
Vector: A High-Level Programming 
Language for GPU Computing

Harry Lee (hhl2114), Howard Mao (zm2169), Zachary 
Newman (zjn2101), Sidharth Shanker (sps2133), 

Jonathan Yu (jy2432)



The Problem

● GPUs have gained the ability to perform general-
purpose computing tasks, so-called GPGPU

● GPGPU now the workhorse of High-Performance 
Computing

● Current GPGPU languages, CUDA and OpenCL, not 
very beginner-friendly and operate at low level of 
abstraction
○ Explicit copying of memory to and from GPU
○ Explicit choice of warp size

● GPU programming often follows common patterns, like 
map or reduce, but with no first-class functions, no way 
to implement patterns in reusable way



The Solution: Vector

● Memory implicitly copied to and from GPU on ad-hoc 
basis

● Automatic warp size selection
● Lightweight parallel-for syntax instead of defining 

kernels
● Map and Reduce implemented as higher order functions
● Compiles to CUDA



Syntax

● Mostly C-like syntax
● Extensions for GPU computing and some syntactic 

sugar



Arrays
int a[3, 4, 5];

x := a[i, j, k];

a[i, j, k] = x;

● Support for n-dimensional arrays
● Arrays created on both CPU and 

GPU
● Arrays are reference counted
● Data automatically copied to GPU 

if accessed in GPU statements
● Automatically copied back to CPU 

if accessed in CPU code



For and Parallel For (pfor)
for (i in 0:5:2, j in 0:4) {

// some code
}

for (x in arr) {
         // some code
}

pfor (i in 0:5:2, j in 0:4) {
// some GPU code

}

● For loop uses iterator statements 
instead of explicit incrementing as 
in C, so “i=0; i<5; i+=2” becomes 
“i in 0:5:2”

● Pfor loop uses same syntax, but 
each iteration run in separate 
thread on GPU 

● For loop also supports “for each” 
type syntax. Iterate over elements 
of array



Map and Reduce
__device__ float square(float x) {
     return x * x;
}

int[] another_function(int inputs[]) {
      squares := @map(square, inputs);
      return squares;
}

__device__ int add(int x, int y) {
      return x + y;
}

int another_function(int inputs[]) {
      sum := @reduce(add, inputs);
      return sum;
}

● Higher order functions
● Must be generated at compile-time 

(function pointers not guaranteed to 
work in CUDA)

● Map takes function f and array a, 
returns array b where b[i] = f(a[i])

● Reduce takes function f and array 
a, returns the result of applying f to 
two pairs of elements in a, then 
applying it to pairs of the results, 
etc. The function f must be 
associative and commutative



Implementation Details

● Scanner/Parser in Ocamllex and Ocamlyacc
● Generator takes AST and produces CPU code inline
● Generation of GPU code is deferred until end
● Environment stores variables in scope and other state
● Runtime library implements arrays and iterators



Lessons Learned
● Group dynamics is important - good balance between 

leader and team members
● It’s better to segment building the compiler by feature 

than by phase of the compiler.  It’s very hard to predict 
exactly what the grammar should be before 
implementing code generation.

● Communication with teammates is very important. 
Enforcing a consistent coding style (especially with 
respect to indentation) will avoid problems down the 
line.

● OCaml tools (and the functional programming paradigm 
in general) are really great for writing compilers.

● Start early



And Now a Demo!!!

Mandelbrot set generator on CPU and  GPU



CPU vs GPU performance


