C1

C2

D1

D2

256H

256H

VBLANK

VVID

HIT

HIT

Ab Bb Cb Db

VVID

VVID

VBALL240

1

1

1

1

0 0 0 0

V
B
A
L
L
1
6

V
B
A
L
L
3
2

HSYNC

VBLANK

0

0 01 1

Figure 11: Ball vertical circuit.�e output, vvid, is asserted when the ball is visible on the current line. Flip-�ops b5a, a5b, and a5b remember the position at

which the ball last hit a paddle; a2a toggles to rebound the ball o� the top or bottom. Four-bit adder b4 translates the ball motion signals into a reset value for the

eight-bit counter formed by a3 and b3, which determines the vertical position of the ball.

1.9 Vertical Ball Control
Figure 11 shows the circuit responsible for the vertical position of the ball. Like the horizontal

circuit, it consists of a counter (only eight bits for the vertical counter: a3 and b3) whose

period, and hence vertical ball speed, is set by a state machine a�ected by a ball hitting a

paddle or the top or bottom of the screen.

When the game is in attract mode, the paddles are hidden and the ball travels at one

speed diagonally, bouncing o� the sides of the screen. In this state, inverter d1c drives the

clear inputs of d �ip-�ops b5a, a5a, and a5b, setting their q’s to all 0.

Jk �ip-�op a2a, together with exclusive-or gates a4b, a4c, and b6a (an and-or-invert

gate wired to compute exclusive-or) are responsible for bouncing the ball o� the top and

bottom of the screen. When a2a’s q is low, the exclusive-or gates pass the outputs of the three

d �ip-�ops unchanged and invert them when the q output is high.�e state of a2a toggles

when the ball hits the screen top or bottom: when vvid is high (i.e., when the ball is visible

on the current line) at the end of vertical blanking (when vblank falls).

As in the horizontal circuit, the phase of the vertical counter (formed by synchronous

four-bit counters a3 and b3) a�ects the vertical position of the ball and the period of the

counter a�ects the ball’s vertical velocity. Here, however, the counter is clocked by the rising

edge of hsync and gated by vblank. As discussed in § 1.4, there are 262 lines per �eld and

vblank is active for 16 of them, giving the ball vertical counter 262 − 16 = 246 counts per
�eld.�us loading the vertical ball counter with 10 will hold the ball in the same position

vertically; smaller numbers increase the period, causing the ball to move down on the screen;

larger numbers will cause it to move up. In attract mode, the counter is loaded with 7 or 13

depending on a2a, so it will move at the maximum speed vertically.

During gameplay, the ball rebounds o� the paddle at an angle determined by where the

ball hit the paddle. d �ip-�ops b5a, a5a, and a5b remember this collision location; binary

adder b4 transforms it into a value with which to load the ball vertical counter.

When the ball hits the paddle, hit pulses high, resetting a2a and loading d �ip-�ops b5a,

a5a, and a5b with the one’s complement of the top three bits of one of the paddle counters

(see § 1.6). And-or-invert gates a6a, a6b, and b6b are wired as two-input multiplexers that

pass the top three bits of player one’s paddle position (b1, c1, and d1) when 256h is low (i.e.,

the ball is to the le� of the net) and player two’s paddle position when 256h is high.

In the table in Figure 11, note that the range 10,. . . ,255 appears four times instead of two.

�is makes it easier to rebound the ball purely horizontally—there is a large area in the center

of the paddle where this will happen.

It appears the inputs to a6a are wired incorrectly. While b6b and a6b select data from

player one when 256h is low as we would expect, a6a selects data from player two. �e

schematic in Figure 11 is consistent with the original schematics (Figure 12) as well as the

board.3 Even the schematic for an (unauthorized) clone of Pong has this error [1].

3
I traced the signals on a high-resolution photo of the front and back of the two-layer board.

Figure 12: Part of Pong’s original schematic: the vertical ball counter.�e intention of the top
and-or-invert gate (a6) is clear: pass b1 under the same conditions as c1 and d1, but pins 1

and 10 are swapped: pins 1 and 13 are one group; 9 and 10 are the other.

G1b
7402

5

6
4

F2b
7425

9

10

12

13

8
E4f

7404

13 12

E4e

7404

11 10A4d
7486

12

13
11

G3a
7400

1

2
3

G3d
7400

12

13
11

B2c
7400

9

10
8

B2d
7400

12

13
11

2.2K

1K

1.2K

5µF 10V

HVID

VVID

PAD2

NET

PAD1

20 Video Out

HIT

HIT

HIT2

HIT1

HSYNC

VSYNC

SCORE

Figure 13: Video generation circuitry. F2b combines the signal from the two paddles, the net,

and the ball.�e score display is mixed with a 1.2K resistor, making it slightly dimmer.

1.10 Video Generation
Figure 13 shows the circuit that combines the horizontal and vertical synchronization signals

(§ 1.4), the net (§ 1.5), paddles (§ 1.6), score (§ 1.7), and the ball (§§ 1.8 and 1.9) to produce

the �nal composite (black-and-white) video signal. A resistor summing network combines

the score, sync, and other video elements. Note a higher-value resistor is used for the score

(1.2K); this makes it slightly dimmer than the paddles, ball, and net. A 5µF coupling capacitor
removes any dc bias.

Also in Figure 13 is the logic generating hit, hit1, and hit2, used, e.g., by the ball vertical

circuit.

1.11 Sound
�e sound in Pong is legendarily simple, perfect, and almost serendipitous, as Alcorn relates:

Now the issue of sound . . .People have talked about the sound and I’ve seen

articles written about how intelligently the sound was done and how appropriate

the sound was. �e truth is, I was running out of parts on the board. Nolan

wanted the roar of a crowd of thousands—the approving roar of cheering people

when you made a point. Ted Dabney told me to make a boo and a hiss when you

lost a point, because for every winner there’s a loser.

I said, “Screw it, I don’t know how to make any one of those sounds. I don’t

have enough parts anyhow.” Since I had the wire wrapped on the scope, I poked

around the sync generator to �nd an appropriate frequency or a tone. So those

sounds were don in half a day.�ey were the sounds that were already in the

machine. [11]

F3a
74107

J
1

12

K
4

Q
3

Q
2

13

C3b
7400

4

5
6

Top Hit Sound

C2a
7474

D
2

3
Q

5

Q
6

4

1

C3a
7400

1

2
3

Hit Sound

G4
555

THR
6

DIS
7

TRG
2

CTRL
5

RST

4

OUT
3

C3c
7400

9

10
8

Score Sound0
.1

1
.0

2
2
0
K

C4b
7410

3

4

5

6
C1b
7400

4

5
6

1

1

0

+5

MISS

VBALL240

HIT

VVID

VBLANK

VVID

SERVE

VBALL16

VBALL32

ATTRACT

16 SOUND

SC

HIT SOUND

32V

Figure 14: Sound Circuitry

Figure 14 bears this out. Pong generates three sounds: a “ping” sound when the ball hits
a paddle, a “pong” sound when the ball re�ects o� the top or bottom of the screen, and a

similar sound when either player scores a point.

Jk �ip-�op f3a is active when the ball is bouncing o� the top or bottom, much like a2a

does for the vertical ball control (Figure 11). F3a takes a new value at the top of each screen

(i.e., when vblank falls before the �rst line of the screen). If the ball was visible at the end of

vertical blanking (i.e., went o� the top or bottom of the screen), f3a’s q output goes high for a

�eld, enabling c3b, which passes vball32 (the sixth bit of the vertical ball counter).�is is

15.734 kHz / 16 = 980 Hz, near B5 on the piano.

D �ip-�op c2a turns on brie�y a�er the ball is hit. Normally, c2a’s q is low, disabling c3a,

but when the ball is hit, the c2a’s reset goes low, sending q high and gating vball16 (the ��h

bit from the vertical ball counter).�is is 15.734 kHz / 32 = 490 Hz, near B4 on the piano.

Timer g4 activates the score sound for a period of time a�ermiss pulses low, which occurs

when the ball goes o� the screen horizontally—see Figure 9. �e 220K resistor and 1.0µF
capacitor set the width of the pulse, which is roughly 1.1 ⋅ 220K ⋅ 1.0µF = 240 ms.�is sound
is set by 32v, the sixth bit of the vertical counter, which also counts at about 980 Hz.

C4b “sums” the three sound sources, which are silenced during attract mode by c1b.�e

sound output is sent, unampli�ed, to the tvmonitor.

1.12 Game Control
Figure 15 shows the game control circuitry. It consists of a debouncing circuit for the coin

switch (inverters c9c and c9f), a latch/power-on reset circuit built from discrete transistors

(q1, q2, and associated resistors and capacitors), and the serve timer (f4).

When the game powers up, the coin switch pulls srst low, srst high, and transistors q1

and q2 remain o�, allowing the 100Ω and 300Ω resistors to pull run high, so attract falls

and the game enters attract mode (paddles are hidden, ball bounces o� the sides of the screen

instead of causing a score).

Inserting a coin �ips the state of the q1-q2 latch to indicate the game is being played: srst

brie�y pulses low, resetting the score and pulling q1’s collector low through the 1n914 diode.

�is drops the voltage on q2’s base and turns it on, raising the voltage on q1’s base and turning

it on, pulling run down, which keeps q2 turned on a�er srst rises.

At the same time, when srst pulses low, rst speed pulses high to reset the horizontal

ball speed and triggers 555 f4, the serve timer, which is wired as a one-shot, so f4’s out pulses

high for roughly 1.1 ⋅ 330K ⋅ 4.7µF = 1.7s.�is puts the output of e5a low, which asserts serve.
Once out falls, the output of e5a rises and serve falls on the next rising edge of pad1.

When either player’s score reaches 11 or 15, the game ends: the score counters assert stop

g, which pulls the base of q1 low, turning o� q2 as well, raising run and asserting attract.

�e “Antenna” input is intended to prevent free games initiated by a static shock to, say,

the coin logic. If the voltage on the base of q3 rises, it pulls the base of q1 low, turning it o�

and letting run rise.

C9f

7404

13 12
C9c

7404

5 6

C
O
IN

S
W

1
N
4
0
0
1

1N914
1
0
0
Ω

0
.1µ

F

3
0
0
Ω 1
0
0
Ω

2
2
0
Ω

1
0
0
Ω

0
.1µ

F

1
N
9
1
4

E4d

7404

9 8
1N914

Q1

Q2

Q3

D2a
7402

2

3
1

D1b

7404

3 4

E6b
7400

4

5
6 E6a

7400

1

2
3

F4
555

THR
6

DIS
7

TRG
2

CTRL
5

RST

4

OUT
3

SERVE TIMER

0
.1

4
.7µ

F
3
3
0
K

E5a
7427

1

2

13

12

B5b
7474

D
12

11
Q

9

Q
8

10

13

ATTRACT

ATTRACT

+5

15 Antenna

12

SRST

10

SRST

+5

STOP G

RUN

RST SPEED

PAD1

MISS

SERVE

SERVE

1

+5

1

Figure 15: Game Control Circuitry

2 Reconstructing Pong on an FPGA

Virtually all of Pong is digital so implementing it on a modern fpga is feasible, but not

straightforward. First, there are a handful of analog sections: the master oscillator; the one-

shot timers for the paddles, score, and serve; and the �nal video output circuitry. Fpgas

typically use external clock oscillators anyway, so this part is easy.�e timers can be emulated

with counters.�e video circuitry is a primitive d/a converter with four levels: sync, black,

gray, and white. Gray is used for displaying the score; the ball, paddles, and net are all white.

As described earlier, Pong’s sound is actually digital: a 1-bit output produces square waves at
three frequencies.

2.1 Handling Quasi-Synchronous Circuits
Despite utilizing a 7.159MHzmaster oscillator, Pong is not classically synchronous. Deviations
from this ideal (i.e., acyclic combinational logic between �ip-�ips driven by a global clock)

include the ripple counters in the horizontal and vertical circuits, which cause the unexpected

timing of hblank that I described in § 1.4; r-s latches built from discrete gates that generate

horizontal and vertical sync (Figure 5); and numerous �ip-�ops driven by clocks driven

by derived signals and employing asynchronous set and reset signals. Most of these were

reasonable shortcuts to take in 1972, but are anathema in modern fpga designs.

My solution for reconstructing Pong in a purely synchronous style was to construct
synchronous circuits that essemtially simulate the asynchronous aspects of the original Pong
circuit. My goal was to make the behavior of the reconstructed circuit match the original on

the edges of the 7.159 MHz clock (since parts of Pong are sensitive to both rising and falling
edges) and to assume the absence of glitches on the generated clocks in the original circuit,

i.e., that any switch more quickly than the global clock.

Figure 16 shows the circuit I use to emulate the 7474: a positive-edge-triggered dual d

�ip-�op with asynchronous set and reset inputs. I replace each original d �ip-�op with three

�ip-�ops: “q” to hold the current state, “d” to capture the (possibly irrelevant) next state, and

“c” to remember the previous value of the (asynchronous) clock.

�is circuit assumes it is clocked fast enough so that neither the clock nor the “d” input

transitions more than once per cycle.�e and gate marked “rise” and the “c” �ip-�op detect

whether clk has risen since it was last sampled. If clk rose, the mux supplies the value of the

d input sampled before the rising edge by the “d” �ip-�op. Otherwise, clk was stable and the

mux delivers the previous value of q, held by the “q” �ip-�op. Combinational inputs clr

and pre set and clear the output regardless of the behavior of clk; the feedback loop ensures

their e�ect is felt in the next cycle even if clk did not rise.

�is circuit can simulate the original �ip-�op provided it is run at least twice as fast. In

the exactly twice-as-fast case, the clk input is high in alternate cycles and makes the mux

alternate between the “d” and “q” �ip-�ops, which latches the d input in cycles when clk is

low.

C

D

Q

RISE

1

0

CLK

D

Q

Q

CLR

PRE

Figure 16: My circuit for emulating a 7474 positive-edge-triggered D �ip-�op.�e and gate

“rise” detects a rising edge on the clk input and either delivers the old Q output or the newly

latched value of D.

�e remaining sequential elements in Pong are 74107 negative-edge-triggered jk �ip-
�ops, 7493 four-bit ripple counters, 7490 four-bit ripple decade counters, and 9316 four-bit

synchronous counters. My circuits for each closely parallel that for the 7474 I describe above.

In particular, I assemble the ripple counters from a cascade of jk �ip-�ops.

For the r-s latches for hsync and vsync, I simply inserted a one-cycle delay (a d �ip-�op)

to break the combinational feedback loop.

2.2 A Minimal Hardware Description Language
Vhdl and Verilog are the hardware description languages accepted by most synthesis tools,

including the ones I used. I certainly could havewritten the Pong netlist in one of these formats,
but I chose to develop a simple language of my own to keep the length of the description to a

minimum. I chose its syntax to be simple enough to “parse” with an awk script.

�e basic challenge is to specify the type and connectivity of each component. To do this,

my basic syntax resembles that of spice: a typical line describes an instance of a component

and consists of a component type, a designator, and a list of connected nets ordered by the

pins de�ned for the component. Figure 17 shows my code for the horizontal counter. I cut

a corner here and used a �ve-input nand gate even though the actual circuit uses a 7430

eight-input nand with three inputs tied high.

A net name is any sequence of printable characters (not space, newline, or control char-

acters). �is allows the use of existing, natural names such as “64h” (horizontal counter

bit representing sixty-four), notation such as /HRESET to represent the complement of the

hreset signal, and “0” and “1” to represent logical false and true.

Nets are never explicitly de�ned; their �rst reference in an instance line brings them into

scope. Each is assumed to carry a single bit.

One special rule: the “underscore” net (_) means “unconnected;” it is intended for repre-

senting unconnected outputs since I do not provide a connect-by-name syntax. I adopted

this from the ml-derived functional languages.

Horizontal counter
SN7493 F8 CLK7M 1H HRESET HRESET 1H 2H 4H 8H
SN7493 F9 8H 16H HRESET HRESET 16H 32H 64H 128H
SN74107 F6B 1 1 128H /HRESET 256H /256H
TTLNAND5 F7 256H 4H 2H 64H 128H n13
SN7474 E7B n13 1 CLK7M 1 /HRESET HRESET

Figure 17: Code in my hdl for de�ning the horizontal counter circuit; cf. Figure 2. �e #

line is a comment. Each other line lists a component name, a component designator, and the

names of the nets to which its pins should connect.

:TTLINV A !Y
Y <= not A;

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity TTLINV is
port (

clk : in std_logic;
A : in std_logic;
Y : out std_logic

);
end TTLINV;

architecture ttl of TTLINV is
begin

Y <= not A;
end ttl;

Figure 18: An inverter component de�ned in my hdl and the vhdl code I generate for it.

A component de�nition line starts consists of a colon, the name of the component, and a

space-separated list of pins. Pin names pre�xed with an exclamation mark are outputs; all

others are inputs. Lines a�er the initial de�nition are treated as vhdl that de�nes the body of

the component.�e body de�nition continues until the next non-empty line that does not

start with a space (e.g., a comment, another component de�nition, or an instance).�e lines

containing the vhdl keyword “signal” a�er the initial space are understood to de�ne signals

and are placed before the “begin” keyword for the body of the instance.

Figure 18 compares the de�nition of an inverter component inmyhdl to onemy translator

generates for one in vhdl. Note that the clk input is added automatically to each component

to support sequential elements; it goes unused on this entity.

Figure 19 show some simple component de�nitions followed by a more complicated one.

Note the use of the vhdl \. . .\ extended identi�er notation.

:XOR2 A B !Y
Y <= A xor B;

:TTLNAND2 A B !Y
Y <= A nand B;

:TTLNAND5 A B C D E !Y
Y <= not (A and B and C and D and E);

Delta delay to break feedback loops (e.g., in RS latches)
:DELTA D !Q
process (clk)
begin

if rising_edge(clk) then
Q <= D;

end if;
end process;

(Dual) D-type positive-edge-triggered flip-flops with preset and clear
:SN7474 D /PRE CLOCK /CLR !Q !/Q
signal next_d, last_d, next_q1, next_q, last_q, last_clock : std_logic := ’0’;

process (clk)
begin

if rising_edge(clk) then
last_d <= next_d;
last_q <= next_q;
last_clock <= CLOCK;

end if;
end process;

next_q1 <= last_d when clock = ’1’ and last_clock = ’0’ else
last_q;

next_q <= (next_q1 and _CLR\) or not _PRE\;
next_d <= d;

Q <= next_q;
_Q\ <= not next_q;

Figure 19: De�nition of some combinational gates, a “delta” delay component, and the de�ni-

tion for an “asynchronously clocked” D �ip-�op; cf. Figure 16.

2.3 I/O on the Terasic de2 board
I targeted a Terasic de2 board as the emulation platform for Pong. Pong has limited I/O: a
coin input, two paddle inputs, and audio and video out.4 Each of these needs to be emulated

on the board.

�e coin input was the simplest: the de2 has a number of keyswitches that provide one-bit

inputs. I coded a small synchronous module that emulates the discrete components of the

game control circuitry, basically the top half of Figure 15, that generates srst and run from

the coin input and stop g.

�e video output was probably second hardest.�ede2 has a videodac driving a standard

15-pin vga jack and I had plenty of vga-capable lcd panels around. One problem is that

Pong generates ntsc-speed video (15.734 kHz horizontal refresh), while vga expects exactly
twice that (31.4686 kHz). I implemented a line doubler that uses a double-ported 1024 × 2bit
ram.�e line doubler �lls half of the bu�er with video data from Pong (two bits per pixel: one
representing the brightness for the score; the other representing all others) while displaying

the other half. Every other ntsc line, the roles of the two halves of the bu�er are swapped.

�e line doubler expects exactly the horizontal timing produced by Pong, generates a
vga-speed horizontal sync signal, and passes the vertical sync signal directly to the monitor.

�e audio output, ironically, was even more di�cult. �e de2 has a Wolfson wm8731

24-bit stereo audio codec connected to 3.5mm headphone jacks, which is certainly overkill

for Pong’s 1-bit digital audio output, but I chose to use it anyway because I did not want to
build additional hardware.

�e wm8731 must be con�gured through an I2C bus interface, so I took a circuit from

other projects that generates the appropriate I2C signals to con�gure the codec along with

the logic necessary to generate the timing signals it desires (clocks, framing, le�/right). A�er

all of this, I simply feed the single bit from the Pong audio output into the most signi�cant bit
of both channels of the codec. It beeps.

�e two paddle inputs presented a conundrum: while perhaps the most authentic route

would have been to build the 555-based timing circuitry and communicate appropriate timing

pulses to/from the Pong core, I wanted to avoid adding anything but o�-the-shelf peripherals. I
settled on connecting a mechanical ps/2 mouse to the de2 because it had the proper connector

and is fairly easy to interface, but manually spinning the two optical encoders in the mouse

hardly makes for convenient game play.

I instantiated an open-source ps/2 controller block and created a fairly complicated state

machine that reset the mouse and sent an “enable data reporting” byte to it so it would start

sending back movement information that my fsm could interpret and convert to coordinates.

Finally, the raw coordinates are converted into counts for a 555 timer emulator circuit that

waits for a “start” pulse to start a counter that times out based on the coordinates from the

mouse controller.

4
It also has an antenna input and a coin counter output, which I ignore.

Alcorn’s comments about the upper range of the paddle timers suggest that it would be

worthwhile to have a more careful understanding of exactly the low and high ranges of the

paddle timers; in my current design, they are su�cient to make the game playable, but may

provide a wider range of motion than the original game.

�ere are two more 555 timers in Pong: one that sets the duration of the “score” sound,
and one that controls the serve delay. Each are con�gured as digitally triggered one-shots

whose period is set by rc networks. To emulate these, I created digital counters whose delays

roughly match those of the 555’s. I did not attempt to match the delays precisely because of

Pong’s use of low-tolerance components (an rc network with an electrolytic capacitor) and
because they do not drastically a�ect game play.

3 Conclusions

It was great fun going through and understanding the circuitry of the original Pong in such
detail, although it took far longer to redraw the schematics and write about them than I

expected.�e fpga reconstruction was easier since someone else had already digitized the

schematic, but it was still puzzling at times, largely because of timing anomalies arising from

imperfectly synchronous behavior.

�e use of a ps/2 mouse as a controller is unsatisfactory, although it could be reasonable

if there was a convenient way to remove and separate the two optical interrupters.

Acknowledgements

I must thank Andrew Welburn [16], who subjected his own Syzyzy Pong board to a logic
analyzer to verify my hypothesis about the horizontal timing, the delays of the various 555s

on the board. He also pointed out value of the 5K pots, supplied photos, con�rmed my

observation about the odd wiring around a6, and con�rmed my reconstruction exhibited

many of the same odd behaviors as the original.

References

[1] Allied Leisure Industries, Inc., 245 West 74th Place, Hialeah, Floria 33010. Allied’s Paddle
Battle Parts & Wiring Catalog, 1973.

[2] Atari, Inc., 14600 Winchester Boulevard, Los Gatos, California. Pin Pong Operation and
Maintenance Manual, 1974. Part Number TM-007.

[3] Atari, Inc. Space Race Service Manual, 1976. Part number TM-008. Schematics dated
8/5/74.

[4] Dan Boris. Dan boris’ tech blog. Online, 2007. http://www.atariage.com/forums/

blog/52-danboris-tech-blog/.

[5] Nolan K. Bushnell. Video image positioning control system for amusement device. US

Patent 3,794,383, February 1974.

[6] Brian Deuel. Interview with Al Alcorn. Online, 2000? http://atari.vg-network.

com/aainterview.html.

[7] Stephen A. Edwards. Retrocomputing on an FPGA. Circuit Cellar, 233:24–35, December
2009.

[8] Mike Johnson et al. fpga arcade. Online. http://fpgaarcade.com.

[9] Nicola Salmoria et al. mame:�e multiple arcade machine emulator. Online, 1997–.

http://mamedev.org.

[10] James Electronics. Advertisement. Byte Magazine, 1(1):83, 1975. An SN7493N was $0.82;
an SN74161N was $1.45.

[11] Steven L. Kent. �e Ultimate History of Video Games. Prima Publishing, 2001.

[12] Nutting Associates. Two-Player Computer Space Trouble-Shooting Guide, April 1973.
Nolan K. Bushnell, Chief Engineer.

[13] Cam Shea. Al alcorn interview. Online, March 2008. http://retro.ign.com/

articles/858/858351p1.html.

[14] Texas Instruments. �e TTL Logic Data Book, 1988.

[15] William Arkush (uncredited). �e Textbook of Video Game Logic, volume I. Kush N’
Stu� Amusement Electronics, 60 Dillon Avenue, Campbell, California, 1976.

[16] AndrewWelburn. Andys-arcade. Online. http://www.andysarcade.net.

http://www.atariage.com/forums/blog/52-danboris-tech-blog/
http://www.atariage.com/forums/blog/52-danboris-tech-blog/
http://atari.vg-network.com/aainterview.html
http://atari.vg-network.com/aainterview.html
http://fpgaarcade.com
http://mamedev.org
http://retro.ign.com/articles/858/858351p1.html
http://retro.ign.com/articles/858/858351p1.html
http://www.andysarcade.net

	Pong Circuit Description
	The Main Clock
	The Horizontal Counter
	The Vertical Counter
	Horizontal and Vertical Sync
	The Net
	The Paddles
	The Score
	Horizontal Ball Control
	Vertical Ball Control
	Video Generation
	Sound
	Game Control

	Reconstructing Pong on an FPGA
	Handling Quasi-Synchronous Circuits
	A Minimal Hardware Description Language
	I/O on the Terasic de2 board

	Conclusions

