ChemLab Project Proposal
COMS W4115

Alice Chang (Syst. Architect, Lang Guru), Gabriel Lu (PM, Lang Guru), Martin Ong (Syst. Architect,
Tester)
avc2120, ggl2110, mo2454

September 24, 2014

1. Description

ChemLab is a functional language that allows users to conveniently manipulate chemical elements. It can
be used to solve physical and organic chemistry problems including, but not limited to, stoichiometeric
calculations, oxidation-reduction reactions, acid-base reactions, gas stoichiometry, chemical equilibrium,
thermodynamics, stereochemistry, and electrochemistry. It may also be used for intensive study of a
molecule's properties such as chirality or aromaticity.

The language will make solving such problems easier by using data types and functions that are
specifically designed to suit the needs of a chemist. A functional language was implemented because of
the way it treats computation as the evaluation of mathematical functions and avoids changing state and
mutable data. It makes sense for the output value of a function to depend only on the arguments' inputs

in a chemical context because, given a set of input elements, a reaction will always produce the same
output molecule no matter how many times the reaction is run. Overall, we hope to use the simplicity of
a functional language to help chemists and students easily solve problems. While the language currently
has a focus on chemistry, one may easily foresee later versions including utilities for other scientific areas
such as biology or physics.

2. Proposed Uses

ChemlLab is used to easily solve a variety of chemistry and organic chemistry related problems. These
questions are mostly procedural and there is a general approach to solving each specific type of
problem. For example, to determine the molecular formula of a compound: 1) use the mass percents
and molar mass to determine the mass of each element present in 1 mole of compound 2) determine the
number of moles of each element present in 1 mole of compound. Albeit these problems can generally
be distilled down to a series of plug-and-chug math calculations, these calculations can become
extremely tedious to work out by hand as molecules and compounds become more complex (imagine
having to balance a chemical equation with Botox: C¢;¢,H 447N 7430201053,)- Our language can be

used to easily create programs to solve such problems through the use of our specially designed data
types and utilities.

3. Syntax

3.1 Comments

ChemLab allows for single and multiline comments

Operator Description Example

/l Single-line comment // hello world, except not really

| /* */ | Multi-line comment | /* Hello world, except not really*/ |
3.2 Variable Declarations
Variables can only be declared globally. A global variable is declared using the assignment operator (=).
The name on the left hand side of the assignment operator is given the value of whatever is on the right
side of the operator. When you declare a variable, you must also initialize it.

intn = 8;

int n; //(invalid)

3.3 Types
Strings use only double quotes.
String wordl = "chemistry";

String word2 = “ lab”
String concat = “chemistry lab”;
//syntactic sugar allows easy concatenation of Strings

Numbers can either be int or doubles. If an integer and a double are in the same expression, the integer
is automatically typecasted into a double

Intn = 8;
double k = 10.0
double z = n + k // (z = 18.9)

Boolean can only be true or false, there is no null value;

boolean bl = true;
boolean bl = false;
boolean bl = null; // (invalid)

Arrays declared using [] in which the elements of the array must all be of the same type. When
assigning a value to an array, put the values in parenthesis in which the elements are separated by
commas.

double[] k = [1.0,2.0,3.0,4.0,5.0];
String[] lastNames = ["Chang", "Lu", "Ong"];

3.3.1 Element
Since there are only 118 elements, it could have been possible to hard code each element into the
language. However, we chose not to do this to give the user a greater degree of flexibility in terms of
declaring the properties of the element they want to consider because isotopes of elements have
different amounts of neutrons and some elements can exist in more than one state. Element is declared
with (atomic number, mass number, charge). The element type is the basic building block provided by
ﬂllze program that can be used to create molecules, compounds, etc.
C
6

element c

{6, 12, @};
6'C
element ¢ = {6, 14, 0};

3.3.2 Molecule

For the purpose of the language, there is no distinction between molecule or compound and both are
declared the same way. Molecule is declared as a Hashmap with the elements as keys and the number

of each element as the values.
molecule NaCl = {Na: 1; Cl:1} //declared as a Hashmap

Note that the only time curly brackets { } are syntactically accepted is in the declaration of an element,

molecule, or equation.
3.3.3 Equation

Equation is declared in the following way: An array consisting of an array of elements/molecules on left

side of reaction and an array of elements/molecules on right side of reaction.

NaOH + HCl -> NaCl +H,0

equation NaClReaction

[[NaOH, HC1], [NaCl, H,0]1;

3.4 Operators
Arithmetic Operators
Operator Description Example
= Assignment Operator String a = "hello"
+ Addition 2+3
- Subtraction 4+5
% Modulus (taking remainder) 3%4
/ Division 5/5
* Multiplication 8*8
Comparison Operators
Operator Description Example
<or> Greater than or less than 5>4
<=or>= Greater than or equal to, less 5>=5
than or equal to
Boolean Operators
Operator Description Example
== Check for equality 10==10
&& AND True && True = True
| | OR True || False = True
I, ~ NOT 10!=5

i)

3.5 Control Flow

ChemLab will include basic control flow. We will not include a for loop because it will be redundant

when there is already a while loop.

//if-else
if(){
}

else{

}
//while loop

while(expression){

}

3.6 Functions
Functions require name of function, type of return, and type of parameters. The keyword func must be
declared ahead of the function to signify that it is a function declaration.

func int add(int x, int y){
return a; (a is of type int)

}

3.7 Utilities
3.7.1 Balance Equations
Given an unbalanced equation, this utility will be able to compute the correct coefficients that go in front

of each molecule to make it balanced and return as an array of hashmaps
balance([[Fe,Cl2],[FeCl3]]);
//returns [{Fe:1, Cl:3},{FeCl3:2}]

3.7.2 Molar Mass Calculation

Given a molecule, this utility will be able to compute the total molar mass of the molecule
molarMass(H);
//returns 1.00794

3.7.3 Naming of Molecules
Given a molecule, the utility will print out the name in correct scientific notation (ex. H,0 will be printed

as Dihydrogen Monoxide)
name(NaCl);
//returns “Sodium Chloride”

3.7.4 Printing of Equations

Given an equation, the utility will print out the equation in correct scientific notation
equation x = [{Na:1, Cl:1},{NaCl:1}];
print(x);
//prints out Na + C1 — NaCl

3.7.5 Amount of Moles
Given the element and the amount of grams of the element, this utility will return the amount of moles of

the element
numMoles(Fe, 27.9225);
//calculates number of moles of Fe in 27.9225 grams of Fe

3.7.6 Solubility
Given a molecule, the utility will apply pattern matching and return a boolean value of whether the
molecule is soluble or insoluble

soluble(NaCl);
//returns True

4. Example Programs

//0xidation Reduction Problem
element Zn = {30, 65, 0};
element Zn2 = {30, 65, 0};

element Fe = {26,56,0};

element Fe2 = {26,56, 2+};

element FeCl2 = {Fe:1;Cl:2};

equation reaction = [[FeCl2,Zn],[ZnCl2, Fe]l];

func String Reduced(element x_react, element x_prod, element y_react, element y_prod)

{

}

String output = “?;
if(x_prod.charge - x_react.charge > 0)

output = output + name(x_react) + “ is reduced and ”’;
else

output = output + name(x_react) + “ is oxidized and *;

if(y_prod.charge - y_react.charge)

output = output + name(y_react) + “ is reduced”;
else

output = output + name(Y_react) + “ is oxidized”;
return output;

oxiRed(reaction[@][@][‘Fe’], reaction[@][1], reaction[1][@][‘Zn’], reaction[1][1]);
//returns “Zinc is oxidized and Iron is reduced”

//Equilibrium Problem solving for Kc
element 0 = {8, 16, 2-};
element S = {16, 32, 2-};

molecule SO3

{S:1; 0:3};

molecule S02 = {S:1; 0:3};
molecule 02 = {0:2};

equation equilibrium

[[s02,02],[s03,1]];

func double calculateKc(equation equ)

{

balanced = balance(equ); //stores [{S02:2;02:1},{S03:2}] in balance
int[] coeffl = balanced[@].values; //stores values of reactants hashmap in array
int[] coeff2 = balanced[1].values; //stores values of products hashmap in array
numerator = equ[l];

denominator = equ[0];

int max = equ[l].size;

int count = 9;

kc = 0;
while(count < max)
{

kc = kc * numerator[count]”(coeffl[count]);
count = count + 1;

}

count = 0;

int max = equ[@].size;

while(count < max)

{
kc = kc / denominator[count]”~(coeff2[count]);
count = count + 1;

return kc;

}

calculateKc(equilibrium); //returns value of Kc for 2S02 + 02 — 2S03

5. Looking Ahead

Although the program is currently designed to implement solutions for chemistry problems, one could
foresee the implementation of solutions for other scientific subjects such as biology or physics. For
example, one could implement a type called amino acid that could be any of the 20 amino acids and
type called nucleotide which could be any of the 5 nucleotides (C,G,T,A,U). One could then develop
useful functions such as a DNA conservation function to determine the degree of sequence conservation
between two DNA sequences. One could also see using the language to study protein structure in which
one would have a graph of amino acids which show which amino acids in the structure are contacting
other amino acids. Although this is currently just wishful thinking, it would be interesting to implement
these details in the language.

