
Democritus: An Atomic Language

Amy Xu

Manager
xx2152

Emily Pakulski

Language Guru
enp2111

Amarto Rajaram

System Architect
aar2160

Kyle Lee

Tester
kpl2111

February 10, 2016

1 Introduction

Named after the father of atomic theory, Democritus is a programming language with a static
type system and added support for concurrent programming, with facilities for both imperative
and functional programming. Democritus is compiled to the LLVM (Low Level Virtual Machine)
intermediate form, which is then converted to optimized machine code. Democritus’ syntax draws
inspiration from contemporary languages, aspiring to emulate Go and Python in terms of focusing
on excelling in use cases familiar to the modern software engineer1 as well as emphasizing readability
and having “one – and preferably only one – obvious way to do it”2. Programs written by large
teams that leverage concurrent programming paradigms will benefit from the atomic keyword that
Democritus o↵ers as well as the unambiguous syntax conventions.

1.1 Why Democritus?

Democritus o↵ers a low-level, performance-oriented language with strong support for concurrent
programming and elegant, e�cient syntax. It is ideal for concurrency-oriented applications such as
transactional software and task-scheduling. The atomic keyword allows a programmer to create
methods that abstract away locking primitives from others calling methods that require an atomic
parameter.

Finally, the simple and intuitive syntax allows large teams to easily unify their coding style. Ideally,
Democritus would have a linter that ships with the language, reminiscent of Golang’s fmt.

Democritus is compiled down to the LLVM intermediate representation (IR) which then produces
optimized programs for several architectures (such as ARM, PowerPC, x86, etc). As a result, a
Democritus programmer is relieved from worrying about portability.

2 Feature Specification and Usage

Democritus attempts to stay low-level, while providing as many common-sense or overly tedious
functions for free. The features we intend to implement are as follows:

2.1 Concurrency support

1. atomic keyword
Democritus attempts to make concurrent programming easier by allowing users to instantiate
objects with an atomic keyword. Under the hood, this initializes the struct with a mutex built
into it, and defines the functions lock() and unlock() as part of this struct (see below).

Functions that take an atomic parameter are those that will lock on the variable. Atomic
variables can’t be passed to functions that don’t require atomic variables, as this means mixing
thread-safe code with non-thread-safe code.

Ideally, we would support a compiler flag that ignores all locks, so that Democritus code could
be compiled to run on a uniprocessor system.

2. lock():int, unlock():int

These functions are built into any instantiated atomic type. They lock and unlock on the
mutex built into the type.

1https://golang.org/doc/faq#Origins
2http://c2.com/cgi/wiki?PythonPhilosophy

3. function thread(f:function, ...):int

The thread() function call allows the current process to spawn a new thread. The new thread
starts execution at the function passed by thread. If specified, the remaining parameters are
passed to the function.

To keep the scope of the language minimal, we’d like to start with locks and not broach semaphores
and other more complex synchronization primitives.

2.2 Control flow

1. for

Democritus takes inspiration from Go syntax for its loop notation. Instead of while, loops are
notated with for. This is because many users are familiar with the 3-part for syntax and that
notation can encompass the while notation, enforcing uniformity in style across the language.

2. if, elif, else

Democritus denotes its conditionals control flow structure with if, elif, and else. We chose
to use elif instead of else if because it is less ambiguous to have one word instead of a
combination of two words that each have other meanings.

3. break, continue

While there’s some controversy over when to use these constructs, common wisdom is that
there is a time and place for break and continue. Furthermore, they map well to our LLVM
IR target.

2.3 Memory management

1. function new(val:type T):int

The new() function is akin to a malloc() in C with a built in call to sizeof(). In other
words, if T is a typedefined struct, new(T) will allocate enough memory for a T struct on the
heap.

2. Function delete(val:type T): int

delete() is the inverse of new(). It deallocates the memory allocated in new().

In these functions, the compiler determines the size of type T by looking up the type of the value
passed in. These function declarations are not intended to suggest that Democritus supports generic
programming (it does not).

2.4 Primitive data types

1. int: basic integer data type. No decimal.

2. float: basic decimal data type.

3. char: ascii character.

4. boolean: true or false.

5. pointer: integer that is treated as a memory address.

6. function: takes a set of inputs and returns an output.

2.5 Complex datatypes

1. list (array)

2. struct

3. string

Structs and lists are common to have as a default data type. We decided to include a built-in string
data type because we believe that strings are so frequently used that it?s worth prioritizing support
for clean string syntax.

2.6 I/O

1. function read(fd:int,s:string,n:int):int

Read n bytes from the file fd into the bu↵er. Return number of bytes read.

2. function write(fd:int,s:string,n:int):int

Write n bytes from fd into the bu↵er. Return number of bytes written.

2.7 Use cases

The atomicity of Democritus can be useful in several scenarios such as:

• Database Transactions

An airplane company wants to sell the seats to a flight online. This may lead to problems as
several customers may be browsing and initiating transactions on the same seat at the same
time. Due to these concurrent actions, the company must ensure that a transaction locks so
that only one customer pays and receives the seat while the other customers neither pay nor
receive the seat.

• Dealing with repeats and loops (see code snippet)

We want to record all web pages by recursively visiting a page and accessing its hyperlinks.
Since hyperlink repeats and loops occur often, an e�cient way of traversing through the In-
ternet and recording unique pages would be to lock the set we are writing the records to.

• File locking

A forum allows users to edit their posts. However, it needs to prevent users from editing posts
while it does some routine maintenance. The forum needs to lock posts during its maintenance
so that users are not able to submit edits even if they had already entered the editing state at
the time the maintenance began.

2.8 Code samples

web crawler.dem demonstrates Democritus’ ability to easily handle concurrency issues and multi-
threading. It creates an atomic set of strings, and for every link on a page it finds that is unvisited,
it adds it to the set and spins o↵ a new thread where it recursively follows the link. The set is
by necessity atomic in order to prevent concurrency issues from multiple threads reading from and
writing to the set at the same time.

basicstylebasicstyle basicstyleweb crawler . dem
basicstylebasicstyle basicstyle/⇤ Assume t h i s f unc t i on parses an HTML document and re turns
basicstylebasicstyle basicstylea l l the v a l i d l i n k s in i t as a l i s t o f s t r i n g s . ⇤/
basicstylebasicstyle basicstylefunc t i on g e t l i n k s (l i n k : s t r i n g) : [s t r i n g] = {
basicstylebasicstyle basicstyle/⇤ . . . ⇤/
basicstylebasicstyle basicstyle}
basicstylebasicstyle basicstyle
basicstylebasicstyle basicstyle/⇤ This f unc t i on demonstrates the use o f an atomic s tandard l i b r a r y data
basicstylebasicstyle basicstyletype and how to c r ea t e new threads . ⇤/
basicstylebasicstyle basicstylefunc t i on hand l e l i nk (s : atomic set , root : s t r i n g) : void = {
basicstylebasicstyle basicstylel i n k s = g e t l i n k s (root) ;
basicstylebasicstyle basicstyle
basicstylebasicstyle basicstylefor each root in l i n k s {
basicstylebasicstyle basicstyles . l o ck () ;
basicstylebasicstyle basicstylei f root not in s {
basicstylebasicstyle basicstyle/⇤ add t h i s s t r i n g to s e t . add () i s par t o f STL, and
basicstylebasicstyle basicstyles ince s i s o f an atomic type , i t l o c k s . ⇤/
basicstylebasicstyle basicstyleadd (s , root) ;
basicstylebasicstyle basicstyles . unlock () ;
basicstylebasicstyle basicstyle/⇤ new thread wi th t h i s f unc t i on and parameters . ⇤/
basicstylebasicstyle basicstylethread (hand l e l i nk , s , l i n k) ;
basicstylebasicstyle basicstyle} else {
basicstylebasicstyle basicstyles . unlock () ;
basicstylebasicstyle basicstyle}
basicstylebasicstyle basicstyle}
basicstylebasicstyle basicstyle}
basicstylebasicstyle basicstyle
basicstylebasicstyle basicstyle
basicstylebasicstyle basicstylefunc t i on d i s c o v e r a l l l i n k s (root : s t r i n g) [atomic s e t] = {
basicstylebasicstyle basicstyleatomic s e t s = new(atomic s e t) ;
basicstylebasicstyle basicstylehand l e l i nk (s , root) ;
basicstylebasicstyle basicstylereturn s ;
basicstylebasicstyle basicstyle}

stock transactions.dem uses a variant on the canonical bank account example for concurrency
issues to demonstrate the syntactic ease of the Democritus language. The buy stocks() function
allows a user to purchase stocks from a market, which uses an atomic map to represent its inventory.
The map must be atomic to prevent multiple users from carrying out transactions at the same time,
artificially depleting the inventory beyond its capacity.

basicstylebasicstyle basicstyles t o c k t r a n s a c t i o n s . dem
basicstylebasicstyle basicstyle/⇤ . . . ⇤/
basicstylebasicstyle basicstylefunc t i on buy stocks (market : atomic map, u s e r p o r t f o l i o :
basicstylebasicstyle basicstyleatomic map<s t r i ng , int>, number : int , s : s t r i n g) : void = {
basicstylebasicstyle basicstylei f market . get (s) < number {
basicstylebasicstyle basicstyleexcept S t o c k unava i l ab l e ! ;
basicstylebasicstyle basicstyle} else {
basicstylebasicstyle basicstylemarket . put (s , market . get (s) � number) ;
basicstylebasicstyle basicstyleu s e r p o r t f o l i o . put (s , u s e r p o r t f o l i o . get (s) + number) ;
basicstylebasicstyle basicstyle}
basicstylebasicstyle basicstyle}
basicstylebasicstyle basicstyle/⇤ . . . ⇤/

