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Project Goals
● Design a Sprites Graphics engine inspired from the TI TMS9918

○ Extend texture resolution from 8 pixels to 32 pixels, sprite resolution >= 64 pixels
○ Update colors from Light/Dark pixels to 9 bit colorspace (512 color alternatives/pixel)

● Enable screen scrolling in all directions
● Runtime image programming interface for background patterns

○ No Graphics MIFs!
○ Allows for simplified creation of new game tracks and menus
○ Mitigates limited RAM space on the Cyclone V

● Update VGA resolution to XGA (1024 x 768 60 Hz)
● Implement real-time computation of sprite rotation 
● Enable game sounds 
● Model car physics and have realistic race dynamics



CU Racing HW Interface Diagram



Sprite Graphics Implementation - Pattern Tables
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Sprite Graphics Implementation - Pattern Lookup

Name Table
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Sprite Graphics Implementation - Movement

Field of View

● Coarse and fine grain movement
○ 32 pixels “nameOffsetX/Y”
○ 1 pixel “pixelOffsetX/Y”

● Updated synced to VSYNC of VGA
● Unsigned offsets were a non-ideal 

design choice
○ Made movement more 

complicated than necessary
● Reasonably smooth movement, still 

isolating a few bugs



Programmatic Map Generation
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Sprite Rotation - Rotation Matrix Approach

Updated SRAM Read 

direction

.

Wikipedia: Rotation Equation 



Sprite Rotation - Development Approach

1) High Level Software 
Algorithm POC 

2) System Verilog implementation 
+ Modelsim Validation

3) Signal-Tap II Debugging
of hardware realized solution



Lessons Learned
● Teamwork in an academic setting is difficult

○ Different experience levels, time commitments, interest etc. etc.
● Quartus II software has many quirks

○ X <= Y can yield unexpected results, sometimes it’s better to manually index the bits you care 
about

○ Parameter constants can be different in the RTL viewer from what you would expect based on 
your System Verilog code

○ Warnings are almost too forgiving, some may be better to fail the compilation (net inferrence)
● Module based encapsulation is critical to help debug RTL code and allow for reasonable viewing of 

the system interconnections
● Signal Tap II is a crucial debugging tool, without it our project would have missed several desired 

deliverables.
● Open source drivers can be unpredictable to work with and be non-trivial to build for an embedded 

target 


