YAGL: Yet Another Graph Language

Proposal

Anthony Alvarez (aea2161), David Ding (dwd2112)
Columbia University

July 11, 2016

Contents

1 Introduction

2 Language Design and Syntax

2.1 Comments e e e e e e
2.2 Data Types
2.2.1 Elaboration on Graphs L
2.3 0perators
2.3.1 Basic Operators e
2.3.2 Collection Operators e
2.3.3 Graph Operators
2.4 Built-in Functionso L
2.5 Control Flow
2.6 Function Definition Lo

3 Sample Code

1 Introduction

We seek to make a language, YAGL (Yet Another Graph Language), which allows users to inter-
act with graphs in a manner similar to the language of mathematical proofs. This should allow a
person with a theoretical understanding of graphs to engage with them in an intuitive practical way.

With YAGL, users will be able to easily create graphs and add vertices and edges, and associate
arbitrary attributes with them (for example, colors with vertices and weights with edges). Common
graph algorithms will be able to be written cleanly and concisely, as if they came out of the classic
Algorithms textbook by CLRS.

2 Language Design and Syntax

This section provides a rough idea of the design of YAGL, and is subject to change. Final language
design and syntax will be provided in the language reference manual.

2.1 Comments

YAGL will use Python-style comments for single line, and will not have a special syntax for multi-
line comments. Example:

This line is a comment.

2.2 Data Types
Basic types:

Type | Explanation

int integer

float floating point number
string | sequence of characters

YAGL also implements a notion of infinity and negative inifinty using the keywords INF and -INF
respectively. INF is greater than every int or float and is equal to INF. -INF is less than every int
or float and is equal to -INF.

YAGL implements constants True and False which evaluate to 1 and 0 respectively. These constants
add syntactic sugar to algorithms though they are directly replaceable with ints.

Additionally we implement a Null which can take the place of int, float, or string. Null comparisons
are always false. To detect nulls YAGL implements an isNull built in function.

Collection types:

Type | Explanation

list a list of values, all of the same type

map | a map of from keys (alphanumeric strings) to values of arbitrary types
set a set of values, all of the same type

Graph types:

Type Explanation
Graph an undirected graph
Digraph | a directed graph

2.2.1 Elaboration on Graphs

A graph has vertices and edges. Fundamentally, the edges in a graph are either all undirected or
all directed, so we have the graph types Graph and Digraph. Vertices will be accessed by labels,
and edges will be accessed via two vertex labels.

One will be able to associate any vertex or any edge with any number of attributes. These attributes
will be keyed by alphanumeric, and have a value of arbitrary type. In particular, note that edge
weights are not a fundamental attribute within the language, but one will be able to easily define
an edge weight via, say, an attribute with name ‘w’ and either a float or int value.

Vertices will have the immutable attribute ‘label’; and edges will have the immutable attributes
‘orig’ and ‘dest’, representing the origin and destination vertices. These attributes will be defined
when the vertex or edge is created.

2.3 Operators

2.3.1 Basic Operators

Category Data Type Operator Explanation
Comparison int, float, | ==, !=, >, | Act the same as C++ operators.
string < <=, >=
Computation | int, float +,-,%,/.% Act the same as C++ operators.
Computation | int, float +=.- Act the same as C++ operators.
& Assignment =%*=,/=
Concatenation | string + Concatenates two strings.
Concatenation | string += Concatenates right hand side string to
& Assignment original and assigns.
Boolean int, float ! 0 maps to 1, and all other values map to 0.
Boolean int, float AND 1 if both values are nonzero, and 0 other-
wise.
Boolean int, float OR 0 if both values are zero, and 1 otherwise.

2.8.2 Collection Operators

Category Data Type Operator Explanation

Comparison list, map, set | ==, |= If all values in all indices/keys are equal

then == returns True else != returns True.

Contains list, map, set | in Returns if an item exists in the list,map,

or set

Concatenation | list, set + Concatenates two lists or sets. On sets re-

moves duplicates.

Concatenation, | list, set += Concatenates right hand side list to origi-

Assignment nal and assigns

Removal set, map - Removes all items in the right hand set, or

map (by key), from the left hand set if they
exist

Removal, set, map - Removes all items from in the right hand

Assignment set, or map (by key), from the left hand set

if they exist and assigns back to left hand
side set.

Access list Access the ith element of a list (zero-

indexed)

Access map myMap.literal or YAGL supports multiple map access meth-
myMap|[“literal’] or | ods for ease of use. myMap.literal is iden-
myMap/[variable] tically equivalent to myMap|“literal’]. The

bracket notation must be used if accessing
using a a variable.
2.8.8 Graph Operators
Category Data Type Operator Explanation
Comparison Graph, Digraph | ==, |= If all attributes in all vertices and
edges are equal then == returns
True else != returns True.
Concatenation | Graph, Digraph | + Concatenates two graphs together
into a single graph. Note, names of
vertices in both graphs must be dis-
tinct to concatenate them.
Concatenation | Graph, Digraph | += Concatenates two graphs together

& Assignment

into a single graph. Note, names of
vertices in both graphs must be dis-
tinct to concatenate them.

2.4 Built-in Functions

Code Explanation

print(argl,arg2,...) | print out a comma separated list of variables and a new line character
size(iterable) return the size of iterable

isEmpty(iterable) | return size(iterable) > 0

isNull(arg) returns 1 if the arg is Null 0 otherwise

enqueue(list, elem) | add an element to the end of a list

dequeue(list) remove the first element of a list and return it

push(list, elem) add an element to the end of a list

pop(list) remove the last element of a list and return it

adj(graph, v) return the set of vertices in a graph adjacent to v

2.5 Control Flow

Code Explanation
if(condition) if-else block
If condition code
else
Else condition code
while(condition) while loop
While condition code
forEach(item, iterable) simple for loop
code operating on each item of iterable
forComponentValue(key, value, iterable) enumerating for loop
code operating on each key-value pair

2.6 Function Definition

Functions will be defined using the keyword def and the syntax below and the return keyword will
return any output of the function

def myFunction(Argl, Arg2)
The code of my function
return(’This is the return value of myFunction()’)

10

11

12

13

14

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3 Sample Code

Simple collection manipulation

Define a List
a =[]

push(a, 1)
push(a, 2)

a == [1,2]

>> 1

pop(a)

>> 2

a

>> [1]

enqueue(a, 3)
a

>> [1,3]
dequeue (a)

>> 1

Define a map

= {1}

.keyl = ’Valuel’
.key2 [0, 1, 3]
.key3 = 10

print(size(¢))
>> 3

O o0 o0 o0 %=

Define a set

d = {}

forEach(elem, c.key2)
d += elem

print(4)

>> {0,1,3}

d += 3

print(4)

>> {0,1,3%}

d-={0,1, 3,41}

print(isEmpty(d))

>> 1

Build and examine a basic Graph
G = Graph()
G.V += ’a’
G.V += {"b’,’c’}
forEach(v, G.V)
G.E += [v,v]
G.E[v,v] .weight = 1
G.E += [’b’,’¢c’]
print(G.E[’b’, ’c’].weight)

58

59

60

61

62

63

64

66

67

68

69

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

>> Null

#Create a copy of G as a digraph
D = Digraph()
forComponentValue(label, attributes, G.V)
D.V += label
forComponentValue(key, value, attributes)
D.V([key] = value
forEach(edge, G.E)
D.E += [edge.orig.label, edge.dest.label]
D.E += [edge.dest.label, edge.orig.label]
forComponentValue(key, value, edge)
D.E[edge.orig.label, edge.dest.label][key]
D.E[edge.dest.label, edge.orig.label][key]

I R
BFS takes as arguments a graph or digraph G
and s is a string representing the label of
the desired root vertex
HIHEE R R
def BFS(G, s)
#Takes a graph G and a label for a start node s
forEach(v, G.V)
if(v.label == s)

v.color = ’gray’

v.d =0

v.parent = NULL
else

v.color = ’white’

v.d = INF

v.parent = NULL
queue = []
enqueue(queue, G.V[s])
while(!isEmpty(queue))
u = dequeue(queue)
forEach(v, adj(G, u))
if v.color == ’white’
v.color = ’gray’
v.d = u.d +1
v.parent = u
enqueue (queue, u)
u.color = ’black’
return(G)

HHHH
Relax is a helper function for BellmanFord
it takes as arguments a graph or digraph G
and an edge e in that graph
g e g
def Relax(G, e)

= value

value

#If the distance of is more than the weight of the edge u->v and the distance on u
v = e.dest
u = e.orig
if(v.d > u.d + e.weight)
v.d = u.d + e.weight
v.parent = u
return()

R
The BellmanFord algorithm takes a graph or #
a digraph G and a label for a source s and #
returns True if there is a negative weight #
cycle that is reachable from s

returns False if there is not a negative
weight cycle that is reachable from s
HEHBHHAFHEHBHH AR BHHAHHEHBAH AR RS H AR R H RS HAF RS H RS
def BellmanFord(G, s)
ret = True
forEach(v, G.V)
v.d = INF
v.parent = NULL
G.V[sl].d =0
forEach(i, range(0, size(G.V)))
forEach(edge, G.E)
Relax(G, edge)
forEach(edge, G.E)
if(edge.dest.d > edge.orig.d + edge.w)
ret = False
return(ret)

H OH H H H HH

H O H H

