
Chip-8 Emulation

on a SoCKit FPGA
Team: Ashley Kling, Levi Oliver, Gabrielle Taylor, David Watkins

Supervisor: Prof. Stephen Edwards

1
Chip-8 Emulation Overview

Not your garden variety

interpreted programming

language

Opcodes and Instructions

▪Chip-8 has a total of 35 instructions

- Unsupported

- Supported

- Cycle Intensive

00E0 - CLS 00EE - RET 0nnn - SYS addr 1nnn - JP addr 2nnn - CALL

addr

3xkk - SE Vx,

byte

4xkk - SNE Vx,

byte

5xy0 - SE Vx,

Vy

6xkk - LD Vx,

byte

7xkk - ADD Vx,

byte

8xy0 - LD Vx,

Vy

8xy1 - OR Vx,

Vy

8xy2 - AND Vx,

Vy

8xy3 - XOR Vx,

Vy

8xy4 - ADD Vx,

Vy

8xy5 - SUB Vx,

Vy

8xy6 - SHR Vx

{, Vy}

8xy7 - SUBN Vx,

Vy

8xyE - SHL Vx

{, Vy}

9xy0 - SNE Vx,

Vy

Annn - LD I,

addr

Bnnn - JP V0,

addr

Cxkk - RND Vx,

byte

Dxyn - DRW Vx,

Vy, nibble

Ex9E - SKP Vx ExA1 - SKNP Vx Fx07 - LD Vx,

DT

Fx0A - LD Vx, K

Fx15 - LD DT,

Vx

Fx18 - LD ST,

Vx

Fx1E - ADD I,

Vx

Fx29 - LD F, Vx Fx33 - LD B, Vx Fx55 - LD [I],

Vx

Fx65 - LD Vx,

[I]

Chip-8 Hardware Specifications

- 64x32 bit display

- 64B stack

- 4KB memory

- 16-key input

- 16B register file

Keyboard Layout

▪O – Reset

▪P – Pause

▪Enter – Start

▪Keyboard Mapping

1 2 3 4

Q W E R

A S D F

Z X C V

1 2 3 C

4 5 6 D

7 8 9 E

A 0 B F

2
Emulator Layout

About as nice looking as

this powerpoint

Linux to SoCKit Bridge

Chip-8

Framebuffer4K Memory

V2 V3 V4 V5 V6 V7

VA VB VC VD VE VF

V0 V1

V8 V9

I

Sound Timer

Delay Timer

PC

SP

Stack

64B

16 Key

Keyboard

CPU

Font

set

(80B)

Linux

Read/Write State

1-bit

Sound

Channel

VGA Out

Keyboard out

Note: Identical

to our design in

our proposal

Chip8 Driver

Linux Layout

Chip8 Executable

Keyboard

Keyboard

Listener

Status

Printer

- Some Instructions required an

iowrite then an ioread

File Reader

.ch8

file

Fontset

Instruction

Verification

Chip8

Read/Write

ioread/

iowrite

To FPGA

Chip8_Top

Hardware Layout

1-bit

Sound

Channel

VGA OutRegister

File

Stack

Memory

Framebuffer

Buffer Memory

CPU

BCD RNG ALU

Arbitrator

(always_ff loop)

Sound

Timer

Delay

Timer

Note: This is not

a bus, all modules

have their own

channels

From Linux

3
Module Design

Insert something snarky here

Chip8-Top as Master Control Unit

If

chipselect

Parse

address

If Stage ==

0

If Stage ==

1

If state ==

Chip8_RUNNING

If 50000 >

Stage >= 2

If Stage

>= 50000

Update

values if

write

Note: Stage is incremented on each clock cycle while

state == Chip8_Running and the device is not waiting

for keyboard input

Do nothing

Load PC

into

memaddr

Load

Instruction

Operate on

output

from CPU

Update

values in

memory

No

No

No No No

Set stage =

0

Yes

Yes

Yes Yes Yes Yes

Framebuffer Double Buffer

Buffer FramebufferArbitrator

- The Framebuffer manages two 64x32 bit memories in

an effort to reduce flicker

- The arbitrator will copy the buffer over to the

framebuffer only when it has been 4 CPU cycles

since the last draw instruction or if it has been

10 CPU cycles since the last copy

- Chip8 erases sprites by drawing them over existing

pixels which can cause extreme flickering

Draw Instruction Over Multiple Cycles

reg_addr1 = instruction[11:8];

reg_addr2 = instruction[7:4];

num_rows_written = {7'b0,stageminus16[31:7]};

mem_addr1 = num_rows_written + reg_I_readdata;

mem_request = 1'b1;

fb_addr_x = reg_readdata1 + ({5'b0, stageminus16[6:4]});

fb_addr_y = reg_readdata2 + ({4'b0, num_rows_written[3:0]});

fb_writedata = mem_readdata1[3'h7 - stageminus16[6:4]] ^ fb_readdata;

fb_WE = (num_rows_written < {28'h0, instruction[3:0]}) & (&(stage[3:0]));

bit_overwritten = (mem_readdata1[3'h7 - stageminus16[6:4]]) & (fb_readdata) & fb_WE;

isDrawing = 1'b1;

- The locations being drawn are a function of the

stage

- We need to make sure the memory has enough time

to propagate, which means that we are looking at

the [6:4] bits of stage for x, and [10:7] for y

- 16 <= stage <= 272

Draw Instruction Over Multiple Cycles

Stage:

11 10 9 8 7 6 5 4 3 2 1 0

Number of rows written X offset WE

…

4
Testbenches Galore

Aggressively tested

Testbenched Modules

- CPU

- Stack

- ALU

- Memory

- Framebuffer

- Top level

- Random number

generator

- BCD

- Register file

5
Project Workflow

Our tips to surviving all

nighters in 1235 Mudd

Timeline

▪We lagged behind goals during the

semester, but we completed the

final goal.

Challenges

▪Memory was not always as ready as

we were

▪Installing Linux on an FPGA is

more difficult than bathing cats

▪Bugs are very common and FPGAs do

not have proper pesticides yet

Lessons Learned

▪Write testbenches early

▪Test givens (including

megafunctions, especially

megafunctions)

▪Start early!

▪During testing, bugs are your best

friend

Demo Time!
Hope you like Paddles and Tapeworms

