
LGA - Language for Graphic and Animation

Proposal

Hang Qian (hq2124)
Yuanli Dong (yd2270)
Pindan Hao (ph2389)
Tian Xia (tx2126)

September 25, 2013

1 Motivation

Web is becoming a huge thing. For users and even sometime developers, it
may feel like suddenly, web pages can do so many cool things. Everyone in
our team was obsessed with LOGO, a language and platform designed for kids
that draws simple shapes by a turtle (Ninja!) using code with simple syntax.
Though LOGO’s era has long passed, with all HTML5 stuff got more and more
attention, creating web pages with graphical objects and animation has never
been this interesting.

Indeed, with the support from the awesome WebGL, there are quite a few li-
braries that make their efforts to make the job easier. But we are thinking of
taking a language-level approach.

We propose LGA as our project for this course. LGA stands for Language for
easy manipulation of Graphics and Animation. And also, we are from NYC. We
see LGA as a good choice for developers who want to create simple graphical
objects and animation without the pain of wrestling with all complex WebGL
APIs and javascript pitfalls and gotchas. With LGA, the job should be smooth,
painless and all compatible with existing web technologies.

2 Key features

• LGA focuses on creating 2D objects and animation.

• User can use built-in shapes or creating their own by combining built-in shapes
and other user defined shapes (shapes are nested structured).

1



• Complex movement sequence is created by combination of basic movements,
some common movements (e.g. circling) are also provided by the language.

• Movement is independent from certain types of objects, once one movement
is defined, it can be used by different objects.

• Sub-elements of a complex object can have their own movement pattern, but
they also make movements as the whole object moves (e.g. Two wheels of a
bike rotate, but they also move forward because the bike is moving forward).

3 Language Description

LGA, shares a C like syntax with minor tweaks, has simple syntax which could
powerful support manipulation of graphics and animation. We design LGA to
make it easy for users to make simple graphics and animation. In terms of func-
tionality, we are seeing LGA go with a WebGL approach (as javascript is our goal
target language) while providing an easier syntax and wrapping to programmer.

Based on understanding of elements establishing graphics and animation, we
provide some basic shapes, motion types and other elements in LGA with which
users could easily create their own complex graphics and animation. Compared
with other languages like JavaScript, LGA provides users an easier way to ma-
nipulate graphics and animation.

Built-ins:

Basic data types
Object type
Move type
Normal functions(closure)
Basic shapes as line(), arc(), curve(), rec()

Data types
Integer - int
Float number - double
Boolean - bool
Color (optional, as we can use a tuple if we set up with RGB) - color

Composite
Array
Tuple
HashMap

Iteration
For loop
While loop

2



Conditionals
If
Else
Continue
Break
Switch (optional, we are not sure yet if we want it)

4 Examples

LGA provides a simple but powerful set of basic graphics and action types with
which users could create more complex graphical objects with motion. The
following is an example how a simple animation of a moving bicycle could be
created with LGA.

//A object named Bike is built first

//A set of x-axis and y-axis will be privately setup for this object

obj Bike {

/* A variable named frontwheel is created;

* Wheel is an object created by user with the basic graphical

* types provided by LGA;

* The position of the wheel is determined by the coordinates

* (1, 1);

* Position for var in a object is a relative position to the

* object

*/

var frontwheel = new Wheel(1, 1);

var backwheel = new Wheel(3, 1);

// Similar to wheel, a var named frame is created

// from a user-created object Frame

var frame = new Frame(1, 2);

// function run determines how an object will act in animation

// we can override with our definition

var run = func ()

{

// vars are divided into different start orders to be

// managed in groups

startorder s1 = [frontwheel, backwheel];

/*

* vars with the same start order could run together with

* a simple call;

* For this example, two Wheels will start rotating

*/

s1.run();

/*

* A motion object called Move will be provided with some

* built-in motions;

3



* users could create their own motion types from Move

* too;

* In this example, shift is a motion created by users

* conducting a certain shifting with a predetermined

* velocity

*/

shift();

}

}

//Object Bike is instantiated to a variable named myBike

var myBike = new Bike();

myBike.run();

//A timer is allocated to control motion of myBike

timer(5, func () {myBike.stop(); myBike.dismiss()});

4


