COMS4115 Proposal: YOLOP (Your Octothorpean Language for

Optical Processing)
Sasha Mclintosh, Jonathan Liu & Lisa Li
sam2270, jI3516 and 112768

Motivation

Programming and attempting to manipulate images can often prove difficult and tiresome,
while simple tasks such as cropping, changing images to black and white, and importing
photos prove to be complicated. To ease this process, we aim to develop a language,
YOLOP (Your Octothorpean Language for Optical Processing), that simplifies these
common image processing jobs and provides a user-friendly programming to transform
original photos into a finished product. By simplifying the data types used and providing
key methods in our standard library, we have focused the scope of the language into one
that can easily manipulate and process images. Our language will include techniques to
import/export images, manipulate colors, and trim sizes. As such, YOLOP is a useful tool
not only for photos and pictures, but charts and graphs as well. Potential uses for
programming in YOLOP thus include developing typical image processing programs to
apply a standardized color mapping onto each part of the image (i.e. like a popular
application’s use of filters), sharply saturating colors to identify and separate specific areas
of an image, manipulating and comparing multiple charts and graphs together, and more!

Language Specification
Data Types:

e int: the same integer you know and love. The operators +, ++, --, * and / function as
expected with divide taking the ceiling of decimal numbers. The following boolean
operators are included and also function as expected: <, <=, >, >= 1=, == && and ||

e string: similar to what you have seen in the past, with some limitations. String
concatenation can be performed with the + operator. Boolean operators are not
supported, and string manipulation is not heavily supported either. String cannot be
operated on with integers. In our language, strings are used mainly for naming files
and very little else.

e img: the img type is used for image multiplication and stores the int values for each
pixel in a 3D (RGB) array. The img allows for easier manipulation of the image and
contains several public attributes such as:

o img a.width returns an integer denoting the number of pixels in a row of a

o a.length returns an integer denoting the number of pixels in a column of a

o a.red, a.green, and a.blue allow a programmer to access those color arrays
within the program

Commenting
e #* Comments are written like this *# where only the text inside the symbols are
commented out. There is no definition for single-line comments.
e Commenting can be nested:

#* Commenting out the function

int doNothing() {
return O; #* This returns 0 *#

}
“#

Sample Code
img src = “cat.jpg”;

int makeRedder () {
int x = src.length; #* This is the length of the image *#
inty = src.width;

for (inti=0;i<x; i++)
src.red(i,0)++; #* Increase the “red” of the RGB *#

src.save(“newimage.jpg”, “/home/media/images/”);
return O;

}

Standard Library Functions
The following functions may appear within the standard library to provide some methods
that the user may find useful and use often.

“Image Concatenation” or appending one image to another and making up the size
difference with white space.

Import/Export of images. To be more specific, the importing of images and conversion to
the “img” data type and the saving of “img” as an image file.

Hex Code colors may be built in to allow for easy manipulation. One implementation could
be to assign a hex code to a color.
e.g. PURPLE = #800080;

Color Functions may be built in. For example a gradient function that takes two points as
parameters and blends the first color into the second in a “line”.

