
SMPL
A Simple Parallel Language

Ajay S S Reddy Challa
Andrei Papancea
Devashi Tandon

Computing over the Years1

1 - http://smoothspan.wordpress.com/2007/09/06/a-picture-of-the-multicore-crisis/

http://smoothspan.wordpress.com/2007/09/06/a-picture-of-the-multicore-crisis/

Computing over the Years

Gordon E. Moore

● 1965:
published a paper concerning the future of
processor chips

● Moore's Law:
"the number of transistors on
integrated circuits doubles
approximately every two
years"

http://en.wikipedia.org/wiki/Transistor
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Integrated_circuit

The Free Lunch

● Faster processors means
faster programs

● No additional effort

SMPL: It’s simple!

● C syntax
● introduces 4 new keywords that allow

parallelism
○ spawn
○ barrier
○ lock
○ pfor

● the 4 parallel constructs use Posix threads

SPAWN

● The spawn statement creates a thread for
the given statement. Its syntax looks as
follows:

spawn function_call;

BARRIER

● The barrier statement prevents execution
of code following it until all the threads
spawned prior to it finish executing. Its
syntax looks as follows:

barrier;

LOCK

● The lock statement prevents other threads
from accessing or modifying the contents of
the statement that it precedes until the latter’
s computation finishes. Its syntax looks as
follows:

lock statement

PFOR

● The pfor statement defines a for loop that
splits up the work in its body into multiple
threads. Its syntax has the following format:

pfor(k; counter; init; limit)
 statement

● This is a quick example on how to use
spawn and barrier:

A more exciting “Hello world!”

1
2
3
4
5
6
7
8
9
10
11

say(string str){
 printf(“%s\n”,str);
}

int main(){
 spawn say(“Hello”);
 spawn say(“world”);
 spawn say(“user!”);
 barrier;
 printf(“Done!\n”);
}

● This is a quick example on how to use pfor:

Well, hey there multicore!

1
2
3
4
5
6
7
8
9
10
11
12
13

int sum = 0;

int main(){
 int i;
 int n = 1000000;

 pfor(8; i; 1; n){
 sum = sum+i;
 }

 printf("The sum of the first 1M
 integers is %d.\n",sum);
}

● This is a quick example on how to use lock:

Lock the vault!

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

float balance = 2000.00;

withdraw(float val){
 lock {
 if(balance-val >= 0)
 balance = balance-val;
 }
}

int main(){
 int i;
 int n = 1000000;
 for(i=1; i<100; i++){
 float amount = i*10;
 spawn withdraw(amount);
 }
 printf("The remaining balance is %f.\n",balance);
}

Implementation

● semantic checker
○ automatic type casting
○ code validation
○ optimization (reference count)

● code generation
○ C code generation
○ optimization (remove dead code)

● testing
○ check syntax
○ check semantics (manually)
○ check program execution

Lessons learned

● Ajay
○ meeting regularly is crucial
○ keeping SMPL simple helped in the development process

● Andrei
○ start early
○ OCaml is extremely annoying at first, yet extremely powerful
○ do not attempt to implement 10,000 language features

● Devashi
○ coming up with a new language was fruitful and tricky
○ writing a compiler in a completely new language was

challenging
○ I learned how to effectively work in a team

DEMO

