
CU RACING
Blayne Kettlewell
Raghavendra Sirigeri
Shikhar Kwatra
Chandan Kanungo



Project Concept Evolution

Early Concept Precedent Ideas Final Gameplay



Project Goals
● Design a Sprites Graphics engine inspired from the TI TMS9918

○ Extend texture resolution from 8 pixels to 32 pixels, sprite resolution >= 64 pixels
○ Update colors from Light/Dark pixels to 9 bit colorspace (512 color alternatives/pixel)

● Enable screen scrolling in all directions
● Runtime image programming interface for background patterns

○ No Graphics MIFs!
○ Allows for simplified creation of new game tracks and menus
○ Mitigates limited RAM space on the Cyclone V

● Update VGA resolution to XGA (1024 x 768 60 Hz)
● Implement real-time computation of sprite rotation 
● Enable game sounds 
● Model car physics and have realistic race dynamics



CU Racing HW Interface Diagram



Sprite Graphics Implementation - Pattern Tables

0x1FFF

0x0000

Red Color 
Pattern Table “Bit 2”

0x1FFF

0x0000

Red Color 
Pattern Table “Bit 1”

0x1FFF

0x0000

Blue Color 
Pattern Table “Bit 0”

● 9 Independent Dual 
Port RAMs to 
represent 512 
colors/pixel

● Large “register 
address space”

● 8192 32 bit words /
(32 bits/ pattern) 

○ 256 patterns

Green Color 
Pattern Tables

Pattern0 Line 0 (U32)

Pattern0 Line 1 (U32) Pattern0 Line 1 (U32)

Pattern0 Line 1 (U32) Pattern0 Line 1 (U32)

Pattern0 Line 1 (U32)

Pattern0 Line 31 (U32)

Pattern1 Line 0 (U32)

Pattern0 Line 31 (U32)

Pattern1 Line 0 (U32)

Pattern0 Line 31 (U32)

Pattern1 Line 0 (U32)



Sprite Graphics Implementation - Pattern Lookup

Name Table

0xFFFF

0x0000

Name0 (U8)
Name1 (U8)

0 1 2 3 4 ...

...

Name2 (U8)

Name3 (U8)

Name4 (U8)
Pattern 
Tables
LUTs

Name
Index
Calc.

hC
ou

nt

vC
ou

nt
64 x 1024 
Patterns

2D Background Pattern Space



Sprite Graphics Implementation - Movement

Field of View

● Coarse and fine grain movement
○ 32 pixels “nameOffsetX/Y”
○ 1 pixel “pixelOffsetX/Y”

● Updated synced to VSYNC of VGA
● Unsigned offsets were a non-ideal 

design choice
○ Made movement more 

complicated than necessary
● Reasonably smooth movement, still 

isolating a few bugs



Programmatic Map Generation
0
0
0
0
0
0
0
0
0
0
0
7
0
8
0
1
2
3
2
4
0
0
0
0
0
0
0
0
0

“trackXNames.txt”

grassYellow.png
straightGrassLeft.png
roadTileWithoutLine.png
roadTileWithLine.png
straightGrassRight.png
tree-0-0.png
tree-0-1.png
tree-1-0.png
tree-1-1.png
grassYellow.png
grassYellow.png
grassYellow.png
grassYellow.png
grassYellow.png
grassYellow.png
grassYellow.png
grassYellow.png
grassYellow.png
grassYellow.png
grassYellow.png

“trackXPatterns.txt”



Sprite Rotation - Rotation Matrix Approach

Updated SRAM Read 

direction

.

Wikipedia: Rotation Equation 



Sprite Rotation - Development Approach

1) High Level Software 
Algorithm POC 

2) System Verilog implementation 
+ Modelsim Validation

3) Signal-Tap II Debugging
of hardware realized solution



Lessons Learned
● Teamwork in an academic setting is difficult

○ Different experience levels, time commitments, interest etc. etc.
● Quartus II software has many quirks

○ X <= Y can yield unexpected results, sometimes it’s better to manually index the bits you care 
about

○ Parameter constants can be different in the RTL viewer from what you would expect based on 
your System Verilog code

○ Warnings are almost too forgiving, some may be better to fail the compilation (net inferrence)
● Module based encapsulation is critical to help debug RTL code and allow for reasonable viewing of 

the system interconnections
● Signal Tap II is a crucial debugging tool, without it our project would have missed several desired 

deliverables.
● Open source drivers can be unpredictable to work with and be non-trivial to build for an embedded 

target 


