
SUMMARY-BASED POINTER ANALYSIS FRAMEWORK FOR
MODULAR BUG FINDING

Marcio O. Buss

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2007

c©2007

Marcio O. Buss

All Rights Reserved

ABSTRACT

SUMMARY-BASED POINTER ANALYSIS FRAMEWORK FOR
MODULAR BUG FINDING

Marcio O. Buss

Modern society is irreversibly dependent on computers and, consequently, on software. However,

as the complexity of programs increase, so does the number of defects within them. To alleviate the

problem, automated techniques are constantly used to improve software quality. Static analysis is

one such approach in which violations of correctness properties are searched and reported. Static

analysis has many advantages, but it is necessarily conservative because it symbolically executes

the program instead of using real inputs, and it considers all possible executions simultaneously.

Being conservative often means issuing false alarms, or missing real program errors.

Pointer variables are a challenging aspect of many languages that can force static analyis tools

to be overly conservative. It is often unclear what variables are affected by pointer-manipulating

expressions, and aliasing between variables is one of the banes of program analysis. To alleviate

that, a common solution is to allow the programmer to provide annotations such as declaring a

variable as unaliased in a given scope, or providing special constructs such as the “never-null”

pointer of Cyclone. However, programmers rarely keep these annotations up-to-date.

The solution is to provide some form of pointer analysis, which derives useful information about

pointer variables in the program. An appropriate pointer analysis equips the static tool so that it is

capable of reporting more errors without risking too many false alarms.

This dissertation proposes a methodology for pointer analysis that is specially tailored for “mod-

ular bug finding.” It presents a new analysis space for pointer analysis, defined by finer-grain “di-

mensions of precision,” which allows us to explore and evaluate a variety of different algorithms

to achieve better trade-offs between analysis precision and efficiency. This framework is devel-

oped around a new abstraction for computing points-to sets, the Assign-Fetch Graph, that has many

interesting features. Empirical evaluation shows promising results, as some unknown errors in well-

known applications were discovered.

Contents

1 Introduction 1

1.1 A note on program errors . 4

1.2 A few simple bugs . 5

1.2.1 Different goals for a bug finding tool and the roles of pointer analysis . . . 8

1.2.2 Aggregate type fields . 10

1.3 Modular bug-finding and the Evidence-Based approach 10

1.3.1 Reducing false alarms as a prime goal and the need for modular analysis . . 10

1.3.2 Evidence and modular analysis for pointer analysis 13

1.3.3 A novel summarization method for pointer and related analyses 16

1.4 Main contributions . 17

1.5 Organization . 18

2 A Review of Pointer Analysis 19

2.1 Dimensions of Precision . 20

2.1.1 Flow-sensitivity . 20

2.1.2 Context-sensitivity . 25

2.1.2.1 Call string approach to context-sensitivity 26

2.1.2.2 Functional approach to context-sensitivity 29

2.1.3 Path-sensitivity . 30

3 Finer-grain Analysis Dimensions 32

3.1 A “cube” idea . 32

3.2 Basic analysis framework . 39

i

3.2.1 Flow graph . 40

3.2.2 Assign-Fetch Graph . 45

3.2.2.1 An example . 47

3.2.2.2 Pointer Alias analysis . 49

3.2.3 Determining aliases . 49

3.2.4 Space origin—Flow-Insensitive Analysis 51

3.2.5 Unfolding the Partial Order Axis . 54

3.2.6 Unfolding the Conditions Axis . 56

3.2.7 The kill Axis . 59

3.2.8 Putting the pieces together . 64

4 Investigating some sweet spots 68

4.1 Flow-aware analysis . 68

4.1.1 Implementation . 71

4.1.2 Interprocedural order propagation . 71

4.1.3 Loops and Recursive Procedures . 74

4.2 Flow-Branch-Aware analysis . 77

4.2.1 Why does it work? . 78

4.3 Unconditional kill . 79

4.4 T, F, “?” approximation for conditions . 83

5 The Assign-Fetch Graph in Detail 84

5.1 General definitions . 84

5.2 Modeling parameters . 88

5.3 Modeling procedure calls . 90

5.4 Return values . 92

5.5 Worklist Implementation of [ALIAS] rules . 95

5.5.1 Caching optimization . 100

5.6 A flow-aware example and ordering aliases . 102

ii

5.7 Field Sensitivity . 103

5.7.1 Field-sensitive vs. -insensitive analyses 104

5.7.2 New graph elements . 106

5.7.3 “Fetch-” and “assign-” offset edges and the resolution phase 108

5.7.4 Strides, effective offsets and R0 edges . 110

5.7.5 Type casting and strides . 112

5.7.6 Tunable field-sensitivity . 117

5.7.7 Chains of offset edges . 118

5.8 Heap Modeling . 120

5.8.1 Naming scheme 1 . 121

5.8.2 Naming scheme 2 . 125

5.8.3 The call graph, a.k.a automata, view . 128

6 Empirical Studies 133

6.1 Analysis metrics . 133

6.1.1 Speedup . 137

6.1.2 Accuracy . 140

6.2 Bug reports . 143

6.3 Points-to sets sizes . 153

7 Final Remarks 154

Bibliography 155

iii

List of Figures

1.1 Should the tool warn about possibly dereferencing null on serial->id? 12

1.2 A divide-by-zero error if p==q and b is true. 13

1.3 Error if p and q do not alias. 15

2.1 A fragment of a C program with its flow-sensitive pointer analysis solution. 22

2.2 Transfer functions for two statements used in traditional pointer analysis. 22

2.3 A flow-insensitive view of the code; Andersen’s and Steensgaard’s solutions. . . . 23

2.4 Rules of inference for Andersen-style analysis. 24

2.5 A program and its context sensitive and insensitive points-to sets. 26

2.6 Context-sensitive analysis and the call stack. 27

2.7 The supergraph for an example program. 28

2.8 A code fragment depicted as a control-flow graph. 31

3.1 Three fine-grain dimensions of precision for pointer analysis. 33

3.2 Each analysis variation can be seen as ignoring different aspects of the code. 34

3.3 Points-to summaries for the six analysis variations of Figure 3.2. 36

3.4 Points for traditional pointer analyses. 38

3.5 The source code for a function, its flow graph, and AFG. 40

3.6 A generic flow-graph gate. 41

3.7 A fragment of a C program and the flow graph. 43

3.8 The conventional canonical statements and the flow graph. 44

3.9 Roles and terminology for address nets and value nets. 44

iv

3.10 Rules to construct the AFG from the flow graph (a) assign rule (b) fetch rule. . . . 46

3.11 The AFG for the flow graph of Figure 3.7(a). 46

3.12 The simplest case of alias edges. 47

3.13 A simple illustration of pointer-analysis using AFGs. 48

3.14 The canonical statements and their respective Assign-Fetch Graph representations. 49

3.15 A function and its AFGs. 51

3.16 Four cases of applying the origin-alias rule. 53

3.17 Ordering information reduces the number of alias edges. 55

3.18 Program predicates reduce the number of alias edges. 57

3.19 The analysis solution when considering guards but not the program’s partial order. . 57

3.20 To add an alias edge, the guard C (n,y) must not evaluate to false. 58

3.21 Kill information reduces the number of aliases. 59

3.22 (a) A code fragment. (b) Its resolved AFG. 61

3.23 (a) The assign rule (b) The kill rule (c) The fetch rule. 62

3.24 Analysis results for different analysis variations. 65

3.25 Different analysis variations can nevertheless have equivalent solutions. 66

3.26 Space of solutions within the analysis space. 66

4.1 Matchings obtained by different analysis variations. 69

4.2 Motivation for flow-aware analysis. 70

4.3 Approximation used by the flow-aware analysis. 71

4.4 Avoiding spurious facts with flow-aware analysis. 72

4.5 Propagating flow-aware ordering across procedure calls. 73

4.6 Handling loops and recursive functions. 76

4.7 The two total orders for a control-flow graph. 77

4.8 The two total orders and switch statements. 79

4.9 An example of flow-branch-aware analysis. 80

4.10 The placement for flow-branch-aware analysis. 81

4.11 Unconditional kill example. 82

v

5.1 A function and its AFGs. 86

5.2 A generic procedure’s summary. 88

5.3 (a) A procedure with arguments, (b) its initial, (c) resolved and (d) its summary AFGs. 89

5.4 Procedure calls and the AFG. 90

5.5 Simple node merging always works. 91

5.6 An additional example of function summarization. 93

5.7 Handling of return values. 94

5.8 The worklist algorithm step-by-step. 97

5.9 Summary AFG for the code in Figure 5.8. 98

5.10 The incremental nature of the analysis. 99

5.11 Caching optimization. 101

5.12 The code for procedures f, g and h. 102

5.13 (a) Initial, (b) resolved and (c) summary AFG for h. 102

5.14 A program error that depends on field-sensitive analysis to be discovered. 104

5.15 The new graph elements used to represent fields. 107

5.16 The general structure of a field-sensitive graph. 107

5.17 (a) A function, (b)–(c) field-sensitive AFGs. 108

5.18 (a)–(b) Two functions, (b)–(c) their respective field-sensitive AFGs. 109

5.19 (a) A code fragment, (b) the offset edge labeled R32 behaves like a fetch. 109

5.20 Fetch and assign offset edges. 110

5.21 Example of field-sensitive resolution. 111

5.22 Another example of field-sensitive resolution. 112

5.23 Example of effective offset values and the need for R0 edges. 113

5.24 An example illustrating the manipulation of type casting (continues in Figure 5.25). 115

5.25 Continued from Figure 5.24. 116

5.26 The memory layouts for the structure types T1, T2 and T3 from Figure 5.24. 117

5.27 Resulting graph when type casting is (a) partially considered and (b) fully considered.117

5.28 Chain of offset edges. 119

vi

5.29 The analysis with heap nodes using naming scheme 1. 123

5.30 The summarization of f during the third iteration of the analysis. 126

5.31 The second naming scheme for heap locations. 127

5.32 The third iteration of the analysis for function f. 129

5.33 The naming schemes can be viewed as string generation in a finite automaton. . . . 130

5.34 The second naming scheme results in less heap nodes. 132

vii

List of Tables

1.1 Expected reduction in false alarms from analysis improvements. 3

6.1 Benchmarks I: whole applications. 134

6.2 Benchmarks II: Linux 2.6.23 kernel modules. 135

6.3 Analysis times for the analysis space origin. 136

6.4 Speed up over baseline analysis—field-insensitive (values in %). 138

6.5 Speed up over baseline analysis—field-sensitive (values in %). 139

6.6 Accuracy gain over baseline analysis—field-insensitive (values in %). 141

6.7 Accuracy gain over baseline analysis—field-sensitive (values in %). 142

6.8 Bugs found on whole applications. 143

6.9 Bugs found on the Linux kernel (latest stable version, 2.6.23). 145

6.10 Average Points-to Set Sizes for Representative Benchmarks. 153

viii

ACKNOWLEDGEMENTS

I would like to thank my advisors, Stephen A. Edwards and Alfred V. Aho, for much help, guid-

ance, and encouragement; Daniel Brand from IBM Research, without whom this research would

also have not been possible; Vugranam Sreedhar from IBM Research, for stimulating discussions

and guidance; John Darringer from IBM Research, for constant encouragement. Also, I thank

Bin Yao, Daniel Waddington, and Rick Buskens for early research and career directions as well as

the wonderful times during my stays at Bell Laboratories Research (and ever since).

I would like to acknowledge the comments and suggestions that I received from the readers

of this manuscript, Stephen A. Edwards, Alfred V. Aho, Mihalis Yannakakis, Daniel Brand, and

Vugranam Sreedhar, which helped improve its contents.

I thank all friends which brought more joy to my stay in the United States. Trying to cite them by

name would certainly lead to unfairness or else a ten-page list. My special thanks goes to Cristiano

Pereira (in the west coast) and Diego Nehab (in the east coast) for their unrestricted friendship and

solidarity, and Leandro Carvalho for the extra office space at Firestone Library. I am grateful for the

unconditional support of my family, both remotely and through their visits in the United States; and

last but not least, Juliana, for reasons that would not fit into this page.

This research was supported in part by the Brazilian Government Research Council (CNPq)

through a student fellowship (grant number 200346/1-6), and by IBM T.J. Watson Research Center

through a collaborative research effort.

ix

To Luisa.

x

Chapter 1 1

Chapter 1

Introduction

Modern society is irreversibly dependent on computers and, consequently, on software. Examples

abound: from office work to banking, from leisure to air traffic control, communications, power

grids, factories, cars, air planes, etc. Virtually everything in our daily lives is affected by software.

Yet software products today are plagued by defects. The increasing complexity of programs

makes it almost impossible to deploy an error-free product. E.g., the Linux kernel grew from 2 mil-

lion lines of code in 2002 to about 6 million lines in 2007 [58]; the number of lines of code in a

typical GM vehicle increased from 100 thousand in 1970 to 1 million in 1990—it is estimated to

grow to 100 million lines by 2010 [33]. As a striking example, the Windows 2k operating system

was shipped with 63,000 defects (discovered to date) [69]. Furthermore, it has been argued from

empirical evidence [53] that even bug density (i.e., number of defects per lines of code) is increasing

with project size.

Compared to other human endeavors, the software industry is likely creating the most defective

products, and it spreads its defects wherever it is used (e.g., cars, mars lander, etc). This costs money

to software companies as well as to society itself. According to Djenana Campara, Klocwork’s CTO,

a bug that costs US$ 1 to fix on the programmer’s desktop will cost US$ 100 once it is incorporated

into a complete program, and US$ 1000s or more if it is identified only after the software has been

deployed in the field [28]. The National Institute of Standards (NIST) observes “software errors

cost U.S economy $59.5 Billion annually” [56].

CHAPTER 1. INTRODUCTION 2

While software manufacturers work constantly to improve software quality, they still mostly

rely on “manual” methods such as the run, analyze results, fix, repeat loop. Late bug detection

continues to be a major problem. As mentioned, bugs found early result in significant cost savings.

Static program analysis, a solution for automated error detection, has been gaining renewed

momentum. In the most basic sense, it means finding defects without running the code. More

specifically, it means analyzing the source code and searching for violations of correctness proper-

ties. This approach is complementary, and sometimes more attractive, to more traditional methods

such as testing [54] (dynamic analysis) or model checking [19, 36]. With static analysis, errors are

detected early in the software development process (one can check for defects immediately after

the code has been written); there is no need to generate test cases or specifications, as well as no

need to run the program. Static analysis can consider all paths through the program; testing, or

traditional model checking, execute only those paths that are triggered by the environment model.

Static analysis tools do not require the application to be compiled or executed; bugs are found by di-

rectly analyzing the source code. Model checking or testing a system requires a crafted environment

model or the generation of useful test cases.

However, static analysis is necessarily conservative because it symbolically executes the pro-

gram instead of using real inputs. The downside is that static tools will inevitably signal errors in

correct programs, i.e., issue “false alarms.” By contrast, dynamic analysis examines particular runs

of a program at a finer granularity, and can be much less conservative because they have precise

information about the current execution state. For a static bug finder, being too conservative of-

ten means missing real program errors, issuing too many false alarms, or being uncertain about a

program defect and choosing to remain silent to avoid them.

The presence of pointers is a challenging aspect of many languages that can force static analysis

to be overly conservative. In C, pointers are often regarded as the bane of program analysis. They

pose a problem to compilers and bug finding tools because it is often unclear what locations may be

accessed through indirect memory references. Aliasing, i.e., two expressions referring to the same

memory location, is another aspect common from using pointers that can mitigate the analysis.

Without enough information, static tools are forced to make conservative assumptions such as “a

pointer assignment could write to any variable in the current scope,” leading to many superfluous

dependencies and significantly limiting the power of the analyzer.

CHAPTER 1. INTRODUCTION 3

To alleviate that, a common solution is to allow the programmer to provide annotations to guide

the analyzer, e.g., to declare a variable as unaliased in a certain scope, allowing the analyzer to

aggressively infer properties in that scope without fearing any aliases. Other tools simply restrict

pointer use to a minimal, systematic way [6], provide special constructs such as the “never-null”

pointer of Cyclone [45], or create special data types that can never be aliased [25].

However, experience has shown [34] that programmers are reluctant to provide any but the most

minimal annotations, and when they do, the annotations are rarely synchronized with code changes.

This burden is particularly pronounced when applying a tool to a legacy code base.

The solution is to provide some external checking of properties. For pointers, determining use-

ful information requires some form of pointer analysis. The precision of such analysis can directly

affect the utility of the tool—the more precise the analysis, the more aggressive the tool can be,

leading to fewer false alarms and/or missed errors. However, some solutions are precise but pro-

hibitively expensive, while others are fairly cheap but too approximate. A bug finder that relied on

the latter would be too inaccurate, while using the former could result in a checker that is unac-

ceptably slow. The gap between these two extremes is sparsely populated by a few disconnected,

ad-hoc heuristics. This has inhibited designers from implementing effective pointer analyses into

real-world error detection tools, even though researchers agree [32, 72] this could lead to consid-

erable benefits. As an example, Table 1.1 (extracted from David Wagner’s PhD thesis [71]) shows

the expected reduction in false alarms from several potential improvements to his buffer overrun

checker. Although the data corresponds to specific reports from analyzing sendmail 8.9.3, which

may not be a true representative, it illustrates benefits expected from pointer analysis.

Table 1.1: Expected reduction in false alarms from potential improvements to David Wagner’s [71]

buffer overrun checker. The data corresponds to specific reports from analyzing sendmail 8.9.3.

Improved analysis False alarms that

could be eliminated

flow-sensitive 48%

flow-sensitive with pointer analysis 63%

flow- and context-sensitive, with linear invariants 70%

flow- and context-sensitive, with pointer analysis and linear invariants 95%

CHAPTER 1. INTRODUCTION 4

To that end, this dissertation aims to bridge the gap mentioned above by proposing a novel

analysis space for pointer analysis in which those two extreme solutions are simply special cases of

a more fundamental, underlying principle. This is achieved by re-formulating the granularity and

the dimensions of pointer analysis itself, allowing finer-grain trade-offs between speed and utility,

as well as finding new, previously unknown, sweet spots. The integration of such framework into

an industrial bug finder, IBM’s BEAM tool [21], is also a practical contribution of this work.

Another fundamental goal of this dissertation is to provide pointer and related analysis for error

detection that is based on modular analysis instead of more traditional whole program analysis.

Existing techniques do not meet the requirements of such modular bug finding. In this dissertation

we address such requirements for the first time through a novel approach to procedure summaries

(a graph summarizing the function’s pointer behavior).

The main contributions of this dissertation are listed in Section 1.4. The next subsections lay

out some definitions and major motivations for this work.

1.1 A note on program errors

In the remainder of this document we will refer to program defects (alternatively, errors or bugs), and

it is therefore useful to clarify their meaning. We are given a program and a notion of correctness.

For static analysis, this informal notion of correctness represents properties that, if violated, would

cause program misbehavior. These properties are modeled as rules, such as “the program should

not dereference a null-pointer,” “the denominator of a division operation should not evaluate to

zero,” “all program variables should be properly initialized before used,” “the program should not

allow SQL injection,” “there are some methods whose return value should not be ignored, such as

String.toLowerCase(), since it returns a new string object,” etc. Static analysis, therefore, does not

know what the program is “supposed” to do; instead, it tries to verify that a set of rules is respected.

A generic definition for a program defect is as follows. The program has inputs and outputs. We

interpret inputs as broadly as possible; they include not only numeric inputs, but also initial state

of memory, version of the operating system, version of the compiler, architecture of the machine,

etc. Similarly, outputs include not just numeric outputs, but also performance, usability, security,

etc. Then the program has a defect if there exist inputs that cause the program to produce outputs

CHAPTER 1. INTRODUCTION 5

inconsistent with the notion of correctness (i.e., violate the rules).

Extending upon these notions, we can further classify program bugs into three main categories:

(1) correctness: the code seems to be doing something the developer did not intend (e.g., crash);

(2) bad practice: the code violates good programming practices, such as an exception that is caught

but ignored; (3) security: there are vulnerabilities to malicious code, vulnerabilities to malicious

inputs such as SQL injection, etc.

Some errors within these categories may require reasonably simple techniques, such as a naı̈ve

coding guideline checker or a parser. Others necessitate complex machinery such as those provided

by static analysis and other techniques. Section 1.2 discusses some different types of these later

semantic bugs.

1.2 A few simple bugs

Besides forcing a static analysis tool to be conservative, pointers themselves open the possibility of

a variety of programming errors. From this point of view, pointers are doubly bad—they interfere

with assumptions about well-behaved variables, and they can trigger errors caused by mishandled

pointers themselves.

This section and its subsections show some program errors that are due to mishandled pointers

and/or are bugs that could be reported by a static tool if it was able to be less conservative.

For example, one of the easiest ways to end up with a (pointer) bug is to try to dereference the

value of a uninitialized pointer. Consider the following fragment of a C program:

1 void foo()

2 {

3 int *p, z;

4 if (...) {

5 p = &z;

6 *p = bar();

7 } else {

8 *p = 0;

9 }

10 }

CHAPTER 1. INTRODUCTION 6

Assuming p is only assigned in line 5, the statement *p=0 at line 8 is an error—if the con-

dition at line 4 is false, p will be dereferenced before it has been initialized. To catch this, a bug

finder needs to statically compute the set of values a pointer can assume at runtime. Moreover,

such analysis must model some degree of statement ordering, and/or distinguish different control

conditions under which the statements occur. For example, in the above code one can determine

that if the condition at line 4 is false, p will be uninitialized at line 8. A so-called flow-insensitive

pointer analysis, which ignores the order of statements, is useless here because it ignores statement

execution order. Using costly flow-sensitive analysis may prove too expensive in general, and thus

the above bug would remain latent in the code until the else branch is executed.

A program that neglects to deallocate a unused block is said to have a memory leak, another

type of error that can be hard to find and is often (if not always) associated with pointers. Consider

the following code fragment:

1 typedef struct T {

2 int *element;

3 struct T *next; }

4 } T;

5 int main()

6 {

7 T *y = NULL;

8 if (...) {

9 int *x = malloc(sizeof(int));

10 y = f(x);

11 }

12 ...

13 }

14

15 T *f(int *p)

16 {

17 if (...) return NULL;

18 T *y = malloc(sizeof(T));

19 y->element = p;

20 y->next = NULL;

21 return y;

22 }

CHAPTER 1. INTRODUCTION 7

This code has a memory leak—if the condition at line 17 is true, we return from function f

without having assigned the value of parameter p to the location reached by y->element (line 19).

Thus after line 10 the program loses its ability to access the memory block allocated at line 9 (note

the scope of x), and the runtime library is not informed that the block should become available.

Similarly, pointers can be (mis)used after the object or variable they point to no longer exists or

has gone out of scope. If such a pointer is dereferenced, the program may continue to run, but the

results will likely be incorrect and unpredictable. Such a failure is harder to track down, as silent

corruption of unrelated data may occur, leading to very subtle bugs.

Another common programming mistake arises from a function or module returning the address

of a local variable (a variable that is valid only inside the module’s scope), such as the code below.

Since these variables are automatically deallocated from the stack after the function returns, any

pointer that refers to those locations will be dangling once the function returns.

1 char *initialize()

2 {

3 char string[80];

4 char *p = string;

5 return p;

6 }

7

8 void main()

9 {

10 char *q = initialize(); /* dangling pointer */

11 }

The aliasing bug is another program error that may arise when two or more pointers refer to

the same location. The memory may be set (or freed, in case of dynamic allocation) through one

pointer and later referenced through another, which may result in subtle bugs when this behavior

was not intended.

Many security holes stem from pointer errors. For example, if a pointer is used to make a virtual

function call, a different address (pointing at malicious code) may be called if the virtual table was

overwritten.

Obviously, static analysis tools cannot find all bugs in code, nor can they ensure there will be

no bugs at ship time. No matter how precise a (pointer) analysis is, some errors are simply not

CHAPTER 1. INTRODUCTION 8

amenable to static analysis. Even more importantly, static analysis is not meant to go after all

flavors of bugs—the utility of a static analysis tool is tied to the number of correctness properties

that have been encoded as rules such as those mentioned in Section 1.1. Moreover, properties

that require reasoning about the system execution are not amenable to static checking (e.g., many

protocol-specific properties such as routing loops). These cases are better addressed by model

checking techniques, which excel at exploring intricate behaviors of the system and finding errors

in corner cases that have not been considered by system designers. Ie., the idea is that the above bugs

are always bad, whereas others may be bad only w.r.t a given specification. Also, some bugs are

runtime-dependent and can only be found through real testing and sophisticated dynamic analysis.

1.2.1 Different goals for a bug finding tool and the roles of pointer analysis

This subsection shows two simple examples that illustrate how a tool’s objective can dictate the role

and importance of pointer analysis in static error detection. We discuss a nonexistent error that is

nevertheless reported by FlexeLint [57], as well as an instance of a real error that can be missed due

to conservatism. Consider the code fragment below.

1 int main()

2 {

3 int *p, x;

4

5 p = &x;

6 x = 0;

7 *p = 10;

8

9 return 100/x; /* no error */

10 }

Gimpel’s FlexeLint [57] reports a division by zero in the above code even though no such error

exists1. The indirect assignment via *p=10 guarantees that x is overwritten before the return

statement executes. Nevertheless, FlexeLint assumes x can still be 0 at line 10 and reports the

(false) error.

1Easily checked by editing any of Gimpel’s interactive demos at http://www.gimpel-online.com/OnlineTesting.html.

CHAPTER 1. INTRODUCTION 9

FlexeLint’s goal is to report as many errors as possible, even at the expense of some spurious

error reports. In contrast, a completely opposite take is to drastically reduce the number of such

false alarms, even at the expense of missing some real bugs. In this case, the tool has to obtain a

“proof” that a potential error can actually occur. In the absence of such proof, the tool will remain

silent even if that causes defective code to be endorsed. The importance of reducing static analysis

conservatism in this latter case is even greater. Consider the following similar program:

1 int x, y, *p;

2

3 void bar()

4 {

5 x = 0;

6 }

7

8 int main()

9 {

10 p = &y;

11 ...

12 bar();

13 *p = 10;

14

15 return y/x; /* error */

16 }

This code has a division by zero at line 15. However, a bug-finding tool striving to reduce false

alarms needs to “prove” that statement *p=10 does not write to variable x, i.e., that *p is not an

alias for x; if it were, there would be no error. Stepping back and taking a conservative view, such

a statement could potentially modify x, especially if one has no side-effect information for function

bar. Therefore, in the absence of more precise (pointer) information about statement *p=10, the

tool has to refrain from reporting the fault. Hence, providing a precise pointer analysis as a way

of reducing conservative assumptions and provide more information is of paramount importance.

This is one of the main views taken in this dissertation, which means pointer analysis is helpful by

allowing the tool to report more real errors.

CHAPTER 1. INTRODUCTION 10

1.2.2 Aggregate type fields

Struct fields are another source of approximations in static analysis—writing to one field of a data

structure should not interfere with reading from a different field. This feature is rarely considered

in bug-finding tools (to the best of our knowledge, none of them actually do it). This dissertation

is thus one of first attempts to implement field-sensitive pointer analysis in a real-world bug finding

tool. Details and examples are given in Section 5.7.

1.3 Modular bug-finding and the Evidence-Based approach

This section defines and motivates the need for modular bug finding, and discusses its requirements

on pointer and related analysis. Researchers have been devising modularization techniques for var-

ious aspects of software analysis, but modularization for pointer analysis is harder. While the focus

of this dissertation is static analysis, modular analysis and its requirements apply more generally.

To emphasize this, in this section we will consider both static and dynamic analysis as appropriate.

A side goal in this dissertation is to develop analyses that aim at reducing the number of false

alarms, i.e., a message issued by a tool that the user chooses not to translate into a code change.

This goal, along with modular bug finding, imply basic principles that will shape the design of our

algorithms and representations for pointer analysis.

1.3.1 Reducing false alarms as a prime goal and the need for modular analysis

Both static and dynamic analysis suffers from false positives (i.e., incorrectly reporting a defect)

and false negatives (i.e., failing to report a real error). Dynamic analysis can give a false negative if

it fails to consider a particular input that triggers the error. It can give a false positive if it considers

an input vector that is not valid.

Static analysis suffers from false positives and false negatives because of its inaccuracy. For

example, a tool may find that a variable is initialized only under condition A, and then used under

condition B. But the tool may not be able to determine whether B implies A, which would ensure

the variable was initialized correctly. Faced with this uncertainty, the tool may choose to report the

variable as uninitialized and risk a false positive, or it may chose to remain silent and risk a false

negative.

CHAPTER 1. INTRODUCTION 11

For a tool to be useful, it must report a sufficiently high number of true positives and a suffi-

ciently low number of false positives. However, achieving both goals is computationally expensive

for both static and dynamic methods. The cost is directly proportional to the length of the paths

from program entry to a fault. The longer the path, the fewer the input combinations that will exer-

cise it during testing, since all conditions along the path would have to be simultaneously satisfied.

Similarly, the longer the paths, the more expensive it is for static analysis to consider all of them ac-

curately. Therefore attempts to reduce the number of false positives should concentrate on reducing

the path length from program entry to failure site.

One approach to such goal is to replace the system test (in the dynamic analysis world) or whole

program analysis (in the static) paradigms with a modular approach. Modular analysis ranges from

unit testing [54] to testing (or analyzing) major subsystems. It has been reported [46] that finding

a bug during such modular testing is one or two orders of magnitude cheaper than during system

test. This drives the software industry towards modular analysis. However, a major impediment to

modular analysis is the lack of information about which inputs of analyzed component are consid-

ered legal, as opposed to whole program analysis which can analyze the actual set of inputs into

the function [75]. Reporting a bug that happens only with illegal inputs is a false positive and thus

highly undesirable.

There are several solutions to the problem of determining legal inputs. One general approach is

to require programmers to provide specifications, preconditions, contracts, and other kinds of anno-

tations [54]. Some tools allow developers to mark their code with special comments or some other

form of metadata to describe rules and inter-function dependencies. This additional information al-

lows the analyzer to understand the conditions under which a bug may occur as well as expectations

each function has for parameters passed in and values returned. If such information is available,

then the same tools used in whole program analysis could be used for modular analysis. In practice,

however, such requirements are hardly met—annotations are rarely complete, rarely kept up-to-date

with code changes, and practically never machine-readable [47].

The implication for modular bug finding is that some educated guesses must instead be made

about what constitutes legal or intended inputs to a function. A general approach is to try to au-

tomatically infer information from the source code of the analyzed component [7, 27, 31]. Our

framework relies on a method that is guided by evidence [7] from the source code, which affects the

CHAPTER 1. INTRODUCTION 12

design of pointer analysis. E.g., the presence of a test for null tells us the variable can assume null

sometimes; the declaration of two separate pointer variables is evidence that they sometimes do not

assume the same value; the test of a Boolean variable inside a function hints that both truth values

are legal at that point. Intuitively, the idea is to infer from the source code which inputs are legal by

focusing on what the programmer’s intended preconditions for a procedure would be if they were

written down explicitly. An error is reported only if the tool can find evidence that the fault can be

reached during an execution that starts with legal inputs.

As an example, consider the code in Figure 1.1(a). Suppose there is no documentation for foo,

and no information about the potential callers of foo. Should the statement serial->id be

reported as an error because serial may be null at function entry? In other words, if foo fails, is

it because null is a legal input, and serial should be checked for null before dereferencing? Or is

the fault with the caller, because null should never be passed in as argument? There is no universally

correct answer. It may differ from project to project depending on their reliability requirements and

coding practices, or even the taste of the individual programmer. However, reporting these cases as

errors would probably inundate the user with false positives.

int foo(struct T *serial)

{

serial->id = count++;

...

}

int foo(struct T *serial)

{

if (serial != NULL) {

serial->hdw = DEV0;

}

...

serial->id = count++;

}

(a) (b)

Figure 1.1: Should the tool warn about possibly dereferencing null on serial->id?

Now consider the example in Figure 1.1(b), a slight modification of Figure 1.1(a). The if state-

ment suggests the programmer expected serial to be null, while the statement serial->id =

count++ fails if serial is null. In this case, the test is evidence that serial can be null, and

most programmers would agree the potential error should be reported. In the next subsections we

CHAPTER 1. INTRODUCTION 13

present additional examples where such source code evidence guides the choice of legal inputs for

modular analysis, and how this affects the design of our pointer analysis for the needs of modular

bug finding. More technically, the expression “modular bug finding” means that, given a function

f , the decision of whether a potential error inside f can be reported while analyzing f ’s body is to

be based on information derived from the function itself plus its callees only. I.e., the decision to

report the bug must be independent of any existing callers, no matter what data is flowing in from

the caller(s). The rationale for this choice is because the correctness of a function does depend on its

specific lower level libraries, but it should not depend on any existing higher software layer—these

may change when the module is reused.

1.3.2 Evidence and modular analysis for pointer analysis

Since the main focus of this thesis is on pointer analysis and its applications to modular bug detec-

tion, we will illustrate the requirements for modular analysis by examples of bugs whose existence

depends on pointer aliasing (a question normally answered by pointer analysis). Specifically, the

examples aim to justify why, in modular bug finding, only pointer information derived from callees

is useful for reporting errors without risking false positives. Indeed, if information derived from

callers were to be used in a modular analysis2, that information would actually “pollute” the analy-

sis results. For the sake of presentation, we will assume testing the code (i.e., dynamic analysis).

int *p, *q; bool b;

...

int error_if_aliasing()

{

callee();

if (b) *q = 0;

return 42 / *p;

}

Figure 1.2: A divide-by-zero error if p==q and b is true. Information derived from callee() can

be used to report the error in case pointer analysis determines that callee() makes p and q to be

aliased.

2An awkward combination, since by definition modular analysis only considers a function and its callees.

CHAPTER 1. INTRODUCTION 14

Consider Figure 1.2. Suppose a tester exercises the function error_if_aliasing() and

gets a divide-by-zero because p==q at the return statement. The programmer may argue that the

procedure is to be invoked only in environments where p 6= q, and therefore the tool has reported

a false error. That argument would be contradicted if pointer analysis determined that callee()

unconditionally makes p==q. The programmer could still insist that error_if_aliasing() is

to be called only when b is false, which means statement *q=0 does not execute, preserving the

original value of *p. But that argument would be defeated because such an assumption would make

the test of b unnecessary. Anyone looking at the body of error_if_aliasing() would agree that

both truth values of b are legal inputs into the function—the upshot is, if pointer analysis determines

that callee() unconditionally makes p==q, then error_if_aliasing() is definitely defective.

The two pieces of information extracted from the code and used by the analysis are that (1) ¬b is

a legal input, due to its testing by the if-statement, and (2) p==q has been derived from the lower

layers of software. Since both pieces of information are available at the fault site, the error can be

reported without risking a false positive.

Now suppose that callee() has no effect on the values of p and q. This time the programmer

can successfully argue that error_if_aliasing() is to be called only where p 6= q or ¬b. No

pointer aliasing information obtained from callers can be used as a counterargument. I.e., even if

p==q whenever error_if_aliasing() is called in an existing program, there may be no error in

the whole program as long as b is false whenever error_if_aliasing() is called—reporting

it would be risking a false positive. While that would make the test of b unnecessary from the point

of view of the existing whole program, that test may be needed in an unforeseen future use. In other

words, the programmer is relying on an (unwritten) precondition and any division by zero would be

the fault of a caller. This example illustrates that even if we have must information about pointer

aliasing, that information can be used to issue an error only if the information comes from a callee.

Roughly speaking, in our framework a function is analyzed by neglecting what its callers pass

in as arguments. If there is an error inside the function that is only triggered by a specific calling

context (not the “intended” context) then the analysis of the function may not find the error. When

the summarized information for the function is used at a given call site, the calling context is taken

into account and that may trigger the error. We will then consider the fault to be with the caller at

hand, which passes in illegal inputs.

CHAPTER 1. INTRODUCTION 15

int error_if_no_aliasing()

{

*p = 0;

callee();

if (b) *q = 1;

return 42 / *p;

}

Figure 1.3: Error if p and q do not alias. May information from the callee is used to aid the analysis.

Consider an example involving may and must not information, depicted in Figure 1.3. Assume

that a tester found error_if_no_aliasing() failing because p 6= q. The programmer may

argue that error_if_no_aliasing() is to be called only in environments where callee()

causes p==q. That argument can be defeated if callee() never makes p==q (i.e., p must not

equal q), and hence the error could be reported. But if pointer analysis finds out that callee()

may possibly cause p==q, then error_if_no_aliasing() may actually be fault free (that is, to

reduce the number of false positives, may aliasing information from a callee determines whether or

not a potential error should be reported).

We see that in all these cases pointer information derived from callees can be used to decide

whether a possible error should be reported or not. But information derived from callers is irrelevant

in that decision. Indeed, if the information from callers were allowed in the analysis, it would

actually “pollute” the useful information derived from callees, and then none of them could be used.

For these and other reasons, our overall approach to pointer-related analysis (points-to, mod3,

side effects) is to propagate information from callees to callers in the form of procedure summaries

that are designed to satisfy the requirements of modular bug finding listed in Section 1.3.3. Sum-

maries of analyzed functions are maintained for possible reuse, so that any function call can be

replaced by a summary for that function.

The general implications of evidence-based, modular analysis on pointer analysis is that, to

report a bug inside a function f , one should not look at f ’s callers, and one should assume that none

of f ’s parameters alias each other (in general, this is true not only for parameters but for all locations

from the environment). I.e., during the analysis of f there is no need to consider the situation where

3Mod analysis determines whether a given variable is modified by a given procedure.

CHAPTER 1. INTRODUCTION 16

its parameters alias—indeed, this is not desired.

The reason for the former was already mentioned: the correctness of a software layer does not

depend on specific callers. The reason for the latter is that the declaration of two separate parameters

is evidence that the programmer expected them not to alias in general. And that assumption can-

not be overridden by any pointer information derived from specific callers. For more complicated

pointer expressions, other forms of evidence may exist and it continues to be true that information

from specific callers cannot override it. The situation is different than information derived from

lower layers. For example, the C-library function strcpy is such that after x=strcpy(y,z) ex-

ecutes, the variables x and y alias. And the fact that the programmer declared two separate variables

cannot override that behavior.

However, if the arguments are aliased when using the summary for our function f in a call site,

and if that triggers a program error, then the caller should be reported as faulty because it passes

invalid inputs into f . For this reason, when instantiating a summary into a call site (and only then),

the analysis needs to restore its soundness within the instantiated summary by considering aliases

introduced by the caller.

Contrary to existing techniques, our summarization method satisfies all of these requirements.

Intuitively, our procedure summaries can be viewed as generated preconditions. If there is not

enough evidence inside a procedure to report a potential problem, its summary embodies assumed

intended inputs (e.g., non-aliased parameters, or such-and-such parameter is unconditionally deref-

erenced). Callers are then checked for passing illegal inputs, such as non-null values for parameters

that are unconditionally dereferenced. And if there is not enough evidence inside the caller itself to

prove that the inputs are illegal, the caller gets another summary embodying its legal inputs.

1.3.3 A novel summarization method for pointer and related analyses

This dissertation presents a novel method for procedure summaries as a solution to a series of

issues that are crucial for modular bug finding. None of the classical techniques are suitable for our

purposes, as outlined below.

• In modular bug finding we do not have access to the “upper layers” of the module under

analysis, thus we cannot use Wilson’s technique [75] which is based on a whole-program

paradigm.

CHAPTER 1. INTRODUCTION 17

• We want to compute a single summary for each function, hence we cannot use Chatter-

jee’s [14], Landi’s [48] or Wilson’s [75] techniques.

• The summarized information for a procedure must work for any unforeseen calling context,

and therefore we cannot use Chatterjee’s [14] or Wilson’s [75] approaches.

• The information from callers cannot, in any circumstance, shape the summary of a callee.

• The true transfer function of a callee’s summarized information, once instantiated at a call

site, depends on the context defined by the caller.

Combining the above items becomes a challenge for pointer analysis. On one hand pointer

relations inside a procedure do depend on aliasing caused by callers. On the other hand, such

aliasing is unknown in the type of summary-based analysis we do. These constraints, as well as

all of the above, are simultaneously embraced in our summarization method, as will be discussed

in later chapters. Section 2.1.2.2 discusses in more detail why existing summarization techniques

fall short of providing the required capabilities for our purposes. Furthermore, our summary graphs

combine pointer and mod information as a single data structure, which has a series of benefits.

1.4 Main contributions

The main contributions of this dissertation are

• a methodology for procedure summaries satisfying the requirements of modular bug finding

as listed in Section 1.3.3;

• a novel analysis space for pointer analysis, defined by new finer-grain dimensions of preci-

sion, which allows us to explore and evaluate a variety of analyses towards new trade-offs

between precision and efficiency; and

• a new abstraction for computing points-to sets, the Assign-Fetch Graph, that has many of the

attributes of an ideal representation for pointer analysis.

CHAPTER 1. INTRODUCTION 18

1.5 Organization

The remainder of this dissertation is organized as follows. Chapter 2 provides background on differ-

ent elements of, and alternatives, in the design of pointer analysis systems. Chapter 3 presents our

novel analysis space for pointer analysis where its dimensions of precision are re-defined around

finer-grain elements such as order-sensitivity and condition-sensitivity. Chapter 4 investigates some

particular pointer analysis variations enabled by our analysis space. Chapter 5 discusses our main

pointer analysis abstraction, the Assign-Fetch Graph, in more detail. Chapter 6 presents an empirical

evaluation of our framework, and Chapter 7 has some final remarks.

Chapter 2 19

Chapter 2

A Review of Pointer Analysis

This chapter deviates from the discussions in Chapter 1 in order to review pointer analysis in more

generality; it may be skimmed over by the experienced reader.

In its most generic form, the pointer analysis field contains all the analyses that try to statically

determine useful properties about pointers in a program. Because most of these properties are

undecidable, the best a pointer analysis can do is to produce a sound approximation of the result.

There are at least four types of analyses that fall into this category: points-to analysis, alias analysis,

escape analysis and shape analysis. A points-to analysis [29] determines what storage locations

a pointer can point to. Such analysis consists of computing points-to sets—given two program

locations, p and q, we say p points-to q if p can contain the address of q. An alias analysis [48]

calculates the pairs of pointer expressions which are aliased, i.e., refer to the same storage location.

For example, if x and y both point to the same location(s), we say ∗x and ∗y are aliases, written

as 〈∗x,∗y〉. The specific location(s) they refer to are not usually tracked down. An escape analysis

[5, 16, 18] detects the memory locations that escape a given scope, and a shape analysis [63, 74] tries

to determine the shape of the data structures manipulated by the program. Such an analysis checks

properties such as “if this method receives a tree, it returns a tree,” usually without representing the

tree itself. In this thesis, we consider points-to and alias analysis, and therefore the term pointer

analysis will be used interchangeably between these variants. The next sections discuss classical

definitions for pointer analysis and the traditional algorithms.

CHAPTER 2. A REVIEW OF POINTER ANALYSIS 20

2.1 Dimensions of Precision

Computing points-to sets is traditionally centered around some characteristics or dimensions that

directly affect analysis precision. The two main dimensions are flow- and context-sensitivity:

flow-sensitivity determines whether the order of program statements is taken into account, whereas

context-sensitivity deals with the degree of differentiation between multiple calls to the same func-

tion. Other characteristics include field-sensitivity, which deals with how distinct fields of a struct

or class are handled, and (more common in other program analyses) path-sensitivity, which reasons

about branch correlations. Describing pointer analysis is intimately related to such dimensions.

2.1.1 Flow-sensitivity

A flow-sensitive analysis [8, 13, 17, 29, 48] considers the order in which the statements of a program

execute, and it is usually based on some form of iterative dataflow framework [1] to produce results

at the statement level. Flow-sensitive analyses model strong updates (or kills), in which a later

statement destroys the dataflow facts created by an earlier statement [1, 12, 29].

Flow-insensitive analyses [2, 4, 9, 20, 23, 67] view the program as a pile of unordered state-

ments, and by their nature are similar to type systems; therefore they are generally formulated as

sets of typing rules. Flow-insensitive analyses may compute a single solution that is valid for the

entire program [2, 44, 67, 79] or one solution for each method [9, 42].

A flow-insensitive algorithm is usually more efficient than its flow-sensitive counterpart, and is

primarily used for problems for which the latter does not provide substantially increased precision.

Alternatively, a flow-insensitive analysis can be used to improve efficiency at the potential cost

of precision for the class of problems for which flow-sensitive analysis would indeed yield better

accuracy. Pointer analysis is a problem of this class. In pointer analysis, flow-sensitive algorithms

are in general more precise, but more costly than flow-insensitive algorithms1.

The notion of flow-insensitive/sensitive analysis is intimately related to the notion of program-

point specific versus summary analysis. An analysis is program-point specific if it computes points-

to information for each program point. An analysis that maintains a summary for each variable,

valid for all program points of the function (or the program) is a summary analysis.

1Investigations of the merits and drawbacks of both approaches can be found in the literature [41, 68, 78]

CHAPTER 2. A REVIEW OF POINTER ANALYSIS 21

A program-point specific analysis is likely to be more accurate than a summary analysis, but the

information provided by the latter is safe (e.g., the points-to sets computed by the flow-insensitive

analysis are always supersets of the sets computed by the flow-sensitive analysis). The next example

illustrates both types of analyses in a code fragment.

Figure 2.1 shows a fragment of the control-flow graph of a program combined with its flow-

sensitive pointer analysis solution, represented as a collection of points-to graphs. In a points-to

graph, each node corresponds to a memory location loci (referred to as an abstract location), and

an edge from loc1 to loc2 means that loc1 “points-to” loc2 (i.e., the address of loc2 is one possible

value loc1 can assume). Note that different program points in the figure contain distinct points-to

graphs (not necessarily connected) representing the pointer relationships that are valid after each

statement.

Using traditional terminology, the first statement y=&r generates the relationship “y points-to

r,” represented by the topmost points-to graph in the figure. Similarly, statement p=&x adds the

relationship “p points-to x” to the set of pointer facts. The statement p=&q, at the right branch of

the conditional, kills the relationship p; x reaching that statement, and generates the points-to re-

lation p ; q. Similar reasoning applies to the left branch—statement z=p kills relations where

z is the source location, and makes that variable point-to all locations currently pointed to by

p. At the confluence of the two control paths, the pointer facts coming from both branches are

merged, and the subsequent statement *p=&t generates the relationships r; t and q; t, since

PointsTo(p) = {r,q} immediately before that statement (each element of this set comes from a dif-

ferent branch). Loops in the control-flow are handled by iterating pointer relations within the loop

body until convergence.

Formally, the effects of a statement are modeled by its transfer function. Instances of transfer

functions for canonical pointer statements can be found in the literature [12, 29, 30, 42]. As an

example, Figure 2.2 from Emami [30] shows the transfer functions for two canonical statements

usually adopted in pointer analyses. Pointer relations are represented with triples 〈x,y,q〉, where

x is the source and y the destination location of the points-to edge, and q is a may/must qualifier

(referred to by Emami as Definite or Possible pointer relationships).

The transfer functions mean, for instance, that after analyzing an statement x=&y, x should

definitely point-to y. In addition, all the relations in which x points to a location x1 should be

CHAPTER 2. A REVIEW OF POINTER ANALYSIS 22

Figure 2.1: A fragment of a C program with its flow-sensitive pointer analysis solution.

x=&y: x=y:

kill = {(x,x1,q)|(x,x1,q) ∈ input} kill = {(x,x1,q)|(x,x1,q) ∈ input}

gen = {(x,y,D)} gen = {(x,y1,q)|(y,y1,q) ∈ input}

Figure 2.2: Transfer functions for two statements used in traditional pointer analysis.

removed from the points-to set being computed. The kill set is the same for statement x=y; the gen

set for such a statement says that x should be made to point-to the same locations that y points-to,

and they should inherit the same qualifier q.

In a flow-insensitive analysis, each pointer statement also adds new pointer relations to the

solution, although there is no kill. A flow-insensitive analysis must, for correctness, capture any

CHAPTER 2. A REVIEW OF POINTER ANALYSIS 23

(a) (b)

Figure 2.3: (a) A flow-insensitive view of the code. (b) Andersen’s and (c) Steensgaard’s pointer

analyses solutions.

possible path that can be traversed by the set of statements in the function. Intuitively, it can be seen

as placing the statements in a big switch construct that is enclosed by a loop, as in Figure 2.3(a).

Pointer relations are propagated inside this loop until convergence.

There are several variations of flow-insensitive analysis; the two most well known are due to

Andersen [2] and Steensgaard [67]. Figures 2.3(b) and (c) illustrate both solutions for the program

of Figure 2.1. Each flow-insensitive solution is a single, larger graph containing a single node for

any program location. In the case of Steensgaard’s, a node can in fact represent several program

locations; the interpretation for a points-to edge is that all program locations within the source node

may point to any program location in the target node.

Basically, if a single location points to two different objects, Andersen will continue to track

the objects separately, while Steensgaard will unify them, tracking them as a single object from that

point on (the outdegree of any node in the points-to graph is at most one). This leads (recursively)

to unionizing the points-to sets of these formerly distinct objects, and therefore loss of precision.

For both styles, the basic idea is to view pointer assignments as constraints, and use these con-

straints to generate points-to information. Andersen-style uses inclusion constraints so that for

assignments p=q the algorithm makes PointsTo(q)⊆PointsTo(p). Essentially the algorithm is an im-

mediate adaptation of the usual dataflow points-to algorithm [29] to be flow-insensitive, although

the constraints are usually solved with dynamic transitive closure. Since there is no order informa-

tion, the best one can say for an statement x=&y is that y ∈ PointsTo(x). Andersen’s algorithm can

CHAPTER 2. A REVIEW OF POINTER ANALYSIS 24

be roughly expressed by the following four inference rules:

x= &y

y ∈ PointsTo(x)

x= y

PointsTo(y)⊆ PointsTo(x)

∗x= y x1 ∈ PointsTo(x)

PointsTo(y)⊆ PointsTo(x1)

x= ∗y y1 ∈ PointsTo(y)

PointsTo(y1)⊆ PointsTo(x)

Figure 2.4: Rules of inference for Andersen-style analysis.

Each statement in the program generates one of these constraints, and a fixed-point computation

calculates the actual points-to sets.

Steensgaard’s style is also known as a unification- or equivalence-based approach; it uses unifi-

cation constraints so that for pointer assignments p=q, the algorithm makes PointsTo(p)=PointsTo(q).

The algorithm views the problem of computing points-to sets as trying to assign synthetic types to

each reference—so it points to objects of specified type. A type is then defined recursively as point-

ing to another type. Hence, the analysis proceeds as a type inference algorithm, doing unification

(e.g., for statement x=y, τ(x) = τ(y); so take PointsTo(x)=PointsTo(y)). This behaves as if infor-

mation flowed both ways, rather than from the right- to the left-hand side of an assignment.

Some analyses use a hybrid technique of both inclusion and unification constraints. The one-

level flow algorithm of Das [23] uses inclusion constraints for assignments, but unification con-

straints everywhere else. It is able to obtain some of the benefits of inclusion-based analysis with

an analysis cost only slightly higher than the unification-based analysis.

One can notice that any of the flow-insensitive solutions of Figure 2.3 is less accurate than the

flow-sensitive solution of Figure 2.1. For instance, in the flow-sensitive case z never points-to r nor

q, and x never points-to t, yet these spurious relations occur in both flow-insensitive solutions.

Moreover, a flow-insensitive solution cannot answer questions that depend on execution order.

Roughly speaking, the best a flow-insensitive analysis can do is to provide reverse information: if it

says x does not point to y, we can be sure this is indeed the case. In other words, if flow-insensitive

analysis is used for mod computation, for instance, the best one can hope for is to infer that a pointer

p is not modified by a given function.

CHAPTER 2. A REVIEW OF POINTER ANALYSIS 25

In contrast, one of the goals of our new analysis space in Chapter 3 is to derive analyses that

can answer more questions without paying the high price of, say, a flow-sensitive analysis. For that,

we break pointer analysis into more primitive elements and show how, by putting these elements

together in different ways, we can achieve interesting trade-offs.

2.1.2 Context-sensitivity

An analysis that transcends procedure boundaries is called interprocedural analysis. Its goal is to

avoid overly conservative assumptions about the effects of procedures and the program states at call

sites. An interprocedural analysis propagates values from one function to another and back, and are

more complex than intraprocedural analysis, which are limited to the scope of a single function.

For computing points-to sets, interprocedural analysis is virtually a requirement. Only ex-

tremely conservative estimates are possible by analyzing each procedure in isolation, and such

estimates would certainly be useless for most pointer analysis clients. There are basically two

classes of interprocedural analysis: context-insensitive (or monomorphic) and context-sensitive (or

polymorphic) analysis [35]. Informally, a context-insensitive analysis does not distinguish between

different calls to a function, and may allow information from one caller to mingle erroneously with

information from another caller of the same function; such analysis produces just one set of results

for each function regardless of how many ways a procedure may be invoked. Context-sensitive

analysis avoids this imprecision by allowing different contexts to have different results.

As an example of the potential benefit of context-sensitive points-to analysis, consider the pro-

gram in Figure 2.5 (omitting some variable declarations for clarity). If we distinguish foo calling

procedure id from bar calling the same procedure, we discover that a points-to p and b points-to q

(Figure 2.5(b)). Otherwise, we would conclude that both a and b can point to {p,q} (Figure 2.5(c)).

A straightforward approach to obtain an interprocedural but context-insensitive analysis is to

combine all procedures into a single control-flow graph, adding edges for calls and returns, and

adapt the intraprocedural analysis algorithm to work on this large graph. An iterative dataflow

analysis using such a graph is conceptually simple, but may suffer from the problem of unrealizable

paths. That is, values can propagate from one call site, through the called procedure, and back to a

different call site. Some algorithms try to convert this approach into a context-sensitive analysis by

tagging the pointer information with abstractions of the calling contexts (such as the call stack).

CHAPTER 2. A REVIEW OF POINTER ANALYSIS 26

id(x) { return x; }

foo() {

a = &p;

a = id(a);

}

bar() {

b = &q;

b = id(b);

}

(a) (b) (c)

Figure 2.5: (a) A program, (b) context-sensitive points-to sets, (c) context-insensitive points-to sets.

In general, adding context sensitivity can be done by two classical approaches: the call string

and the functional approaches. The next subsections discuss each.

2.1.2.1 Call string approach to context-sensitivity

The call string approach is based on including context information in the lattice of flow values. In

such approach, the context may be defined as the top sequence on the runtime call stack; one can

thus use a string to record the pending procedure calls. The idea is that dataflow information tagged

with consistent call strings corresponds to the same calling context (which is being distinguished).

In the example of Figure 2.5, the contents of the call stack when id is called is different at each call

site. Thus adopting the call string approach would suffice for a context-sensitive analysis.

However, using the call stack alone might not be enough in some cases, even when there are no

recursive procedures involved. Consider the example in Figure 2.6. If the analysis does not separate

the two invocations of id, it will erroneously determine variable a in function main points-to either

i or j; distinguishing them gives the correct result of a pointing only to variable i, whose value is

set to zero by the last assignment in main. In this case, the analysis can identify that there is no

division by zero at statement 1/j; the context-insensitive result would flag it as a potential error.

Nevertheless, note the contents of the call stack immediately before invoking id is the same

CHAPTER 2. A REVIEW OF POINTER ANALYSIS 27

for both call sites. In these cases, the string to be used must be derived from constraints on which

interprocedural paths are realizable. A realizable path is one for which function calls are matched

with corresponding returns (a realizable path is not the same as a feasible path. The former involves

the program’s call-return structure, and the latter depends on the consistency of program predicates).

int *id(int *x) {

return x;

}

int main() {

int i,j=10;

int *a,*b;

a = id(&i);

b = id(&j);

*a = 0;

return 1/j;

}

Figure 2.6: Context-sensitive analysis based on the contents of the call stack alone cannot distin-

guish the two invocations of id.

One approach to match calls and returns is based on context-free language reachability (CFL-

reachability) [59]. A CFL-reachability problem [77] is not an ordinary reachability problem (e.g.,

transitive closure), but one in which a path is considered to connect two nodes only if the concate-

nation of the labels on its edges is a string in a particular context-free language. In this case, a

context-free grammar akin to a balanced-parenthesis problem is defined to reproduce the call-return

structure of a program’s execution. Realizable paths are defined in terms of a program’s supergraph,

G∗. Such graph consists of a collection of control-flow graphs, one for each procedure, including

the main function. Each control-flow graph has a unique start node and unique exit node. The other

nodes represent statements and predicates in the usual way, except that each function call is repre-

sented in G∗ by two nodes, a call node and a return-site node, and three edges, two of which are

interprocedural edges; Figure 2.7 sketches the supergraph for the program in Figure 2.6.

Note that each interprocedural edge is labeled with “(i” and “)i,” depending on its direction.

Index i ranges over the number of call sites in the program. Informally, a path in G∗ is a matched

CHAPTER 2. A REVIEW OF POINTER ANALYSIS 28

Figure 2.7: The supergraph for the program. Values are only propagated through realizable paths.

path only if there is a balance between “open” and “closed” parenthesis with the same index i.

During analysis, values are only propagated through realizable paths. Note in Figure 2.7 that this

technique avoids mixing up values from distinct call sites; the invocation of id with label “(1”

only propagates values to the topmost return site (through edge labeled “)1”). In a monomorphic

analysis, values flowing through paths “(2”→ “)1” and “(1”→ “)2” would also be considered.

Another technique to achieve context-sensitivity for the example of Figure 2.6 is to use the

polymorphic analysis based on the typing constraints of Forster et al. [35]. In the example, id is

the identity function. Because Forster assigns a type for id that is instantiated for each call to that

function, the points-to sets are computed precisely.

Alternatively, Whaley’s [73] technique for call-string context-sensitivity is based on the notion

of cloning. Cloning conceptually generates multiple instances of a method such that every distinct

calling context invokes a different instance (thus preventing information from one context to flow to

another). A clone of the method is built for each path through the call graph, linking each call site

to its own unique clone. The context of a method invocation is thus distinguished by its call string.

Such technique may require an exponential number of clones to be created, since exponentially

many distinct contexts are possible. Their approach is to allow the exponential blowup to occur

and then rely on Binary Decision Diagrams (BDDs) to find and exploit the commonalities across

contexts. Contexts with identical information will automatically be shared at the data structure level.

CHAPTER 2. A REVIEW OF POINTER ANALYSIS 29

2.1.2.2 Functional approach to context-sensitivity

The second main approach to context-sensitivity is the functional approach. It involves embedding

information about program state at the call site, and using that to distinguish calls from one another.

The basic idea is to use a transfer function to summarize the effects of the called procedure—

parametrized summaries are created for each procedure and then used in generating the summaries

of its callers. Although the functional approach is theoretically appealing, its implementation is

not straightforward. This is exacerbated when the summary function cannot be expressed symboli-

cally. In this case, one can use a variant to the functional approach known as assumption sets [55],

adopted by most existing summarization methods. The idea of assumption sets is to use a table with

mappings from context information to output flow values to represent the transfer function corre-

sponding to the procedure body for a given input context. The context information is encoded by an

assumption set, which is in essence any representation of the abstract state of the program before en-

tering the procedure. Context-sensitivity is achieved through the selection of the right context when

propagating and transferring flow values. For example, arguments to the same function often have

the same types or similar aliases. This observation led to the concept of partial transfer functions,

or PTFs [75], where function summaries for each input pattern are computed on the fly as they are

discovered during a top-down traversal of the whole program, starting at the main function. This

technique analyzes a function for each existing aliasing pattern of its actual parameters (determined

by the callers)—for a given function f , there is one computed summary for each distinct calling

context under which f is invoked in the existing program. The rationale is that the number of dis-

tinct contexts actually used in a program may be small because of commonalities among contexts.

For this approach, the context is defined as the aliasing relationships among function parameters at

the call site. Thus, the technique provides one procedure summary (i.e., PTF) for all contexts that

share the same input/output aliasing relationships. This signifies that a procedure is not summarized

for all potential and unforeseen aliases among its inputs, but only for those that occur in the existing

whole program. Although its objective is to memoize summaries, the technique is a whole program

analysis.

In contrast, Chatterjee et al. [14] propose a functional context-sensitive analysis for Java and

C++ that uses a flow-sensitive analysis with conditional points-to relations whose validity depends

on the aliasing and type information found in the calling context. Similar to Wilson and Lam [75],

CHAPTER 2. A REVIEW OF POINTER ANALYSIS 30

this technique stores multiple analysis results (i.e., multiple summaries); each result is indexed

under the possible alias relations that may exist at function entry. On the other hand, summaries

are built using no information “from above” (i.e., from callers). However, for a function f with

two pointer parameters p1 and p2, two initial conditions are assumed: either p1 and p2 point to

the same location(s) when the function is called, or they don’t. From these starting points, two

initial summaries are generated, which may later branch into more derived summaries. Basically,

this technique uses alias contexts to lazily enumerate potential aliases among parameters in order to

distinguish transfer functions for different calling contexts. It is not guaranteed, however, that any

unforeseen calling context will be covered by this analysis, because it relies on heuristics to decide

which contexts are “relevant” and which are not. Landi and Ryder [48] propose a similar technique

where a conditional may alias analysis for C is formulated, handling multiple levels of indirection,

for both scalar and aggregate data types. Given a set of alias pairs that are true at function entry,

they compute the set of the alias pairs that hold at function exit (i.e., conditioned on the alias pairs

at the entry).

As will be explained in Chapter 5, our technique is a functional approach that is not based on

assumption sets; it represents summary information symbolically.

2.1.3 Path-sensitivity

A common question that arises in program analysis is the following: Given a path in the program,

is it feasible? Due to the conservative nature of static analysis, a large portion of paths considered

by static tools are infeasible. Avoiding the exploration of such paths can help reducing the num-

ber of false alarms. A path-sensitive analysis only considers feasible paths through the program,

whereas a path-insensitive analysis will examine all structurally possible paths, including those that

are logically infeasible. For example, if two operations at different parts of a function are guarded

by equivalent predicates, a path-sensitive analysis must only consider paths where both operations

execute or neither operation executes. In such sense, a path-insensitive analysis can be seen as

replacing each conditional expression c in the program with a fresh, uninterpreted variable βc, so

that no two conditions are correlated after the substitution. Path-sensitive analysis can be expensive

because accurately tracking every branch in the control-flow of a program in which the execution

state differs along the two branch paths may result in an exponential or even infinite search space.

CHAPTER 2. A REVIEW OF POINTER ANALYSIS 31

Figure 2.8: A code fragment depicted as a control-flow graph.

Consider the code in Figure 2.8. In this example, the dereference *p would cause a null pointer

exception only on the path 2→ 3, which is not feasible during runtime—even though there are four

distinct paths in the code, only two of those are valid paths during execution.

To capture this additional information the analysis must provide some form of path-sensitivity,

although pointer analyses do not model individual paths per se. Instead, a few existing tech-

niques [52, 76] tag pointer information with predicates to achieve a limited form of path-sensitivity.

In such method, program statements are guarded by Boolean predicates expressing the conditions

under which each statement may execute. Two points-to edges are related only if they occur under

consistent predicates.

For other program analyses, a common technique is symbolic path simulation [37] which per-

forms per-path simulation. Since it is prohibitively expensive to explore one path at a time, some ap-

proaches enumerate only a representative set of paths whose number is configurable by the user [10].

Alternatively, some analyses use properties of the program to reduce the number of paths that need

to be enumerated. ESP [24] tracks values by maintaining a symbolic state of the program. At the

merge point in the control flow, if two symbolic states have the same values with regard to some

property, they are merged together much like the join operation in dataflow analysis. This selective

merging may reduce the number of paths to be explored to a tractable number.

Most path-sensitive analyses use some form of theorem proving to check for consistency of

program predicates through a program path. Some tools use expensive theorem provers [3, 10, 40]

while others (including BEAM) employ a lightweight prover. In our framework for pointer analysis,

we rely on BEAM’s theorem prover to provide path-sensitivity in the form of guards, similar to the

techniques mentioned above.

Chapter 3 32

Chapter 3

Finer-grain Analysis Dimensions

This chapter constitutes one of the main contributions of this dissertation—a novel analysis space for

pointer analysis defined by finer-grain dimensions of precision, allowing us to explore and evaluate

a variety of analyses to obtain better trade-offs between precision and efficiency. The following

sections introduce the elements needed for such analysis space and then elaborate on a framework

to implement it.

3.1 A “cube” idea

Traditional analysis dimensions, specially flow-sensitivity, are restrictive when it comes to exploring

trade-offs; their coarse-grain nature lacks flexibility, and as a consequence numerous sweet spots are

hindered. Finer-grain dimensions provide more possibilities for finding the right spot, as well as a

new way to reason about pointer analysis in general. In this chapter, we present a new look into the

dimensions of pointer analysis by decomposing it into the primitive elements of order-, condition-,

and kill-sensitivities. Then, we present several ways to recombine those elements to obtain multiple

analysis variations as well as to uncover several sweet spots in the space of pointer analysis that have

not been discovered so far. Exploring this analysis space is a step towards bridging the gap between

cheap but approximate and precise but expensive solutions, providing a different perspective on

these trade-offs.

The essence of our analysis space is shown in Figure 3.1, depicting three dimensions of precision

for designing pointer analyses. Each analysis variation is a point in this 3-D space.

CHAPTER 3. FINER-GRAIN ANALYSIS DIMENSIONS 33

Figure 3.1: Three fine-grain dimensions of precision for pointer analysis.

The horizontal axis, labeled “v,” represents the degree of statement ordering that is respected

by the analysis. For example, a traditional flow-insensitive analysis, which completely ignores the

order of statements, would be located at the origin of this axis.1

The vertical axis corresponds to the condition-sensitivity of the analysis, i.e., how the predicates

in the program are taken into account. Once more, a classical flow-insensitive analysis is placed

at the origin of this axis, as it does not separate mutually exclusive statements σ1 and σ2 (e.g.,

because they belong to opposite branches of an if-statement). A traditional flow-sensitive analysis

considers this information while propagating dataflow facts through the control-flow graph, and

would correctly make σ1 and σ2 independent; a path-sensitive analysis goes beyond disassociating

immediate exclusive branches only—it attempts to correlate distinct conditional expressions.

Finally, the third axis, labeled “kill,” refers to handling strong updates, i.e., whether a statement

is allowed to destroy the dataflow facts created by another statement. Besides this binary choice,

intermediate levels of “kill” can be defined—e.g., strong updates can be allowed for scalar variables

but neglected if the location being written is the result of a pointer dereference, etc.

Combining different values for each dimension gives different analysis variations. Some of

these variations lead to interesting sweet spots, as discussed later in this chapter and in Chapter 4.

1For this type of analysis, it is irrelevant whether a given statement σ1:x=&y occurs after another statement σ2:*x=z

in the code. The dereference of x in σ2 still reads the value set by σ1, even though σ1 does not affect σ2 at runtime.

CHAPTER 3. FINER-GRAIN ANALYSIS DIMENSIONS 34

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.2: Each analysis variation can be seen as ignoring different aspects of the code, or alterna-

tively, modifying the program’s original semantics. In (a) the program is considered exactly as given

(filled rectangles express strong updates); this gives the point in (b). In (c) everything is neglected

except the program statements. The resulting analysis point is shown in (d). Ignoring the conditions

is expressed by replacing the test by a “parallel” construct in (e) and (g). The semantics for (i) does

not consider strong updates; the resulting analysis is shown in (j). Ignoring statement ordering and

kill, but considering statement guards gives (k) and (l).

CHAPTER 3. FINER-GRAIN ANALYSIS DIMENSIONS 35

Given a program P, each pointer analysis variation can be also seen as ignoring different aspects

of the code or, alternatively, modifying P’s original semantics. Intuitively, the more elements are

ignored, the cheaper the analysis. Figure 3.2 illustrates several such points of view (control-flow

graphs are used to represent fragments of programs). We use a filled rectangle to express the fact

that strong updates are considered; empty rectangles mean the opposite.

Figure 3.2(a) shows a program fragment. An analysis that fully considers statement order, strong

updates, and branch correlations, strives at analyzing the program exactly as it is given. In our 3-D

space, such analysis is located at the point highlighted in Figure 3.2(b), and it is the most expensive.

On the other hand, ignoring all three elements is akin to restructuring the program as shown in

Figure 3.2(c), (i.e., a “bag” of statements), and corresponds to the point illustrated in Figure 3.2(d).

Interestingly, such analysis is not the least expensive, contradicting the intuition.

Embracing strong updates and statement ordering, but neglecting conditionals, can be viewed as

replacing tests with fictitious “parallel” constructs such as illustrated in Figure 3.2(e), and represents

the point in Figure 3.2(f). This means that the relative order of the statements in opposite branches

of an if statement is non-deterministic; within the true and false branches, however, the program

order is observed.

From the scenario in Figure 3.2(e), eliminating strong updates (Figure 3.2(g)) leads to the point

in Figure 3.2(h); restoring conditional expressions results in Figure 3.2(i) and 3.2(j), and ignoring

statement ordering once again gives Figure 3.2(k) and 3.2(l), which can be viewed as a order-

insensitive, kill-insensitive but condition-sensitive analysis (each statement has its guard).

Each of these analysis variations gives a different points-to solution for the same input program.

Assuming we build a summary solution instead of a program-point specific solution, Figure 3.3

shows the analysis results for the same six points in the analysis space. Each solution represents

the set of valid dataflow facts that summarize the procedure. The specific notion of valid changes

according to the analysis variation being considered, and will be formalized in Section 3.2.

In Figure 3.3(d), a traditional Andersen-style [2] flow-insensitive solution is obtained by ignor-

ing everything but the program statements themselves. At the other extreme, the more precise graph

in Figure 3.2(b) is achieved when all elements are considered. For instance, the dereference of p at

statement *p=&w cannot read the address of r because p=&r occurs in the opposite branch. Also,

statement p=&x is killed by p=&q prior to statement *p=&w, and therefore q is the only location

CHAPTER 3. FINER-GRAIN ANALYSIS DIMENSIONS 36

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.3: Points-to summaries for the six analysis variations of Figure 3.2.

CHAPTER 3. FINER-GRAIN ANALYSIS DIMENSIONS 37

that can be set to point to w.

When program conditions are neglected (Figure 3.3(e)), the fictitious parallel construct makes

the two branches conceptually execute simultaneously, with a non-deterministic synchronization

except for the control flow join. This means *p in statement *p=&w can read either q or r, and

thus both points-to relations q; w and r; w become valid. Similarly, because the right-hand side

in z=p can read the value set by p=&q, statement *z=&t also sets q to point-to t. The resulting

graph is shown in Figure 3.3(f).

By further removing strong updates (Figure 3.3(g)), the deference of p in *p=&w can also refer

to the address of x, and make that variable to point-to w as well. The solution for Figure 3.3(g) is

shown in Figure 3.3(h).

In Figure 3.3(i), only kill information is removed from the program’s original semantics from

Figure 3.3(a), resulting in the graph of Figure 3.3(j). In Figure 3.3(k), statement ordering and strong

updates are ignored, but predicates can be used to disassociate mutually exclusive operations. The

result is depicted in Figure 3.3(l).

Note that choosing one of these analysis variations over another may impact the outcome of

a client analysis. Assume that a false-positive-suppressing tool needs to “prove” (similar to Sec-

tion 1.2.1) that *z=&t does not write to variable q. Then, only solutions (b), (j), and (l)—i.e., their

respective analysis variations—would be effective. In this case, the reason is because these analyses

consider the conditions in the code and hence are able to separate mutually exclusive branches. In

contrast, the other variations include the spurious information that z points-to q.

Similarly, suppose we need to show that statement *z=&t does not write to variable r. Then,

solutions (b), (f), (h), and (j) are effective—this time because statement order is taken into account

by each of them. Without order information we have to assume that z may point-to r and thus

statement *z=t potentially affects that variable.

Fundamentally, the general mechanism to compute points-to sets is the same for any of these

analysis variations (including the classical ones): for each pointer dereference in the code, we need

to determine which pointer assignments could have set its value. Different analyses answer this

questions differently. The exact answer is undecidable in general, and thus any effective analysis

is an over-approximation. In the 3-D analysis space, different approximations can be obtained

depending on which analysis variation is considered. To compute such solutions, we show a general

CHAPTER 3. FINER-GRAIN ANALYSIS DIMENSIONS 38

mechanism that is built upon a graph representation we have dubbed the Assign-Fetch Graph (AFG),

which allows us varying levels of precision by allowing different assignment/dereference matchings.

Details are given in Section 3.2.2.

To conclude this high-level overview, Figure 3.4 presents the potential placement of traditional

pointer analyses in our 3-D analysis space.

Figure 3.4: Points for traditional pointer analyses.

A traditional flow-insensitive analysis corresponds to the origin of the analysis space, since

(1) the program is considered as a bag of statements; (2) conditions in the code are simply assumed

nonexistent; (3) only weak updates are modeled. A flow-sensitive analysis considers strong updates

and statement execution order, and can be seen as replacing each conditional expression by a fresh

variable—mutually exclusive statements on opposite branches of an if-statement do not interfere

with each other, although distinct conditionals are always unrelated (we informally depict this by

adding some degree to the vertical axis). A (guarded form of) path-sensitive pointer analysis is

placed at the corner of the “cube” in which all three characteristics are fully considered. As we go

towards that corner starting from any point, accuracy always increases. Interestingly, we will show

that there are points in this analysis space that do not adhere to the intuitive trade-off “increased pre-

cision, decreased efficiency.” We will demonstrate cases where the increased accuracy is obtained

faster than a baseline analysis that was assumed to be cheaper.

CHAPTER 3. FINER-GRAIN ANALYSIS DIMENSIONS 39

3.2 Basic analysis framework

This section introduces the framework upon which the analysis space of Section 3.1 unfolds. We

describe in Sections 3.2.1 and 3.2.2 two main data structures, the Flow Graph and the Assign-Fetch

Graph (AFG), which are manipulated by the analysis. Chapter 5 will provide a detailed treatment

of the latter.

Classical pointer analysis techniques develop their algorithms and representations around higher

level structures, such as the control-flow graph of a function. They commonly use the following

four canonical statements: x=&y, x=y, x=*y, and *x=y, and a collection of inference rules covers

any syntactically correct program. To break up pointer analysis into more primitive elements, our

framework is based on a different view:

• a functional (dataflow) representation of the program, called the Flow Graph, is used as the

input for the analysis. The flow graph is BEAM’s intermediate representation of programs.

• loops in the code are substituted by tail-recursive procedures, and hence the loop body is

replaced by a function call. Thus, each procedure is translated into one or more flow graphs

(one for each loop), each of them being an acyclic representation.

• the control structure of a procedure is manipulated as a partial order “v” on its statements.

• conditions imposed by if statements are mapped into guards under which operations execute—

every relevant operation on the AFG is guarded by a boolean expression.

In our pointer analysis, we deal with an abstract definition of a procedure as a partially ordered

set (Σ,v) of statements Σ = {σ1,σ2, . . .}, where each statement σi has a guard gi representing the

control predicate under which σi executes. Also, instead of defining the analysis in terms of the

usual canonical statements, the representation deals with individual memory accesses: assignments

and memory dereferences (fetches).

Figure 3.5 illustrates the general flow from source code to the Flow Graph and AFG represen-

tations, and then we describe each in more detail.

CHAPTER 3. FINER-GRAIN ANALYSIS DIMENSIONS 40

Figure 3.5: The source code for a function, its flow graph, and AFG.

3.2.1 Flow graph

The flow graph is the intermediate representation of programs developed at IBM that is used by the

BEAM tool. As mentioned in Section 3.1, each function in the source program is first translated

into one (or more) graphs that have a dataflow, functional style.2 The purpose of this translation is

to get the input program into the most suitable form for logical and program analysis. This section

overviews the basic structure of this representation; its full treatment is not publicly available at the

moment.

There is a classical way of drawing an algorithm as a graph: the flowchart. In a flowchart the

majority of nodes have an operator assigned to them, an incoming edge and one or more outgoing

edges. To execute a flowchart, one begins at the start node, execute the operators and follow the ar-

rows, making choices according to the results of if operators, possibly making loops, until reaching

the end node. A flow graph is akin to a flowchart in that its edges carry states of memory and its

nodes may update the input state of memory M to produce the output state of memory M′. How-

ever, the semantic rules of executing a flow graph are different. For instance, in a flow graph one

can simultaneously follow more than one path, delaying the “if..then” choice till the paths merge.

Multiplexor nodes (muxes) are used for this purpose, where data and control inputs are used to

select and propagate memory states.

2At a high level, they can be seen as a “hardware circuit” characterization of a function.

CHAPTER 3. FINER-GRAIN ANALYSIS DIMENSIONS 41

Formally, the Flow Graph is a directed acyclic graph where each node (referred to as a “gate”)

represents a particular operation to be performed on the input edges, such as storing a value in

memory. The output edges of a gate are grouped into nets. Figure 3.6 shows a generic representation

of a flow graph node (we will interchangeably refer to “nodes” and “gates” when no confusion

arises).

Figure 3.6: A generic flow-graph gate.

A flow graph is executed just in the same way as a logical circuit with not, and, and or gates.

Only, (i) instead of 0/1 signals, some edges carry the complete state of memory, which conceptually

includes the values of all global variables and the values of all variables local to the function. Edges

that carry states of memory are called control edges, shown as dotted lines in the figure that follow.

All other edges are referred to as data edges, represented by solid lines. All output control edges

that belong to the same net carry the same state of memory; and (ii) instead of Boolean and, or, and

not, the gates perform certain operations on the input states of memory so that when passing through

a gate the state of memory might change according to the semantics of the gate. We interleave the

relevant details of a flow graph with an example.

Figure 3.7(a) shows a C function, omitting variable declarations, while Figure 3.7(b) illustrates

a simplified flow graph representing the code. There are four types of nodes in this graph: host

nodes, representing entry and exit points of a procedure, assign nodes, representing changes of

memory, fetch nodes, representing reading from memory, and location nodes, representing program

variables. In particular:

• host: a flow graph contains two host nodes: the top host, representing the entry point of the

procedure, and the bottom host, representing the exit point. Multiple exits from a function

can be handled in the usual way, i.e., by introducing a unique exit point and re-directing to it

CHAPTER 3. FINER-GRAIN ANALYSIS DIMENSIONS 42

the multiple exits. The top host must only have output edges, and the bottom host has only

input edges. The output control net of the top host carries the state of memory at the time of

the function call (M1 in the figure).

• fetch: a fetch gate has one input control edge, carrying the current state of memory, one

input data edge, representing the address of memory to be fetched, and one output data net,

representing the value being fetched.

• assign: this gate has two input data edges, representing respectively an address and a value

to be stored at that address, one input control edge and one output control net. The state of

memory on the output control net is derived from the state of memory on the input control

edge by executing the assignment.

• location: each location node represents a program variable, and is associated with a constant

address such that the addresses of different location nodes do not overlap with each other.

Figures 3.7(c) and 3.7(d) show the formal meanings of FETCH and ASSIGN gates, respectively.

In this figure, M represents a memory state, M(x) is the value stored at address x while in state M,

and M′ = M{x 7→ v} is the new memory state obtained from M by storing value v at address x.

The graph in Figure 3.7(b) can be seen as as a low-level dismantling of the statements in Fig-

ure 3.7(a). An assignment statement is converted into an assign gate whose input data edges desig-

nate the left and right hand side expressions. A fetch gate is inserted to access the value of a variable

(in general, to access the value of an arbitrary address). For instance, the topmost fetch gate in Fig-

ure 3.7(b) represents the pointer dereference *z in the first statement of foo. The fetched value is

represented by the data net labeled n1. Each net in the flow graph of a function is given a unique

name.

Since the flow graph is simply an intermediate representation for the function, n1 represents an

unknown value—in Figure 3.7(b), fetching z at memory state M1 yields the unknown initial value of

z at function entry. To that initial value, the topmost assign gate writes the address of x to produce

the memory state M2. Then, assigning the address of v to variable z results in the memory state M3.

From there, z is fetched and the resulting location is assigned the address of y. The output memory

state, M4, is the memory state before the function returns.

CHAPTER 3. FINER-GRAIN ANALYSIS DIMENSIONS 43

foo()

{

*z = &x;

...

z = &v;

...

*z = &y;

}

(a) (b) (c) (d)

Figure 3.7: (a) a fragment of a C program omitting variable declarations, (b) the simplified flow

graph representing the program in (a), (c)–(d) the semantic interpretation of fetch and assign gates.

M is a memory state, M(X) is the value stored at address X in state M, and M′ = M{X 7→ v} is the

new memory state M′ obtained from M by storing value v at address X .

Figure 3.8 lists the four canonical statements used in pointer analysis and their respective flow

graph representations.

Consider the first canonical statement x=&y. Both the l-value “x” and the r-value “&y” are

locations, and the statement is modeled by a single assignment as shown in Figure 3.8(a). Note that

this statement does not read or change the contents of y.

By contrast, since the statement x=y does read the value of y, a fetch gate is introduced to read

these contents, which are represented by n1 in Figure 3.8(b). The assign gate in the same figure

writes the contents of y to location x. Similar reasoning can be applied to construct the other two

graphs in the figure.

The address being written to by an assign gate is referred as the “address net” of that gate.

Similarly, the “value net” represents the rhs of the assignment. Also, the address net of a fetch gate

corresponds to the address being fetched, and the value net is the output of the gate. Figure 3.9

CHAPTER 3. FINER-GRAIN ANALYSIS DIMENSIONS 44

(a) (b) (c) (d)

Figure 3.8: The conventional canonical statements and their respective flow graph representations.

M is a memory state, and M′ is a new memory state obtained after a memory change.

illustrates these notations using several scenarios. In general, a net can be connected to more than

one gate, e.g., the output net of location z in Figure 3.7. The right side of Figure 3.9 illustrates a

case where the value net of a fetch also serves as the address net for an assign. In the same figure,

location x is both the value net for one assignment and the address net for another.

Figure 3.9: The address net for an assign gate is the address being written to. The value net rep-

resents the right-hand side of the assignment. For a fetch gate, the address net is the address being

fetched, and the value net is the output of the gate.

Given Figure 3.8, it is straightforward to check that the flow graph in Figure 3.7(b) is a valid

representation of the program in Figure 3.7(a). One missing detail regards the program’s execution

order. In the original code, this is given by the control structure of the function, generally repre-

sented by its control flow graph; roughly, the interpretation for the flow graph is that of a topological

ordering of the gates (memory state and data edges taken into account). By construction, the exis-

tence of two statements i and j such that i appears strictly before j in the program text will at least

induce a memory state edge between the last low-level action of i and the first low-level action of

CHAPTER 3. FINER-GRAIN ANALYSIS DIMENSIONS 45

j. Assuming the contrary, i would not have any effect in the program state, and could therefore be

removed.

3.2.2 Assign-Fetch Graph

This section introduces the main data structure of our pointer analysis, and one of the contributions

of this dissertation. It will be explained in the context of BEAM’s flow graph, although it can be

made independent of such.

The Assign-Fetch Graph (AFG) for a function f is initially derived from f ’s flow graph G, and

it concisely represents the assignments and memory dereferences in G. The basic goal of pointer

analysis is to produce a transformed AFG that summarizes the pointer behavior of the function.

Depending on the value for each analysis dimension, a different “summary AFG” is obtained.

Unlike a points-to graph, whose nodes represent pointer variables and whose edges represent

points-to relations, the nodes in our AFG represent locations and values and edges represent reads

and writes to memory. Pointer analysis amounts to matching pointer dereferences (“fetch edges”)

to pointer assignments (“assign edges”). The AFG allows varying levels of precision by allowing

different matchings; a more selective matching (i.e., a more precise analysis variation within the

cube) may require more resources.

The AFG has a number of other features that makes it superior, specially for modular bug

finding, than traditional points-to graphs. For example, it allows us to infer points-to, unconstrained

alias, and mod analysis queries on the same representation; a single AFG can summarize a procedure

for any unforeseen calling context; from the AFG one can determine whether a pointer has been

dereferenced within a function; etc.

Our AFG is designed to let us compute what values a program might read from memory while it

is executing; since the program itself must have written these values, pointer analysis can be thought

of as an attempt to understand which writes could be seen by each read. One approximation is that

each write to a location can be seen by every read of that location, but this is usually an overapprox-

imation: a read and write may occur in different branches of a conditional, or a write might occur in

sequence after a read. Our analysis space enables us to approximate these relationships differently,

producing different pointer analysis algorithms; the AFG is the main data structure behind it.

CHAPTER 3. FINER-GRAIN ANALYSIS DIMENSIONS 46

In our implementation, AFG nodes correspond to flow graph nets, and AFG edges map to flow

graph gates. An assign edge represents a write to memory and a fetch edge represents reading from

memory. Figure 3.10 shows two basic rules used to convert flow graph operations into correspond-

ing AFG representations. The address and value nets of the assign and fetch gates are represented

by l1 and l2, respectively. Assign and fetch gates in the flow graph become assign and fetch edges

in the AFG (labeled ‘A’ and ‘F,’ respectively).

(a) (b)

Figure 3.10: Rules to construct the AFG from the flow graph (a) assign rule (b) fetch rule.

Each (relevant) net in the flow graph has a corresponding node in the function’s AFG. This is

illustrated by the long dashed arrows in Figure 3.11, which corresponds to the AFG for the flow

graph previously shown in Figure 3.7(b). The following subsection illustrates a simple example of

pointer analysis using the AFG.

Figure 3.11: The AFG for the flow graph of Figure 3.7(a).

CHAPTER 3. FINER-GRAIN ANALYSIS DIMENSIONS 47

3.2.2.1 An example

Figure 3.13(b) depicts the AFG for the C code in Figure 3.13(a). The first statement in Fig-

ure 3.13(a), *z=&x, stores the address of the global variable x at the address in z. We represent z

with the location node z, the dereference of z with the fetch edge F1, the address read from z with

the fetch node n1, the address of x with the location node x, and the write to *z with the assign

edge A2.

In our figures, we shade each fetch node as a reminder that we do not know its value when we

construct the graph. The basic question for pointer analysis then becomes, given a fetch, which as-

signs should it match? The AFG abstraction allows us to answer this question differently depending

on speed/precision trade-offs.

Answering this question is the goal of the resolution phase, which adds alias edges from fetch

nodes to location nodes to indicate what values could be fetched. Each fetch of the same variable

in a procedure generates a distinct fetch node, allowing the AFG to represent variables that take on

different values at different times.

x = &y; // A1

.. = x; // F2

Figure 3.12: The simple case: x is assigned in A1 and fetched in F2; an alias edge indicates that n

can be an alias for y. Self-loops represent trivial aliasing of locations.

Figure 3.12 shows the simplest alias case: we add a (dashed) alias edge from n to y to indicate

fetching x (F2) after assigning it the address of y (A1) returns the address of y. The self-loops

indicate, e.g., the address of x is itself (trivial aliasing of locations nodes). We omit them in all

other figures.

Adding aliases from fetch to location nodes produces a resolved AFG. Using different analy-

sis variations generate different resolved AFGs, such as Figures 3.13(c) and 3.13(e). The former

is a traditional flow-insensitive view of the program, where a fetch from a location matches any

assignment to the same location; the latter is a more precise result obtained when considering state-

ment ordering and mutually exclusive operations, which leads to a smaller number of fetch/assign

CHAPTER 3. FINER-GRAIN ANALYSIS DIMENSIONS 48

matchings. E.g., because they appear in separate branches of a conditional, *z=&y and z=&w are

mutually exclusive, so fetch F5 cannot see assign A4 and there is no alias edge from n5 to w in Fig-

ure 3.13(e). Also, the first fetch of z in the code (F1) can only see the (unknown) initial value of z

coming from the environment (represented by z1). Thus, n1 to z1 is the only alias edge.

foo()

{

*z = &x; // F1 A2

z = &v; // A3

if (...) {

z = &w; // A4

} else {

*z = &y; // F5 A6

}

}

(a)

abstract

into

an

assign-fetch

graph

→

(b)

flow-insensitive

analysis

↗

↘

condition and

order-sensitive analysis

summarize

→

(c) (d)

summarize

→

(e) (f)

Figure 3.13: A simple illustration of pointer-analysis using AFGs. A procedure (a) is first abstracted

as an assign-fetch graph (b), whose nodes represent addresses and values and whose edges represent

memory operations. Several approximations are possible for the set of alias edges: a flow-insensitive

analysis (c), where potential aliases are calculated ignoring statement order to produce a summary

(d); considering execution order and mutually exclusive operations (e) to produce a more accurate

summary (f).

Figure 3.14 shows AFG fragments for the four canonical statements. For x=&y, we represent

the lvalue x and the rvalue &y as location nodes and connect them with an assign edge indicating x

points to the memory location for y. For x=y, a fetch node n1 is introduced to represent the contents

of y, which are written to x through an assign edge. The expression *y in the right-hand side of an

assignment requires two pointer dereferences (Figure 3.14(c)), whereas *x in the left-hand side is

converted in to a single fetch. The assign edges in these cases should be clear.

CHAPTER 3. FINER-GRAIN ANALYSIS DIMENSIONS 49

(a) (b) (c) (d)

Figure 3.14: The canonical statements and their respective Assign-Fetch Graph representations.

3.2.2.2 Pointer Alias analysis

In alias analysis, executing statement p=&r creates the alias relation 〈*p,r〉, meaning *p is an alias

for r. Computing points-to sets using the AFG amounts to determining the locations for which a

fetch node could be an alias. We represent such relations by adding directed alias edges to the AFG;

each alias edge corresponds to a potential alias relation in the code. In Figure 3.12, the dashed edge

(n, y) indicates the alias relation 〈*x,y〉. Each (non-trivial) alias edge starts at a fetch node and

terminates at a location node.

The central goal of pointer analysis is to determine a small set of alias edges that includes every

possible one (i.e., remains sound). While the most conservative over-approximation is to proclaim

that every fetch node aliases every location, such a gross overapproximation would not be very

helpful. Instead, the goal is to produce analysis results that are not hard to compute and that have

as few aliasing relations as possible (namely, the minimum number of alias edges that give a sound

result). In the following sections, we show how using different analysis variations within the 3-D

space produce different minimal sets of alias edges for a given AFG. Each such set corresponds to

a different points-to solution, with distinct precision levels.

3.2.3 Determining aliases

Determining aliases between fetch nodes and location nodes is the main step in pointer analysis on

AFGs. In this subsection, we discuss a general rule of inference that will be specialized to create

different analyses with varying levels of precision; that the AFG lends itself to such variants is one

of its key strengths. A second strength is its ability to summarize procedures so as to fulfill the

requirements of modular bug finding listed in Section 1.3.3. This will be detailed in Chapter 5.

Let x, y,... denote location nodes, n1,n2, ... denote fetch nodes; and α,β , ... denote arbitrary

CHAPTER 3. FINER-GRAIN ANALYSIS DIMENSIONS 50

nodes. We write al(α) to indicate the set of nodes that α can be an alias for. In Figure 3.12,

al(n) = {y}, al(y) = {y} and al(x) = {x}.

An alias edge from a node α to a node x indicates x ∈ al(α); an alias edge’s target is always a

location. We assume variables are distinct, so a location node only aliases itself: al(x) = {x}.

A fetch node n can be an alias for many locations; computing them is the main purpose of any

analysis. Because a fetch can only return a value that the program wrote to memory, any alias of a

fetch node must be the target of an assign edge (we model the initialization of global variables with

assign edges).

We write affects(σA,σF) to indicate the assign edge σA could write a value that fetch edge σF

could read. This relation can be many-to-many: one assignment could be seen by many fetches, and

a fetch might see many assignments.

The relation affects is an “oracle” that, given a pair assign/fetch, determines whether or not the

pointer assignment σA is seen by the fetch σF . As with any other useful property about computer

programs (Rice’s theorem), affects is not effectively computable, and therefore any pointer analysis

must be an approximation of such relation. Different approximations result in different sets of

alias edges for the same initial AFG, thus leading to different pointer analysis solutions. The more

accurate the approximation, the more accurate the analysis. For a sound analysis, it should always

be an over-approximation, i.e., the approximation should always be true when the relation is, but

not necessarily vice versa.

When an assignment affects a fetch, the fetch can return anything written by the assignment, so

aliases for the fetch must include all aliases of the assignment’s right-hand side. Put formally,

σA : γ
A−→β σF : α

F−→n affects(σA,σF)

al(β)⊆ al(n)
[ALIAS]

where γ
A−→β indicates an assign edge from γ to β and α

F−→n indicates a fetch edge from α to n.

The solution to pointer analysis is the minimal set of alias edges that satisfies this rule.

Consider the previous example in Figure 3.3. The assignment p=&r affects the fetch of p in

statement *p=&w if condition c is neglected (e.g., Figure 3.3(c)), but this does not happen in case

we consider that the two statements are mutually exclusive.

Unfolding the 3-D analysis space of Section 3.1 corresponds to providing different approxima-

CHAPTER 3. FINER-GRAIN ANALYSIS DIMENSIONS 51

tions for the affects relation. The next subsection presents an approximation that gives the origin of

the analysis space, and the subsequent sections show how the three axis unfold from there.

3.2.4 Space origin—Flow-Insensitive Analysis

Section 3.2.2 described pointer analysis of arbitrary precision that depends on the uncomputable

affects relation. In this section, we describe one possible approximation to affects that gives the

origin of the analysis space, which as mentioned corresponds to an Andersen-style flow-insensitive

analysis. We also describe the main steps of any analysis: building an initial AFG, adding alias

edges to obtain a resolved AFG, and removing information that’s not visible to callers to produce

the summary AFG. Consider the function in Figure 3.15(a). Assume all variables mentioned in the

code are globals.

foo()

{

*z = &x;

...

z = &v;

...

*z = &y;

}

(a) (b)

(c) (d)

Figure 3.15: (a) A function and (b) its initial AFG, (c) its resolved AFG, (d) its summary AFG for

a flow-insensitive analysis.

CHAPTER 3. FINER-GRAIN ANALYSIS DIMENSIONS 52

We first generate the initial AFG for foo depicted in Figure 3.15(b). Nodes and edges are

created for each pointer-related statement in the procedure following the patterns of Figure 3.14.

The next step is to determine aliases between fetch nodes and location nodes to obtain the

resolved AFG, shown in Figure 3.15(c). In this example such aliases were added by considering no

order, condition or kill information; hence determining aliases merely involves multiple instances of

the simplest case in Figure 3.12. For example, alias edge (n1, v) is obtained due to operation edges

z
F−→n1 and z A−→v, respectively fetching from and assigning to variable z. Alias edge (n2, v) is

derived similarly, due to edges z F−→n2 and z A−→v.

Node z1 in Figure 3.15(c) corresponds to the initial value of z, lazily created by the analysis to

represent the environment initialization. This is represented by the assign edge labeled Az that sinks

at z1 (note that z1 is a location node). Accordingly, alias edges (n1, z1) and (n2, z1) are added to

express the fact that dereferencing z also yields its initial value at function entry.

The final step is to produce the summary AFG depicted in Figure 3.15(d). Any information

that would be invisible to a potential caller is deleted from the resolved AFG, including local and

temporary computations, as well as all fetch nodes. Before deleting such nodes, we transfer their

effects to nodes that will remain. In general, if an assignment is made to a fetch node n, and n can

be an alias for a location node n′, 3 the assignment is equivalent to one to n′. In Figure 3.15(d),

four assign edges are derived. For instance, n1 in Figure 3.15(c) is an alias for both v and z1, and

there is an assignment edge n1
A−→x. Therefore, assign edges v A−→x and z1

A−→x are added in

Figure 3.15(d). The same rationale follows for n2, generating assign edges v A−→y and z1
A−→y.

Finally, fetch nodes n1 and n2 are removed and node z1 is “demoted” to a fetch node to indicate

the dereference of z; accordingly, the “initial value edge” labeled Az in Figure 3.15(c) is demoted

to a fetch edge Fz in Figure 3.15(d). The graph in Figure 3.15(d) summarizes the effects of the

procedure on pointers, including the fact that variable z is dereferenced and the resulting value is

assigned the addresses of both x and y.

The computation of alias edges in this example has, as its only premise, the fact that the locations

fetched and assigned are aliases. For instance, the alias edge (n1, v) is created because z is a

(vacuous) alias for z. Define the predicate aliases as

aliases(α,γ) ⇔ α = γ ∨ al(α)∩al(γ) 6= /0.

3n′ proper location node or n′ initial value node not yet demoted, see Section 5.1.

CHAPTER 3. FINER-GRAIN ANALYSIS DIMENSIONS 53

This says nodes α and γ are aliases for the same thing if they are identical or if they are aliases

for some common location node. This relationship is a flow-insensitive approximation of the exact

affects(σA,σF), so [ALIAS] can be approximated by

σA : γ
A−→β σF : α

F−→n aliases(α,γ)

al(β)⊆ al(n)
[ORIGIN-ALIAS]

Because this rule is recursive (the premise refers to the aliases relation, which depends on al,

which is to be computed), finding the minimal resolved AFG requires computing a fixed point. Our

implementation uses the usual worklist algorithm that iterates to convergence (Chapter 5).

Figure 3.16 illustrates the [ORIGIN-ALIAS] rule graphically. Existing alias relationships are

shown with thin dashed lines and the rule generates the edges in bold. Figure 3.16(d) is the most

generic case; Figure 3.16(a) is the special case when α is an arbitrary node and β =y; Figure 3.16(b)

is the special case when α = n0, γ = x and β = y; and Figure 3.16(c) is the special case when α is

an arbitrary node and β is a fetch node n1; assume al(n1) = {y} for this figure.

Fetch from a node Fetch from a fetch node

al(y) = {y} ⊆ al(n)

in (a) and (b)

(a) (b)

al(n1) = {y} ⊆ al(n)

in (c)

(c) (d)

Figure 3.16: Four cases of applying the [ORIGIN-ALIAS] rule. A node is fetched in (a) and (c)

(α = γ); the result of a fetch is itself fetched in (b); (d) is the general case.

CHAPTER 3. FINER-GRAIN ANALYSIS DIMENSIONS 54

3.2.5 Unfolding the Partial Order Axis

The [ORIGIN-ALIAS] rule ignores the fact that assignments and fetches in a program happen in

sequence: later assignments cannot be seen by earlier fetches. This leads to overly approximate

results, arriving at more aliases than actually possible. For example, in Figure 3.15, the first deref-

erence of z can only see the initial value of z, since it is the first statement in the procedure. Thus,

the only possible alias edge from n1 is to z1. The [ORIGIN-ALIAS] rule also introduced the alias

edge from n1 to v.

This section refines the affects relation by considering the (partial) order of the statements in

the program4. This gives a different answer to the question “which assignments should a fetch

match?”—it reduces the number of such matches resulting in more accurate analysis results.

Figure 3.17 illustrates the matching of fetch and assign operations when considering the state-

ments partial order. Figure 3.17(a) is a fragment of the control-flow graph of a program showing

some assignments and fetches. For simplicity, assume that these operations are performed on the

same program variable, so that aliases is always true. For the sake of presentation only, dashed

arrows have been added to the control-flow graph—a dashed arrow from a fetch Fi to an assign A j

indicates that Fi resolves to A j. Figures 3.17(a) and 3.17(b) represent the analysis results when the

[ORIGIN-ALIAS] rule is applied.

Figure 3.17(c) represents the same program fragment of Figure 3.17(a), but the dashed arrows

indicate the matching of fetches and assignments when execution ordering is considered. For in-

stance, note that fetch Fi will only resolve to assignments (omitted) occurring before the code frag-

ment shown, and assignment An does not affect any of the fetches depicted since it happens later.

Let us abuse our notation slightly and define a binary relation “v” between two operations.

Namely, σA v σF holds in case the assign σA occurs before fetch σF . Then, the refined affects

relation which unfolds the partial order axis of our analysis space is defined as

σA : γ
A−→β σF : α

F−→n aliases(α,γ) σA 6w σF

al(β)⊆ al(n)
[PO-ALIAS]

Informally, in addition to α and γ being aliases, the [PO-ALIAS] rule also requires that the

assign σA does not occur after the fetch σF in the execution order. The idea of “unfolding” the

4Formally, the partial order is w.r.t. the atomic operations of assign and fetch.

CHAPTER 3. FINER-GRAIN ANALYSIS DIMENSIONS 55

(a) (b)

(c) (d)

Figure 3.17: Ordering information reduces the number of alias edges. (a) and (c) are fragments of

the control flow graph of a program. (b) The resolved AFG using the [ORIGIN-ALIAS] inference

rule. (d) The resolved AFG when the [PO-ALIAS] rule is applied.

horizontal axis is that different approximations to the execution order can be given: from a “flat”

set of statements, to a quick-to-compute total order, to a complex partial order taking into account

conditionals and data, etc. Each of these approximations give a different answer regarding the

relative order of a pair of statements—the tighter the approximation, the more accurate the results.

Chapter 4 examines some approximations that lead to interesting algorithms for pointer analysis.

Figure 3.17(d) shows the result of applying the [PO-ALIAS] inference rule to the control-flow

graph fragment, where the program’s “true” partial order is considered. E.g., Fm matches Ak and A j

because both assignments precede it; Fi does not match any of A j, Ak, and An because all of these

assignments happen after Fi. Figure 3.2(h) showed the placement of this point in our analysis space.

CHAPTER 3. FINER-GRAIN ANALYSIS DIMENSIONS 56

Note that the [PO-ALIAS] rule does not require the fetch to occur after the assignment, or

σA v σF , because a given pair of statements might be not comparable under the partial order. This

is the case with Fl and Ak in Figure 3.17(c). In order to obtain an answer from the “v” relation,

[PO-ALIAS] requires instead that σA 6w σF , which is true in case σA and σF are not comparable. As

mentioned in Section 3.1, we can interpret the [PO-ALIAS] rule by replacing conditional expressions

with fictitious parallel constructs—from this point of view, there is no well-defined order between

Fl and Ak in our example. To be able to fully disassociate Fl from Ak we will need to consider the

conditions under which they occur (Section 3.2.6).

Also note that the [ORIGIN-ALIAS] rule is an (over)approximation of the [PO-ALIAS] rule where

“σA 6w σF” is proclaimed true for any given pair σA and σF . Intuitively, this means that the fixed-

point obtained by [PO-ALIAS] is smaller than that of [ORIGIN-ALIAS]. Given an initial AFG, the

iterative process of adding alias edges until convergence terminates earlier for [PO-ALIAS], which

means a more precise, and in some cases more efficient, analysis.

To compute the relation “6w” for the [PO-ALIAS] rule, statement ordering information is ob-

tained from the flow graph data structure presented in Section 3.2.1. There are basically three ways

to implement this: (1) access the flow graph and the AFG data structures simultaneously during

analysis, (2) augment the analysis framework with an additional data structure whose sole purpose

is to keep order information, or (3) augment the AFG such that it is the only data structure needed

after a setup phase. We discuss the latter in Chapter 4.

3.2.6 Unfolding the Conditions Axis

In this subsection, we enhance our analysis space by using program conditions as guards stating

under what conditions a fetch or assign occurs in the AFG. Guards contribute to the precision

of the analysis; for example, a fetch is not matched to an assign if they have guards that cannot

simultaneously hold. Guards also specify under what conditions an alias occurs; in this case, the

guard is associated with the alias edge, and is derived from the corresponding pair(s) of assign and

fetch edges responsible for the aliasing.

Consider the example described in the previous section. Figure 3.18(a) shows the control-flow

graph fragment used earlier, with the difference that program conditions have been taken into ac-

count in addition to considering the statements partial order. Fetch Fl is not affected by assign Ak

CHAPTER 3. FINER-GRAIN ANALYSIS DIMENSIONS 57

because the two operations are independent. The corresponding point in the analysis space was

depicted in Figure 3.2(j).

(a) (b)

Figure 3.18: Program predicates in the form of guards reduces the number of alias edges even

further. (a) The fragment of the control flow graph used in Section 3.2.5, with the difference that

conditions are taken into account in addition to the program’s partial order, (b) the resulting resolved

AFG.

Assume that the left side of the diamond corresponds to the true branch. Note in particular the

alias edge in Figure 3.18(b) derived by matching Fl and A j. Although A j occurs unconditionally,

the guard for the alias edge is ¬c because Fl only executes if c is false. Guards on alias edges are

derived from guards in the operation edges, and they state under what conditions the alias will occur.

If the program’s partial order is ignored, but not the guards, we move to the analysis point of

Figure 3.2(l), and the analysis results are as shown in Figure 3.19.

Figure 3.19: The analysis solution when considering guards but not the program’s partial order.

The inference rule that includes partial order information and guards can be written as:

CHAPTER 3. FINER-GRAIN ANALYSIS DIMENSIONS 58

σA : γ
A−→β σF : α

F−→n aliases(α,γ) σA 6w σF consistent(σA,σF)

∀y ∈ al(β) , gσF ∧C (α,γ)∧gσA ∧C (β ,y)⊆ C (n,y)
[GUARDED-ALIAS]

where consistent(σA,σF) means that the assignment σA occurs under a predicate which is consistent

with the guard of σF . More precisely, the check for consistency also includes the predicates on the

alias edges connecting α and γ , and β and y. The illustration in Figure 3.20 helps explaining the

elements of this inference rule.

Figure 3.20: To add an alias edge, the guard C (n,y) must not evaluate to false.

This figure shows a fetch edge under a guard gF = c1 and an assign edge subject to predicate

gA = c6. The source nodes for each edge, α and γ , are aliases for each other under the guard

c2∧ c3∨ c4∧ c5. This is expressed in the inference rule by the notation C (α,γ). Similarly, the

condition for which β is an alias for y, C (β ,y), is represented by c7. Thus, the predicate for which

n becomes an alias for y is expressed by gF ∧C (α,γ)∧ gA ∧C (β ,y), or c1 ∧ (c2 ∧ c3 ∨ c4 ∧ c5)∧

c6∧ c7. If there is more than one possible way that n can alias with y, the resulting guard contains

a disjunction of these different aliasing possibilities. This is represented by the “⊆” in the rule.

Note that an alias edge is added by the [GUARDED-ALIAS] inference rule only if the expression

gσF ∧C (α,γ)∧ gσA ∧C (β ,y) does not evaluate to false. A false condition means no aliasing. In

other words, the rule adds alias edges to the graph by assigning the conditions under which such

aliasings occur. Also note that consistent(σA,σF) is obtained by computing gσF ∧C (α,γ)∧gσA .

As with the program’s partial order, different approximations can be given to program predicates

as well as to the results of the above Boolean operations. A widening [22] operator can be defined

such that, e.g., the “or” of two predicates is widened to true. This is one of the mechanisms we use

in our implementation, controlled by a parameter.

CHAPTER 3. FINER-GRAIN ANALYSIS DIMENSIONS 59

3.2.7 The kill Axis

This section presents an integrated analysis model, incorporating the kill axis with the other two

coordinates, completing the analysis space introduced in Section 3.1. The model presented here is

a complex one, in which to determine whether a pointer assignment has been killed by the time the

pointer is read, the analysis has to rely on the predicates in the code as well as statement ordering.

From this perspective, the kill axis is not orthogonal to the other two—indeed, without ordering

information we cannot ascertain whether a statement σ1 kills the dataflow facts generated by another

statement σ2. In Chapter 4 a simplified (and less precise) modeling for strong updates is presented

in which only execution order is considered.

The most conservative answer is to say that no assignment is ever killed. This is the fallback an-

swer in case ordering information is unavailable or imprecise. However, the ability to rule out some

of the assignments with respect to a given fetch increases the precision of the analysis. Continuing

with our running example, Figures 3.21(a) and 3.21(b) show the fetch/assign matchings and alias

edges generated in case the analysis is able to determine that assignment A j is killed prior to fetch

Fm. Compare this solution with the graph in Figure 3.17(b).

(a) (b)

Figure 3.21: Being able to determine kill information reduces the number of aliases even further In

Figure 3.18(a) Fm resolved to A j.

Traditionally, strong updates are intimately related to program-point specific analyses, although

a summary analysis can model such destructive updates and simply consider the set of relations at

the exit of the procedure as the function summary. The latter is the approach described here.

CHAPTER 3. FINER-GRAIN ANALYSIS DIMENSIONS 60

Let the initial AFG G for a procedure P to have N nodes and M assignments. Recall from

Section 3.2 that the relation al for a given node α was the set of nodes that α could be an alias for.

Each element of al(α) was depicted as an alias edge. In the generalized case presented here, al(α)

is a vector of size N, where each cell of this vector corresponds to a distinct node of G. The contents

of a cell in al(α) are the control predicates under which α represents the node corresponding to

the cell. Thus, a cell containing f (false) means that α is not an alias for that node. Of course, the

vector al(α) when α is a location node has a single cell containing t (true) and all the remaining

cells containing f, since a location node can only be an alias for itself.

Moreover, let each assign edge Ai ∈ G to have a NxM characteristic matrix Ki. Each row in

this matrix corresponds to a distinct node of G, and each column corresponds to one of the M

assignments. The i-th column on matrix Ki is the very assignment represented by edge Ai, and it is

treated specially.

To illustrate, Figure 3.22(b) shows the resolved AFG for the code in Figure 3.22(a). Instead of

adding alias edges to the AFG, the resolution phase calculates the matrices Ki and vectors al, and is

composed by two assign rules and one fetch rule, as explained later.

The indices on the assign edges are given w.r.t. the order on the statements in the code, which

form the lattice in Figure 3.22(a). An arbitrary choice is made between true and false branches.

Note that each matrix Ki actually starts with the i-th column. This is because all assignments l such

that l < i cannot affect assignment i, and thus the irrelevant columns can be discarded.

The interpretation for the matrices Ki is as follows. The special i-th column (shaded in each

matrix) contains, for each row j, the conditions that must hold for assignment Ai to assign to node j.

Although an assign edge that has a location node as its source can only assign to that location,

an assign edge with a fetch node as its source can represent more than one actual assignment to

memory. In that case, each distinct assignment may occur under a particular control condition.

For example, the leftmost, topmost cell for matrix K1 in Figure 3.22(b) says that variable x is

unconditionally assigned at statement A1. Of course, no other location can be assigned by A1, and

the remaining cells of the first column are all false.

The remaining columns of K1 refer to the “survival” of assignment A1. Precisely, each column

i > 1 refers to the conditions that must hold for A1 to survive assignment Ai, ∀ Ai A A1. For example,

because A2 executes only if c is true, assignment A1 is not clobbered by assignment A2 only if the

CHAPTER 3. FINER-GRAIN ANALYSIS DIMENSIONS 61

(a) (b)

Figure 3.22: (a) A code fragment. (b) Its resolved AFG.

execution takes the other branch, i.e., only if c is false. Thus, the matrix cell on row x, column A2

on matrix K1 is marked ¬c. A similar situation happens with A3, and the corresponding cell (row x,

column A3) is marked with c. Assignment A4 does not write to variable x, and thus the (vacuous)

condition for A1 to survive A4 is t.

Note that column A2 on matrix K1 is the negation of column A2 from matrix K2; the same

happens with columns A3 and A4 on matrix K1 with respect to matrices K3 and K4, respectively.

The interesting case occurs at matrix K4, which corresponds to assignment A4 whose source

node is n1. Note that A4 assigns to variable v in case c is true, and it writes to u in case c is false—

n1 is an alias for v if c but an alias for u if ¬c. In the graph of Figure 3.22(b), the assign edge

labeled A4 represents both assignments. Such information is extracted from al(n1), which is used

in the computation of K4. The formal rules and definitions to derive the above facts are shown in

Figure 3.23.

The notation σi : α
AKi

i−→β means an assignment statement σi, represented in the AFG by assign

edge Ai from node α to node β , whose characteristic matrix is Ki. The symbol Ki[σi] in the inference

CHAPTER 3. FINER-GRAIN ANALYSIS DIMENSIONS 62

σi : α
AKi

i−→β

Ki[σi] = guard(σi)∧al(α)
[ASSIGN]

(a)

σi : α
AKi

i−→β @ σ j : γ
A

Kj
j−→δ

Ki[σ j] = ¬K j[σ j]
[KILL]

(b)

σi : α
AKi

i−→β 6A σ j : γ
F−→n1

[Ki
σ j
σi .al(γ)]∧al(β)⊆ al(n1)

[FETCH]

(c)

Figure 3.23: (a) The assign rule (b) The kill rule (c) The fetch rule.

rules refers to the column labeled σi in matrix Ki, and the expression guard(σi)∧ al(α) returns a

vector of size N in which al(α) is and’ed with the (scalar) guard under which σi occurs. We slightly

abuse the notation and use “σi” to mean both an assignment statement and the label for a column in

a given matrix—the meaning should be clear from the context.

The inference rule of Figure 3.23(a) is used to compute the special column σi in matrix Ki

for all assignments σi. The straightforward interpretation for this rule is as follows. To compute

the conditions under which σi : α
A−→β assigns to a node γ in the graph, we need to compute the

conditions for which α is an alias for γ and combine this result with the guard for σi.

Writing σi : α
AKi

i−→β @ σ j : γ
A

K j
j−→δ means that assignment σi with matrix Ki is comparable

and smaller, w.r.t. the program’s partial order, than assignment σ j with matrix K j. The notation

Ki[σ j] = ¬K j[σ j] means the negated form of column σ j of matrix K j is copied to column σ j of Ki.

The inference rule of Figure 3.23(b) is used to compute the predicates for which an earlier

assignment σi is not clobbered by a later assignment σ j (thus the negation in the conclusion of

the rule). This rule can only be applied if σi and σ j are comparable under the program’s partial

order. Basically, this rule computes the remaining, non-special, columns in all the matrices, such as

columns A2, A3 and A4 in matrix K1 of Figure 3.22(b). Note that column A3 in matrix K2 has been

invalidated, given that assignments σ2 and σ3 are independent and not comparable.

CHAPTER 3. FINER-GRAIN ANALYSIS DIMENSIONS 63

In the rule of Figure 3.23(c), Ki
σ j
σi is defined as follows:

Ki
σ j
σi =

∧
σivσkvσ j

Ki[σk]

and it means and’ing together all columns σk from labels σi through σ j on matrix Ki such that σk is

comparable with both σi and σ j. The result of this operation is a single column (a vector of size N).

The “multiplication” operator in [Ki
σ j
σi .al(γ)] produces a single “scalar formula” that is then

and’ed with every cell in al(β). This results in a vector of size N that is or’ed with every cell

in al(n1), generating the updated al(n1). The symbol 6A means the fetch has to occur after the

assignment.

The rule in Figure 3.23(c) matches a fetch edge only to those assignments that reach the fetch.

Assignments that are killed before reaching the fetch are implicitly excluded as a result of computing

Ki
σ j
σi . For example, the assignment x=&w is killed in both branches of the code in Figure 3.22(a).

Therefore, fetching x at statement *x=&b cannot return w, but only {v,u}. Indeed, by applying the

inference rule of Figure 3.23(c) with assignment x
AK1

1−→w and fetch x F−→n1 we get:

K1[A1] K1[A2] K1[A3]

t ∧ ¬c ∧ c f

f ∧ t ∧ t f

K1
A3
A1

= f ∧ t ∧ t = f

f ∧ t ∧ t f

f ∧ t ∧ t f

f ∧ t ∧ t f

Therefore,

K1
A3
A1

al(x) al(w) al(n1)[w]

x f t f f

w f f t f

v f . f = f, f ∧ f = f

u f f f f

b f f f f

n1 f f f f

CHAPTER 3. FINER-GRAIN ANALYSIS DIMENSIONS 64

Which means that *x is not an alias for w after the control-flow join (fetch edge (x,n1) occurs after

the confluence of both branches). The notation al(n1)[w] is used to indicate the partial result for

al(n1) obtained when applying the inference rule of Figure 3.23(c) with β = w. In other words, it

indicates the “contribution” of al(w) for computing al(n1). Note the solution obtained for al(n1)

can be made program-point specific although a single graph is used.

Also, by matching fetch x F−→n1 with assignments A2 and A3 we get:

al(n1)[v] al(n1)[u]

x f f

w f f

v c and f

u f ¬c

b f f

n1 f f

respectively. Thus, al(n1) is:

al(n1)[w] al(n1)[v] al(n1)[u] al(n1)

x f ∨ f ∨ f f

w f ∨ f ∨ f f

v f ∨ c ∨ f = c

u f ∨ f ∨ ¬c ¬c

b f ∨ f ∨ f f

n1 f ∨ f ∨ f f

which says that fetching x after the control-flow join can only lead to either v or u, not w.

3.2.8 Putting the pieces together

To put the pieces together, Figure 3.24 shows a code fragment and four different sets of alias

edges added to the AFG; each corresponds to the solution for a particular analysis variation. In

CHAPTER 3. FINER-GRAIN ANALYSIS DIMENSIONS 65

(a)

(b) (c)

(d) (e)

Figure 3.24: (a) A code fragment. The analysis results for (b) origin, (c) when partial order is

considered, (d) including conditions, (e) kill information is added.

CHAPTER 3. FINER-GRAIN ANALYSIS DIMENSIONS 66

(a) (b)

Figure 3.25: The final solution for analysis variations (a) and (b) are equivalent, since to avoid the

fall back answer regarding strong updates it is imperative that statement ordering be considered.

Figure 3.26: Space of solutions within the analysis space.

Figure 3.24(b) the [ORIGIN-ALIAS] rule is used. Many spurious alias edges are derived. In Fig-

ure 3.24(c), the [PO-ALIAS] rule is applied—because statement ordering is considered, a more

precise result is obtained. In Figure 3.24(d), guards are added leading to more precision, and in

Figure 3.24(e) all the elements, including strong updates, are taken into account. Compare that

result with the graph in (b).

CHAPTER 3. FINER-GRAIN ANALYSIS DIMENSIONS 67

Space of solutions

A final observation on the analysis space proposed in this chapter is that the space of distinct so-

lutions is a subset of the space of analysis. As mentioned earlier, the unfolding of certain dimen-

sions may depend on the specific values attributed to others. For instance, modeling strong updates

requires statement ordering. This means that the final solution for the analysis variations in Fig-

ures 3.25(a) and 3.25(b) map to the same point in the space of solutions. Such space of solutions is

represented by the shaded solid in Figure 3.26.

Note this should not be taken for the space of analysis. Namely, a particular point in the latter

indicates which characteristics from the program’s semantics are being considered and which are

ignored. But the solution obtained by two of these points may be equivalent, such as Figures 3.25(a)

and 3.25(b).

Chapter 4 68

Chapter 4

Investigating some sweet spots

This chapter investigates some analysis variations in our analysis space that yield significant benefits

over traditional pointer analysis. In addition to being novel, these sweet-spots provide new insights

into pointer analysis as a whole.

4.1 Flow-aware analysis

Our 3-D analysis space and AFG data structure enable a variety of new pointer analysis algorithms.

One of them is what we call flow-aware analysis [11]. The basic idea is to approximate the pro-

cedure’s execution by a total order on the statements—i.e., to provide a total order approximation

to the [PO-ALIAS] inference rule of Section 3.2.5. This is a quick-to-compute sound approxima-

tion that can significantly improve both the precision and the efficiency of the analysis over the

[ORIGIN-ALIAS] rule (and as a consequence over Andersen-style flow-insensitive analysis). Such a

symbiosis is rare in static analysis; most often gains in one aspect involve costs in another.

Totally ordering the statements in a procedure means ignoring mutual exclusivity between con-

ditional branches, data-dependent infeasible paths, etc., but it is inexpensive and produces a signifi-

cant improvement. To illustrate, Figure 4.1 shows the matchings between fetches and assigns when

considering (a) no statement ordering, (b) the “true” partial order in the code fragment, and (c) a

total order approximation where the code for the right branch comes before the left branch. The

total order constrains which assignments are visible to each read: a fetch σF resolves to an assign

σA only if the assign occurs strictly before the fetch. This reduces the number of spurious aliases.

CHAPTER 4. INVESTIGATING SOME SWEET SPOTS 69

(a) (b) (c)

Figure 4.1: Matchings obtained when (a) no statement ordering is considered (b) the “true” partial

order is used (c) a total order approximation where the right branch comes before the left branch.

A total order approximation has also the benefit of partially disassociating the two branches of an

if statement. E.g., in Figure 4.1(c) the assignment Ak is not visible to fetch Fl , a correct behavior.

Of course, this is affected by which branch comes first in the total order—the latter branch will

always see the earlier one.

The control-flow graph fragments in Figure 4.2 further illustrate the motivation for flow-aware

analysis. Figure 4.2(a) is the simplest case: the assignment A j runs before the fetch Fi, so A j can

affect Fi, i.e., the relation affects(A j, Fi) holds. However, a fetch that runs before an assignment,

such as in Figure 4.2(b), cannot be affected by the assignment. A flow-insensitive analysis treats

these two cases identically, whereas the flow-aware analysis does not build an alias edge in the

second case.

Conditionals add complexity. In Figure 4.2(c), fetch Fi should resolve to assign A j since the

latter occurs strictly before the former, whereas affects(Ak, Fi) is false. Finally, affects(Am, Fi) and

affects(Am, Fl) are both false.

The situation in Figure 4.2(d) is slightly different. Although Fl occurs (non-strictly) after Am, Am

cannot affect Fl because they are mutually exclusive: the expression c controls both conditionals.

However, Ak does affect Fl because Ak comes before Fl along a feasible path. As mentioned in

Chapter 3, affects is always an approximation since path-feasibility is undecidable in general.

Figure 4.2(e) shows one possible total order for the control-flow graph of Figure 4.2(d): we

numbered statements in the left branch of each conditional before its right branch.

CHAPTER 4. INVESTIGATING SOME SWEET SPOTS 70

(a) (b) (c) (d) (e)

Figure 4.2: Motivation for flow-aware analysis. (a) An assignment before a fetch can affect the

fetch, but (b) an assignment after a fetch cannot. The presence of conditionals (c, d) further constrain

which assignments are visible to each fetch. A possible approximation for the execution order of

(d) is total order of (e).

Let affects0(σA,σF) be true when the assignment σA occurs before the fetch σF in the total order.

This approximation can produce spurious results. For example, in the linearization of Figure 4.2(d)

in Figure 4.2(e), affects0(Ak,Fi) and affects0(Am,Fl) are true, yet affects(Ak,Fi) and affects(Am,Fl),

the exact relations in Figure 4.2(d), are false. Thus, affects0 allows a fetch edge to resolve to extra

assignments, but it is a sound solution with substantially improved precision over flow-insensitive

analysis. The [ALIAS] rule for flow-aware analysis becomes

σA : γ
A−→β σF : α

F−→n aliases(α,γ) affects0(σA,σF)

al(β)⊆ al(n)
[FLOW-AWARE]

This rule leads to faster convergence with fewer alias edges when compared to [ORIGIN-ALIAS].

Figure 4.3 places the flow-aware analysis in our analysis space. Any pair of statements becomes

comparable under the imposed total order, including those incomparable under the true partial order;

this implies the value we assigned to the horizontal axis. Some value is also given to the vertical

axis because of the partial separation between if-branches discussed above.

CHAPTER 4. INVESTIGATING SOME SWEET SPOTS 71

Figure 4.3: The flow-aware analysis uses a total order approximation, not the program’s “true” par-

tial order, and it has the benefit of partially disassociating operations that occur in separate branches

of a conditional—thus we assign some value to the vertical axis.

4.1.1 Implementation

Our AFG data structure is ideal for flow-aware analysis. To implement such analysis, we simply

augment each edge σ in the AFG with an index rank(σ) from a topological sort of the statements

in the procedure (recall each procedure is acyclic after our pre-processing). Then affects0(σA,σF)

can be implemented as rank(σA) < rank(σF). We write these ranks as subscripts on F’s and A’s.

As an example, consider the code in Figure 4.4(a); the total order is given by the text in com-

ments. The initial AFG is shown in Figure 4.4(b), and Figure 4.4(c) shows the resolved AFG ob-

tained by applying the [FLOW-AWARE] rule. Fetch F2 only matches assign A1, given that A4 occurs

after F2 and therefore does not affect it. As a consequence, when F5 resolves to A3 only one alias

edge is added. The equivalent points-to set obtained from Figure 4.4(c) is shown in Figure 4.4(d).

This figure shows the flow-aware and traditional flow-insensitive points-to sets superimposed—the

two edges in bold are spurious relations avoided by the flow-aware analysis.

4.1.2 Interprocedural order propagation

This section illustrates how flow-aware analysis manipulates ordering information across procedures

and how spurious pointer relations that would otherwise span multiple functions are avoided. For

simplicity, initial values are ignored here.

Performing flow-aware analysis across procedure calls requires us to order statements on both

sides of a call site. To get this right, we “shift” the indices of the callee by the maximum index that

occurs in the caller before the call site, then increase the indices in the caller that appear after the

CHAPTER 4. INVESTIGATING SOME SWEET SPOTS 72

foo()

{

z = &x; // A1

if (c) {

p = z; // F2 A3

}

z = &y; // A4

if (c) {

*p = &b; // F5 A6

}

}

(a) (b)

(c) (d)

Figure 4.4: (a) A function and (b) its initial AFG, (c) its resolved AFG using the [FLOW-AWARE]

rule, (d) the flow-aware and flow-insensitive points-to sets superimposed—the two edges high-

lighted are spurious dataflow facts avoided by the former but included in the latter.

call (based on the maximum index within the callee’s summary). This means that an assignment

occurring after the function call cannot be seen by a fetch occurring before or within the called

function. Alternatively, a fetch occurring before the call site does not read a value assigned later by

the callee. Figure 4.5 illustrates this.

In Figure 4.5(b), x’s value is read by q=x in bar() then modified by f() at the call site

f(&x). When statement *q=&w executes, the original value of x, &v, is set to point to w. By

ignoring order information, an interprocedural flow-insensitive analysis would pessimistically in-

clude a and b as values that could be read by q=x. Our flow-aware analysis avoids such spurious

relations. Figures 4.5(c) and 4.5(d) show the resolved and summary AFGs for function f. Nodes

labeled “#1” in Figure 4.5(c) and “f#1” in Figure 4.5(d) represents the initial value for parame-

CHAPTER 4. INVESTIGATING SOME SWEET SPOTS 73

f(int *p)

{

*p = &a;

...

*p = &b;

}

bar()

{

x = &v; // A1

...

q = x; // F2 A3

...

f(&x); // A4 A5

...

*q = &w; // F6 A7

}

(a) (b) (c)

(d) (e)

(f) (g)

(h) (i)

Figure 4.5: Propagating flow-aware ordering across procedure calls. (a) Function f() is called

by (b) bar(). The resolved (c) and summary (d) AFG for f(), which is instantiated at the call

site f(&x) (e): the indices in the summary are updated and the remaining statements in bar()

are processed, generating the initial AFG for bar() (f). Flow-aware analysis is performed (g) by

considering ordering across procedures. The flow-aware points-to set (h) is more precise than the

flow-insensitive (i).

CHAPTER 4. INVESTIGATING SOME SWEET SPOTS 74

ter p, which is merged with the argument node at the call site (modeling parameters and summary

instantiation is explained in detail in Section 5.2).

We sort the edges in a function summary and number them starting from 1, being careful to

preserve the relative order among statements. Figure 4.5(e) shows how the summary for f is instan-

tiated at the call site f(&x). Statements before the call are labeled A1, F2, and A3.

To place a callee’s statements in the total order, we add the highest index before the call to every

statement in the callee’s summary when we instantiate it. In Figure 4.5(e), this index is 3, so we

label callee’s statements A1\4 and A2\5 to indicate A1 and A2 will become A4 and A5. Processing the

remaining statements after the function call gives the initial AFG for bar() in Figure 4.5(f).

Figure 4.5(g) shows the result after flow-aware analysis. Note the fetch of x in q=x (F2) resolves

to A1, the only assignment occurring before that fetch. When F6 matches A3 a single alias edge

is added. Figure 4.5(h) is the corresponding points-to sets, which is more precise than the flow-

insensitive result in Figure 4.5(i).

4.1.3 Loops and Recursive Procedures

This section describes how loops and recursive procedures are handled in general, emphasizing

the case for flow-aware analysis. We convert loops into tail-recursive procedures and iteratively

analyze (such) recursive procedures until we reach a fixed-point. The first time a recursive procedure

is analyzed, we do not have a summary for it, so we only consider the other statements in the

procedure. This gives a better summary for the procedure, which we then instantiate at recursive

call sites and summarize again.

It may appear this procedure may not terminate, but this is not the case. It turns out the number

of edges and arcs that can be added is bounded. The number of heap nodes is bounded because of

the heap naming scheme we adopt (Section 5.8). The number of fetch edges is bounded because

the final summary allows at most one fetch edge out of any node, and there is a parametrizable limit

on the length of any chain of fetch edges. Finally, we prohibit duplicate assign edges. Together,

these constraints bound the summary and guarantee convergence. If duplicate assignments between

a pair of nodes is allowed, such as in Figure 4.6(e), the comparison between two summaries must

only consider whether x A−→y exists and not the number of such edges (details given in Chapter 5).

Figure 4.6 illustrates summarizing a simple for loop. We transform the function in Figure 4.6(a)

CHAPTER 4. INVESTIGATING SOME SWEET SPOTS 75

into the tail-recursive procedure in Figure 4.6(b). The transformation assumes an Algol/Pascal-style

scope where a procedure can be defined inside another procedure, and variables declared in between

are local to the outer procedure and global to the inner one. To illustrate, we nested the definition of

Loop inside bar to emphasize that it has access to bar’s local variables.

Figure 4.6(c) is a simplified control-flow graph for this code. On the left is the structure of the

loop; on the right is a linearized version of the Loop procedure that assumes flow-aware analysis

placing the then branch of the if before the else.

Figure 4.6(d) is the first summary of Loop—the assignment p=&y is hidden from z. We now

have a summary of Loop, which is used in the second iteration of the analysis giving Figure 4.6(e).

Edges with subscripts 1, 2, and 3 correspond to the loop body statements within the function. Instan-

tiating the earlier summary adds edges F4, A5, and A6 (the indices are shifted as in Section 4.1.2).

This time, fetch edge F4 matches assignment A3, and z will point to y as a result; edges F4 and A3

belong to different iterations of the original loop.

Figure 4.6(f) is the summary of Figure 4.6(e) and also the fixed-point—the final summary for

function Loop(). Some edges have two numerical labels because they are the result of merging

multiple edges. This means they represent the interval for which the operation is valid. For example,

A3
6 represents the merge of A3 and A6.

Figure 4.6(g) shows the graph for bar after we inserted the summary for Loop. The fetch of

p resolves to p=&x since the assignment occurs before the fetch (i.e., we check that the subscript

index of the fetch is greater than the superscript on the assign, in case one exists, or the subscript

otherwise). Finally, Figure 4.6(h) shows the summary for bar, which notes that the global variable

p is fetched.

Note in Figure 4.6(g) that F2
5 does not resolve to A4

7, although 5 > 4. This happens because A1

is the only new fact that needs to be considered when instantiating the summary of Loop() into

bar(); all the other edges were already present in Figure 4.6(f), and F4 had already been resolved

to A3 in Figure 4.6(e). Our algorithm is such that only the addition of new aliases or new facts

trigger the inference rule for resolution. This incremental nature is detailed in Section 5.5.

CHAPTER 4. INVESTIGATING SOME SWEET SPOTS 76

int *p, x;

void bar() {

int *z, y;

p = &x;

for (i=0; i<n; i++) {

if (...)

z = p;

else

p = &y;

}

}

(a)

int *p, x;

void bar() {

int *z, y;

void Loop() {

if (i < n) {

if (...)

z = p;

else

p = &y;

i++;

Loop();

}

}

p = &x;

i=0; Loop();

}

(b)

(c)

(d)

(e)
(f)

(g) (h)

Figure 4.6: Handling loops and recursive functions.

CHAPTER 4. INVESTIGATING SOME SWEET SPOTS 77

4.2 Flow-Branch-Aware analysis

The flow-aware analysis of last section provides a total order approximation to the program’s partial

order, implemented through a simple labeling algorithm. We observed that a clever extension to

such algorithm gives a true partial order relation to the [PO-ALIAS] inference rule, leading to another

interesting pointer analysis algorithm.

The basic idea is to calculate two total orders on the statements. One total order always starts

with the left branch of any conditional, and the other always starts with the right branch. Then one

statement can reach another only if it precedes it in both total orders. Furthermore, if statement p

precedes q in one total order, and q precedes p in the other, then they are in fact mutually exclusive.

This means this analysis fully disassociates the two branches of a conditional without using guards.

(a) (b) (c)

Figure 4.7: (a) a fragment of a control-flow graph (b)—(c) the two total orders for it. Tl starts

with the left branch and Tr starts with the right branch. An assignment reaches a fetch only if the

assignment precedes the fetch in both total orders. This is the case for A j and Fl , A j and Fm, and Ak

and Fm.

Figure 4.7(a) is the fragment of a control-flow graph, and Figures 4.7(b) and 4.7(c) are the

two total orders for it, labeled Tl and Tr. The numbers on the right represent the ordering. Let

affects1(σA,σF) be true whenever the assignment σA precedes the fetch σF in both total orders. In

Figure 4.7(a) affects1(A j,Fl), affects1(A j,Fm), and affects1(Ak,Fm) hold. Fetch Fl does not resolve

to assign Ak, or ¬affects1(Ak,Fl), because their relative order is swapped from Tl to Tr .

CHAPTER 4. INVESTIGATING SOME SWEET SPOTS 78

The [ALIAS] rule for flow-branch-aware analysis becomes

σA : γ
A−→β σF : α

F−→n aliases(α,γ) affects1(σA,σF)

al(β)⊆ al(n)
[FLOW-BRANCH-AWARE]

This rule reduces even further the number of fetch/assign matchings, resulting in a more precise

analysis. Furthermore, it can also be more efficient than both [ORIGIN-ALIAS] and [FLOW-AWARE]

in some cases: the faster convergence may overrun the extra computation required to build and

maintain the more precise order information.

We implement flow-branch-aware analysis by keeping two ranks on each edge, one rank for each

total order (named rankl and rankr). This is depicted in Figure 4.7(a) by two numbers separated by

a comma. The relation affects1(σA,σF) can be computed by

rankl(σA) < rankl(σF)∧ rankr(σA) < rankr(σF)

For example, affects1(Ak,Fm) holds because 3 < 4∧ 4 < 5. Similarly, affects1(A j,Fl) is true

since 2 < 5∧2 < 3. On the other hand, ¬affects1(Ak,Fl) because 3 < 5 but 4 6< 3.

When doing interprocedural analysis, the callee summary records the highest index for both

total orders, and the “shifting” described previously is performed on each order separately.

4.2.1 Why does it work?

The reason why two total orders work is not because each if-statement has two branches, but because

control-flow graphs of programs can be imbedded in two dimensions. The algorithm still works for

a generic switch statement modeled by multiple branches. The required generalization is that one

total order always starts with the leftmost branch and moves rightward, while the other does the

opposite. Still, only two ranks need to be stored on each edge of the AFG, and the relation affects1

remains the same. The basic idea is given in Figure 4.8.

Intuitively, the number of ranks needed is equal to the number of dimensions required to imbed

the partial order. Imagining a “unidimensional” control-flow graph (i.e., a straight line code), then

only one index is sufficient to compare the relative order between any two operations. For planar

graphs, two indices are required, and so on. An inductive argument goes as follows. Assume we

have a control-flow graph G with n dimensions that has been properly labeled with n ranks per

CHAPTER 4. INVESTIGATING SOME SWEET SPOTS 79

(a) (b)

Figure 4.8: The two total orders strategy works for switch statements modeled by multiple

branches. The required generalization is that one total order always starts with the leftmost branch

and moves rightward, while the other does the opposite.

operation. If we extend G such that an extra dimension is required, then all operations need to be

ranked with respect to this n+1-th dimension.

Practically, the only restriction to the flow-branch-aware analysis is that the procedure’s control-

flow graph be planar—it is hard to imagine a program written in a high-level language that would

not satisfy this requirement.

As an example of flow-branch-aware analysis, Figure 4.9(a) shows a fragment of a control-

flow graph, while Figures 4.9(b) and 4.9(c) show the two total orders for it. The resolved AFG

using the [FLOW-BRANCH-AWARE] rule is illustrated in Figure 4.9(d), and its summary shown in

Figure 4.9(e) (initial values are ignored for simplicity). Compare this graph with the summaries

obtained by the flow-insensitive (Figure 4.9(f)) and flow-aware (Figure 4.9(g)) analyses (assume

that the latter uses Tr as the code linearization).

Figure 4.10 informally places the flow-branch-aware analysis in our analysis space. A higher

degree of “conditions” is given because this analysis fully disassociates mutually exclusive opera-

tions within an if or switch statement.

4.3 Unconditional kill

A bottleneck of some analysis variations is generating unnecessary initial values due to lack of kill

information. I.e., when instantiating a callee’s summary at a call site, a (demoted) fetch edge from

CHAPTER 4. INVESTIGATING SOME SWEET SPOTS 80

(a) (b) (c)

(d) (e)

(f) (g)

Figure 4.9: An example of flow-branch-aware analysis. (a) a fragment of a program’s control-

flow graph. (b)—(c) the two total orders for it. (d) the resolved AFG for the code using the

[FLOW-BRANCH-AWARE] rule. (e) the corresponding summary AFG. Compare this summary with

the flow-insensitive (f) and flow-aware (g) for the same code (assume the latter uses the Tr order).

CHAPTER 4. INVESTIGATING SOME SWEET SPOTS 81

Figure 4.10: The placement for flow-branch-aware analysis.

the summary may replicate itself as the unknown initial value for some variable in the caller, and the

process may get repeated in a grand-caller, and so on, each time making the analysis less precise.

This may be unnecessary in many cases, since a variable that is initialized at function entry does

not need a fictitious initial value. The idea of the unconditional kill is to avoid creating unnecessary

initial values by looking for variable initializations (i.e., unconditional assignments). Figure 4.11

illustrates an example.

Figures 4.11(a), (b), and (c) show the code for three procedures, zzz(), bar(), and foo().

Assume all variables mentioned are globals. Figure 4.11(d) is the resolved AFG for foo() assum-

ing, e.g., [FLOW-AWARE] rule, and Figure 4.11(e) is the final summary. Note p has an initial value

modeled through the demoted fetch edge p F2−→p1.

Using foo’s summary at the call site inside bar gives the resolved AFG in Figure 4.11(f). Be-

cause strong updates are ignored, the analysis replicates the fetch of p as the initial value p A3−→p1,

which is demoted to p F3−→p1 in Figure 4.11(g).

Note however that statement p=&x inside bar initializes p before calling foo. I.e., any value

for p coming from a caller of bar is unconditionally killed by p=&x.

By noting this, the more precise graphs in Figures 4.11(h) and 4.11(i) can instead be generated as

the resolved and summary AFGs for bar. The idea is to mark nodes that have been unconditionally

assigned prior to the first time they are fetched. For these cases, fictitious initial values are not

created. Note this requires the use of some statement ordering (e.g., flow-aware, flow-branch-aware,

etc.), since flow-insensitive analysis is not suitable for properties that depend on execution order.

The unconditional kill is a simple yet useful approximation on the kill axis. For instance, Fig-

ures 4.11(j) and 4.11(k) show the resolved and summary graphs for zzz when strong updates are

CHAPTER 4. INVESTIGATING SOME SWEET SPOTS 82

zzz()

{

p = &w;

...

bar();

}

bar()

{

p = &x;

...

foo();

}

foo()

{

if (...) {

p = &y;

}

*p = &z;

}

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.11: A variable that is initialized at function entry does not require an unknown initial value

modeled—p is unconditionally assigned at bar’s entry, so the fetch of p originated at foo does

not propagate past bar. This results in the more precise summary (l) of zzz instead of the graph

in (k).

CHAPTER 4. INVESTIGATING SOME SWEET SPOTS 83

ignored throughout the analysis. Figure 4.11(l) shows the summary obtained when the approxima-

tion is considered, a cleaner result.

4.4 T, F, “?” approximation for conditions

In analyzing procedures, it is generally interesting to distinguish among side-effects that always

happen, side-effects that can never happen, and side-effects that may happen under some (unknown)

condition. E.g., for mod calculation it is very useful to distinguish whether a variable must, may

(regardless of what specific condition) or won’t be modified by a function call. It is generally useful

to know when a pointer (e.g., function parameter) is unconditionally dereferenced upon function

entry.

Similarly, we can approximate the predicates of our analysis to True, False, and “?” guards,

the latter representing some unknown condition. An undefined edge is interpreted as the predicate

False, which is added for logical completeness. If both may and must information are recorded,

then the false information need not be included. But in an application where may information is too

numerous, it may be more efficient to list must and won’t information.

This approximation simplifies the analysis at the cost of spurious relations, but facilitates prop-

agating conditions inter-procedurally. I.e., we can limit path-sensitivity to within function bodies,

and then convert the function’s final summary to use the trivial guards (T and “?”). As a result, no

non-trivial guards are propagated between functions.

Chapter 5 84

Chapter 5

The Assign-Fetch Graph in Detail

This chapter examines the Assign-Fetch Graph introduced in Chapter 3 in more detail, including the

manipulation of procedure parameters, summary instantiation, field-sensitivity, heap modeling, etc.,

and how procedure summaries based on the AFG satisfy the requirements of modular bug finding

listed in Section 1.3.3. It also formalizes various concepts and terminology that were introduced

informally earlier.

5.1 General definitions

As mentioned before, the pointer analysis framework presented in this thesis is interprocedural;

it constructs summaries to model the (pointer) effects of a procedure at a call site (the functional

approach to context-sensitivity).

The input into the analysis is a program we assume has been partitioned into procedures. Each

procedure is treated as consisting of three types of operations: assignments, fetches, and function

calls. In this section, we will ignore pointer arithmetic by considering all elements of an array

to be one location. Similarly, fields of structures and classes are merged so an expression such

as p->next is treated like *p—field-sensitivity is the subject of Section 5.7. We model return

values with a special node in the graph. Assume no heap locations for now; these are handled in

Section 5.8.

To analyze procedures, we represent them initially using an assign-fetch graph. As explained

earlier, an AFG represents the assignments and memory dereferences of a function rather than

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 85

points-to information. Unlike a points-to graph (denotational) whose shape depends on a function’s

context (i.e., aliases present when the function is called) the AFG is “context-agnostic” (operational)

and therefore can be used in any context.

Following the philosophy of Section 1.3.2, when we analyze a procedure we assume none of

its parameters (in general, locations from the environment) are aliased. Any bug report within a

function f is bound by that assumption—if some two aliased arguments1 would cause a program

error, then the caller would be reported as faulty because it passes invalid inputs into f (the flip-

side is that no error exists as long as no one passes such aliased arguments). When (and if) the

summarized information for f is used at a call site, a context with aliases causes the instantiated

summary to be incrementally updated (Section 5.5).

The output of the analysis is a summary for each procedure in the form of a summary AFG.

Summarizing can be seen as a partial evaluation of an abstract code which specializes what is

not affected by its inputs. The remained part is evaluated when the inputs are given, specially if

the actual inputs differ from the assumed ones (e.g., non-aliased arguments)—a kind of delayed

computation.

Computing points-to sets on the AFG is divided into three parts: (1) building the initial AFG

for the function by traversing its statements, including calls to other procedures; (2) computing the

resolved AFG by adding alias edges to the initial AFG; (3) removing unnecessary information from

the resolved AFG to derive the summary AFG.

A formal classification of AFG elements based on some common characteristics will be useful

later; we refer to the example on Figure 5.1 to illustrate these concepts.

A location node is simplest: it represents the address of global or stacked variables, or heap-

resident data. In Figure 5.1(b), v, w, x, y, and z are each location nodes that represent the address

of distinct global variables.

Fetch nodes, shaded gray, represent the results of reading a value from memory. Since in general

the result of such a fetch depends on the behavior of the program at runtime, we think of the “value”

of a fetch node as being unknown. Resolving the possible values returned by each fetch is the bulk

of the analysis. In Figure 5.1(b), n1 and n2 are fetch nodes. By definition, each fetch node has

exactly one incoming fetch edge.

1Arguments are sometimes referred to by the term actual parameters.

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 86

foo()

{

*z = &x;

z = &v;

if (...) {

z = &w;

}

else {

*z = &y;

}

}

(a) (b)

(c) (d)

Figure 5.1: (a) A function and (b) its initial AFG, (c) its resolved AFG using [ORIGIN-ALIAS] rules,

(d) its summary AFG.

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 87

Interface nodes are location nodes that correspond to information that crosses the caller-callee

interface of a procedure. They are the global variables, parameters values, and heap locations al-

located inside the callee. Nodes for local (automatic) variables are therefore never interface nodes.

In Figure 5.1, nodes v, w, x, y, and z are all interface nodes, assuming they all represent global

variables.

Initial value nodes are placeholders for (chains of) values of global variables and parameters

supplied by the environment and represent chains of dereferences of unbounded length that start

at interface nodes. Of course, only a finite number of initial values will be needed, and therefore

an actual implementation will generate the initial values on demand. In our implementation, we

add them lazily in the process of analyzing the assign-fetch graph. At that point, we think of them

as location nodes (e.g., z1 in Figure 5.1(c)). After we summarize the results of an analysis, we

demote them to fetch nodes (e.g., z1 in Figure 5.1(d)); an initial value created for an interface node

z implies that z has been fetched within the function’s body. Note that we only add those initial

value nodes that are actually needed by the procedure, e.g., even though the variable x appears in

Figure 5.1(a), we do not construct an initial value node for it because the procedure never reads its

value.

There are two type of operation edges. A fetch edge, which we label with an “F,” represents

a memory read operation. Its source node represents the address being read and its target is a

fetch node that represents whatever value(s) is stored at that location. An assign edge, labeled “A,”

represents a memory write operation. Its source node represents the target address and its destination

represents the value being written.

Alias edges, which we draw as dashed lines, represent aliasing information among nodes and can

be read “can be an alias for.” Each location node has an implicit self-loop alias edge that represents

the fact that the address of each variable is unique. Proper alias edges always leave fetch nodes and

terminate at location nodes that the fetch node can alias. For example, the alias edge from n2 to v

in Figure 5.1(c) means the alias relation 〈∗z,v〉.

Finally, initial value edges represent environment initialization. Like initial value nodes, we

think of them one way (as assign edges) when we are analyzing the AFG and another way (as fetch

edges) after we summarize the graph. We draw them with dashed/dotted lines, e.g., from z to z1 in

Figures 5.1(c) and 5.1(d).

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 88

Figure 5.2: A generic procedure’s summary.

Using the above terminology, the summary AFG for a procedure has only interface nodes and

(demoted) initial value nodes. Each interface node may have a chain of initial values represented

by a chain of (demoted) fetch edges; these are the only fetches in the summary since all others are

removed as part of the summarization process. Since each interface node is assumed to have at most

one (direct) initial value, each node in the summary has at most one outgoing fetch edge. Assign

edges may connect any two pair of nodes in the summary.

A generic summary graph where interface nodes are drawn in a horizontal line instead of the

more intuitive “tree-like” form is given in Figure 5.2. When using the summary at a call site, the

interface layer is used to paste together the callee-caller boundary. Nodes labeled #1 and #2 are

parameter values, explained in the next section.

5.2 Modeling parameters

We treat procedure parameters almost like global variables, except for two things: (1) while we

assume each comes from the environment, a caller will always initialize formal parameters so we

add explicit initial values for them in the form of location nodes (labeled “#i” in our figures). In

contrast, we only add an initial value for a global variable if it is fetched by the procedure; (2) initial

values for global variables are demoted from location to fetch node status during summarization;

initial values for parameters keep their location node status and are merged with argument nodes

during summary instantiation.

Since formal parameters (not their initial values) are local variables, i.e., stacked and discarded

when a procedure returns, we remove their nodes during the summarization process.

Figure 5.3 illustrates the summarization of a simple procedure with two parameters. More

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 89

f(p,q)

{

*p = &x;

y = *q;

}

(a) (b)

(c) (d)

Figure 5.3: (a) A procedure with arguments, (b) its initial, (c) resolved and (d) its summary AFGs.

precisely, given a function f with formal parameter list p1, . . . , pk, an assign edge pi
A−→#i is created

for each parameter pi. In the example, two nodes are created for the formal parameters p and q,

which are assigned initial values #1 and #2 representing their initial caller-passed values. This plus

adding nodes and edges for the two statements in the procedure gives the initial AFG for function f

in Figure 5.3(b).

Since formal parameters are initialized by “#i” nodes, the AFG representation for, e.g., *p=&x

in Figure 5.3(b) does not include a fetch edge; *p directly yields its initial value, #1.

In summarizing this (alias-free) procedure, we remove the nodes for the formal parameters p

and q and rename their initial values to include the procedure’s name. Also, fetch edge #2 F−→n1

in Figure 5.3(b) generates an initial value for node #2, which in Figures 5.3(c) and 5.3(d) is labeled

#21. Figure 5.3(d) is the final summary. Note parameters are assumed non-aliased at function entry.

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 90

g()

{

f(&z, &z);

}

(a) (b)

(c) (d)

Figure 5.4: (a) A procedure g, which calls the procedure f from Figure 5.3, (b) its initial AFG, (c)

after resolving, and (d) its final summary.

5.3 Modeling procedure calls

When building the initial AFG for a procedure, a call to a function is replaced by the callee’s

summary. Instantiating a summary involves merging global variables shared by both and connecting

formal parameters to actual parameters. Figure 5.4 illustrates calling procedure f from Figure 5.3.

The address of global variable z is passed to both p and q, so when we copy the summary of f

from Figure 5.3(d), we mark the nodes for the initial values of p and q, f#1 and f#2, to be merged

with z.

We perform the same process for each global variable: its node in the callee is merged with its

node in the caller. This is vacuous in Figure 5.4 since g does not touch globals x or y.

Once each callee’s summary has been instantiated and all remaining statements considered, we

compute the caller’s summary. In Figure 5.4(c), we added an initial value node for global z and used

flow-insensitive analysis to add alias edges from from n to x and z1. Figure 5.4(d) is the summary.

We removed fetch node n; its aliases now manifest themselves as the assign edges from y. A caller

of g knows that z is dereferenced somewhere down the line by looking at g’s summary.

This example illustrates how a summary is agnostic about parameter aliasing and can be used

in any context. The summary for f does not consider the case when its two parameters are aliased.

However when g calls f we correctly ascertain that y may point to x, which is only possible if

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 91

g()

{

int *w = &z;

f(w, &z);

}

(a) (b)

(c) (d) (e)

Figure 5.5: (a) A semantically equivalent code of g from Figure 5.4; (b) the parameter passing (c)

its initial AFG, (d) after resolving, and (e) its final summary, which is equivalent to the summary

from Figure 5.4(d).

the two arguments are aliased at the call site. Existing solutions either use information from the

environment while building a summary, or build multiple summaries for each function, one for

each possible environment; these solutions are unfit for our purposes. In our tool, the analysis

of f considers the pointer information as in Figure 5.3(d). The analysis of g uses Figure 5.4(d).

According to the requirements listed in Section 1.3.3, note that we “start fresh” each time a new

summary is constructed instead of flowing information from callers while building the summary.

Note that node merging such as used in this section always works, even when the actual parame-

ter is an arbitrary expression. Consider for instance the code in Figure 5.5(a), which is semantically

equivalent to the code in Figure 5.4(a). Note w is a local variable for function g, and therefore is not

allowed to have an initial value edge added by the analysis.

Similar to f(&z,&z) in Figure 5.4(a), the function call f(w,&z) in Figure 5.5(a) has both ar-

guments aliased at the call site. The first argument reads the value of w, and the second “hard-wires”

the address of z. Accordingly, there is a fetch of w in Figure 5.5(b)—the fetch node represents the

first argument. The second argument is the location node for z itself. As with the previous exam-

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 92

ple, nodes for formal parameters are merged with their corresponding arguments, as indicated in

Figure 5.5b—n1 is marked to be merged with f#1 and z is marked to be merged with f#2.

Figure 5.5(c) is the resulting graph after node merging, and Figure 5.5(d) shows the resolved

AFG. The aliasing introduced at the call site f(w,&z), assumed nonexistent while summarizing

f, is recovered by the analysis in Figure 5.5(d). The final summary for g is shown in Figure 5.5(e),

which is equivalent to Figure 5.4(d).

Figure 5.6 shows another example of function summarization for three procedures f, g, and

h (assume [ORIGIN-ALIAS] rule). The summaries assume no aliasing among locations from the

environment; aliasing between f’s parameters r and t is then introduced by f’s caller, g. Aliasing

among g’s parameters is also introduced by its caller, h. These aliasing are incrementally recovered

by the analysis when using summaries at call sites; the final summary for h, for example, (Fig-

ure 5.6(k)) indicates that both z and the initial value of x point-to both y and w, which occurs only

if r, s, and t are all aliased. Figures 5.6(a), 5.6(b) and 5.6(c) are the code for the three proce-

dures; Figure 5.6(d) is the initial AFG for f and Figure 5.6(e) is its summary; Figures 5.6(f), 5.6(g)

and 5.6(h) show the summarization of g: Figure 5.6(f) uses f’s summary at the call site f(p,q,p),

which results in the initial AFG for g in Figure 5.6(g); g’s summary is Figure 5.6(h). The summa-

rization of h is depicted in Figures 5.6(i), 5.6(j) and 5.6(k), which uses the summary of g.

5.4 Return values

Return values are represented by a special node in the Assign-Fetch Graph (unless a function uncon-

ditionally returns a single location node, such as return &x, in which case the node for variable x

is also the return node). In general, because a function may return from different places in its body,

a temporary node (labeled ret in our figures) is created; such node is assigned as many times as there

are return statements within the function. Then, a fetch edge is inserted to read the contents of

ret—the corresponding fetch node is the value returned by the procedure. Because it resolves to a

set of nodes, this node encapsulates all the returned values.

To illustrate, the code in Figure 5.7(a) shows two procedures, f and g; the former returns *x

and the address of b, both x and b global variables. Return nodes are drawn as double circles.

When building the initial AFG for f in Figure 5.7(b), the temporary node ret is assigned the

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 93

h()

{

g(&x, &x);

}

g(p,q)

{

f(p,q,p);

}

f(r,s,t)

{

**r = &y;

*s = &z;

**t = &w;

}

(a) (b) (c)

(d) (e)

(f) (g)

(h)

(i) (j) (k)

Figure 5.6: An additional example of function summarization.

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 94

int ***x, **a, *b; int **s, k;

int *f() void g()

{ {

if (...) { s = f();

x = &a; *s = &k;

} }

else {

return &b;

}

return *x;

}

(a) (b)

(c) (d)

(e) (f)

Figure 5.7: (a) Two procedures f and g. (b) The initial AFG for f; the return node is depicted as a

double circle and a node labeled ret is used for temporary computation (c) The summary AFG for

f; alias edges from the return node are allowed. (d) Applying f’s summary into g. (e) The initial

AFG for g. (f) The summary AFG for g.

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 95

address of b (the first return statement in Figure 5.7(a)) and node n2, representing the second read

of x in the statement return *x. Fetching location ret gives the double-circled node labeled n3,

representing the values returned by the procedure.

Assume the analysis of f uses the [ORIGIN-ALIAS] rule. The resulting summary AFG in Fig-

ure 5.7(c) has the return node resolving to b, x2 and a1 (x2 is a node in the chain of initial values for

x; a1 is the initial value for a, induced by edge n1
F−→n2 in Figure 5.7(b) after x F−→n1 is resolved

to x A−→a).

Two things should be noted: (1) alias edges are present in the summary AFG, which was not

the case so far; (2) alias edges can connect two fetch nodes together (e.g., the return node n3 and

x2). These exceptions are allowed for return nodes because, after instantiating the summary for a

function in a call site, the first thing to do is to remove the return node. This process is depicted in

Figures 5.7(d) and 5.7(e), where the statement s=f() is converted into two statements tmp=f()

and s=tmp. First, a temporary node labeled tmp is created and then assigned the return node from

the callee’s summary to model tmp=f(). Then, two new edges are inserted to model s=tmp—a

fetch to access tmp’s contents and an assign to write these contents into s. Any further manipulation

of the returned value is done through the fetch node. This is done to allow us a uniform treatment

of function calls anywhere in the program.

Second, the return node is removed from Figure 5.7(d). Before we remove such node, its ad-

jacent operation edges are transfered to nodes in al(n3). This is seen in Figure 5.7(e) where three

assign edges replace the edge tmp A−→n3. This uses the same rationale applied when removing fetch

nodes to produce the summary AFG for a function2. Figure 5.7(e) also includes the operation edges

for the other statement in g, i.e., *s=&k, and it is the initial AFG for that function.

The analysis proceeds as usual, and resolving the graph in Figure 5.7(e) gives the summary of

g in Figure 5.7(f).

5.5 Worklist Implementation of [ALIAS] rules

In this section, we illustrate a worklist-based implementation of the [ORIGIN-ALIAS] inference rule

through the example in Figure 5.8. Our algorithm maintains a set of pairs 〈σA, σF〉 that are known

2Note this means an initial AFG cannot contain proper alias edges.

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 96

to satisfy the premise of the rule. Technically, we maintain a worklist of pairs of the form 〈σF ,SσF 〉

where SσF is a set of assignments. Intuitively, instead of considering pairs 〈σA, σF〉 separately, we

group together all assignments that should resolve to σF in the current iteration of the algorithm.

We will refer to pairs 〈σA, σF〉 and 〈σF ,SσF 〉 interchangeably; the meaning should be clear from

context.

We initialize the worklist with all pairs of edges 〈σA, σF〉 that share their source nodes. The

algorithm is incremental in the sense that addition of new aliases triggers additions to the worklist.

Consider the code for bar() in Figure 5.8(a). Its initial AFG is shown in Figure 5.8(b). For the

sake of presentation, operation edges have been subscripted. The worklist starts containing exactly

two elements: 〈F3,{A1,Az}〉 and 〈F6,{A1,Az}〉. The assign edge labeled Az is the initial value edge

for interface node z.

For the initial AFG of bar(), the algorithm adds alias edges as follows. The first element,

〈F3,{A1,Az}〉, is taken from the worklist, and alias edges (n3,x) and (n3,z1) are added. This is

shown in Figure 5.8(c); the newly added alias edges are highlighted in bold. Doing so requires

three actions: first, we add the pair 〈F4,{A2}〉 to the worklist because n3 is now an alias for x, and

therefore F4 should resolve to A2—an application of the rule in Figure 3.16(b). Second, because

al(n3) = {x,z1} at this point, fetching n3 through edge F4 means indirectly fetching both x and z1.

Our algorithm therefore creates two initial values: x1 and z2, and adds the assign edges x A−→x1 and

z1
A−→z2. In Figure 5.8(c) these edges are labeled Ax and Az1 (highlighted). Third, the worklist is

augmented with 〈F4,{Ax,Az1}〉 for the same reason it was augmented with 〈F4,{A2}〉: applications

of the rule in Figure 3.16(b). Since we group together common elements based on σF , this means

the new worklist element is in fact 〈F4,{A2,Ax,Az1}〉.

Assume the worklist is augmented at its head; 〈F4,{A2,Ax,Az1}〉 is hence the next to be pro-

cessed. This adds alias edges (n4, y), (n4, x1) and (n4, z2), depicted in Figure 5.8(d).

Next, 〈F6,{A1,Az}〉 is processed and alias edges (n6, x) and (n6, z1) are added (Figure 5.8(e)).

The new aliasing discovered between n6 and x requires us to return F4 to the worklist, this time

paired up with A7—i.e, 〈F4,{A7}〉, an instance of Figure 3.16(d) with α = n3, γ = n6, n = n4, and

β = y, which is replaced by v in the example. This happens because aliases(n3,n6) is true, i.e.,

al(n3)∩al(n6) 6= /0. Specifically, x ∈ al(n3),al(n6) (as well asz1 ∈ al(n3),al(n6)).

Processing 〈F4,{A7}〉 adds the alias edge (n4, v) (Figure 5.8(f)) completing the resolution phase.

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 97

bar()

{

z = &x; // A1

x = &y; // A2

w = *z; // F3 F4 A5

*z = &v; // F6 A7

}

〈F3,{A1,Az}〉; 〈F6,{A1,Az}〉

(a) (b)

〈F3,{A1,Az}〉 ; 〈F6,{A1,Az}〉 〈F4,{A2,Ax,Az1}〉 ; 〈F6,{A1,Az}〉

(c) (d)

〈F6,{A1,Az}〉 〈F4,{A7}〉

(e) (f)

Figure 5.8: The worklist algorithm step-by-step. The boxed tuples correspond to the worklist ele-

ment being processed.

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 98

Figure 5.9: Summary AFG for the code in Figure 5.8.

Because al(n3)∩al(n6) 6= /0, both n3 and n6 are two aliases for at least one common location node

x. Therefore, any assignments to or dereferences of n3 and n6 indirectly affect each other.

We returned F4 to the worklist because we need to arrive at a fixed point for the [ORIGIN-ALIAS]

rule. In the graph of Figure 5.8(b), note that a solution with al(n3) = al(n4) = al(n6) = /0 does not

satisfy the rule. A valid solution must include an alias edge, e.g., from n3 to x for two reasons: there

is a fetch edge z F−→n3 and an assign edge z A−→x, and aliases(z,z) is true. A similar argument

demands the other alias edges in Figure 5.8(f).

We produce the summary AFG in Figure 5.9 by adding assignment edges around each fetch node

based on its aliases, deleting all fetch nodes, and demoting assignment edges x A−→x1, z A−→z1 and

z1
A−→z2 to fetch edges, turning nodes x1, z1 and z2 into fetch nodes.

Note that flow-aware and flow-branch-aware analysis can be implemented by a simple variant of

this worklist algorithm. Namely, a pair (σA,σF) is inserted into the worklist only if affects0(σA,σF)

(in the case of flow-aware) or affects1(σA,σF) (flow-branch-aware) is true. For example, analyzing

the above example follows almost the same steps as those described. However, the addition of alias

edge (n6, x) does not trigger the insertion of 〈F4,{A7}〉 into the worklist in any of the more precise

analysis. Indeed, both affects0(A7,F4) and affects1(A7,F4) are false.

Our algorithm adds elements to the worklist when new aliases are discovered by the analysis.

This means newly-added alias edges will trigger the inference rule. Figure 5.10 shows a general

case: a new alias edge (ni,x) is highlighted—due to this new alias, the worklist is augmented with

〈F1,{A5,A6}〉, 〈F2,{A4}〉 and 〈F3,{A4}〉. These three elements are the only new facts that need to be

considered because of the new aliasing. For this incremental procedure, node merging at summary

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 99

instantiation can be seen as preceded by an alias edge from the callee node to the corresponding

caller node.

Figure 5.10: With the addition of new alias (ni, x), the worklist is augmented with 〈F1,{A5,A6}〉,

〈F2,{A4}〉 and 〈F3,{A4}〉.

Let L(x) = {ϕ|x ∈ al(ϕ)} be the inverse of the al function. Since the range of al is sets of loca-

tion nodes, L is only defined for location nodes. In Figure 5.10, L(x) = {ni,x,γ} (γ not necessarily

distinct from x). When we add a new alias (ni,x), we add to the worklist fetch edges of the form

(ϕ,n j) where ϕ ∈ L(x). In Figure 5.10, such set of edges corresponds to F1, F2 and F3. The sets of

assignments that pair up with each fetch edge (ϕ,n j) are defined as follows. If ϕ = ni, all η
A−→µ

s.t. η ∈ L(x)\ni. In Figure 5.10, this means 〈F1,{A5,A6}〉. If ϕ 6= ni, all ni
A−→δ . This means the

other two worklist elements. Note that if no ni
A−→δ exists, then both F2 and F3 in Figure 5.10 are

not affected by the new alias (ni,x).

In the example of Figure 5.8, the new alias discovered between n6 and x while processing

〈F6,{A1,Az}〉 augments the worklist with 〈F4,{A7}〉 (an instance of Figure 5.10 with ni = n6, x=x,

and γ = n3).

Note that F4 corresponds to the second dereference of variable z in the statement w=*z. In

traditional incremental techniques, the addition of a new alias would trigger the (re)analysis of at

least one entire statement [64, 70]. In our finer-grain algorithm, it only triggers the local (re)analysis

of sub-expressions within statements.

Recall that the initial AFG for a function has, as sub-graphs, the instantiated summaries for

its callees. The incremental procedure illustrated above guarantees that a pair of fetch and assign

edges that come from the same summary (an “internal pair”) can never be (re)matched together

unless an alias, assumed nonexistent while building the callee summary, is introduced at the call

site. This is directly implemented by the process in Figure 5.10—only a new alias can trigger a pair

〈σA,σF〉 into the worklist. This guarantees that a function summary is not re-analyzed at each call

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 100

site it is used—only local, incremental adjustments are made to account for eventual aliasing among

environment locations previously assumed nonexistent.

5.5.1 Caching optimization

This section describes a simple optimization designed to avoid re-inserting into the worklist a pair of

assign/fetch edges that has already been paired up in some prior iteration. Assume the initial AFG

in Figure 5.11(a) along with the contents of the worklist before the analysis starts. For simplicity,

we omit initial values. Figure 5.11(b) shows the first worklist element, 〈F3,{A2}〉, being analyzed.

This causes alias edge (n3,x) to be added.

Figure 5.11(c) shows the matching of 〈F5,{A1}〉. Alias edge (n5,z) is added, and the new

aliasing causes two new pairs into the worklist: 〈F7,{A2}〉 and 〈F3,{A6}〉. Figure 5.11(d) illustrates

〈F7,{A6,A2}〉 being handled. The new aliasing discovered between n7 and x causes 〈F8,{A4}〉 to be

added to the worklist; in Figure 5.11(e), this fetch/assign pair is matched up resulting in alias edge

(n8,v). Finally, in Figure 5.11(f) F3 and A6 are resolved, creating the aliasing between n3 and y.

According to Figure 5.10, this newly discovered aliasing would cause 〈F8,{A4}〉 to be (re)inserted

into the worklist. This is however unnecessary: fetch edge F8 and assign A4 have already been

resolved, and nothing can change with al(v) in between; hence, there is no need to re-match F8 and

A4. By keeping a cache of such fetch/assign pairs, the analysis can avoid doing redundant work and

thus terminate faster.

A technicality: if the target node of A4 was instead a fetch node ni, and new aliases were added to

such node since the last time A4 was matched with F8, then 〈F8,{A4}〉would need to be re-evaluated

(with respect to these new aliases) upon the addition of (n3, y). Another solution is to allow alias

edges to terminate at fetch nodes, e.g., from n8 to ni, similarly to what was allowed to return nodes

in Section 5.4. Then, the first time F8 and A4 are resolved, we can rely on these “pseudo”-aliasing

between fetch nodes to adjust new aliases—i.e., apply a transitive rule such that (ni,n j) and (n j,x)

implies (ni, x).

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 101

〈F3,{A2}〉; 〈F5,{A1}〉; 〈F7,{A6}〉 〈F3,{A2}〉 ; 〈F5,{A1}〉; 〈F7,{A6}〉

(a) (b)

〈F5,{A1}〉 ; 〈F7,{A6,A2}〉; 〈F3,{A6}〉 〈F7,{A6,A2}〉 ; 〈F8,{A4}〉; 〈F3,{A6}〉

(c) (d)

〈F8,{A4}〉 ; 〈F3,{A6}〉 〈F3,{A6}〉 ;���
��XXXXX〈F8,{A4}〉;

(e) (f)

Figure 5.11: Because of caching, 〈F8,{A4}〉 does not need to be added to the worklist in (f) even

though the new alias in bold would trigger such addition according to Figure 5.10.

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 102

5.6 A flow-aware example and ordering aliases

To increase the accuracy of our flow-aware analysis, we also maintain ordering information on the

alias edges in the AFG. This information indicates at what point in the procedure’s execution the

alias is created. We use such information to make later aliases invisible to earlier fetches, much as

we do for later assignments.

Reconsider the resolved graph in Figure 5.8(f). The initial value edge for z—assignment edge

Az—is demoted into a fetch edge in Figure 5.9. This fetch edge condenses both F3 and F6 from

Figure 5.8(f), given that either (or both) of them would set the initial value for z. To record this

fact in the final summary, initial value edges are annotated with the interval that they represent—

in Figure 5.9, the fetch edge z F−→z1—would be labeled as F3
6 . Operation edges can be seen as

representing a unitary interval, e.g., A1
1. We will refer to the superscript and subscript as min and

max indices.

f(r,s,t)

{

**r = &y;

*s = &z;

**t = &w;

}

g(p,q)

{

f(p,q,p);

}

h()

{

g(&x,&x);

}

(a) (b) (c)

Figure 5.12: The code for procedures f, g and h.

(a) (b) (c)

Figure 5.13: (a) Initial, (b) resolved and (c) summary AFG for h.

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 103

Figure 5.13 illustrates alias ordering. Figure 5.13(a) represents the initial AFG for function h in

Figure 5.12(c), obtained after the summaries for f and g have been computed. This is similar to the

flow-insensitive example of Figure 5.6 which uses the same three functions. Figure 5.13(a) shows

the call to g that occurs in the body of h.

The resolved AFG for h (Figure 5.13(b)) shows the alias edge derived by the resolution phase.

Like the other edges in the graph, it has been annotated with two indices. Such indices are obtained

from the assign edge participating in the resolution, here A8
8.

Indices for alias edges are used when re-directing assign edges in the resolved AFG to form

the summary AFG. To remove a fetch node n, we re-direct its incoming and outgoing assign edges

according to al(n). In the graph of Figure 5.13(b), this would mean creating two new assign edges:

z
A7

7−→y and z
A10

10−→w. However, edge z
A7

7−→y is a spurious pointer relation that emerges because

multiple dereferences have been encapsulated into a single dereference (i.e., multiple fetches have

been condensed into F6
9 much as F3

6 represents Az in Figure 5.8(d)). Indeed, a quick look at Fig-

ure 5.12 verifies that z does not point to y because A8
8, representing the assignment in *s=&z,

occurs between A7
7 and A10

10, representing the assignments in **r=&y and **t=&w, respectively.

We avoid the spurious edge z
A7

7−→y by noting the min index for the resolution edge (n1, z)

is greater than the max index for A7
7 (both encircled in Figure 5.13(b)). Intuitively, this means the

aliasing between n and z in Figure 5.13(b) is created only after A7
7 executes, and therefore z

A7
7−→y is

invalid. Maintaining this additional ordering information increases the accuracy of our flow-aware

analysis.

5.7 Field Sensitivity

There are two types of analyses according to how they handle fields. A field-sensitive analysis dis-

tinguishes between the different fields of a structure; a field-insensitive analysis collapses a structure

into a single variable, so that statements x.f1=&a and x.f2=&b are treated as x=&a and x=&b.

This section gives an overview of field-sensitivity in pointer analysis, and then describes how

we model struct fields and handle type casting on the AFG. Type casting allows a program to access

an object as if it has a type different from its declared type, which complicates the design of a

field-sensitive pointer analysis.

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 104

In addition, we present a new hybrid approach to field-sensitivity which allows us to have a

tunable analysis depending on available resources.

5.7.1 Field-sensitive vs. -insensitive analyses

The example in Figure 5.14 illustrates a bug found in systems code that depends on a field-sensitive

analysis to be caught. The real code has been simplified for the sake of presentation.

1 graph_construction()

2 {

3 graph *G = new graph;

4 ...

5 delete G->correspondence;

6

7 if (condition) {

8 graph_cleanup(G);

9 }

10 ...

11 }

12

13 graph_cleanup(graph *g)

14 {

15 ...

16 if (g->correspondence) {

17 delete g->correspondence;

18 }

19 ...

20 }

Figure 5.14: A program error that depends on field-sensitive analysis to be discovered.

A double memory deallocation occurs if condition at line 7 is true—the “correspondence”

field for G is deleted at line 5 and then checked at line 16. Because the field still points at a valid

memory address, the condition “if (g->correspondence)” is true, and the delete state-

ment at line 17 is executed causing the error.

It is not hard to detect such error if a summary-based, field-sensitive analysis is used. The sum-

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 105

mary for function graph cleanup() contains the information that field correspondence of

formal parameter g may have been deallocated. When the summary is instantiated in the caller,

graph construction(), the same field of G (the argument) has already been deallocated, a

double-free.

Nevertheless, most pointer analysis algorithms, specially for C, are field-insensitive, and thus a

write into one field is treated as writing to all the fields in the structure. Consider the following code

fragment:

struct T {int *f1; int *f2; } x;

int a, b, *p;

if (...) {

x.f1 = &a;

} else {

x.f2 = &b;

}

p = x.f1;

A field-insensitive analysis treats these three assignments as shown below:

if (...) {

x = &a;

} else {

x = &b;

}

p = x;

Consequently, a points-to fact of the form s points-to t is interpreted as “any field of s may point

to any field of t.” The advantage of this approach is that it is more efficient specially in terms of

memory space. A drawback is that it can produce imprecise points-to information. For example, for

the code fragment above, the field-insensitive method identifies p’s points-to set as {a,b}, while in

fact p only points to a. This loss of precision can have a negative impact on pointer clients.

In contrast, one can treat each field of a structure as a separate object to obtain a field-sensitive

analysis. In such analysis, a store to a field via a pointer p only affects the objects pointed to by p

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 106

and only in that field. In the above code fragment, x.f1 and x.f2 are two distinct locations, and

p’s points-to set is correctly identified as {a}. The disadvantage of this method is that the graphs

used to represent pointer relationships are larger, impacting both memory usage and analysis time.

Our goal with regard to field-sensitivity is to distinguish between different fields within a struc-

ture but not necessarily between different elements of an array. For that purpose, we represent struct

fields by using offsets and sizes (i.e., strides). A field in a structure is identified by its offset in bits

from the beginning of the structure (called the base address). A structure’s stride corresponds to its

total size in bits. Although strides are often used for arrays, we generalize the term to signify a struc-

ture’s size because our approach is to first assume that all program variables are seen as unbounded

arrays of their declared type, and later map each array’s cells back to a single location.

To compute offsets and strides, we adopt an implementation dependent memory layout that is

parametrizable. Type casts and unions are handled within such mechanism as explained in Sec-

tion 5.7.5; a type cast from type T1 to type T2 is handled by calculating the greatest common divisor

(gcd) between the strides of both types.

The next sections present the new graph elements and algorithms needed to include field-

sensitivity in our analysis. Assume the usual sizes for pointers and scalar variables, i.e., 4 bytes

for integer, 4 bytes for a pointer, etc.

5.7.2 New graph elements

This section discusses the new AFG elements needed to handle fields. There is one additional edge

type, called an offset edge, which represents a field access starting from a base address. In addition,

each node contains an offset value—when a node’s offset is not zero, the node is the target of an

offset edge. In such case, we call the node an offset node. In contrast, a node with zero offset

corresponds to a base address. Each node also carries a stride value. To illustrate, a simple case is

shown in Figure 5.15.

The single statement in Figure 5.15(a) generates the (field-sensitive) AFG in Figure 5.15(b). The

offset edge labeled R32 corresponds to the field access in the expression x.left. The subscripts in

nodes x0, x32, and a0 correspond to their offset values. I.e., x32 is the memory address that results

from taking an offset of 32 bits from the base address of variable x, represented by x0. The stride

value for each node is written outside the node.

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 107

struct T { // Stride=96

int data; // offset 0

struct T *left; // offset 32

struct T *right; // offset 64

};

struct T a;

struct T x;

void foo()

{

x.left = &a;

}

(a) (b) (c)

Figure 5.15: (a) A function and (b) the new graph elements used to represent struct fields. (c) is the

field-insensitive view of the code.

In contrast, the graph in Figure 5.15(c) is the field-insensitive AFG for the same code (since

offset and stride values are unnecessary, they are not used to label nodes).

Note that x0 coincides with the field called data in struct T. I.e., an statement like x.data=&b

generates an assign edge from node x0 to a location node b, with no need for an intermediate offset

edge. Figure 5.16 illustrates the general structure of a field-sensitive graph.

Figure 5.16: The general structure of a field-sensitive graph.

In general, offset edges always start at a base address, i.e., a chain of offset edges is converted

into a single edge whose offset value is the sum of the individual components of the chain.

Figure 5.17 illustrates another example of field-sensitive graphs. The code in Figure 5.17(a)

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 108

uses the same declaration of struct T from Figure 5.15.

struct T a;

struct T x[100];

void foo()

{

x[10].left = &a;

}

(a) (b) (c)

Figure 5.17: (a) A function, (b)–(c) field-sensitive AFGs.

In this example, the true offset value in the expression x[10].left is 992—i.e., (10×96)+32

bits from the base address x. Therefore, Figure 5.17(b) is the most accurate representation of

function foo. However, an enumerative and exact approach to this would invalidate any termination

guarantees. As an approximation, the representation of objects is extended to allow an object to

wrap around onto itself. All accesses to an offset f are converted to accesses to f mod s, where s

is the size (stride) of the base address. This is shown in Figure 5.17(c), and it means expressions

x.left, x[10].left, and x[i].left are all equivalent, i.e., they all access an offset of 32

bits from node x0.

Some additional, self-explanatory examples of offset edges are shown in Figure 5.18.

5.7.3 “Fetch-” and “assign-” offset edges and the resolution phase

The examples of offset edges given so far were obtained via the dot operator ‘.’ as in x.left.

In general, such cases have a base address that is known at compile time, e.g., x. This means that

both the base address node x0 and the offset node x32 are location nodes, i.e., they correspond to

concrete memory addresses.

In contrast, the arrow operator ’p->’, or alternatively ’(*p).’ creates offset edges whose sink

nodes represent unknown addresses. Such offset edges behave like fetch edges, and need to be

resolved during analysis.

Consider the example in Figure 5.19. There are two unknowns to be determined in the AFG

of Figure 5.19(b), i.e.,*p and (*p).left, represented respectively by n1 and n2. Now consider

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 109

struct T **p;

struct T x[100];

void foo()

{

...

p = &(x[i].left);

}

struct T x[100];

struct T ** foo()

{

return &(x[5].left);

}

(a) (b)

(c) (d)

Figure 5.18: (a)–(b) Two functions, (b)–(c) their respective field-sensitive AFGs.

struct T a;

struct T *p;

void foo()

{

p->left = &a;

}

(a) (b)

Figure 5.19: (a) A code fragment, (b) the offset edge labeled R32 behaves like a fetch.

instantiating this graph into function bar as in Figure 5.20.

The fetch edge out of p gets resolved with the assign edge p A−→x0; this means the offset edge

n1 R32−→n2 takes an offset from (base address) node x0, depicted by the edge labeled x0
R32−→x32.

From the point of view of the analysis (i.e., the resolution phase inference rules) the former behaves

like a fetch, and the later behaves like an assign. We refer to these different flavors of offset edges

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 110

struct T *p;

struct T x;

void bar()

{

p = &x;

foo();

}

(a) (b)

Figure 5.20: (a) Function bar calling function foo from Figure 5.19, (b) the fetch offset edge

induces an assign offset edge (highlighted).

as fetch-offset and assign-offset edges.

It is not hard to incorporate field-sensitivity in our analysis through the use of such offset edges.

As alluded to in Figure 5.20, the resolution phase has to handle offset edges in addition to regular

fetches and assigns. The requirements to match a fetch-offset with an assign-offset are the same as

in the inference rules presented in Chapter 3, with the additional condition that the offset values of

the edges must be the same (modulo stride values).

Note that our field-sensitive analysis allows us to model expressions such as &x.left and

&info->var, which explicit takes the address of a field. As far as we know, this is not addressed

by other techniques.

Figures 5.21 and 5.22 show two additional examples of field-sensitive resolution.

5.7.4 Strides, effective offsets and R0 edges

We assign a stride value for each node, and thus the effective offset of an offset edge is the given

offset modulo its source node’s (i.e., base address’s) stride. If the given offset is an exact multiple of

the stride, the effective offset will be zero. To have a sound analysis, we allow a (temporary) offset

edge with zero offset as shown in Figure 5.23.

In this figure, the statement p->right=&a, following statement p=&(x.left), takes an

offset of 64 bits from the address of x.left. This is represented by the light gray edge labeled

R64 in Figure 5.23(b). This in turn corresponds to taking an offset of 96 bits from the actual base

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 111

struct T *p, *q;

struct T x, y;

struct T a;

void foo()

{

p->left = q->right;

}

void bar()

{

y.right = &a;

p = &x;

q = &y;

foo();

}

(a)

(b) (c)

Figure 5.21: (a) A program fragment with two functions. (b) summary AFG for function foo. (c)

resolved AFG for function bar.

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 112

struct T x;

struct T a;

void foo(struct T *p)

{

p->right = &a;

}

void bar()

{

foo(&x);

}

(a) (b)

Figure 5.22: (a) A program fragment (b) the summary AFG for function foo being instantiated at

the call site within bar. An offset edge out of node x0 is “induced” by the offset edge f oo#1
R64−→n1.

address, x0, and is represented by the offset edge labeled R96. However, since the stride of node x0

is also 96, the effective offset for such edge is (96 mod 96)=0.

Nevertheless, the node labeled n2 in the figure needs to be resolved to a concrete address (which

would be x96 in case of a bigger stride). To account for that, we create a temporary offset edge with

zero offset as illustrated in Figure 5.23(c). During the resolution phase, the edge n1
R64−→n2 resolves

to x0
R0−→x0, as depicted by the alias edge between n2 and x0 in Figure 5.23(c). The summary AFG

for this example is shown in Figure 5.23(d) (for simplicity, we have kept the labels n1 and n2 on the

fetch nodes).

5.7.5 Type casting and strides

In a programming language like C, casting allows an object to be accessed as if it had a type differ-

ent from its declared type. For structure types, casting further allows a different layout pattern to be

used in place of the structure’s declared pattern. This makes the design of a field-sensitive pointer

analysis algorithm more challenging. In this section, we discuss how our AFG-based analysis han-

dles casting by manipulating strides and offsets of nodes and edges.

The basic idea is to update a node’s stride whenever it has been the subject of casting. Initially,

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 113

struct T *p;

struct T x[];

struct T a;

p = &(x.left);

p->right = &a;

(a) (b)

(c) (d)

Figure 5.23: An example showing the computation of effective offset values and the need for R0

edges. In (b) the offset edge n1
R64−→n2 would generally create an offset edge x32

R64−→x96, but be-

cause x32’s base address is x0, the resulting edge is in fact x0
R96−→x96. (c) because x0’s stride is 96,

the effective offset for edge R96 is actually 0, and a self-loop, zero offset is created to replace R96.

Then, edge n1
R64−→n2 matches edge x0

R0−→x0 during resolution, generating the alias edge (n2, x0).

(d) shows that the second assignment in (a) is considered in the final summary.

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 114

the node’s stride is the size of its declared type. When the the node is casted to another type, we

update its stride by computing the greatest common divisor between the current and the new strides.

This may require that all the node’s (outgoing) offset edges be also updated, since the computation

offset modulo new stride may change. An example is illustrated in Figures 5.24 and 5.25.

Figure 5.25(b) shows the initial AFG for function main in Figure 5.24. In particular, x0’s initial

stride is the size of its declared type, i.e., 96. The offset value of the edge representing x.left is

thus (32 mod 96) = 32, depicted by x0
R32−→x32.

Assume that the fetch edge p0
F−→n1 gets resolved, making n1 an alias for x0 (Figure 5.25(c)).

Note that such fetch corresponds to y=&(*p).c, which follows statement p=(struct T2 *)&x

where x is cast. This means that x0’s stride needs to be updated to reflect the fact that it has been

accessed via different types. We do this by computing the gcd as indicated in Figure 5.25(c), where

gcd(96,48)=48. Structurally, the alias edge between n1, whose stride is 48, and x0, whose stride is

96, triggers the update.

The new aliasing discovered between n1 and x0 also makes the offset edge labeled R40 to in-

duce an offset of (40 mod 48) = 40 bits from x0. This is indicated by the edge labeled x0
R40−→x40

highlighted in bold.

A similar situation occurs when fetch edge q0
F−→n3, representing *q in statement z=&(*q).e,

is resolved with q0
A−→x0 (Figure 5.25(d)). Because x0 is now casted as struct T3, whose size

is 16, its new stride is gcd(48,16) = 16, as indicated in the figure. The implication in this case is

that the offset edges out of x0 need to be updated since (32 mod 16) = 0 and (40 mod 16) = 8. Such

updates are depicted in Figure 5.25(e), where two new offset edges R0 and R8 replace R32 and R40,

respectively.

The rationale for the gcd approach can be explained via Figure 5.26, which shows the memory

layout for unbounded arrays of types T1, T2 and T3. One of our assumptions is that a node becomes

“dirty” whenever it has been the subject of casting, since its declared type becomes somewhat

irrelevant. Because different struct types have different sizes and layout patterns, we try to preserve

a common access pattern that would make sense for all casted types. For instance, accessing field

c of struct T2 at statement y=&(*p).c, which we will re-write as x.c, is akin to accessing

x.e within struct T3, as indicated in the figure.

Figure 5.27 shows two possible summary AFGs for the program in Figure 5.24. Figure 5.27(a)

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 115

struct T1 {

int data;

struct T1 *left;

struct T1 *right;

};

struct T2 {

int a;

char b;

char c;

};

struct T3 {

char d;

char e;

};

struct T1 x;

struct T1 *w;

struct T2 *p;

struct T2 *y;

struct T3 *q;

struct T3 *z;

int main()

{

p = (struct T2 *)&x;

y = &(*p).c; /* As if we did x.c with x of type T2 (x40) */

q = (struct T3 *)&x;

z = &(*q).e; /* As if we did x.e with x of type T3 (x8) */

w = &(x.left); /* x.left with x is of original type T1 (x32) */

}

Figure 5.24: An example illustrating the manipulation of type casting (continues in Figure 5.25).

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 116

(b)

(c)

(d)

(e)

Figure 5.25: Continued from Figure 5.24. (b) the initial AFG for function main; the stride values

for nodes n1, x0 and n3 are indicated. (c) The alias edge between n1 and x0 enforces an stride

update for x0 (indicated in the figure). Offset edge n1 R40−→n2 induces edge x0
R40−→x40. (d) alias

edge (n3, x0) causes another stride update for x0, this time setting its value to 16. (e) the newest

stride for x0 causes its outgoing offset edges to be revised since (32 mod 16) = 0 and (40 mod 16)=8.

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 117

Figure 5.26: The memory layouts for the structure types T1, T2 and T3 from Figure 5.24.

is the graph obtained when casting is only partially considered (i.e., a node’s stride is not updated as

a result of casting), and Figure 5.27(b) shows the result obtained when casting is fully considered.

In Figure 5.27(a) none of y0, z0 and w0 point-to the same objects. In Figure 5.27(b) both y0 and z0

point-to x8 and w0 point to x0. Our implementation can generate either result depending on a user’s

provided parameter.

(a) (b)

Figure 5.27: Resulting graph when type casting is (a) partially considered and (b) fully considered.

5.7.6 Tunable field-sensitivity

Most existing pointer analysis are either field-sensitive or field-insensitive. In this dissertation, we

allow a hybrid approach where some pointers are tracked field-sensitively while others may get

collapsed into a single location. The motivation is to keep the graphs’ sizes under control while

providing field-sensitivity as much as possible.

The basic idea is to establish a limit on the number of outgoing offset edges that a node is al-

lowed to have. If that limit is exceeded, the node and its corresponding fields are collapsed together,

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 118

subsequently treating the node field-insensitively. The limit is a user’s provided parameter.

The implementation of such rule is straightforward: by setting a node’s stride to 1, we guarantee

that any offset edge out of the node has zero offset, since (k mod 1)=0 for any k. This is implemented

as a temporary self-loop as discussed in Section 5.7.4. This means that the node is effectively treated

field-insensitively, while the rest of the graph is treated field-sensitively. The above also happens

when the gcd of two stride values in a type casting is 1.

5.7.7 Chains of offset edges

In Section 5.7.2 we mentioned that offset edges cannot form chains. There is one possible exception

to this rule in that offset edges whose sink nodes represent unknown addresses may form temporary

chains. This is more than a pragmatic issue specific to our implementation. A bottom-up summary-

based analysis that wants to track struct fields accurately has to deal with elements (e.g., nodes)

representing unknown values that map to fields; such non-concrete addresses cause uncertainty

about which locations are accessed through a succession of offset-taken operations, which lead to

chains (of edges, in our case). Figure 5.28 illustrates one such example.

Figure 5.28(a) shows the code for a recursive procedure, foo, while Figure 5.28(b) shows the

summary AFG for the procedure after the first iteration of the analysis. The recursive call does not

have any effect at this point because there’s no previous summary computed for foo.

Figure 5.28(c) shows the summary graph for foo being constructed during the second iteration

of the algorithm. This time, the summary computed in Figure 5.28(b) is used at the recursive call to

produce the new summary. Note that there’s a chain of two offset edges—both labeled R32—starting

at the node labeled foo#1 (the edges highlighted in bold). This is caused by the recursive nature of

foo, which takes an offset of 32 bits from a location which is itself an offset from some unknown

address.

Assume that Figure 5.28(c) results in the final summary for foo, and that a caller invokes

foo(&x). The resulting summary instantiation is shown in Figure 5.28(d). Similar to Figure 5.23,

instead of generating an edge x32
R32−→x64 (in light gray), the second offset edge in the chain induces

an edge x0
R64−→x64. That is, after a concrete base address has been determined (x0), the succession

of offset-taken operations is converted into a single operation as shown in the figure.

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 119

void foo(struct T * p)

{

p->left->left = &a;

...

foo(&(p->left));

}

(a) (b)

(c) (d)

Figure 5.28: (a) A recursive function to be summarized. (b) The summary AFG after the first

iteration of the fixed-point computation (c) During the second iteration, a chain of offset edges is

created (highlighted in bold). (d) Assuming that (c) is the final summary for foo, and that it is

called as foo(&x), the chain of offset edges is converted into a single edge when a concrete base

address, x, is identified.

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 120

5.8 Heap Modeling

This section describes how heap locations are modeled in our analysis, discussing two naming

schemes for heap allocated objects that have been implemented.

Most analyses model the heap (a potentially infinite structure) by using a graph of bounded size

[13, 18, 51, 60, 62, 73, 75]. Of course, using graph nodes to represent memory locations is only

possible when pointers point to named objects. For anonymous objects in a heap storage returned by

allocators such as malloc in C, a naming scheme is needed. A number of naming schemes have

been proposed [13, 17, 61], and the main difference is their ability to distinguish among objects

created at different invocations of the malloc function, or else, their ability to distinguish different

instances of objects created at the same malloc call site. Three major methods can be identified:

• One name. Assign only one name to the entire heap space. The obvious consequence of such

method is that all heap-oriented pointers are all aliased together.

• Line numbers, or allocation site. Roughly, a memory block is named after the line number

of the allocating statement. This is a common scheme used by some existing industrial tools.

Such naming scheme allows different memory blocks allocated in different statements to

be disassociated, a significant improvement over using only one name. However, it cannot

differentiate instances of memory blocks allocated by the same statement.

• Calling paths. To improve the precision of the analysis, one can name dynamically allocated

objects by their calling paths in addition to their statement line numbers. The calling path is

the sequence of call sites from the main function to the malloc invocation. A limit on the

length of a calling path can be established in order to make the analysis feasible. When a

calling path is partially used, the call sites are often selected backwardly, instead of starting

from the program’s entry point.

Alternatively, some analyses do not use any graph at all to model the heap: they manipulate sets

of pairs of aliased access paths (i.e., chains of field dereferences starting from pointer variables that

lead to the same object) [15, 26]. This does not require a naming scheme.

However, storing an explicit graph requires less memory space than manipulating its possible

sets of aliases access paths [15] (the number of paths is larger then the number of edges). Also,

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 121

a graph representation of the memory contents offers a natural understanding of the resident data

structures. In our framework we adopt the explicit graph model.

Because we must bound the graph’s size, we need to merge nodes together. The choice of

which nodes to merge is intimately connected to the naming scheme adopted. One technique [13]

uses the allocation site model. This means that all objects created at the same malloc call site are

merged together. A variant approach is k-limiting [17, 39, 43, 47, 49, 61]: it uses a bound, k, on the

maximum acyclic path length in the heap. If all elements in this path are allocated by the same call

site, then the bound k basically sets the number of instances of the heap object that are allowed to

have distinct names. Nodes that would cause the limit to be exceeded are merged together.

The basic goal of a useful naming scheme is to merge nodes that are have similar attributes

during program’s execution; merging unrelated nodes results in analysis imprecision. The next

subsections presents two naming schemes and corresponding merging strategies we have developed

towards this goal, both based on variants of the calling path method.

5.8.1 Naming scheme 1

In this section, we describe a naming scheme that is based on the place of the allocating statement

combined with a variant of the k-limiting approach. Similar to Choi et. al. [17], the naming method

qualifies anonymous objects with an additional string that captures call path information. In contrast

to Choi et. al., two qualified names are “compatible” if and only if they share a common prefix and

a common suffix. When this happens, we say one of the nodes is a “mirror” of the other.

The naming strategy works as follows. The summary for a call to malloc is a fresh, anonymous

node marked as “heap.” When a summary for a function that calls malloc is instantiated at a call site,

heap nodes within this summary are prefixed with the caller’s name indexed by a call site index (each

procedure numbers its function calls 1, ..,n). When the summary for the caller is itself instantiated

into a grand-caller, each heap node is given another prefix (the name of the grand-caller), and so on.

Call stack information is recorded by such strategy in a bottom-up manner. (Mutually) recursive

functions will cause the names of heap nodes to be prefixed indefinitely. A limit k is then used to set

the maximum number of times the same function name can appear in a node’s name. When a node

exceeds the limit, it is merged with its mirror, if one exists, or its name is re-assigned based on the

name its mirror would have. Note that a node can exceed the limit only when it is prefixed with the

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 122

name of a caller. This happens when the node already has k appearances of such caller’s name; we

will refer to such offending caller function as the leading function.

The remaining details are simpler to explain through an example, where k = 2 will be adopted.

Figure 5.29(a) shows three mutually recursive functions, f, h, and z. Assume the analysis starts by

f and continues in the following order: h, z, f, h, z, and so on, until until the summary for each

function converges. In this and the following figures, heap nodes will be drawn as lightly shaded

circles.

Figure 5.29(b) shows the summary graph for f during the first iteration of the analysis. The two

function calls within f’s body result in empty summary instantiations since none of the callees has a

summary yet. The summary for f is thus equivalent to a function f(){ return malloc(..);}.

This is indicated by the heap node in Figure 5.29(b). The name f1 is obtained when the summary

for malloc, an anonymous heap node, is instantiated at the call site *p=malloc(..). The index 1

is because such call site is the first within f.

Figures 5.29(c) and 5.29(d) show the summaries for h and z, respectively, after the first iteration

is completed. When instantiating f’s summary within h and z, the heap node returned by f is given

the prefixes h1 and z1, respectively.

The second iteration of the analysis is shown in Figure 5.29(e), (f), (g), and (h). The first

two illustrate the initial and summary AFGs for f. At this time, both h and z have summaries

computed in the previous iteration, and they are instantiated at the respective call sites as depicted

in Figure 5.29(e). The names for the two heap nodes from the callees are prefixed with f2 and f3,

respectively. In addition, f itself calls malloc generating a second “incarnation” of node f1. The

summary AFG for f, depicted in Figure 5.29(f), has all nodes within the limit 2. Such graph is then

used to produce the summaries for h and z in Figures 5.29(g) and 5.29(h), which completes the

second iteration.

Figure 5.30 shows the analysis of f during the third iteration. In Figure 5.30(a), the summaries

for h and z from Figures 5.29(g) and 5.29(h) are instantiated, and an additional incarnation of f1

results from malloc. In Figure 5.30(b), a tentative summary for f is computed after the resolution

and summarization phases finish. Note that all the nodes in the bottom of this figure exceed the

limit of 2—f appears three times in each. We thus have to merge these nodes with their respective

mirrors. Intuitively, the mirror m of a node n (n created at the i-th iteration of the analysis) is an

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 123

int *f() void h(p) void z(p)

{ { {

int *p = malloc(..); *p = f(); *p = f();

h(p); } }

z(p);

return p;

}

(a)

(b) (c) (d)

(e) (f)

(g) (h)

Figure 5.29: The analysis with heap nodes using naming scheme 1. (a) the code for three functions,

f, h, and z; (b),(c) and (d) the summary AFGs for f, h, and z, respectively, after the first iteration

of the analysis; (e) the initial AFG for f for the second iteration—the previous summaries for h and

z are instantiated; (f) the summary for f at the second iteration; (g)—(h) the summary AFGs for h

and z after the second iteration.

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 124

incarnation of n that is created at a later iteration. The mirror m re-traces part of the call path

taken by the node n during summary propagation; this is captured by common prefix and suffix

strings, whose lengths depend on k. Such strategy strives at merging nodes only if they have similar

attributes in the program.

Take for instance node f3z1f2h1f1 in Figure 5.30(b). Its mirror is named f3z1f1. The computation

of such mirror goes as follows. First, we compute what we call the k-prefix of the node’s name.

Such prefix depends on both k and the name of the leading function, in our example f. Precisely,

we allow the k-prefix to have k−1 appearances of the leading function, i.e., the prefix extends from

the beginning of the string all the way to where the k-th appearance of the leading function occurs,

exclusive. In our example with k = 2 the prefix is f3z1. Then, we skip everything including the

k-th appearance of the leading function up until the next occurrence of that name (if any). In our

example, we skip f2h1. Finally, we concatenate the prefix with the remaining suffix, f1, to generate

the string f3z1f1. A node with such a name is searched (through a hash table) and then merged with

the offending node; the resulting node keeps the shorter name f3z1f1.

These merging is indicated in Figure 5.30(b). Both nodes f2h1��HHf2h1f1 and f2h1�
�Z
Zf3z1f1 have the

same mirror f2h1f1. The same happens for nodes f3z1��HHf2h1f1 and f3z1�
�Z
Zf3z1f1 whose mirror is f3z1f1.

The resulting graph is depicted in Figure 5.30(c).

Note the underlying shape of the data structure is preserved by this naming scheme/merging

strategy. Also, apart from the self-loop edges in Figure 5.30(c), the final summary for f in this

figure is identical to the one obtained at the end of the second iteration (Figure 5.29(f)). The analysis

will converge at the next iteration, and the summaries for f, h, and z will all have the structure in

Figure 5.30(c).

Note that depending upon which function (within a set of mutually recursive functions) the

analysis starts, it may be possible that no mirror exists for a given node. In that case, the node itself

has its name re-assigned, and it becomes the otherwise missing mirror in a later iteration.

Also observe that if the k-limit is 1 we can never have a node with 3 occurrences of the same

function name—the node exceeds the limit whenever it has 2 instances of the leading name, and it

is thus merged with its mirror at that point. Thus, any heap node in the graph, at any given point,

can either have its name below the limit, equal to the limit, or offending the limit by one unit, in

which case it is merged with its mirror. For instance, if k = 1 and the node’s name is f3z1 f1, then its

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 125

mirror’s is f1. Indeed, allowing k−1 = 0 occurrences of f makes the k-prefix f3z1 to be discarded,

along with the empty string that spans from the last character of the prefix all the way to the next

occurrence of f , resulting in the suffix f1.

In general, by choosing to merge only nodes that have a common suffix, we do not merge nodes

that would (or could) be given different type declarations.

5.8.2 Naming scheme 2

The naming scheme presented in this section is more aggressive in its strategy to merge nodes.

Its objective is to alleviate the potential growth in the number of nodes that may be caused by

the previous method. Its drawback lies in the fact that unrelated nodes may get merged together,

compromising the analysis precision. Basically, instead of limiting the number of occurrences of

the same function name, this naming scheme limits the absolute number of function names in the

string representing a node’s name.

Two limiting values are adopted here. The stack limit constrains the absolute size of the call

stack. The merge depth indicates how aggressive node merging will be. It establishes the size of

a common suffix that two nodes must have in order to be merged together. The size is in terms of

absolute number of functions. The larger the merge depth, the less aggressive the merging, since

less nodes are likely to share a larger suffix.

The basic process of attaching prefixes to heap nodes when instantiating them at call sites is

the same as in the previous section. However, when a node n exceeds the stack limit, a suffix s

with size merge depth (in number of functions) is extracted from n’s name. Then, all nodes in the

graph such that (1) have a name with size at least merge depth, and (2) have an identical suffix s,

are merged with n. Define M(α,β ,merge depth) as a function that, given a heap node α exceeding

the stack limit, returns true in case β obeys the two conditions above. In that case, α and β are

merged together. It may happen that no other node in the graph shares the suffix s with α . In this

case, α’s name is re-assigned such that it stays within the stack limit. The new name is constructed

by concatenating α’s leading function name, indexed by a fictitious call site of 0, with s.

Reusing the code for functions f, h, and z of last section, Figure 5.31 shows the graphs ob-

tained when a stack limit of 3 and a merge depth of 2 is used. The first five graphs in Figure 5.29

are identical to the ones obtained by the new merging scheme. Figure 5.31 shows where they differ.

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 126

(a)

(b)

(c)

Figure 5.30: The summarization of f during the third iteration of the analysis. (a) instantiating the

summaries for h and z; (b) the resulting graph after resolution and clean-up phases—all nodes in

the bottom row exceed the limit of 2 because f appears three times in each; (c) the resulting graph

after the node merging indicated in (b) takes place.

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 127

For example, when the summary for h is built during the second iteration of the analysis (Fig-

ure 5.31(a)), two nodes exceed the stack limit: h1f2h1f1 and h1f3z1f1 (both strings contain 4 function

names). For the first node, the suffix s mentioned above is h1f1, and there is a node in the graph with

a large enough name sharing this suffix. The merging is indicated in Figure 5.31(a). For the second

offending node, the suffix s is z1f1. Since no other node in the graph has a common suffix, h1f3z1f1

becomes h0z1f1. The resulting graph is shown in Figure 5.31(b). Figures 5.31(c) and 5.31(d) show

the respective situation for z’s summary.

(a) (b)

(c) (d)

Figure 5.31: The second naming scheme merges nodes based on absolute number of functions

in a string. (a) node h1f2h1f1 exceeds the assumed stack limit of 3. It is then merged with h1f1

which shares a suffix of size (merge depth) 2; (b) the resulting graph after the merging; (c)—(d) the

respective situation for function z.

Figure 5.32 corresponds to the third iteration of the analysis, and resembles what we had encoun-

tered in Figure 5.30. In Figure 5.32(a), the summaries for h and z from Figures 5.31(b) and 5.31(d)

are instantiated at the call sites h(p) and z(p). Figure 5.32(b) shows a tentative final summary

for f. Two additional nodes exceed the stack limit, and are thus merged with two other nodes in the

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 128

graph as indicated (both M(f2h0z1f1, f3z1f1, 2) and M(f3z0h1f1, f2h1f1, 2) hold). The final summary

for f is depicted in Figure 5.32(c). Observe it does not maintain the data structure’s shape as in

Figure 5.30(c).

5.8.3 The call graph, a.k.a automata, view

This section evaluates the above naming schemes by using some elements from automata theory.

Basically, the general mechanism for both naming schemes can be viewed as heap nodes propa-

gating over the program’s call graph, as indicated in Figure 5.33. This figure investigates the first

naming scheme with k-limit=2, and it shows a strongly connected component of a call graph with

three functions, f, h, l. In addition, procedure alloc is a heap storage allocator. Labels on call

graph edges indicate call site indices. Assume the SCC is iterated in the following order: f, h, l,

f, h, l, and so on, until convergence.

Figure 5.33(a) illustrates the set of heap nodes created during the first analysis iteration, named

f1, h1 f1, l1h1 f1, and l2h1 f1.

As implied by the figure, we can depict heap nodes as walking (backwards) along call graph

edges. Each new edge traversed prefixes a node’s name with the edge’s source node (i.e., the caller)

indexed with the edge’s label. This reproduces the bottom-up characteristic of the analysis where

summaries for callees are instantiated inside callers. Heap nodes are replicated at call graph nodes

with multiple predecessors, as is the case for function h.

The second iteration of the analysis is shown in Figure 5.33(b). When f is analyzed, heap nodes

coming from both successors in the call graph account for f1, f2l1h1, and f2l2h1 f1. The latter two

originate at function l from Figure 5.33(a). These three nodes percolate along the edges of the

automata to result in the heap locations indicated in the figure.

By the third time f is visited (Figure 5.33(c)), four nodes exceed the k-limit (i.e., the maximum

number of occurrences of the same function name). The merging strategy based on common prefixes

and suffixes (Section 5.8.1) collapses the two sets of three nodes into two heap locations as indicated.

The result for function f is identical to the one obtained in Figure 5.33(b), and therefore the analysis

converges (Figure 5.33(d)).

The basis for this naming scheme is akin to string generation in a finite automaton. Strings in the

automaton’s language are the names for heap locations. Informally, the mirror string Sm for a string

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 129

(a)

(b)

(c)

Figure 5.32: The third iteration of the analysis for function f. (a) the summaries for h and z from

Figure 5.31 are instantiated; (b) the tentative summary for f has two nodes that exceed the stack

limit; (c) the final summary for f after the node merging indicated in (b) are performed. Note it

does not maintain the data structure’s shape.

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 130

(a) (b)

(c) (d)

Figure 5.33: The naming schemes can be viewed as string generation in a finite automaton; this

shows the first naming scheme. (a) a call graph with four functions; alloc is a heap storage

allocator. Heap nodes percolate up the graph as indicated on the right of each node; (b) The result

of the analysis after its second iteration; (c) analysis of f during the third iteration: offending heap

nodes are merged as indicated; (d) the final number of heap nodes in each function.

Sn is obtained by eliminating from the latter a substring that corresponds to a cycle in the automaton.

The limit k is a measure of how many cycles a name can have. In the example, observe that f2l1h1 f1

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 131

is the mirror for both f2l1h1 f2l1h1 f1 and f2l1h1 f2l2h1 f1; the corresponding cycles removed from

each string are enclosed in boxes. Such strategy guarantees that two nodes are merged only when

they correspond to distinct incarnations of the same object, and therefore collapsing them does not

incur in excessive loss in analysis precision. This is a novel merging scheme used for the first time

in this thesis.

As a comparison, Figure 5.34 shows the set of heap locations obtained when the second naming

scheme (Section 5.8.2) is adopted. Figures 5.34(a) and 5.34(b) assume a stack limit of 3 and a merge

depth of 2, and Figures 5.34(c) and 5.34(d) use stack limit 4 and merge depth 3. In both cases, the

convergence is achieved in the second iteration of the fixpoint computation, shown respectively in

Figures 5.34(b) and 5.34(d). This can be observed from the number of heap locations for function

l, which stabilizes from the (respective) previous iterations.

CHAPTER 5. THE ASSIGN-FETCH GRAPH IN DETAIL 132

(a) (b)

(c) (d)

Figure 5.34: The second naming scheme results in less heap nodes because a more aggressive

merging scheme is utilized. (a)—(b) a stack limit of 3 and merge depth of 2 is used; (c)—(d) stack

limit equals 4 and the merge depth is 3.

Chapter 6 133

Chapter 6

Empirical Studies

This chapter presents an empirical evaluation of our pointer analysis framework. Its basic goal is

to provide two types of experimental data: (1) analysis metrics, and (2) (pointer) bugs we found

when analyzing several benchmark applications. Some of these projects receive regular source code

checking, both manual and automated, and thus finding errors in a number of them indicates the

utility of our analysis.

Tables 6.1 and 6.2 summarize the benchmarks we have evaluated. We divided them into two

groups: “whole applications” (Table 6.1) corresponds to complete programs; “Linux kernel mod-

ules” (Table 6.2) corresponds to complete modules within the latest stable version of the Linux O.S.

kernel (2.6.23 as of December 2007).

The fourth column of Table 6.1 gives the number of lines of code, the fifth column represents

the number of procedures in the program, and the sixth column corresponds to the total number of

procedures after loops have been transformed into tail recursive functions. In Table 6.2, the second

column specifies which module of the kernel the benchmark belongs to.

6.1 Analysis metrics

We first evaluate a basic metric in our analysis framework: the time it takes to run pointer analysis

when considering the origin of our analysis space (i.e., flow-insensitive analysis). Table 6.3 lists

such runtimes. We have divided this table into two sections, one for whole application benchmarks

and the other for Linux Kernel modules. For each section, the table lists the analysis times for

CHAPTER 6. EMPIRICAL STUDIES 134

Table 6.1: Benchmarks I: whole applications.

Benchmark Version Description Lines Source funcs Internal funcs

balsa 2.3.13 E-mail client 110.0k 2659 4682

bftpd 2.0.3 Ftp file server 4.9 145 245

bison 2.1 GNU parser generator 25.4 700 1297

black-hole 1.0.9 Spam prevention 18.0 87 290

cfingerd 1.4.3 Configurable ”finger” daemon 4.5 68 123

compress 1.3 Compression software 2.2 30 66

firestorm 0.5.4 Network firewall 8.0 229 330

gzip 1.2.4 Compression software 8.3 126 331

identd 1.3 TCP identification protocol daemon 0.3 21 40

ispell 3.1 Spell checker 10.1 117 337

lhttpd 0.1 Http server and content management 0.8 20 40

make 3.81 Application building system 22.1 309 853

mingetty 1.07 Minimalist ”getty” program 0.4 24 43

muh 2.05d IRC bouncing tool 5.2 75 107

pcre 7.1 Regular expressions interpreter 15.4 63 300

pgp4pine 1.76 Integrate PGP into pine mail reader 4.2 72 146

polymorph 0.4.0 Filename converter (”unixizer”) 1.0 19 31

stunnel 3.26 Universal SSL tunnel 3.9 93 134

tar 1.15.1 File archiver 32.7 651 1145

trollftpd 1.26 Ftp file server daemon 2.8 52 102

field-insensitive analysis (i.e., not modeling struct fields) as well as field-sensitive analysis. Given

a benchmark, the field-sensitive analysis is often slower than the field-insensitive—modeling fields

imply more nodes in the graph, more edges to resolve, and consequently a higher runtime. Interest-

ingly, in a number of cases the field-sensitive analysis turns out to be faster than the field-insensitive.

The additional overhead needed to distinguish fields is compensated by a more selective analysis,

with less spurious aliases to be analyzed and propagated.

In general, analysis times are short enough to make our technique practical for bug finding, but

vary widely depending on the size of the input program and other characteristics. An important

CHAPTER 6. EMPIRICAL STUDIES 135

Table 6.2: Benchmarks II: Linux 2.6.23 kernel modules.

Benchmark Module Lines Source funcs Internal funcs

algos I2C 1.7k 52 75

amso1100 Network 8.2 234 304

atm I2C 5.7 166 209

bluetooth Bluetooth 8.4 291 358

busses I2C 20.3 434 520

chips I2C 7.1 115 131

core USB 15.8 527 659

cxgb3 Network 9.3 307 420

gadget USB 41.9 693 872

host USB 25.6 629 878

ieee1394 Firewire 24.0 512 735

inficore Network 25.4 659 840

irq Kernel 2.3 86 105

kernel Kernel 64.5 2451 3254

misc USB 16.8 523 665

mlx4 Network 4.3 149 178

mthca Network 15.0 442 597

power Kernel 4.8 220 302

serial USB 42.1 911 1205

storage USB 12.2 274 366

video Video 84.0 1134 1667

characteristic is the shape of the program’s call graph—an application with big clusters of func-

tions, all calling each other makes propagating summaries a more challenging task, since a global

fixpoint is necessary for the analysis to converge (i.e., all the summary AFGs for all the functions

in the strongly-connected component have to stabilize). Arguably, some of the runtimes shown in

Table 6.3 would not be practical for compilation. A bug finding tool, however, often runs overnight

checking code written during the day. For that purpose, the runtime of pointer analysis is often at

least one order of magnitude faster than the total time it takes to find errors.

CHAPTER 6. EMPIRICAL STUDIES 136

Ta
bl

e
6.

3:
A

na
ly

si
s

tim
es

fo
rt

he
an

al
ys

is
sp

ac
e

or
ig

in
.

W
ho

le
ap

pl
ic

at
io

ns
L

in
ux

K
er

ne
l

B
en

ch
m

ar
k

Fi
el

d
In

se
ns

iti
ve

Fi
el

d
Se

ns
iti

ve
B

en
ch

m
ar

k
Fi

el
d

In
se

ns
iti

ve
Fi

el
d

Se
ns

iti
ve

ba
ls

a
42

.7
1s

76
.2

8s
al

go
s

0.
46

s
1.

57
s

bf
tp

d
3.

53
2.

94
am

so
11

00
1.

47
1.

56

bi
so

n
51

.1
5

98
.5

5
at

m
1.

58
3.

54

bl
ac

kh
ol

e
11

.2
1

7.
59

bl
ue

to
ot

h
1.

17
4.

13

cfi
ng

er
d

2.
56

3.
72

bu
ss

es
7.

28
12

.3
0

co
m

pr
es

s
0.

68
1.

09
ch

ip
s

2.
01

2.
78

fir
es

to
rm

1.
28

2.
03

co
re

5.
59

9.
57

gz
ip

1.
35

1.
04

cx
gb

3
2.

41
3.

52

id
en

td
0.

12
0.

17
ga

dg
et

18
.8

6
41

.7
5

is
pe

ll
8.

02
9.

65
ho

st
16

.6
3

32
.1

2

lh
ttp

d
1.

48
1.

32
ie

ee
13

94
34

.8
5

26
.8

8

m
ak

e
12

3.
21

28
4.

59
in

fic
or

e
7.

31
10

.2
9

m
in

ge
tty

0.
36

0.
51

ir
q

0.
44

1.
43

m
uh

2.
77

2.
99

ke
rn

el
27

.4
5

44
.6

8

pc
re

19
.4

0
24

.0
9

m
is

c
6.

91
8.

76

pg
p4

pi
ne

2.
85

3.
38

m
lx

4
0.

90
0.

91

po
ly

m
or

ph
0.

52
0.

72
m

th
ca

3.
70

4.
71

st
un

ne
l

1.
49

1.
74

po
w

er
1.

52
2.

34

ta
r

37
.0

7
86

.3
4

se
ri

al
12

.7
3

14
.7

0

tr
ol

lf
tp

d
1.

84
1.

68
st

or
ag

e
4.

78
6.

74

vi
de

o
31

.1
9

78
.5

9

CHAPTER 6. EMPIRICAL STUDIES 137

6.1.1 Speedup

Our second set of data illustrate how analysis times vary when different analysis parameters are

considered. A myriad of numbers can be obtained by combining virtually a dozen parameters we

have defined. The results contained in this section are just a sample of our ability to evaluate these

countless combinations. In this section we have exercised three most important parameters which

correspond to some possible values for the three axis in our analysis space.

For these experiments, we ran the analysis with different values of order-, condition- and kill-

sensitivities, for both field-sensitive and field-insensitive variants. For order, we borrowed the ap-

proximations defined for the flow-aware and flow-branch-aware analyses. The approximation de-

scribed in Section 4.4 was adopted in which conditions are tracked as precisely as possible within

function bodies and later approximated to T,F, and “?” when summaries are computed. Similarly,

the approximation discussed in Section 4.3 was used for the kill dimension, namely, only relations

that are unconditionally killed were taken into account when kill is switched on.

Tables 6.4 and 6.5 show speedup results. The interpretation for each of these tables is as follows.

Each column corresponds to a different analysis variation; the contents of a column are the speedup

(in %) of the corresponding analysis variation over its baseline analysis, whose runtime was listed

Table 6.3. As before, the results are grouped by field-sensitivity (Table 6.4 corresponding to field-

insensitive analysis and Table 6.5 showing the results for field-sensitive analysis.)

Invariably, a condition-sensitive analysis is slower than using no conditions; handling conditions

involve invoking the theorem prover, which is relatively slow compared to the other modules of the

analysis. As seen in all tables, speedups for condition-sensitive columns are all negative. The

magnitude of the slowdown varies between ∼1% and ∼120%, meaning over 2x slower. These

values also vary widely depending on which field-sensitivity is chosen.

Consider for example the program blackhole. In a field-insensitive analysis we have achieved

speedups of∼8% and experienced slowdowns of∼50%. When fields are modeled, speedups1 of up

to ∼40% are obtained, whereas the slowdowns stay within ∼20%. Having order information when

fields are present has a bigger impact for several of the benchmarks.

1Obviously, the speedup is computed over the appropriate baseline analysis.

CHAPTER 6. EMPIRICAL STUDIES 138

Ta
bl

e
6.

4:
Sp

ee
d

up
ov

er
ba

se
lin

e
an

al
ys

is
—

fie
ld

-i
ns

en
si

tiv
e

(v
al

ue
s

in
%

).

W
ho

le
ap

pl
ic

at
io

ns
L

in
ux

K
er

ne
l

O
rd

er
[F

lo
w

Aw
ar

e]
O

rd
er

[F
lo

w
B

ra
nc

h
Aw

ar
e]

O
rd

er
[F

lo
w

Aw
ar

e]
O

rd
er

[F
lo

w
B

ra
nc

h
Aw

ar
e]

B
en

ch
C

on
d.

In
se

ns
.

C
on

d.
Se

ns
.

C
on

d.
In

se
ns

.
C

on
d.

Se
ns

.
B

en
ch

C
on

d.
In

se
ns

.
C

on
d.

Se
ns

.
C

on
d.

In
se

ns
.

C
on

d.
Se

ns
.

N
o

K
ill

K
ill

N
o

K
ill

K
ill

N
o

K
ill

K
ill

N
o

K
ill

K
ill

N
o

K
ill

K
ill

N
o

K
ill

K
ill

N
o

K
ill

K
ill

N
o

K
ill

K
ill

ba
ls

a
14

.6
0

23
.4

5
-3

9.
74

-3
7.

21
15

.7
2

21
.2

1
-3

7.
30

-3
5.

90
al

go
s

6.
93

7.
89

-1
7.

33
-1

5.
70

7.
50

8.
80

-1
8.

33
-1

8.
43

bf
tp

d
9.

50
8.

58
-2

2.
08

-1
9.

95
10

.2
3

11
.9

0
-3

4.
42

-2
5.

61
am

so
11

00
8.

39
5.

53
-5

.2
9

-7
.5

3
3.

13
3.

93
-4

.8
2

-7
.4

6

bi
so

n
55

.6
9

50
.0

1
-8

8.
42

-8
8.

74
52

.4
3

50
.3

4
-8

8.
32

-8
8.

46
at

m
0.

01
6.

29
-1

0.
09

-7
.7

7
1.

87
5.

44
-1

3.
20

-7
.9

0

bl
ac

kh
ol

e
6.

97
4.

20
-5

2.
49

-5
2.

53
7.

55
6.

67
-5

2.
66

-5
2.

12
bl

ue
to

ot
h

7.
38

7.
80

-5
.4

2
-2

.4
3

6.
20

9.
85

-6
.9

0
-4

.5
2

cfi
ng

er
d

12
.2

0
13

.0
6

-2
0.

03
-1

8.
57

14
.0

2
16

.5
6

-1
9.

79
-1

9.
77

bu
ss

es
14

.7
7

16
.8

6
-8

.5
4

-6
.5

5
15

.9
3

16
.9

1
-4

.8
5

-3
.3

7

co
m

pr
es

s
3.

64
4.

58
-1

0.
78

-9
.5

0
5.

95
6.

56
-1

2.
86

-9
.8

3
ch

ip
s

8.
29

9.
25

-8
.2

1
-8

.7
8

10
.8

0
13

.6
4

-1
5.

59
-1

1.
72

fir
es

to
rm

4.
29

4.
83

-1
5.

69
-1

6.
46

5.
19

5.
25

-2
8.

18
-1

3.
46

co
re

5.
76

6.
40

-1
2.

07
-1

0.
55

7.
46

7.
87

-1
1.

14
-9

.2
7

gz
ip

8.
68

9.
00

-1
7.

32
-1

9.
88

8.
90

10
.1

4
-1

9.
87

-1
8.

07
cx

gb
3

6.
06

7.
10

-2
2.

27
-2

2.
25

7.
39

8.
26

-2
2.

97
-2

3.
13

id
en

td
4.

45
6.

40
-1

5.
02

-1
0.

94
3.

80
4.

58
-2

5.
74

-1
3.

64
ga

dg
et

30
.6

9
34

.4
7

-5
3.

28
-5

1.
08

29
.8

8
37

.2
0

-5
6.

67
-5

4.
75

is
pe

ll
50

.2
5

53
.0

8
-3

5.
27

-3
2.

78
50

.1
2

50
.7

7
-3

5.
86

-3
5.

43
ho

st
35

.0
4

32
.6

7
-3

2.
61

-3
5.

86
35

.0
7

38
.8

9
-4

3.
78

-4
0.

15

lh
ttp

d
0.

68
0.

47
-5

.6
2

-0
.8

5
3.

74
9.

22
-7

.4
3

-9
.8

8
ie

ee
13

94
7.

98
6.

06
-3

9.
98

-3
9.

84
7.

67
7.

14
-4

0.
09

-3
9.

58

m
ak

e
66

.6
4

64
.2

0
-9

0.
04

-9
0.

02
71

.4
4

71
.0

9
-9

0.
03

-8
9.

92
in

fic
or

e
7.

27
5.

37
-5

.0
1

-6
.3

0
6.

59
7.

42
-1

.8
3

-1
.8

8

m
in

ge
tty

0.
76

0.
33

-8
.2

6
-1

1.
11

1.
47

2.
57

-1
3.

29
-9

.6
6

ir
q

1.
27

2.
20

-1
7.

18
-1

9.
82

3.
45

3.
59

-3
2.

35
-1

6.
41

m
uh

25
.0

5
22

.4
1

-1
4.

52
-1

2.
91

21
.0

7
18

.3
5

-1
6.

10
-1

7.
12

ke
rn

el
14

.2
8

16
.2

0
-1

4.
86

-1
3.

01
15

.0
5

18
.0

2
-1

5.
79

-1
0.

24

pc
re

83
.0

7
84

.8
3

-9
3.

57
-9

3.
51

81
.6

7
82

.7
6

-9
3.

52
-9

3.
43

m
is

c
6.

59
8.

93
-1

1.
70

-7
.7

0
7.

23
6.

61
-9

.9
4

-8
.5

0

pg
p4

pi
ne

4.
97

4.
80

-2
6.

30
-2

7.
83

4.
16

3.
19

-2
7.

66
-2

5.
26

m
lx

4
1.

87
0.

48
-2

0.
22

-1
6.

55
2.

42
2.

33
-2

0.
03

-1
6.

90

po
ly

m
or

ph
1.

79
0.

36
-2

3.
01

-1
2.

91
3.

68
3.

33
-2

0.
17

-2
3.

22
m

th
ca

12
.5

1
13

.9
2

-9
.1

9
-6

.9
6

13
.1

0
13

.1
1

-9
.2

8
-8

.6
4

st
un

ne
l

3.
92

2.
97

-1
7.

50
-1

6.
66

4.
95

3.
17

-1
7.

16
-1

8.
69

po
w

er
8.

35
8.

62
-2

5.
68

-2
3.

71
9.

74
8.

26
-3

1.
69

-3
1.

45

ta
r

43
.7

1
42

.4
8

-5
0.

64
-5

2.
23

41
.2

8
40

.3
5

-5
0.

21
-5

1.
08

se
ri

al
33

.8
8

32
.6

4
-2

2.
49

-2
2.

15
33

.4
5

32
.3

4
-1

9.
55

-2
7.

04

tr
ol

lf
tp

d
0.

13
0.

46
-2

1.
31

-1
7.

86
1.

57
2.

94
-2

1.
17

-1
9.

35
st

or
ag

e
15

.9
4

16
.3

9
-1

7.
27

-1
4.

24
15

.9
3

14
.1

1
-1

8.
89

-2
6.

42

vi
de

o
37

.5
2

34
.9

3
-3

9.
64

-4
0.

31
38

.9
0

31
.5

6
-4

2.
65

-4
4.

82

CHAPTER 6. EMPIRICAL STUDIES 139

Ta
bl

e
6.

5:
Sp

ee
d

up
ov

er
ba

se
lin

e
an

al
ys

is
—

fie
ld

-s
en

si
tiv

e
(v

al
ue

s
in

%
).

W
ho

le
ap

pl
ic

at
io

ns
L

in
ux

K
er

ne
l

O
rd

er
[F

lo
w

Aw
ar

e]
O

rd
er

[F
lo

w
B

ra
nc

h
Aw

ar
e]

O
rd

er
[F

lo
w

Aw
ar

e]
O

rd
er

[F
lo

w
B

ra
nc

h
Aw

ar
e]

B
en

ch
C

on
d.

In
se

ns
.

C
on

d.
Se

ns
.

C
on

d.
In

se
ns

.
C

on
d.

Se
ns

.
B

en
ch

C
on

d.
In

se
ns

.
C

on
d.

Se
ns

.
C

on
d.

In
se

ns
.

C
on

d.
Se

ns
.

N
o

K
ill

K
ill

N
o

K
ill

K
ill

N
o

K
ill

K
ill

N
o

K
ill

K
ill

N
o

K
ill

K
ill

N
o

K
ill

K
ill

N
o

K
ill

K
ill

N
o

K
ill

K
ill

ba
ls

a
20

.2
8

19
.7

7
-4

3.
92

-3
5.

22
14

.7
0

12
.7

0
-3

7.
35

-3
5.

10
al

go
s

5.
89

6.
32

-1
6.

74
-1

7.
99

6.
21

5.
83

-1
8.

96
-1

7.
58

bf
tp

d
15

.1
8

17
.4

6
-2

6.
68

-2
6.

40
21

.1
5

22
.3

3
-2

5.
31

-2
2.

72
am

so
11

00
2.

31
3.

42
-1

.4
9

-5
.8

0
2.

41
2.

50
-0

.5
2

-2
.3

3

bi
so

n
15

7.
97

16
0.

19
-6

3.
42

-6
4.

67
16

3.
21

15
7.

41
-6

3.
42

-6
4.

86
at

m
14

.6
1

8.
54

-1
6.

18
-1

5.
07

15
.6

9
12

.7
4

-1
6.

98
-1

5.
89

bl
ac

kh
ol

e
43

.2
1

37
.3

9
-2

2.
73

-2
2.

16
44

.2
5

36
.9

1
-2

3.
27

-2
2.

74
bl

ue
to

ot
h

4.
80

5.
50

-9
.9

5
-1

3.
70

6.
36

7.
39

-8
.1

6
-8

.5
4

cfi
ng

er
d

21
.7

1
21

.3
5

-1
5.

35
-1

5.
97

19
.5

2
20

.0
5

-2
2.

14
-1

9.
31

bu
ss

es
23

.4
5

22
.7

1
-4

.5
2

-4
.2

6
24

.0
4

22
.9

4
-7

.0
1

-2
.0

8

co
m

pr
es

s
1.

83
1.

16
-9

.2
1

-1
2.

14
3.

68
3.

79
-1

4.
23

-1
9.

15
ch

ip
s

11
.6

8
12

.1
4

-9
.8

6
-8

.8
4

12
.3

6
14

.5
0

-6
.5

2
-7

.2
5

fir
es

to
rm

17
.4

2
16

.2
1

-7
.3

4
-1

.5
7

20
.6

2
16

.3
5

-2
6.

94
-2

0.
19

co
re

13
.5

4
9.

75
-1

1.
01

-8
.0

9
12

.3
2

14
.3

1
-1

2.
72

-1
2.

93

gz
ip

6.
25

5.
59

-1
8.

88
-1

8.
62

5.
11

6.
14

-1
7.

63
-1

8.
29

cx
gb

3
3.

48
4.

60
-2

1.
48

-2
0.

44
5.

23
6.

98
-2

0.
99

-2
0.

36

id
en

td
9.

87
3.

55
-1

.6
1

-2
.8

4
13

.1
3

12
.3

1
-1

.4
6

-0
.7

2
ga

dg
et

38
.5

9
41

.0
2

-1
6.

44
-1

6.
45

40
.4

8
39

.6
1

-2
1.

23
-1

8.
54

is
pe

ll
45

.5
1

42
.3

5
-3

7.
75

-3
7.

16
41

.0
7

47
.8

3
-3

8.
31

-3
7.

08
ho

st
26

.2
0

24
.9

1
-4

7.
28

-4
4.

19
28

.6
0

25
.4

3
-4

2.
93

-4
1.

68

lh
ttp

d
2.

75
2.

62
-2

8.
00

-1
9.

11
3.

58
3.

54
-1

9.
69

-2
1.

82
ie

ee
13

94
12

.6
1

11
.5

7
-2

8.
99

-2
7.

16
11

.8
6

13
.1

6
-3

1.
19

-3
0.

22

m
ak

e
10

3.
41

11
4.

35
-7

9.
52

-7
9.

43
11

1.
91

11
6.

35
-7

8.
13

-7
8.

12
in

fic
or

e
73

.8
1

74
.2

2
-6

0.
83

-5
4.

12
75

.9
4

77
.6

8
-6

2.
74

-5
9.

57

m
in

ge
tty

6.
76

7.
12

-1
0.

45
-7

.1
9

3.
27

7.
18

-2
4.

62
-1

5.
56

ir
q

5.
75

6.
51

-1
7.

08
-1

7.
48

5.
97

5.
46

-1
9.

41
-1

8.
14

m
uh

36
.2

6
38

.9
5

-6
2.

80
-6

1.
28

41
.6

3
40

.6
0

-7
2.

66
-7

3.
78

ke
rn

el
22

.2
6

24
.7

3
-1

24
.6

2
-1

17
.6

5
19

.5
5

18
.6

5
-1

21
.3

6
-1

20
.1

6

pc
re

70
.4

5
72

.2
7

-9
3.

24
-9

3.
19

62
.2

8
65

.6
3

-9
3.

16
-9

3.
08

m
is

c
7.

90
8.

85
-1

9.
07

-1
9.

12
11

.2
0

14
.4

7
-2

4.
94

-1
9.

53

pg
p4

pi
ne

10
.6

6
10

.8
7

-2
1.

28
-1

9.
43

9.
57

10
.0

2
-2

2.
01

-2
1.

65
m

lx
4

6.
51

7.
17

-1
9.

45
-1

7.
51

7.
26

8.
20

-1
7.

35
-1

5.
70

po
ly

m
or

ph
3.

68
2.

65
-1

5.
12

-1
0.

14
4.

32
3.

97
-1

6.
06

-1
2.

09
m

th
ca

10
.9

8
9.

31
-3

.4
7

-2
.0

6
13

.5
7

11
.6

5
-5

.5
1

-8
.4

1

st
un

ne
l

4.
39

4.
50

-1
5.

86
-1

1.
24

5.
25

6.
33

-1
6.

09
-1

4.
27

po
w

er
10

.5
2

9.
74

-1
5.

63
-1

2.
90

11
.4

7
10

.3
4

-2
1.

44
-2

0.
89

ta
r

61
.8

7
69

.1
2

-9
0.

38
-9

0.
24

67
.5

3
68

.6
0

-9
0.

39
-9

0.
20

se
ri

al
15

.6
6

13
.0

6
-3

6.
87

-2
0.

85
17

.5
6

14
.7

7
-2

5.
01

-2
4.

10

tr
ol

lf
tp

d
7.

80
5.

29
-2

4.
40

-2
1.

76
8.

38
6.

97
-2

4.
69

-3
0.

40
st

or
ag

e
15

.1
3

18
.7

6
-2

0.
29

-1
4.

27
13

.6
9

11
.9

7
-1

6.
14

-1
2.

31

vi
de

o
41

.8
7

42
.4

9
-2

9.
72

-3
0.

11
45

.0
4

41
.8

0
-3

1.
78

-3
3.

16

CHAPTER 6. EMPIRICAL STUDIES 140

6.1.2 Accuracy

Besides runtime, accuracy also differs from one analysis to another. In contrast to the previous

section, accuracy can only increase by adding more elements to a given analysis (additional elements

mean a refinement in the affects relation, and thus at most as great a fixpoint for the inference rules).

The accuracy tables (Tables 6.6 and 6.7) report increase in precision compared with the (appro-

priate) baseline analysis. The numbers involve the size of the summary graphs obtained by each

analysis variation. We computed these numbers as follows: let R be the ratio of assign edges to

the total number of nodes in the final summary graph for a procedure. If RB is this ratio for the

baseline analysis, and RV is this ratio for an analysis variation V , then the increase in accuracy is

Q = (RB−RV)/RB. The peak accuracy reported in all columns labeled Peak is the highest such Q

over all procedures in each benchmark; the other columns represent average increase in precision

over all procedures: (Q1 + . . .+Qn)/n.

Of course, this measure of relative precision only accounts for the size of pointer graphs, i.e.,

the ratio between edges and nodes in the pointer abstraction of a procedure. It does not incorporate

the fact that, for instance, some analysis variations provide conditions attached to assign and fetch

edges, or that some solutions tell us ordering information, which are both very useful assets. For

example, the flow-insensitive and flow-aware solutions for a given program may end up having

the same number of edges, but having the order information from the flow-aware solution is a big

advantage. Similarly, being able to distinguish what happens under so-and-so condition by taking

advantage of the predicates attached to the graph edges is key in certain cases.

As was the case with speedup, the presence of fields can have an impact on relative accuracy,

although we did not observe big swings. For instance, ieee1394 changes from∼20% average gain to

∼40% when we go from field-insensitive to a field-sensitive analysis. Also observe that “average” is

a risky concept: it does not mean that all summary graphs within the benchmark get reduced—note

the peak accuracy in some cases is ∼1000%, certainly raising the average value.

CHAPTER 6. EMPIRICAL STUDIES 141

Ta
bl

e
6.

6:
A

cc
ur

ac
y

ga
in

ov
er

ba
se

lin
e

an
al

ys
is

—
fie

ld
-i

ns
en

si
tiv

e
(v

al
ue

s
in

%
).

W
ho

le
ap

pl
ic

at
io

ns
L

in
ux

K
er

ne
l

O
rd

er
[F

lo
w

Aw
ar

e]
O

rd
er

[F
lo

w
B

ra
nc

h
Aw

ar
e]

O
rd

er
[F

lo
w

Aw
ar

e]
O

rd
er

[F
lo

w
B

ra
nc

h
Aw

ar
e]

B
en

ch
C

on
d.

In
se

ns
.

C
on

d.
Se

ns
.

C
on

d.
In

se
ns

.
C

on
d.

Se
ns

.
Pe

ak
B

en
ch

C
on

d.
In

se
ns

.
C

on
d.

Se
ns

.
C

on
d.

In
se

ns
.

C
on

d.
Se

ns
.

Pe
ak

N
o

K
ill

K
ill

N
o

K
ill

K
ill

N
o

K
ill

K
ill

N
o

K
ill

K
ill

N
o

K
ill

K
ill

N
o

K
ill

K
ill

N
o

K
ill

K
ill

N
o

K
ill

K
ill

ba
ls

a
10

.9
5

11
.9

4
12

.0
1

12
.1

7
13

.0
1

13
.1

0
14

.5
2

14
.6

9
35

0
al

go
s

1.
23

1.
26

1.
31

1.
35

1.
23

1.
26

1.
31

1.
35

45

bf
tp

d
1.

09
1.

09
1.

09
1.

09
1.

09
1.

09
1.

09
1.

09
50

am
so

11
00

8.
14

8.
17

9.
64

9.
66

10
.3

9
10

.8
3

10
.3

9
10

.8
3

67

bi
so

n
27

.3
4

28
.7

0
29

.2
4

30
.6

0
29

.2
0

30
.5

6
29

.2
0

30
.5

6
88

1
at

m
3.

89
3.

89
3.

89
3.

89
3.

89
3.

89
3.

89
3.

89
92

bl
ac

kh
ol

e
7.

36
7.

36
7.

36
7.

36
7.

36
7.

36
7.

36
7.

36
21

5
bl

ue
to

ot
h

6.
47

7.
53

7.
28

8.
53

6.
47

7.
53

7.
28

8.
53

78

cfi
ng

er
d

1.
07

1.
07

1.
07

1.
07

1.
07

1.
07

1.
07

1.
07

64
bu

ss
es

25
.6

8
27

.4
5

25
.6

8
27

.4
5

25
.6

8
27

.4
5

25
.6

8
27

.4
5

42
7

co
m

pr
es

s
1.

05
4.

44
1.

05
4.

44
1.

05
4.

44
1.

05
4.

44
88

ch
ip

s
2.

51
2.

51
2.

51
2.

51
2.

51
2.

51
2.

51
2.

51
33

fir
es

to
rm

9.
42

9.
42

9.
42

9.
42

9.
42

9.
42

9.
42

9.
42

19
3

co
re

10
.7

8
10

.7
8

10
.7

8
10

.7
8

10
.7

8
10

.7
8

10
.7

8
10

.7
8

50

gz
ip

6.
04

6.
14

7.
23

7.
55

6.
04

6.
14

7.
23

7.
55

57
cx

gb
3

14
.2

9
14

.2
9

14
.2

9
14

.2
9

14
.2

9
14

.2
9

14
.2

9
14

.2
9

10
7

id
en

td
0.

16
0.

16
0.

16
0.

16
0.

16
0.

16
0.

16
0.

16
29

ga
dg

et
70

.0
9

70
.0

9
73

.6
6

73
.6

6
73

.6
6

73
.6

6
73

.6
6

73
.6

6
10

75

is
pe

ll
10

.9
9

12
.9

7
11

.4
4

13
.4

2
11

.4
4

13
.4

2
11

.4
4

13
.4

2
25

0
ho

st
15

.5
3

15
.5

3
15

.5
3

15
.5

3
15

.5
3

15
.5

3
15

.5
3

15
.5

3
10

2

lh
ttp

d
3.

00
3.

00
3.

00
3.

00
3.

00
3.

00
3.

00
3.

00
43

ie
ee

13
94

27
.5

9
27

.2
6

28
.6

9
28

.3
6

28
.8

0
28

.4
6

28
.8

0
28

.4
6

90
0

m
ak

e
11

.4
8

12
.2

7
12

.8
9

13
.6

9
12

.9
9

13
.7

9
13

.2
1

14
.0

1
65

6
in

fic
or

e
18

.6
7

19
.6

1
18

.6
7

19
.6

1
18

.6
7

19
.6

1
18

.6
7

19
.6

1
32

2

m
in

ge
tty

0.
00

0.
62

0.
00

0.
62

0.
00

0.
62

0.
00

0.
62

11
ir

q
1.

71
1.

71
1.

71
1.

71
1.

71
1.

71
1.

71
1.

71
58

m
uh

7.
31

7.
99

7.
31

7.
99

7.
31

7.
99

7.
31

7.
99

69
ke

rn
el

13
.8

4
15

.6
8

16
.5

0
17

.8
2

13
.8

4
15

.6
8

16
.5

0
17

.8
2

54
1

pc
re

15
.5

3
16

.2
6

15
.5

3
16

.2
6

15
.6

1
16

.3
4

15
.6

1
16

.3
4

12
2

m
is

c
4.

20
4.

20
4.

20
4.

20
4.

20
4.

20
4.

20
4.

20
32

pg
p4

pi
ne

1.
04

1.
04

1.
04

1.
04

1.
04

1.
04

1.
04

1.
04

30
m

lx
4

5.
01

5.
16

5.
01

5.
16

5.
01

5.
16

5.
01

5.
16

70

po
ly

m
or

ph
0.

32
0.

32
0.

32
0.

32
0.

32
0.

32
0.

32
0.

32
17

m
th

ca
8.

81
8.

92
8.

81
8.

92
8.

81
8.

92
8.

81
8.

92
85

st
un

ne
l

10
.3

3
11

.0
4

10
.3

3
11

.0
4

10
.3

3
11

.0
4

10
.3

3
11

.0
4

76
po

w
er

4.
33

5.
27

4.
33

5.
27

4.
33

5.
27

4.
33

5.
27

72

ta
r

6.
56

7.
77

6.
71

7.
91

6.
71

7.
91

6.
71

7.
91

35
0

se
ri

al
26

.6
9

27
.1

7
26

.6
9

27
.1

7
26

.6
9

27
.1

7
26

.6
9

27
.1

7
20

4

tr
ol

lf
tp

d
2.

94
2.

94
2.

94
2.

94
2.

94
2.

94
2.

94
2.

94
10

3
st

or
ag

e
5.

07
5.

87
5.

07
5.

87
5.

07
5.

87
5.

07
5.

87
42

vi
de

o
21

.7
5

27
.2

6
23

.3
6

28
.9

6
21

.7
5

27
.2

6
23

.3
6

28
.9

6
72

8

CHAPTER 6. EMPIRICAL STUDIES 142

Ta
bl

e
6.

7:
A

cc
ur

ac
y

ga
in

ov
er

ba
se

lin
e

an
al

ys
is

—
fie

ld
-s

en
si

tiv
e

(v
al

ue
s

in
%

).

W
ho

le
ap

pl
ic

at
io

ns
L

in
ux

K
er

ne
l

O
rd

er
[F

lo
w

Aw
ar

e]
O

rd
er

[F
lo

w
B

ra
nc

h
Aw

ar
e]

O
rd

er
[F

lo
w

Aw
ar

e]
O

rd
er

[F
lo

w
B

ra
nc

h
Aw

ar
e]

B
en

ch
C

on
d.

In
se

ns
.

C
on

d.
Se

ns
.

C
on

d.
In

se
ns

.
C

on
d.

Se
ns

.
Pe

ak
B

en
ch

C
on

d.
In

se
ns

.
C

on
d.

Se
ns

.
C

on
d.

In
se

ns
.

C
on

d.
Se

ns
.

Pe
ak

N
o

K
ill

K
ill

N
o

K
ill

K
ill

N
o

K
ill

K
ill

N
o

K
ill

K
ill

N
o

K
ill

K
ill

N
o

K
ill

K
ill

N
o

K
ill

K
ill

N
o

K
ill

K
ill

ba
ls

a
18

.5
0

18
.7

5
18

.5
0

18
.7

5
18

.5
0

18
.7

5
18

.5
0

18
.7

5
64

7
al

go
s

1.
45

1.
67

1.
52

1.
68

1.
45

1.
67

1.
52

1.
68

49

bf
tp

d
2.

67
2.

67
2.

67
2.

67
2.

67
2.

67
2.

67
2.

67
60

am
so

11
00

10
.8

4
11

.4
3

11
.9

5
12

.0
3

12
.7

1
13

.9
4

12
.7

1
13

.9
4

78

bi
so

n
29

.4
4

37
.1

1
31

.8
4

39
.5

5
31

.8
4

39
.5

5
31

.8
4

39
.5

5
99

3
at

m
3.

89
3.

89
3.

89
3.

89
3.

89
3.

89
3.

89
3.

89
92

bl
ac

kh
ol

e
7.

43
7.

43
7.

43
7.

43
7.

43
7.

43
7.

43
7.

43
25

9
bl

ue
to

ot
h

7.
21

8.
49

8.
18

9.
53

7.
21

8.
49

8.
18

9.
53

83

cfi
ng

er
d

1.
07

1.
07

1.
07

1.
07

1.
07

1.
07

1.
07

1.
07

64
bu

ss
es

21
.3

6
24

.6
8

21
.3

6
24

.6
8

21
.3

6
24

.6
8

21
.3

6
24

.6
8

51
9

co
m

pr
es

s
1.

05
4.

44
1.

05
4.

44
1.

05
4.

44
1.

05
4.

44
88

ch
ip

s
3.

49
3.

49
3.

49
3.

49
3.

49
3.

49
3.

49
3.

49
57

fir
es

to
rm

10
.7

7
10

.7
7

10
.7

7
10

.7
7

10
.7

7
10

.7
7

10
.7

7
10

.7
7

20
7

co
re

15
.6

5
15

.6
5

15
.6

5
15

.6
5

15
.6

5
15

.6
5

15
.6

5
15

.6
5

72

gz
ip

7.
61

7.
38

8.
43

8.
53

7.
61

7.
38

8.
43

8.
53

71
cx

gb
3

18
.6

0
18

.6
0

18
.6

0
18

.6
0

18
.6

0
18

.6
0

18
.6

0
18

.6
0

27
3

id
en

td
0.

16
0.

16
0.

16
0.

16
0.

16
0.

16
0.

16
0.

16
29

ga
dg

et
94

.9
8

94
.9

8
11

5.
69

11
5.

69
11

5.
69

11
5.

69
11

5.
69

11
5.

69
22

83

is
pe

ll
11

.9
7

13
.9

6
12

.4
2

14
.4

1
12

.4
2

14
.4

1
12

.4
2

14
.4

1
29

3
ho

st
14

.2
7

15
.8

9
15

.9
6

16
.0

1
14

.2
7

15
.8

9
15

.9
6

16
.0

1
12

9

lh
ttp

d
3.

00
3.

00
3.

00
3.

00
3.

00
3.

00
3.

00
3.

00
43

ie
ee

13
94

41
.6

8
41

.6
8

44
.4

4
44

.4
4

44
.4

4
44

.4
4

44
.4

4
44

.4
4

13
68

m
ak

e
13

.6
5

14
.3

3
14

.2
9

14
.9

8
14

.0
6

14
.7

5
14

.3
2

15
.0

1
89

0
in

fic
or

e
16

.5
1

17
.2

3
16

.5
1

17
.2

3
16

.5
1

17
.2

3
16

.5
1

17
.2

3
38

7

m
in

ge
tty

0.
00

0.
62

0.
00

0.
62

0.
00

0.
62

0.
00

0.
62

11
ir

q
1.

71
1.

71
1.

71
1.

71
1.

71
1.

71
1.

71
1.

71
58

m
uh

9.
10

10
.8

0
9.

10
10

.8
0

9.
10

10
.8

0
9.

10
10

.8
0

91
ke

rn
el

15
.2

7
16

.9
3

17
.3

2
17

.9
9

15
.2

7
16

.9
3

17
.3

2
17

.9
9

83
5

pc
re

17
.5

1
17

.9
0

18
.2

6
18

.7
4

17
.5

1
17

.9
0

18
.2

6
18

.7
4

14
6

m
is

c
3.

98
4.

17
5.

62
6.

03
3.

98
4.

17
5.

62
6.

03
61

pg
p4

pi
ne

1.
04

1.
04

1.
04

1.
04

1.
04

1.
04

1.
04

1.
04

30
m

lx
4

5.
01

5.
16

5.
01

5.
16

5.
01

5.
16

5.
01

5.
16

70

po
ly

m
or

ph
0.

32
0.

32
0.

32
0.

32
0.

32
0.

32
0.

32
0.

32
17

m
th

ca
6.

48
7.

20
6.

48
7.

20
6.

48
7.

20
6.

48
7.

20
85

st
un

ne
l

9.
46

10
.0

5
9.

46
10

.0
5

9.
46

10
.0

5
9.

46
10

.0
5

80
po

w
er

3.
18

3.
92

3.
18

3.
92

3.
18

3.
92

3.
18

3.
92

68

ta
r

28
.9

8
29

.5
0

29
.2

0
29

.7
5

29
.2

0
29

.7
5

29
.2

0
29

.7
5

13
88

se
ri

al
28

.2
7

28
.9

4
28

.2
7

28
.9

4
28

.2
7

28
.9

4
28

.2
7

28
.9

4
21

7

tr
ol

lf
tp

d
2.

94
2.

94
2.

94
2.

94
2.

94
2.

94
2.

94
2.

94
10

3
st

or
ag

e
6.

26
6.

80
6.

26
6.

80
6.

26
6.

80
6.

26
6.

80
51

vi
de

o
18

.6
3

20
.2

2
19

.4
0

21
.1

2
18

.6
3

20
.2

2
19

.4
0

21
.1

2
81

4

CHAPTER 6. EMPIRICAL STUDIES 143

6.2 Bug reports

This subsection presents statistics and descriptions of pointer bugs we have found in some of the

benchmarks we analyzed. Our tables report the numbers obtained when running our most precise

analysis. Later we discuss a set of representative errors across the applications and the analysis

elements that help to safely report them.

Table 6.8: Bugs found on whole applications.

Benchmark # of reports # of bugs Type

balsa 8 2 null pointer dereference, passing null argument

bftpd 2 2 memory leak, using garbage value from malloc

bison 5 0

black-hole 13 3 memory leak

cfingerd 7 1 memory leaks when things fails elsewhere, file leak

compress 0 0

fireStorm 8 0

gzip 4 0

identd 1 0

ispell 5 1 null pointer dereference

lhttpd 0 0

make 14 1 null pointer dereference

mingetty 0 0

muh 2 0

pcre 8 2 pointer to local var exposed, null pointer dereference

pgp4pine 19 3 null pointer dereference

polymorph 3 0

stunnel 6 1 file leak

tar 9 0

trollftpd 15 3 null argument passing, double allocation

Total 129 21

At first we were surprised to find relatively simple errors in some of the benchmarks, e.g., the

Linux kernel. Our impression was that this application was well tested and only the most intricate

CHAPTER 6. EMPIRICAL STUDIES 144

bugs would remain uncovered. However, we learned that the drivers section of the kernel, for

example, does not share this expectation. By manually inspecting users reports we found out that

runtime errors are common when playing with USB devices, network cards, etc. Below is an excerpt

of a common report pattern, referred to as an “Oops”:

ieee1394: Initialized config rom entry ‘ip1394’

ohci1394: fw-host0: OHCI-1394 1.1 (PCI): IRQ=[17] MMIO=[e7004000-e70047ff] Max

Packet=[4096] IR/IT contexts=[4/8]

ohci1394: fw-host1: OHCI-1394 1.0 (PCI): IRQ=[19] MMIO=[e7006000-e70067ff] Max

Packet=[2048] IR/IT contexts=[8/8]

ieee1394: Error parsing configrom for node 0-00:1023

ieee1394: Host added: ID:BUS[0-01:1023] GUID[0001080000002d02]

eth1394: eth1: IEEE-1394 IPv4 over 1394 Ethernet (fw-host0)

BUG: unable to handle kernel NULL pointer dereference at virtual address 000003e4

printing eip:

f8c7db91

*pde = 00000000

Oops: 0000 [#1]

PREEMPT SMP

Modules linked in: eth1394 ohci1394 ieee1394 nfsd exportfs lockd sunrpc

snd_via82xx snd_ac97_codec snd_ac97_bus snd_pcm snd_timer snd_page_alloc

snd_mpu401_uart snd_rawmidi snd lp af_packet 8139too mii loop via_agp agpgart

uhci_hcd

CPU: 0

EIP: 0060:[<f8c7db91>] Not tainted VLI

EFLAGS: 00010202 (2.6.19-rc4 #10)

EIP is at ether1394_remove_host+0x31/0xa0 [eth1394]

eax: f680ad0c ebx: 00000380 ecx: f678efc4 edx: f680ad0c

esi: f680ad0c edi: f5c26000 ebp: f5c57e4c esp: f5c57e30

ds: 007b es: 007b ss: 0068

Process modprobe (pid: 6822, ti=f5c56000 task=f678ea90 task.ti=f5c56000)

Stack: f8c80fa0 f5c26000 f8f2bf66 f7639d34 f8c80fa0 f5c26000 f5c26000 f5c57e70

f8f2c1fc f5c26000 f5c26000 00000000 00000282 f8c80fa0 f5c26000 c21e0094

f5c57e8c f8f2cb56 f8c80fa0 f5c26000 00000000 f5c26000 f5c260c4 f5c57e9c

The significant number of such reports we found online indicates that null pointer dereferences,

for example, still haunt the users despite the alleged maturity of the software.

CHAPTER 6. EMPIRICAL STUDIES 145

Table 6.9: Bugs found on the Linux kernel (latest stable version, 2.6.23).

Benchmark # of reports # of bugs Type

algos 0 0

amso1100 2 1 null pointer dereference

atm 0 0

bluetooth 2 0

busses 2 1 null pointer dereference

chips 5 0

core 3 1 pointer to local var exposed

cxgb3 5 2 null pointer dereference

gadget 9 2 null pointer dereference

host 7 1 null pointer dereference

ieee1394 3 0

inficore 5 1 null pointer dereference

irq 7 1 null pointer dereference

kernel 11 2 pointer to local var exposed, null pointer dereference

misc 8 2 pointer to local var exposed, null pointer dereference

mlx4 4 0

mthca 6 2 null pointer dereference

power 0 0

serial 4 1 null pointer dereference

storage 0 0

video 9 2 buffer overrun, null pointer dereference

Total 92 19

Tables 6.8 and 6.9 reports errors that are pointer related, which range from null pointer deref-

erence, to returning from a function with some global pointer referring to one of the function’s

local variables, simple memory leaks and buffer overruns. The column labeled “type” is a short

description of the types of errors encountered for each benchmark.

Several errors span more than one procedure, and this is not unexpected: bugs that span different

functions, possibly from different original source files, are harder to find. For example, the following

procedure in the amso1100 Linux driver triggers a null pointer dereference:

CHAPTER 6. EMPIRICAL STUDIES 146

void handle_vq(struct c2_dev *c2dev, u32 mq_index)

{

void *adapter_msg, *reply_msg;

struct c2wr_hdr *host_msg;

int err;

...

host_msg = vq_repbuf_alloc(c2dev);

...

if (!host_msg) {

host_msg = &tmp;

memcpy(host_msg, adapter_msg, sizeof(tmp));

reply_msg = NULL;

} else {

memcpy(host_msg, adapter_msg, reply_vq->msg_size);

reply_msg = host_msg;

}

...

err = c2_errno(reply_msg); // DOES NOT HANDLE NULL

...

if (!err) switch (req->event) {

case IW_CM_EVENT_ESTABLISHED:

...

}

}

This function would be correct if c2 errno could handle a null argument; note reply msg

is explicitly assigned null in the then branch of the if statement. However, as shown below, the first

thing c2 errno does is to call a function named c2 wr get result, which unconditionally

dereferences its parameter wr. This error manifests itself when host msg receives a null value

from vq repbuf alloc, which means it failed to allocate a so-called VQ Reply Buffer. Clearly

the programmer did not intend to crash due to a null pointer dereference if this happened: the fact

that he tests the value of err indicates he expected the program to continue running.

CHAPTER 6. EMPIRICAL STUDIES 147

int c2_errno(void *reply) {

switch (c2_wr_get_result(reply)) { ... }

}

unsigned c2_wr_get_result(void *wr) {

return ((struct c2wr_hdr *) wr)->result;

}

This error can be caught because the summarized information for c2 errno contains the fact

that its parameter reply is unconditionally fetched (after incorporating the summarized informa-

tion from c2 wr get result). For that to happen, the analysis needs some minimum informa-

tion about program conditions. Also, order information is needed within handle vq, as well as the

ability to disassociate between the then and else branches. Otherwise, the analysis cannot figure out

the relationship between statements reply msg = NULL and reply msg = host msg. Note

c2 wr get result is not faulty because it does not check for wr before dereferencing it. The

fault comes from c2 errno passing in an illegal input2. Needless to say, interprocedural analysis

is a requirement, as the statements leading to the error span several procedures.

A similar error occurs in the USB driver (gadget benchmark), where a test for null indicates the

possibility of such value for a pointer. The simplified code fragment is as follows:

int set_ether_config (struct eth_dev *dev, gfp_t gfp_flags)

{

...

if (!subset_active(dev) && dev->status_ep) { // TEST

...

}

...

if (result < 0) {

if (!subset_active(dev))

usb_ep_disable (dev->status_ep); // USAGE

...

}

...

}

2Well, this is open to debate.

CHAPTER 6. EMPIRICAL STUDIES 148

As shown below, the procedure usb ep disable does not handle a null argument, yet is

possible that in some cases it will receive such value. Modeling fields, at least to some extent, is an

important feature for effectively finding this error, since the pointer in question is a field on a struct

(dev->status ep).

int usb_ep_disable (struct usb_ep *ep)

{

return ep->ops->disable = ...;

}

Balsa also has a potential null pointer dereference in an exception case:

static void

handle_mdn_request(LibBalsaMessage *message)

{

gboolean suspicious, found;

const InternetAddressList *use_from;

...

if (message->headers->reply_to)

use_from = message->headers->reply_to;

else if (message->headers->from)

use_from = message->headers->from;

else if (message->sender)

use_from = message->sender;

else

use_from = NULL; // SETTING TO NULL

...

suspicious =

!libbalsa_ia_rfc2821_equal(message->headers->dispnotify_to->address,

use_from->address); // DEREFERENCE

if (!suspicious) {

...

}

...

}

CHAPTER 6. EMPIRICAL STUDIES 149

Perhaps the if statement above is not supposed to “fail.” If it does, however, use from is

assigned null, and then later dereferenced at expression use from->address. Being able to

distinguish among the mutually exclusive branches of the if, as well as modeling some statement

order, makes this error not hard to find.

A number of memory leaks were found in some of the benchmarks, all similar to the following

excerpt from blackhole:

int send_mail_box(char *mbox, char *tmpfile, char *mailfrom, char *iprelay)

{

FILE *tmp, *mb;

char *buffer;

int i;

int eoh = 0;

buffer = malloc(MAX_INPUT_LINE + 1);

if(buffer == NULL)

return 1;

tmp = fopen(tmpfile, "r");

if(tmp == NULL)

return 1;

/* Lock Mailbox */

if(mbox_lock(mbox) != 0)

return 1; // RETURNING FROM FUNCTION

...

}

If the test mbox lock(mbox) != 0 fails, the statement that follows the test returns from the

function without deallocating neither buffer nor closing tmp.

Perhaps one of the most interesting errors we have reported occurs in the USB module of the

Linux kernel, and it involves order, fields, and variable aliasing. A simplified version of the code is

below:

CHAPTER 6. EMPIRICAL STUDIES 150

struct ehci_qh *

qh_make (...)

{

...

if (type == PIPE_INTERRUPT) {

...

} else {

struct usb_tt *tt = urb->dev->tt;

int think_time;

..

think_time = tt ? tt->think_time : 0;

}

...

switch (urb->dev->speed) {

...

case USB_SPEED_FULL:

if (!ehci_is_TDI(ehci) || ...)

info2 |= urb->dev->tt->hub->devnum << 16; // DEREFERENCING

} // urb->dev->tt

...

}

The potential error in the above code is a null pointer dereference of urb->dev->tt at the

last statement shown. This can happen because tt and urb->dev->tt may be aliased due to

statement tt = urb->dev->tt at the top, and failing at the null check “tt ?” means null is

possible. Upon reporting this bug we received the following comments from the developers:

Looks to me like this is a longstanding bug in the root

hub TT support. See if this patch makes that work better.

It looks like this is an ARC-derived core, and no root

hub TT has been set up. Moreover, it looks like even

CHAPTER 6. EMPIRICAL STUDIES 151

the original patch adding root hub TT support (only

for the PCI based devboard/FPGA) didn’t actually set

up such a TT ... so this bug has been around for a

very long time.

Although this is not an overly intricate error, developers have failed to find it manually or dy-

namic automated testing. This reinforces our intuition that simple enhancements to static analysis

techniques can go a long way towards making software less faulty.

Our tables also indicate that a number of false positives were reported. Most of the time the

cause is lack of information about the semantics of a callee function, or errors that would exist only

if a loop executes zero times, which is unlikely in most cases. Consider the example below:

int

progcomp_insert (cmd, cs)

char *cmd;

COMPSPEC *cs;

{

register BUCKET_CONTENTS *item;

if (cs == NULL)

programming_error (_("progcomp_insert: \%s: NULL COMPSPEC"), cmd);

if (prog_completes == 0)

progcomp_create ();

cs->refcount++; // DEREFERENCE

...

}

Due to its testing, the analysis assumes that cs can be null when it is dereferenced at statement

cs->refcount++. However, the function programming error aborts the execution when-

ever it is invoked, and thus no error exists. This is (arguably) different from crashing right after

malloc, for instance, fails to allocate memory. A considerable number of programs do not handle

this case well and as a result program misbehaviors may occur. The counter-argument is that if there

is no available memory, the application might as well crash (although we do not agree).

CHAPTER 6. EMPIRICAL STUDIES 152

Another common type of error is to return from a function with a global pointer referring to a

deallocated block of memory. This is often a low-severity bug if the global pointer is re-assigned

prior to its next use, but it can turn into a hard-to-find error otherwise. In pcre’s function match the

statement md->recursive = &new recursive assigns the address of new recursive, a

local variable, to md->recursive, an outside pointer. Several lines later the function returns

without clearing up that pointer. Similarly, Linux kernel’s function start unregistering

executes p->unregistering = &wait to assign the address of a local variable to outside

pointer p->unregistering, and then returns without prior notice.

Perhaps two of the funniest errors we found were these, respectively from the gadget USB

module of the Linux kernel and blackhole’s make match procedure:

int gs_recv_packet(struct gs_dev *dev, char *packet, unsigned int size)

{

...

port = dev->dev_port[0];

if (port == NULL) {

printk(KERN_ERR "gs_recv_packet: port=\%d, NULL port pointer\n",

port->port_num); // DEREFERENCE port

return -EIO;

..

}

void make_match(int check)

{

...

if(bh_action[bh_match_start->match].score < bh_action[check].score) {

...

} else {

pcur = (struct bh_matches *) malloc(sizeof(struct bh_matches));

pcur = bh_match_start; // RE-ASSIGN pcur, LEAKING PREVIOUS VALUE

...

}

}

CHAPTER 6. EMPIRICAL STUDIES 153

In both cases the error is obvious, and probably indicates some careless code change (it is not

likely that the original programmer would have committed them). In the first error port is derefer-

enced only when it has been tested for null and succeeded, and in the second pcur is allocated and

immediately leaked through a re-assignment. In both cases order information is needed to determine

what occurs first.

6.3 Points-to sets sizes

In this subsection we show that the summary-based feature of our analysis generates points-to sets

that are smaller than those of Andersen or Steensgaard [2, 67]. We compute points-to set sizes by

observing that assign edges in the AFG for a function correspond to the set of locations pointed-

to by the source node of the assign edge. Of course, there are several summary AFGs in a given

benchmark—one for each function in the program. To calculate our points-to set sizes in Table 6.10,

we compute an average among all AFGs, as apposed to Andersen and Steensgaard which are whole

program analyses and therefore incur in excessive imprecision. The table shows the number for the

origin of our analysis space using no fields.

Table 6.10: Average Points-to Set Sizes for Representative Benchmarks.

Benchmark AFG Andersen Steensgaard

compress 0.524 1.22 2.1

gzip 2.06 2.96 25.17

ispell 1.92 2.25 16.45

make 26.11 74.70 414.04

bison 1.88 1.72 20.51

tar 2.58 17.41 53.7

Chapter 7 154

Chapter 7

Final Remarks

Pointer analysis is still an active area of research, as recent work illustrates [38, 50, 65, 66]. The

number of papers in the subject is no fewer than a hundred, and several PhD theses have been

published exclusively on pointer analysis. Being a critical component for most software analysis

tools, there is a lot of interest on the problem and many researchers trying to develop ingenious

solutions. Being a very difficult problem, it is unlikely that any of these attempts will solve it in

general; instead, we believe the idea is to tailor the analysis to a particular application. In this thesis,

we set out to try such specialization for what we call modular bug finding.

We have learned that a relevant increment in analysis precision should not require a large de-

crease in efficiency, and that interesting trade-offs can be obtained by looking at pointer analysis

in different ways. For example, the execution-insensitive nature of some dataflow analyses makes

software analysis tools to be overly conservative, causing many errors to go unreported. Providing

some minimal order is cheap and can assist with information the tool can rely upon when facing un-

certainty about a procedure’s execution. Loops may pose a challenge to that objective, and there are

basically two ways of dealing with them. Either penalize the entire function by enclosing it on a big

cycle such as Figure 2.3(a), or take the loops apart and analyze them separately, converting the rest

of the procedure’s code into an acyclic representation. In general, algorithms for acyclic structures

are simpler and more efficient, and can yield better results. Our framework is built on top of such

kind of representation, and therefore it is simple and efficient. We also find it to be elegant, since

the definition of a single inference that can be refined in different ways covers a large set of pointer

analysis algorithms. The ability to evaluate a myriad of such variations is one of the strengths of our

CHAPTER 7. FINAL REMARKS 155

technique, perhaps more important than the specific results of a particular implementation itself.

We have not tried to make our analysis demand-driven, but we find our Assign-Fetch Graph

representation could be adapted for such purpose since it would not require constructing nor inter-

secting points-to sets like most existing demand-driven approaches. The structure of the AFG could

be explored to derive alias edges on the fly, and only for those operations that are relevant for a

given query. This would resemble the work of Sridharan et. al. [66], in which a demand-driven

points-to analysis for Java is proposed. A key to their approach is to match loads and stored on the

same class field through “match” edges. Their technique does not apply for C, however, where one

can explicitly take the address of a variable, the address of a field, or dereference any pointer (not

only fields like Java).

Indeed, the Assign-Fetch Graph representation has a number of natural features that makes it

a very attractive abstraction. Because it models pointer assignments within a function instead of

points-to relations, it is used to answer MOD and other side-effect questions directly. In addition,

fetch edges in a procedure’s summary, specially if annotated with some form of conditions, can

provide information about which variables are dereferenced. This plus the ability to summarize

a function for any possible calling context makes it ideal for bottom-up, modular analysis. It is

our expectation that the AFG will be extended by others in some currently unknown but certainly

interesting way.

Chapter 7 156

Bibliography

[1] Alfred V. Aho, Monica Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,

Techniques and Tools, Second Edition. Addison-Wesley, 2007.

[2] L. O. Andersen. Program analysis and specialization for the C programming lan-

guage. PhD thesis, DIKU, University of Copenhagen, May 1994. Available at

ftp.diku.dk/pub/diku/semantics/papers/D-203.dvi.Z.

[3] Thomas Ball and Sriram Rajamani. The SLAM project: Debugging system software via static

analysis. In POPL ’02: Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on

Principles of Programming Languages, 2002.

[4] J. Banning. An efficient way to find the side-effects of procedure calls and the aliases of

variables. In 6th ACM Symposium on the Principles of Programming Languages, pages 29–

41, 1979.

[5] Bruno Blanchet. Escape analysis for object oriented languages: Application to Java. In

Proceedings of the 14th Annual Conference on Object-Oriented Programming Systems, Lan-

guages and Applications, 1999.

[6] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine

Miné, David Monniaux, and Xavier Rival. A static analyzer for large safety-critical software.

In PLDI ’03: Proceedings of the ACM SIGPLAN 2003 conference on Programming language

design and implementation, pages 196–207, 2003.

BIBLIOGRAPHY 157

[7] Daniel Brand, Marcio Buss, and Vugranam Sreedhar. Evidence-based analysis and inferring

preconditions for bug detection. In Proceedings of the 23rd IEEE International Conference on

Software Maintenance (ICSM), pages 44–53, 2007.

[8] M. Burke. An interval-based approach to exhaustive and incremental interprocedural data-

flow analysis. ACM Transactions on Programming Languages and Systems, 12(3):341–395,

1990.

[9] M. Burke, P. Carini, J. Choi, and M. Hind. Flow-insensitive interprocedural alias analysis in

the presence of pointers. In Lecture Notes in Computer Science, 892, Springer-Verlag, Pro-

ceedings of the 7th International Workshop on Languages and Compilers for Parallel Com-

puting, pages 234–250, 1995.

[10] W. Bush, J. Pincus, and D. Sielaff. A static analyzer for finding dynamic programming errors.

Software – Practice & Experience, 30(7):775–802, 2000.

[11] Marcio Buss, Daniel Brand, Vugranam Sreedhar, and Stephen A. Edwards. Flexible pointer

analysis using the assign-fetch graph. In To appear in the Proceedings of the 23rd ACM

Sympoium on Applied Computing (SAC), Programming Languages Track, March 2008.

[12] Marcio Buss, Stephen A. Edwards, Bin Yao, and Daniel Waddington. Pointer analysis for

source-to-source transformations. In Proc. of the 5th IEEE Workshop on Source Code Analysis

and Manipulation (SCAM), pages 139–150, 2005.

[13] D. Chase, M. Wegman, and F. Zadek. Analysis of pointers and structures. In Proceedings

of the SIGPLAN’90 Conference on Program Language Design and Implementation, pages

296–310, 1990.

[14] Ramkrishna Chatterjee, Barbara Ryder, and William A. Landi. Relevant context inference. In

Proceedings of Principles of Programming Languagues (POPL), pages 133–146, 1999.

[15] B. Cheng and W. Hwu. Modular interprocedural pointer analysis using access paths: design

implementation and evaluation. In Proceedings of Programming Language Design and Imple-

mentation (PLDI), 2000.

BIBLIOGRAPHY 158

[16] Sigmund Cherem and Radu Rugina. A practical escape and effect analysis for building

lightweight method summaries. In Compiler Construction (CC), pages 172–186, 2007.

[17] J. Choi, M. Burke, and P. Carini. Efficient flow-sensitive interprocedural computation of

pointer-induced aliases and side effects. In Proceedings of the 20th Annual ACM Symposium

on Principles of Programming Languages, pages 232–245, 1993.

[18] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam Sreedhar, and Sam Midkiff.

Escape analysis for java. In Proceedings of the 14th Annual Conference on Object-Oriented

Programming Systems, Languages and Applications (OOPSLA), 1999.

[19] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT Press, 1999.

[20] K.D. Cooper and K. Kennedy. Inter-procedural side-effect analysis in linear time. In Proceed-

ings of Programming Language Design and Implementation (PLDI), pages 487–506, 1988.

[21] IBM Corporation. A software falsifier. In International Symposium on Software Reliability

Engineering, pages 174–185, October 2000.

[22] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In Proceedings of Princi-

ples of Programming Languagues (POPL), pages 238–252, 1977.

[23] Manuvir Das. Unification-based pointer analysis with directional assignments. In Proceedings

of Programming Language Design and Implementation (PLDI), pages 35–46, 2000.

[24] Manuvir Das, Sorin Lerner, and Mark Seigle. Esp: Path-sensitive program verification in poly-

nomial time. In Proceedings of Programming Language Design and Implementation (PLDI),

pages 57–68, 2002.

[25] Robert DeLine and Manuel Fähndrich. Enforcing high-level protocols in low-level software.

In PLDI ’01: Proceedings of the ACM SIGPLAN 2001 conference on Programming language

design and implementation, pages 59–69, New York, NY, USA, 2001. ACM.

[26] Alain Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-limiting. In ACM

SIGPLAN 94-6/94, pages 230–241, 1994.

BIBLIOGRAPHY 159

[27] Isil Dillig, Thomas Dillig, and A. Aiken. Static error detection using semantic inconsistency

inference. In Proceedings of Programming Language Design and Implementation (PLDI),

pages 435–445, 2007.

[28] The Economist. Building a better bug-trap. Science Technology Quarterly, June 19th, 2003.

Also available at http://www.klocwork.com/company/downloads/economist.html.

[29] M. Emami, R. Ghiya, and L. Hendren. Context-sensitive interprocedural points-to analysis

in the presence of function pointers. In Proceedings of Programming Language Design and

Implementation (PLDI), pages 242–256, 1994.

[30] Maryam Emami. A practical interprocedural alias analysis for an optimizing/parallelizing C

compiler. Master’s thesis, School of Computer Science, McGill University, August 1993.

[31] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf. Bugs as

deviant behavior: a general approach to inferring errors in systems code. In SOSP ’01: Pro-

ceedings of the eighteenth ACM symposium on Operating systems principles, pages 57–72,

New York, NY, USA, 2001. ACM Press.

[32] Dawson Engler and Madanlal Musuvathi. Static analysis versus model checking for bug find-

ing. In VMCAI, 2004.

[33] eWeek Magazine. GM to software vendors: Cut the complexity.

http://www.eweek.com/article2/0,1895,1679844,00.asp.

[34] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and

Raymie Stata. Extended static checking for java. In PLDI ’02: Proceedings of the ACM SIG-

PLAN 2002 Conference on Programming language design and implementation, pages 234–

245, New York, NY, USA, 2002. ACM.

[35] Jeffrey S. Foster, Manuel Fähndrich, and Alex Aiken. Polymorphic versus monomorphic flow-

insensitive points-to analysis for C. In Static Analysis Symposium, pages 175–198, 2000.

[36] Patrice Godefroid. Model checking for programming languages using verisoft. In Symposium

on Principles of Programming Languages, pages 174–186, 1997.

BIBLIOGRAPHY 160

[37] Hari Hampapuram, Yue Yang, and Manuvir Das. Symbolic path simulation in path-sensitive

dataflow analysis. In PASTE ’05: Proceedings of the 6th ACM SIGPLAN-SIGSOFT workshop

on Program analysis for software tools and engineering, pages 52–58, New York, NY, USA,

2005. ACM Press.

[38] Ben Hardekopf and Calvin Lin. The ant and the grasshopper: fast and accurate pointer analysis

for millions of lines of code. In PLDI ’07: Proceedings of the 2007 ACM SIGPLAN conference

on Programming language design and implementation, pages 290–299, New York, NY, USA,

2007.

[39] L. J. Hendren and A. Nicolau. Parallelizing programs with recursive data structures. IEEE

Trans. Parallel Distrib. Syst., 1(1):35–47, 1990.

[40] Thomas Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth McMilan. Abstraction from

proofs. In Proceedings of Principles of Programming Languagues (POPL), pages 232–244,

2004.

[41] M. Hind and A. Pioli. Assessing the effects of flow-sensitivity on pointer alias analyses. In

Proceedings of the 5th International Static Analysis Symposium, pages 57–81, 1998.

[42] Michael Hind, Michael Burke, Paul Carini, and Jong-Deok Choi. Interprocedural pointer alias

analysis. ACM Transactions on Programming Languages and Systems, 21(4):848–894, 1999.

[43] S. Horwitz, P. Pfeiffer, and T. Reps. Dependence analysis for pointer variables. In PLDI ’89:

Proceedings of the ACM SIGPLAN 1989 Conference on Programming language design and

implementation, pages 28–40, New York, NY, USA, 1989. ACM Press.

[44] Marc Shapiro II and Susan Horwitz. Fast and accurate flow-insensitive points-to analysis. In

Proceedings of Principles of Programming Languagues (POPL), pages 1–14, 1997.

[45] Trevor Jim, J. Greg Morrisett, Dan Grossman, Michael W. Hicks, James Cheney, and Yanling

Wang. Cyclone: A safe dialect of c. In Proceedings of the General Track: 2002 USENIX An-

nual Technical Conference, pages 275–288, Berkeley, CA, USA, 2002. USENIX Association.

[46] Capers Jones. Applied Software Measurement: Assuring Productivity and Quality (2nd Edi-

tion). McGraw-Hill, Inc., New York, NY, USA, 1996.

BIBLIOGRAPHY 161

[47] Neil D. Jones and Steven S. Muchnick. Flow analysis and optimization of lips-like struc-

tures. In Steven S. Muchnick and Neil D. Jones, editors. Program Flow Analysis: Theory and

Applications, pages 102–131, 1981.

[48] William Landi and Barbara Ryder. A safe approximate algorithm for interprocedural pointer

aliasing. In Proceedings of Programming Language Design and Implementation (PLDI), pages

235–248, 1992.

[49] J. R. Larus and P. N. Hilfinger. Detecting conflicts between structure accesses. In PLDI ’88:

Proceedings of the ACM SIGPLAN 1988 conference on Programming Language design and

Implementation, pages 24–31, New York, NY, USA, 1988. ACM Press.

[50] Chris Lattner, Andrew Lenharth, and Vikram Adve. Making context-sensitive points-to analy-

sis with heap cloning practical for the real world. In PLDI ’07: Proceedings of the 2007 ACM

SIGPLAN conference on Programming language design and implementation, pages 278–289,

New York, NY, USA, 2007.

[51] Ondrej Lhotak. Program analysis using binary decision diagrams. PhD thesis, McGill Univer-

sity, January 2006.

[52] V. Benjamin Livshits and Monica S. Lam. Tracking pointers with path and context sensitivity

for bug detection in c programs. In ESEC/FSE-11: Proceedings of the 9th European software

engineering conference held jointly with 11th ACM SIGSOFT international symposium on

Foundations of software engineering, pages 317–326, 2003.

[53] Subhas C. Misra and Virendra C. Bhavsar. Relationships between selected software measures

and latent bug-density: Guidelines for improving quality. In ICCSA 2003, Lecture Notes in

Computer Science (LNCS 2667), pages 724–732, 2003.

[54] G. Myers. The Art of Software Testing, 2nd Edition. John Wiley and Sons, 2004.

[55] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of program analysis.

Springer, 1999.

[56] NIST. Software errors cost u.s. economy $59.5 billion annually.

http://www.nist.gov/public affairs/releases/n02-10.htm.

BIBLIOGRAPHY 162

[57] Gimpel Software PC-lint/FlexeLint. Version 7.5. http://www.gimpel.com/html/flex.htm.

[58] Linux Kernel Project. http://www.kernel.org.

[59] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via graph reach-

ability. In POPL ’95: Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Prin-

ciples of programming languages, pages 49–61, 1995.

[60] Atanas Rountev, Ana Milanova, and Barbara Ryder. Points-to analysis for java using annotated

constraints. In Proceedings of the 16th Annual Conference on Object-Oriented Programming

Systems, Languages and Applications (OOPSLA), 2001.

[61] C. Ruggieri and T. P. Murtagh. Lifetime analysis of dynamically allocated objects. In POPL

’88: Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles of program-

ming languages, pages 285–293, New York, NY, USA, 1988. ACM Press.

[62] Radu Rugina and Martin Rinard. Pointer analysis for multithreaded programs. In Proceedings

of the SIGPLAN’99 Conference on Program Language Design and Implementation, 1999.

[63] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages with de-

structive updating. In Proceedings of the 23rd Annual ACM Symposium on the Principles of

Programming Languages, pages 16–31, 1996.

[64] Jyh shiarn Yur, Barbara Ryder, and Willim Landi. An incremental flow- and context-sensitive

pointer aliasing analysis. In Proceedings of the 21st International Conference on Software

Engineering, pages 442–451, 1999.

[65] Manu Sridharan. Refinement-based program analysis tools. PhD Thesis, UC Berkeley. Also

available as technical Report No. UCB/EECS-2007-125, October 2007.

[66] Manu Sridharan and Rastislav Bodı́k. Refinement-based context-sensitive points-to analysis

for java. In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN conference on Programming

language design and implementation, pages 387–400, New York, NY, USA, 2006. ACM.

[67] Bjarne Steensgaard. Points-to analysis in almost linear time. In POPL ’96: Proceedings of

the 23rd ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages

32–41, 1996.

BIBLIOGRAPHY 163

[68] P. Stocks, B. Ryder, W. Landi, and S. Zhang. Comparing flow and context sensitivity on

the modification-side-effects problem. In International Symposium on Software Testing and

Analysis (ISSTA), pages 21–31, 1998.

[69] CNN Technology. Will bugs scare off users of new windows 2000?

http://archives.cnn.com/2000/TECH/computing/02/17/windows.2000.

[70] Frederic Vivien and Martin Rinard. Incrementalized pointer and escape analysis. In Proceed-

ings of Programming Language Design and Implementation (PLDI), pages 35–46, 2001.

[71] David Wagner. Static analysis and computer security: New techniques for software assurance.

PhD thesis, University of California at Berkeley, December 2000.

[72] David Wagner, Jeffrey S. Foster, Eric A. Brewer, and Alexander Aiken. A first step towards

automated detection of buffer overrun vulnerabilities. In Network and Distributed System

Security Symposium, pages 3–17, San Diego, CA, February 2000.

[73] John Whaley and Monica Lam. Cloning-based context-sensitive pointer alias analysis using

binary decision diagrams. In Proceedings of Programming Language Design and Implemen-

tation (PLDI), pages 131–144, 2004.

[74] Reinhard Wilhelm, Shmuel Sagiv, and Thomas W. Reps. Shape analysis. In Compiler Con-

struction (CC), pages 1–17, 2000.

[75] R. Wilson and M. Lam. Efficient context-sensitive pointer analysis for C programs. In Pro-

ceedings of Programming Language Design and Implementation (PLDI), pages 1–12, 1995.

[76] Yichen Xie and Alex Aiken. Scalable error detection using boolean satisfiability. In Proceed-

ings of Principles of Programming Languagues (POPL), pages 351–363, 2005.

[77] Mihalis Yannakakis. Graph-theoretic methods is database theory. In PODS’90: Proceedings

of the 9th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,

pages 230—242, 1990.

[78] S. Zhang, B. Ryder, and W. Landi. Experiments with combined analysis for pointer aliasing.

In Workshop on program analysis for software tools and engineering, pages 11–18, 1998.

BIBLIOGRAPHY 164

[79] Sean Zhang, Barbara Ryder, and William Landi. Program decomposition for pointer aliasing:

A step toward practical analyses. In Foundations of Software Engineering (FSE), pages 81–92,

1996.

