
 COMS 4115 Programming Languages and Translators
 Fall 2013
 Professor Edwards

Lullabyte

Stanley Chang (cc3527), Louis Croce (ljc2154),
Nathan Hayes-Roth (nbh2113), Andrew Langdon (arl2178),

Ben Nappier (ben2113), Peter Xu (px2117)

Executive Summary - Lullabyte is a programmatic abstraction of notes in music space. Basic
rules and operators, used in conjunction with functions and control flow operators, will allow the
developer to create MIDI music files using syntax similar to that of C and C-derived languages.

 Lullabyte

2 | P a g e

Intended Uses
-Composition-
Lullabyte allows developers to create musical compositions, either directly or algorithmically.
Developers can create music through programs that directly manipulate a song’s common
elements (pitch, melody, rhythm, etc.). Alternatively, users can develop more complicated
compositions by writing programs that generate melodies algorithmically. Lullabyte achieves this
by generating simple Java code that will create the MIDI file of the programmed song through
an external library.

-Inspiration-
Musicians, like all artists, seek inspiration from their surroundings. Some artists use dice rolls to
create melodies and rhythms. However, often times, doing so creates chaotic chord
progressions and unpleasant sounds. Furthermore, the notes need to be written down and
played in order for the artist to analyze the quality. Though Lullabyte can be used to create
specific music, it is also a great tool to inspire new ideas. Since contemporary music is often
based on simple chord progressions, it can be coded easily and put into a loop and set as an
independent sequence. A randomly generated melody can be created as a separate sequence
that chooses notes along a random walk which belong to the chord progression during a
specific section. This is analogous to a saxophone improvisation over a bass line in a solo
section of a jazz chart. The structure of the partially random melody can be set to reduce
chaotic rhythms and general noise in the section. Musical motifs and themes can be reused to
create pleasant patterns recognized by humans. With the set structure in place, one can quickly
generate multiple MIDI files for inspiration.

Data Types

Type Description

int An integer value.

Example: 3

pitch Corresponds to a frequency and is represented as one of the 12 musical tones
combined with an octave value.

Example: A5

chord A chord is a collection of one or more pitches surrounded by square brackets

Example: [C4 G4 C5 ...]

duration A measure of how long pitches play with respect to the measure

Example: 1/4

amplitude Loudness; Integer value between 0 and 100

Example: 42

 Lullabyte

3 | P a g e

sound A combination of chord, duration, amplitude separated by colons. If the amplitude
is not specified, the default is 50.

Example: [C3 G4]:1/2:75, [A4 C5 E5]:1/3

sequence A list of sounds surrounded by parentheses and separated by commas.

Example: ([C3]:1/2, [A4 E5]:1/4, [A4 E5]:1/4, …)

track A track is an array of sequences, and dictates the order in which the sequences
are rendered to MIDI. Tracks are surrounded by |’s with the sequences separated
by commas.

Example: |([C3]:1/2, [A4 E5]:1/4), ([A4 E5]:1/4), …|

data_type[] An array of data_types (‘data_type’ corresponds to one of the above data types)

Symbols

Symbol Use

/ Used with duration.

: Used to separate chord from duration from amplitude in sound.

; Used to designate the end of a command.

() Used to define a sequence.

| | Used to define a track.

[] Used to define a chord or an array.

{ } Used to define a block of code.

Keywords

Keyword Use

constants C0 to B9 (ie C1, C#1, D1, D#1, … A9, A#9, B9), true, false

statements if, else, let, do, while, function

types int, pitch, chord, duration, amplitude, sound, sequence,
track, void

 Lullabyte

4 | P a g e

Operators

Operator Use Cases Descriptions

+ integer + integer x

pitch + integer x

chord + integer x

chord + pitch y

amplitude + integer x

Same behavior as in C

Increment a pitch by x semitones; Error if above B9

Increment all pitch inside chord by x semitones; Error if
above B9

Chord will include y; if y already exists in chord, ignore

Increase the amplitude by x; Error if above 100

- integer - integer x

pitch - integer x

chord - integer x

chord - pitch y

pitch x - pitch y

amplitude - integer x

Same behavior as in C

Decrement a pitch by x semitones

Decrement all pitch inside chord by x semitones; Error
if below C0

Chord will remove y; Error if y is not in chord

Returns an integer z semitones between x and y

Decrease the amplitude by x; Error if below 0

= integer x = integer y

etc.

Assignment operator

<< duration x << duration y

sound a << sound b

sequence s << sequence t

sequence s << sound a

Returns duration z of x + y

Returns a sequence of a after b

Returns a sequence of t after s

Returns a sequence with a after s

* integer * integer

duration * integer x

sound * integer x

sequence s * integer x

amplitude a * integer x

Same behavior as in C

Returns a duration x times as long

Returns a sound x times as long in duration

Returns a sequence of s concatenated 4 times

Returns an amplitude equal to a times x.

 Lullabyte

5 | P a g e

< integer < integer

duration x < duration y

pitch x < pitch y

Same behavior as in C

Returns true if duration x shorter duration y.

Returns true if pitch x is lower pitch than y

> integer > integer

duration x > duration y

pitch x > pitch y

Same behavior as in C.

Returns true if duration x longer duration y.

returns true if pitch x is higher pitch than y.

== integer == integer

duration x == duration y

pitch x == pitch y

Same behavior as in C.

Returns true if duration x is same as duration y.

Returns true if pitch x is same as pitch y.

! !<boolean_expression> Logical NOT operator.

&& <boolean_expression> &&
<boolean_expression>

Logical AND operator.

|| <boolean_expression> ||
<boolean_expression>

Logical OR operator.

Standard Library Function
mixdown(track,
track, ...)

Writes the tracks defined by the programmer to a MIDI file in such
a way that they will be played simultaneously

Control Flow

Keyword Example Description

if else if(<boolean_expression>){
 //Statements
} else {
 //Statements
}

Same behavior as in C.

while while(<boolean_expression>){
 //Statements
}

Same behavior as in C.

White Space and Comments

• Space characters, newline characters, and comments are ignored
• // - Comment to the end of the line
• /* text */ - text will be treated as a comment.

 Lullabyte

6 | P a g e

Code Examples

/*
 * Creates a new sequence with each sound prior being played 4 times
 * consecutively
 */
function sequence quadruple(sequence a){
 sequence b;
 int i;
 let i = 0;
 while(i < a.length()){
 let b = b << a[i] << a[i] << a[i] << a[i];
 let i = i + 1;

}
return b;

}

/*
 * Creates a sequence which we will use to play a blues solo (a random walk
 * on the blues scale)
 */
function sequence randomWalk(int[] scale, pitch root, int n){
 int i, rand, root_step, r;

sequence out;

let i = 0;
let rand = new Random();

 let root_step = 0;

 while(i < n){
 let r = rand.int(5) - 2; //random int between -2 and 2

let root_step = root_step + r;
//if root_step is out of scale’s range, place back in range
if(root_step < 0){
 let root_step = scale.length() - 1 - root_step;
}
if(root_step > scale.length() -1){
 let root_step = root_step - scale.length() - 1;
}
//increment the root pitch by the random-walk of the scale

 let out = out << (root + scale[root_step]);
 let i = i + 1;

}
return out;

}

 Lullabyte

7 | P a g e

// main takes three arguments, x and y together define the time signature and
a bpm defines the beats per minute.

function void main (x, y, bpm){
 chord fMajor, cMajor, cMajor7;
 sequence f_c, baseSeq;
 track jude_progression, bass, funky_blues;
 int n;
 int[] scale;

//”Hey Jude” chord progression
let fMajor = [F4 A4 C4];
let cMajor = [C5 E5 G5];
let cMajor7 = [C5 E5 G5 Bb5];

// an F chord and C chord with durations of a quarter note
let f_c = (F:1/4, C:1/4);

 let jude_progression = |quadruple(f_c),
 (fMajor:1/4,cMajor7:1/4,cMajor7:1/4,cMajor7:1/4),

quadruple(f_c)|;

let baseSeq = ([F3]:1/1, [C3]:1/1, [F3]:1/4, [C3]:3/4,
 [F3]:1/1, [C3]:1/1);

let bass = |baseSeq|;

//Writes the song to a MIDI file. Both tracks will be combined
//such that they will play simultaneously in the output MIDI
//file.
//plays hey jude chord progession along with a bass line

 do mixdown(jude_progression, bass);

let scale = [0 3 5 6 7 10]; //blues scale to be improvised on
pitch C5; //root note of the scale
let n = 10; //number of notes in the output sequence

 let funky_blues = |randomWalk(scale, C5, n)|;
 do mixdown(funky_blues); //appends funky blues to the MIDI file
}

