
Rhine

Overview of Rhine
- Lisp style language
inspired by Clojure
- S-Expressions
- Built on top of LLVM
- Dynamic typing
- Functional features

- Automatic type
conversion
- First class functions
- External C bindings
- Types

Example: Fibonacci
(defn fib [n]
 (if (= n 0) 0
 (if (= n 1) 1
 (+ (fib (- n 1)) (fib (- n 2))))))

Example: Map!
(defn map
 [f coll]
 (if (not (= [] coll))
 (cons (f (first coll))
 (map f (rest coll)))
 []))

Implementation

- OCaml LLVM bindings
- LLVM arrays/vectors are fixed length, not
used
- Arrays can contain any type
- Variable length arrays supported

Implementation

- value_t is the structure behind dynamic typing
- Contains Integers, Bools, Strings, Arrays,
Array length, Doubles
- Function pointers are stored in value_t
- Type conversion

Implementation
- defn generates LLVM functions directly
- Nested and recursive let is supported
- def uses global constant + initializer function
- Top level statements are generated as
functions with zero arguments and are always
run, like main

Pipeline

Summary and lessons learned

- Summer class is really short
- LLVM is really hard
- Features of Lisp look nice abstractly but are
difficult to implement

Future additions
- Garbage collection, value_t is malloc'd but
never free'd currently
- Variable number of arguments for functions
being passed around
- Functions that support varargs
- Connection to text editor

Demo!

