
Reconciling Repeatable Timing
with Pipelining and Memory Hierarchy ?

Stephen A. Edwards1, Sungjun Kim1, Edward A. Lee2,
Hiren D. Patel2, and Martin Schoeberl3

1 Columbia University, New York, NY, USA,
{sedwards,skim}@cs.columbia.edu

2 UC Berkeley, Berkeley, CA, USA,
{eal,hiren}@eecs.berkeley.edu

3 Vienna University of Technology, Vienna, Austria
mschoebe@mail.tuwien.ac.at

Abstract. This paper argues that repeatable timing is more important and more
achievable than predictable timing. It describes microarchitecture approaches to
pipelining and memory hierarchy that deliver repeatable timing and promise com-
parable or better performance compared to established techniques. Specifically,
threads are interleaved in a pipeline to eliminate pipeline hazards, and a hierar-
chical memory architecture is outlined that hides memory latencies.

1 Introduction

A conventional microprocessor executes a sequence of instructions from an instruction
set. Each instruction in the instruction set changes the state of the processor in a well-
defined way. The microprocessor provides a strong guarantee about its behavior: if you
insert in the sequence an instruction that observes the state of the processor (e.g., the
contents of a register or memory), then that instruction observes a state equivalent to one
produced by a sequential execution of exactly every instruction that preceded it in the
sequence. For speed, however, modern microprocessors rarely execute the instructions
strictly in sequence. Instead, pipelines, caches, write buffers, and out-of-order execution
reorder and overlap operations while preserving the illusion of sequential execution.
Any correct execution must preserve the strong guarantee, and thus the illusion.

Because the semantics of sequential instruction execution is specified precisely at
the bit level, the state observed by a particular instruction is repeatable, meaning that
every correct execution of the same sequence will lead to the same state given the same
inputs. If the sequence of instructions is that given by a single program specifying a

? This work was supported by the National Science Foundation (NSF award #0720882 (CSR-
EHS: PRET) and the Center for Hybrid and Embedded Software Systems (CHESS) at UC
Berkeley, which receives additional support from the U. S. Army Research Office (ARO
#W911NF-07-2-0019), the U. S. Air Force Office of Scientific Research (MURI #FA9550-
06-0312), the Air Force Research Lab (AFRL), the State of California Micro Program, and the
following companies: Agilent, Bosch, Lockheed-Martin, National Instruments, Thales, and
Toyota.



computation whose inputs are included in in initial state of the processor (e.g. in mem-
ory) and whose outputs are included in the final state, then the behavior of the program
is repeatable. We call this a conventional Turing-Church computation.

Very few instruction sets provide any guarantee about the timing of the execution of
a sequence of instructions. If the sequence of instructions is specifying a conventional
Turing-Church computation, then this timing is irrelevant. The sequence specifies a
mapping from inputs (contained in the initial state of the processor) to outputs (con-
tained in the observed state of the processor).

For many application, and most particularly for embedded systems, the timing does
matter, however. In particular, some instructions in the sequence specify interactions
with the external physical world, causing actuation of physical devices for example.
Some will poll sensors that measure the state of the physical world at the time the in-
struction is executed. Some instructions will be inserted into the sequence in response
to an external physical event that raises an interrupt request. The time at which this
occurs determines where in the sequence the instructions to service the interrupt are
inserted. Thus, the sequence of instructions executed by the microprocessor is not en-
tirely determined by a program, but is also affected by the timing of external events.
Even non-embedded computations will use such interrupts to perform multitasking,
executing multiple threads concurrently and switching between them in response to in-
terrupts raised by an external timer or external devices such as disk drives. Again, the
sequence of instructions is not completely specified by the program(s) being executed.
Hence, the strong guarantee provided by the microprocessor is not sufficient to make
the behavior of the programs repeatable.

For such programs, the inputs to the system are not just the initial state of the proces-
sor, as they are in a conventional Turing-Church computation. Any complete definition
of “inputs” must include the timing of interrupts and the time at which sensor values
are polled. Any complete definition of “outputs” must also include the timing at which
actuations in the physical environment are asserted. These clearly affect the behavior of
the system. For a microprocessor that provides no timing guarantees, no such program
has repeatable behavior. Two “correct” executions can exhibit significantly different
timing and can execute significantly different sequences of instructions, resulting in
significantly different outputs.

In the above analysis, we implicitly define the behavior of a program to be the map-
ping from inputs to outputs. Many useful programs, however, do not require such a rig-
orously defined behavior. Some measure of nondeterminism is tolerable, meaning that
the same inputs may lead to different outputs, as long as some application-dependent set
of properties is satisfied. If the timing of an output is important, for example, it may not
have to be precise. The application has some tolerance to deviations in the timing. Thus,
we are generally more interested in whether satisfaction of these properties is repeat-
able. That is, we insist that every correct execution satisfies an application-dependent
set of properties.

A real-time program, for example, will specify a set of properties as constraints
on the timing of certain external interactions or internal actions (updates of values in
memory, for example). The task of real-time system designer is to ensure that these
properties are repeatable.



A predictable property is a repeatable property than can be determined in finite
time from a specification of the system. Since any computer only has finite memory,
the state after a sequence of instruction executions is technically predictable, although
doing so can take an impractically long time. However, if the specification of the system
is a program, the sequence of instructions executed will not be predictable if timing is
not repeatable (interrupts and multitasking will interfere). Thus, even a conventional
Turing-Church computation on a uniprocessor may not have repeatable behavior [1].

Researchers have made great strides in predicting execution time [2, 3], specifically
in bounding the execution time, determining worst-case execution time (WCET). How-
ever, existing techniques can only determine WCET for a processor-program pair, not
for just a program (unlike processor state, which must be consistent across all correct
processors). Even worse, implementation details that can affect execution time, such as
memory consistency models [4], are often not well-specified. Researchers are calling
for moderation and identifying particularly problematic techniques [5–7].

Moderating these practices is not enough. Repeatability is more important than pre-
dictability. With repeatable timing, testing can establish correctness, and testing is al-
most always easier than detailed analysis. Without repeatability, testing proves little.

Timing should be a repeatable property of a program, not of a program executing
on a particular processor implementation. That is, our notion of “correct” execution of
a sequence of instructions should include timing properties. This requires changes to
the semantics of instruction sets.

A few researchers have addressed the problem of repeatable timing. Precision-timed
(PRET) machines [8, 9] modify the instruction set for repeatable timing. Mueller’s
VISA [10] runs a standard fast processor in concert with a slow (repeatable) one,
switching over if the fast one lags behind. Schoeberl has implemented a Java proces-
sor where time-repeatability of individual bytecode instructions was the major design
goal [11]. Whitham and Audsley’s MCGREP [12] use programmable microcode to ac-
celerate hotspots that are otherwise too slow.

In this paper, we focus on two intertwined obstacles to repeatable timing: pipelines
and memory hierarchy. We show that repeatable timing can be reconciled with pipelin-
ing and memory hierarchy, both of which are required to get competitive performance.

2 Pipeline Interleaving

Pipelining improves hardware performance: instead of waiting for every operation in an
instruction to complete before starting the next instruction, start the second instruction
while the first instruction completes. The challenge comes when successive instructions
affect each other, such as when an instruction controls a branch immediately following
it or writes to a register that is read by the following instruction. Dealing with these
hazards requires additional control and steering logic and makes the execution time of
an instruction depend on the instructions surrounding it.

Instead of rejecting pipelining outright, we advocate an interleaved pipeline, a form
of fine-grained multithreading [13] (also known as interleaved multithreading). In ev-
ery cycle, an instruction from a different thread is fetched and inserted into the pipeline,
provided the thread’s previous instruction has completed (i.e., some instructions may



take multiple cycles). Thus, at any time, the pipeline is running at most one instruc-
tion from each thread. From the perspective of each thread, there is no pipeline; each
instruction completes before the next one begins.

Interleaved pipelines have performance advantages. They eliminate inter-instruction
dependencies, eliminating time-consuming hazard detection and steering. They also
reduce the off-chip memory latency penalty because other threads execute while one is
waiting for memory. This technique has been used in various research and commercial
processors for achieving higher performance since the early 80s [13].

More importantly, pipeline interleaving leads to repeatable timing [14]. By remov-
ing the danger of inter-pipeline control and data dependencies, most instructions can
take the same number of cycles to execute every time they enter the pipeline. Instruc-
tions that block (e.g., when accessing memory) can always block for the same number
of cycles, regardless of what is happening in other threads and which instructions pre-
cede or follow them.

The first PRET machine [9] implements a thread-interleaved pipeline with each
thread having its own thread context. The memory hierarchy consists of a scratchpad
memory shared by all threads and a memory wheel component that arbitrates access to
the main memory in a time-triggered fashion. A replay technique is used for any in-
structions that take multiple cycles, such as main memory accesses. A novel concept in
PRET is the ability to control temporal behaviors in software through deadline instruc-
tions [15, 9]. The combination of the architecture and the deadline instructions enables
programmers to get repeatable timing.

3 Memory Hierarchy

While memory bandwidth can be improved with a host of tricks (mainly parallelism),
memory latency is a fundamental problem for large memories. The usual solution is
a hierarchy: a mix of large slow memories feeding small, fast ones. Standard memory
hierarchies use caching to preserve the illusion of a large, undifferentiated memory.
While caches present the programmer with a convenient abstraction, they leave timing
unpredictable and often non-repeatable [7]. For a program running in isolation, the time
taken for a memory access depends on which cache it resides in. This depends in part
on its address, which is often difficult to predict before the program is running, but also
on the history of the memory accesses.

Our solution retains the memory hierarchy but manages it differently. Large mod-
ern DRAM chips are well-suited to our interleaved pipeline. Internally, they consist of
separately operating banks (e.g., eight) that can be simultaneously at various stages of a
read or write. Our solution is to assign threads to separate banks. Since the threads are
interleaved in the pipeline, we can effectively hide the memory latency. In each cycle,
a thread is granted exclusive access to its memory bank and may initiate or continue a
memory operation. Like the interleaved pipeline, the memory scheduler will implement
something like a round-robin policy.

Combining this with an SRAM scratchpad memory that is shared among the threads,
we note that our memory hierarchy is the converse of a conventional multicore ap-
proach. The fast, close memory is shared among concurrent threads, while the slow,



remote memory is private to each thread. In many multicore architectures, the fast,
close memory is a private cache, and the slow, remote memory is shared.

This architecture suggests numerous interesting possibilities that have profound im-
plications on the programming models for concurrency. For example, one could dynam-
ically (but infrequently) change the ownership of memory banks to transfer large quan-
tities of data among threads, while using the smaller, shared scratchpad SRAM for syn-
chronization and fine-grain coordination. One could also vary how banks are assigned
to threads. Granting a thread exclusive access to a bank will lead to the highest perfor-
mance, but it will also be possible to share a bank among multiple threads through a
secondary round-robin schedule and still achieve repeatable timing. Moreover, DRAM
refresh, which usually disturbs predictable timing, can be triggered during instructions
that do not access memory (e.g., branches). If a basic block is too large to guarantee
enough refresh cycles, nop instructions can be inserted by the compiler to trigger the
refresh. This still achieves repeatable timing (however, prediction may be harder).

Sharing memory banks by supplying a periodic schedule is a time-triggered ap-
proach, which has been used successfully for networking, but not memory access. Pit-
ter and Schoeberl [16] have also considered memory access (in their case, DMA) as a
real-time scheduling problem, but treat it as a more traditional real-time task and worry
just about WCET. Rosen et al. [17] similarly consider bus access as a real-time task.

4 Discussion

To have high processor utilization, our approach requires that application developers
expose enough concurrency that multiple threads can be active much of the time. This
suggests our architecture may be better used with programming models that are intrinsi-
cally concurrent. Fortunately, there is a great deal of momentum towards such program-
ming models, particularly for the design of embedded real-time systems. Commercial
tools such as Simulink with Real-Time Workshop from The MathWorks, TargetLink
from dSpace, and LabVIEW from National Instruments, all provide intrinsically con-
current programming models and synthesize concurrent embedded code. Emerging pro-
gramming models for real-time systems like Giotto [18], TDL [19], and Ptides [20] also
expose a great deal of exploitable concurrency, and appear to be good matches for our
architecture. Even traditional RTOS-based designs [21] can benefit from our approach
because the real-time constraints will be easier to guarantee with concurrency that de-
livers repeatable timing.

References

1. Lee, E.A.: The problem with threads. Computer 39(5) (2006) 33–42
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.html.

2. Thiele, L., Wilhelm, R.: Design for timing predictability. Real-Time Systems 28(2-3) (2004)
157–177

3. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D., Bernat, G.,
Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I., Puschner, P., Staschulat, J.,
Stenström, P.: The worst-case execution time problem – overview of methods and survey of
tools. Trans. on Embedded Computing Sys. 7(3) (2008) 1–53



4. Hill, M.D.: Multiprocessors should support simple memory-consistency models. IEEE Com-
puter 31(8) (August 1998) 28–34

5. Wilhelm, R., Grund, D., Reineke, J., Schlickling, M., Pister, M., Ferdinand, C.: Memory
hierarchies, pipelines, and buses for future architectures in time-critical embedded systems.
IEEE Transactions on CAD of Integrated Circuits and Systems 28(7) (2009)

6. Kirner, R., Puschner, P.: Obstacles in worst-case execution time analysis. In: Symposium
on Object Oriented Real-Time Distributed Computing (ISORC), Orlando, FL, USA, IEEE
(2008) 333–339

7. Schoeberl, M.: Time-predictable computer architecture. EURASIP Journal on Embedded
Systems 2009(Article ID 758480) (2009) 17 pages

8. Edwards, S.A., Lee, E.A.: The case for the precision timed (PRET) machine. In: Design
Automation Conference (DAC), San Diego, CA (2007)

9. Lickly, B., Liu, I., Kim, S., Patel, H.D., Edwards, S.A., Lee, E.A.: Predictable programming
on a precision timed architecture. In Altman, E.R., ed.: Proceedings of the International Con-
ference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES 2008),
Atlanta, GA, USA, ACM (October 2008) 137–146

10. Anantaraman, A., Seth, K., Patil, K., Rotenberg, E., Mueller, F.: Virtual simple architecture
(visa): exceeding the complexity limit in safe real-time systems. In: Computer Architecture,
2003. Proceedings. 30th Annual International Symposium on. Volume 31, 2 of Computer
Architecture News., New York, ACM Press (June 9–11 2003) 350–361

11. Schoeberl, M.: A Java processor architecture for embedded real-time systems. Journal of
Systems Architecture 54/1–2 (2008) 265–286

12. Whitham, J., Audsley, N.: MCGREP - A Predictable Architecture for Embedded Real-time
Systems. In: Proc. RTSS. (2006) 13–24

13. Ungerer, T., Robič, B., Šilc, J.: A survey of processors with explicit multithreading. Com-
puting Surveys 35(1) (2003) 29–63

14. Lee, E.A., Messerschmitt, D.G.: Pipeline interleaved programmable dsps: Architecture.
IEEE Trans. on Acoustics, Speech, and Signal Processing ASSP-35(9) (1987)

15. Ip, N.J.H., Edwards, S.A.: A processor extension for cycle-accurate real-time software. In:
IFIP International Conference on Embedded and Ubiquitous Computing (EUC). Volume
LNCS 4096., Seoul, Korea, Springer (2006) 449–458

16. Pitter, C., Schoeberl, M.: Time predictable CPU and DMA shared memory access. In:
International Conference on Field-Programmable Logic and its Applications (FPL 2007),
Amsterdam, Netherlands (August 2007) 317 – 322

17. Rosen, J., Andrei, A., Eles, P., Peng, Z.: Bus access optimization for predictable implemen-
tation of real-time applications on multiprocessor systems-on-chip. In: Proceedings of the
Real-Time Systems Symposium (RTSS 2007). (Dec. 2007) 49–60

18. Henzinger, T.A., Horowitz, B., Kirsch, C.M.: Giotto: A time-triggered language for em-
bedded programming. In: EMSOFT 2001. Volume LNCS 2211., Tahoe City, CA, Springer-
Verlag (2001) 166–184

19. Pree, W., Templ, J.: Modeling with the timing definition language (tdl). In: Automotive
Software Workshop San Diego (ASWSD) on Model-Driven Development of Reliable Auto-
motive Services. LNCS, San Diego, CA, Springer (2006)

20. Zhao, Y., Lee, E.A., Liu, J.: A programming model for time-synchronized distributed real-
time systems. In: Real-Time and Embedded Technology and Applications Symposium
(RTAS), Bellevue, WA, USA, IEEE (2007)
http://ptolemy.eecs.berkeley.edu/publications/papers/07/RTAS/.

21. Buttazzo, G.C.: Hard Real-Time Computing Systems: Predictable Scheduling Algorithms
and Applications. second edn. Springer (2005)


