COMS W4115 Language Reference Manual Lauren Zou, Aftab Khan, Richard Chiou
Simple Presentation Web App Generator (SPWAG) Yunhe (John) Wang, Aditya Majumdar

Simple Presentation Web App Generator
COde Name: SPWAG

Members

Lauren Zou (ljz2112)

Aftab Khan (ajk2194)

Richard Chiou (rc2758)

Yunhe (John) Wang (yw2439)
Aditya Majumdar (am3713)

Table of Contents

Members

Table of Contents

Introduction

Lexical Conventions
Identifiers

Keywords
Data Types and Variables

Integer
Boolean

Strings
Conversions

Operators
Comments

Functions
Function Calls
Native Functions
Function Definition
Components
Native Components
Slides
Attributes
Native Attributes
Setting Component Attributes
Program Structure
Statements and Control Flow
Code Blocks and White Space
Control Structures
Precedence

COMS W4115 Language Reference Manual Lauren Zou, Aftab Khan, Richard Chiou
Simple Presentation Web App Generator (SPWAG) Yunhe (John) Wang, Aditya Majumdar

Basic Expressions
Logical Expressions
Unary Boolean Expressions
Binary Boolean Expressions
Comparison Expressions
Scoping
Global Scope

Block Scope
Inheritance

Execution

Introduction

The Single Presentation Web App Generator (SPWAG) combines HTML, CSS, and JavaScript to generate
a web-based slide-show presentation. SPWAG aims to allow the user to create fast and efficient
slide-show presentations without having to worry about complicated and bloated graphical user
interfaces. Since SPWAG’s output is a single HTML file, it is light-weight as well as compatible across all
browsers and platforms.

Lexical Conventions

Identifiers

An identifier is a sequence of letters, digits, and the hyphen ‘-’ ; the first character must be alphabetic.
An identifier is not case-sensitive.

Keywords

The following is a list of reserved words that may not be used as identifiers:
attr else if null true
comp end import return var
define false isa slide while

Data Types and Variables

SPWAG contains 3 primitive data types: integers, booleans and strings. All variables are declared using
the keyword var, and all variables, if not assigned, have default value null. A variable declaration is
distinct from its definition in that a variable is assigned a value in its definition.

Integers can fall under several different integer types: regular integer, pixel, and percentage. A regular
integer literal does not require a suffix, but a pixel integer literal should always be followed by a ‘px’ (e.g.
300px) and a percentage integer literal should always be followed by a ‘%’ (e.g. 100%). An integer is

COMS W4115 Language Reference Manual Lauren Zou, Aftab Khan, Richard Chiou
Simple Presentation Web App Generator (SPWAG) Yunhe (John) Wang, Aditya Majumdar

declared and defined as follows:

var identifier = value

Here, identifier is to be replaced by a valid identifier, and value by a valid integer literal. The storage of
integers is machine dependent, but for the most part can be assumed to be in a 32-bit signed integer
representation.

A boolean is either true or false. For conversion purposes, anything that has the value 0 or null is
considered false, and everything else is considered true. Booleans are declared and defined as follows:

var identifier = value

Here, identifier is to be replaced by a valid identifier, and value by either true or false.

A string is a sequence of 0 or more characters (including digits, symbols, etc.). Note that a character is
fundamentally an integer interpreted by its ASCII equivalent if possible. String literals are surrounded by
guotes (“”) and may span more than one line. A string variable is declared and defined as follows:

var 1identifier = “string Literal”

Here, identifier is to be replaced by a valid identifier, and string Literal by a sequence of 0 or more
characters. The escape sequence \” inserts the “ character, \\ inserts the \ character, and the escape
sequence \n inserts a new line into the string.

Strings can be used to mean many things in SPWAG. Some uses include IDs for components. Every
component should have an ID so that functions can reference each component using its ID. The ID for
each component must be unique across its specific scope context (see the Scoping section).

Strings can also represent colors. SPWAG accepts four different color formats: RGBA, HSLA, hex with an

alpha at the end, and standard HTML color names (e.g. “red”, “blue”, “yellow”, “green”). For example, to
make the text color hot pink, one could write any one of the following:

In RGBA:

box(“a-hot-pink-box>)
text(“I am some text!”)
text-color(“rgba(255,105,180,100)”)

In HSLA:

COMS W4115 Language Reference Manual Lauren Zou, Aftab Khan, Richard Chiou
Simple Presentation Web App Generator (SPWAG) Yunhe (John) Wang, Aditya Majumdar

box(“a-hot-pink-box>)
text(“I am some text!”)
text-color(“hsla(330,100,71,100))

In hex with an alpha at the end:

box(“a-hot-pink-box”’)
text(“I am some text!”)
text-color(“#FF69B4FF”’)

In standard HTML color:

box(“a-hot-pink-box>)
text(“I am some text!”)
text-color(“hotpink”)

Conversions

Itis illegal to assign a variable of a primitive data type a primitive data type of another type. Implicit
conversions are made, however, in other places in the code. Integers valued at 0 or null if interpreted as
a boolean is false, all other integer values are interpreted as true. Strings valued at null are interpreted
as false, all other strings are interpreted as true. If an integer is concatenated with a string using the +
operator, it is first converted to its string representation. If a boolean is concatenated with a string using
the + operator, it is first converted to “true” or “false”. All other uses of a data type where another one is
expected is illegal.

Operators

In general, SPWAG supports the same operators typically used in other languages. The assignment
operator is binary and right-associative, and its function is just to pass a legal value to the left operand.
The assighment must be consistent, which we define to be the left and right operands having the same

type.

In SPWAG, arithmetic operators are all binary and left-associative. Once again, the left and right
operands must be of the same type (SPWAG supports integers, pixels, and percent types). The +
operator has a special case in which a string can be in the right hand side expression, and concatenating
that with any other data type will always produce a string of that combination.

Comparative operators are also binary and left-associate, and can only compare variables of the same
type. The comparisons produce boolean values of true or false.

Finally, the logical operators of | and & are binary and left-associative, must have boolean-producing
expressions on either side of the operator, and return a boolean value as well.

< less than operator; can only compare variables of the same type

COMS W4115 Language Reference Manual Lauren Zou, Aftab Khan, Richard Chiou
Simple Presentation Web App Generator (SPWAG) Yunhe (John) Wang, Aditya Majumdar

> greater than operator; can only compare variables of the same type
= assignment operator

== equal to

1= not equal to

+ string concatenation, integer addition; addition for integers, pixels, and percents may only
occur with two variables of the same data type; a string can be concatenated to any data type
and the result will be a string

- subtraction; only works for integers, pixels, and percents; subtraction for integers, pixels, and
percents may only occur with two variables of the same data type

* multiplication; only works for integers, pixels, and percents; multiplication for integers, pixels,
and percents may only occur with two variables of the same data type

/ division; only works for integers, pixels, and percents; division for integers, pixels, and
percents may only occur with two variables of the same data type

| or
& and
Comments

Comments can be placed anywhere in the program. A single-line comment begins with a # character.
Multi-lined comments are placed between two ## character sequences. Comments do not nest and are
ignored by the compiler.

This is a single line comment.

This is a multi-lined comment.
We can use this to comment out code,
write a poem or a story or some documentation. ##

Functions

SPWAG's basic unit of execution is a function. Functions can represent actions to be performed (e.g.
on-click()), web page components (which are analogous to HTML elements), slides, and attributes
(which are analogous to but not limited to CSS styles that can be applied to the components).
Components and attributes are mutually exclusive special subtypes of functions. Functions are all global
in scope, and no functions are permitted to be anonymous. All functions must be uniquely named in
order to be identified, and duplicate names will overwrite any previously declared functions.

COMS W4115 Language Reference Manual Lauren Zou, Aftab Khan, Richard Chiou
Simple Presentation Web App Generator (SPWAG) Yunhe (John) Wang, Aditya Majumdar

Function Calls

To call a function, the following syntax must be used: identifier(parameters). The identifier must be
previously defined as a function, while parameters is a comma delimited list of zero or more expressions
whose values will be assigned to the arguments of the function. The number of parameters in the
function call must be identical to that of the function definition.

When the function is called, control shifts to the first line of the function and continues through its body
until a return statement is evaluated or the end of the function body is encountered. Control then
returns to the point immediately after where the function call was made. If a return statement was
evaluated, the value of the function call will be that of the expression in the return statement.
Otherwise, the function call will evaluate to null.

Native Functions

SPWAG includes several native functions for two primary purposes:
1. To transition from one slide to another
2. To handle changes and animations in each slide

The change-slide(slide) function, when called, changes the current visible slide to the one given in the
parameter.

The hide(string component-id) and show(string component-id) functions hide and reveal the
component whose ID is given as the parameter. Components that can be revealed or hidden include
images and text fields.

The on-click(function) function calls the function given in its argument when the user clicks on the
component that on-click(function) is under. This function is required to be a function under a
component. Possible functions that can be called include the other native functions of SPWAG or
user-defined functions to open a link to a new webpage.

The on-press(key, function) function has similar functionality to the on-click(function) function,
but rather than performing the function when a click is registered, the on-press(key, function) binds
the function to a keypress.

Lastly, the native random(integer) function generates an integer between 0 and the integer passed in
the parameter inclusive. For example, random(100) will return a random integer x such that

0 <= x =100 . Potential uses for the random() function include generating transitions to any slide in the
presentation and creating unpredictable changes to the layout of the current slide by altering the
position of current components.

The get(string component-id, component parent-component), get(string attr-name, component
parent-component), get(string component-id, string slide-name), and the get(string

COMS W4115 Language Reference Manual Lauren Zou, Aftab Khan, Richard Chiou
Simple Presentation Web App Generator (SPWAG) Yunhe (John) Wang, Aditya Majumdar

attr-name, string slide-name) functions are accessor functions to retrieve specific components and
attributes contained within specific components respectively. For example, consider the following code:

slide main()
text-color(“blue”)
box (“my-box”’)
text(“Hello world!?”)
text-color(“red”)
box(“other-box”)
text(“Yay world!”’)
text-color(“green®)
box(“last-box”)

text-color(“yellow”)
end

The text color attribute of the main() slide can be retrieved with the get(string attr-name, string
slide-name) function:

var main-text-color = get(“text-color”, “main”) # returns the string “blue”

The box component with the id “my-box” can be retrieved using the get(string component-1id,
string slide-name) function:

var my-box = get(“my-box”, “main”) # returns the my-box box component

The text color attribute of “my-box” can be retrieved with the get(string attr-name, component
parent-component) function:

var my-box-text-color = get(“text-color”, get(“my-box”, “main”)) ## returns the string
“red” ##

The box component with the id “other-box” can be retrieved with the get(string component-id,
component parent-component) function:

var other-box = get(“other-box”, get(“my-box”, “main”’)) # returns other-box

The text color attribute of “other-box” can be retrieved with the get(string component-id, string
slide-name, string attr-name) function. Note the following nested get() syntax:

COMS W4115 Language Reference Manual
Simple Presentation Web App Generator (SPWAG)

Lauren Zou, Aftab Khan, Richard Chiou
Yunhe (John) Wang, Aditya Majumdar

var other-box-text-color = get(“text-color”, get(“other-box”, get(“my-box”, “main”)))

returns “green”

Finally, the text color attribute of “last-box” can be retrieved with the get(string component-id,
string slide-name, string attr-name) function. Note the following nested get() syntax:

var last-box-text-color = get(“text-color”, get(“last-box”, get(“other-box”,
get(“my-box”, “main”’)))) # returns “yellow

The following table summarizes the native functions of SPWAG:

change-slide(string slide-1id)

on-click(function f)

on-press(string Rey, function f)
hide(string component-id)

show(string component-id)

random(integer 1)

get(string component-id, component

parent-component)

get(string attr-name, component
parent-component)

get(string component-id, string
slide-name)

get(string attr-name, string slide-name)

changes the currently visible to slide to another
slide which is specified by the sLide-id

executes a function f when the user clicks on the
component that this function is under

binds an on-click function to a key press
hides the component given by the component-id

shows the component given by the component -1id if
the component was previously hidden

randomly generates a random integer between 0
andi

returns the component whose ID is component-id
found within the parent-component

returns the value of the specified attribute
attr-name of the component parent-component

returns the component whose ID is component-id
found as a top level component of the slide
slide-name. Note, this component must be the a
top level component of the slide (cannot have any
other component containing it).

returns the value of the specified attribute
attr-name of the slide slide-name. Note, this
attribute must be an attribute of a slide.

COMS W4115 Language Reference Manual
Simple Presentation Web App Generator (SPWAG)

Function Definition

slide main

slide some-slide

define comp my-comp(string component-id,
my-comp-parameters) isa
spwag-comp(string component-id,

spwag-comp-parameters)

end

define attr my-attr(parameters)

end

define my-funct()

end

Componen’cs

Lauren Zou, Aftab Khan, Richard Chiou
Yunhe (John) Wang, Aditya Majumdar

defines the main slide of the slideshow; this is a
required function in all SPWAG programs

defines a custom slide in the slideshow

defines a custom component; the spwag-comp
must be either a custom component already
defined somewhere in the code or a native SPWAG
component such as box()

my-comp-parameters are a list of comma-delimited
parameters specific to my-comp

spwag-comp-parameters are a list of
comma-delimited parameters specific to
spwag-comp

note that component-id is the same parameter in
both my-comp and spwag-comp

defines a custom attribute

defines a custom function

A component is a special subtype of a function, which represents a single visual/graphical element of a
SPWAG presentation. Custom components may be defined as combinations of other functions, with

the exception of slide (see the Function Definition section for syntax), and may have any number of
attributes applied to them. After it is created, each component may be referenced by a unique string
ID, passed in as the first parameter during component creation. Any component created with the same
ID as a previous component will overwrite that component (the handle to that component will be lost).

Native Components

The box(string id) forms the single native component and core graphical unit found in the SPWAG
language. Using Attributes (including custom attributes), a box may be used to represent a text field, an
image, or other content the user might like to include when creating multimedia SPWAG presentations.

COMS W4115 Language Reference Manual Lauren Zou, Aftab Khan, Richard Chiou
Simple Presentation Web App Generator (SPWAG) Yunhe (John) Wang, Aditya Majumdar

box(string id) creates a single graphical unit of content in a
SPWAG presentation.

Slides

Slides make up the basic structure of the program and the resulting presentation. They are created using
the following syntax, using the keyword slide, in the global scope of the program:

slide my-slide()

end

In addition, there is a special slide called main(). The program begins execution through starting the
main slide. The main slide is also by default the first slide in the resulting presentation, although it is
possible to change this by specifying a prev() slide. Itis defined just like any other slide:

slide main()

end

Note that slides can only be created in the global scope of the program, as the resulting presentation is
essentially made out of slides. In particular, a slide cannot be called from any other Function. In addition,
all slides must have a unique name, that is, a slide’s name identifies the slide. This means, for example, if
my-slide is created as above, there cannot be any other slide named my-slide in the whole program.

The body of aslide is just like the body of any other component—it can contain function calls,
component calls, or attribute calls. Calling a function executes that function, calling a component creates
the corresponding component as part of the slide, and calling an attribute changes the corresponding
attribute of the slide. Technically, slides can make any of the Native Attribute calls listed under Native
Attributes, but only certain attributes actually make a difference to the slide. See Native Attributes for
details.

Attributes

Attributes describe the properties of the component upon which they are specified. Attributes may be
thought of as analogous, but not limited, to CSS styles, allowing the user to specify traits such as color,
border, etc. Custom attributes may be specified by the user (the declaration syntax of which is described
in the Function Declaration section). A custom attribute is a collection of other attributes. Custom
attributes are used to implement reusable modular styling. However, custom attributes may not call
components at any point in the program (Thus, any function eventually called by an attribute cannot call
components).

10

COMS W4115 Language Reference Manual Lauren Zou, Aftab Khan, Richard Chiou
Simple Presentation Web App Generator (SPWAG) Yunhe (John) Wang, Aditya Majumdar

Note that attributes cascade. This means that, for example, if there is a component inside another
component, the program first looks at the Attributes applied to the inner component in order to format
the inner component, and if any of those Attributes are null, it looks at the corresponding Attribute as
applied to the outer component in order to format the inner component.

Native Attributes

Fundamentally, there is a fixed set of native attributes which may be applied to any component or slide,
which is described in the following table. All custom attributes must eventually terminate in a selection
of these native attributes.

position-x(integer x) Component: Specifies the absolute horizontal position of the
component on the slide where Opx and 0% is the left-most
side of the slide; can be a pixel or a percentage

Slide: Does not do anything

position-y(integer y) Component: Specifies the absolute vertical position of the
component on the slide where Opx and 0% is the top-most
side of the slide; can be a pixel or a percentage

Slide: Does not do anything

margin-top(integer margin) Component: Specifies the amount of outer spacing at the top
of the component

Slide: Does not do anything

margin-bottom(integer margin) Component: Specifies the amount of outer spacing at the
bottom of the component

Slide: Does not do anything

margin-left(integer margin) Component: Specifies the amount of outer spacing at the left
of the component

Slide: Does not do anything

margin-right(integer margin) Component: Specifies the amount of outer spacing at the
right of the component

Slide: Does not do anything

padding-top(integer padding) Component: Specifies the amount of spacing inside the top
boundary of the component

Slide: Specifies the amount of spacing inside the top

11

COMS W4115 Language Reference Manual Lauren Zou, Aftab Khan, Richard Chiou
Simple Presentation Web App Generator (SPWAG) Yunhe (John) Wang, Aditya Majumdar

boundary of the slide

padding-bottom(integer padding) Component: Specifies the amount of spacing inside the
bottom boundary of the component

Slide: Specifies the amount of spacing inside the bottom
boundary of the slide

padding-left(integer padding) Component: Specifies the amount of spacing inside the left
boundary of the component

Slide: Specifies the amount of spacing inside the left
boundary of the slide

padding-right(integer padding) Component: Specifies the amount of spacing inside the right
boundary of the component

Slide: Specifies the amount of spacing inside the right
boundary of the slide

text-color(string color) Component: Specifies the color of the text in the component
(accepts RGBA, HSLA, hex)

Slide: Specifies the default color of the text in the slide
(accepts RGBA, HSLA, hex)

background-color(string color) Component: Specifies the background color of the
component (accepts RGBA, HSLA, hex)

Slide: Specifies the background color of the slide (accepts
RGBA, HSLA, hex)

font(string font-family) Component: Specifies font family of any text in the
component

Slide: Specifies the default font family of any text in the slide

font-size(pixel size) Component: Specifies font size of any text in the component
(accepts the font size as a pixel)

Slide: Specifies the default font size of any text in the slide
(accepts the font size as a pixel)

font-decoration(string Component: Specifies font attribute (accepts “bold”, “italic”,
decoration) “underline” values) of any text in the component

Slide: Specifies default font attribute (accepts “bold”, “italic”,
“underline” values) of any text in the slide

12

COMS W4115 Language Reference Manual Lauren Zou, Aftab Khan, Richard Chiou
Simple Presentation Web App Generator (SPWAG) Yunhe (John) Wang, Aditya Majumdar

border(pixel size) Component: Specifies a border around the component with a
specified stroke width

Slide: Specifies a border around the slide with a specified
stroke width

border-color(string color) Component: Specifies the color of a component’s border, if it
exists

Slide: Defines the color of a slide’s border, if it exists

width(integer width) Component: Specifies the width of the component; can be
pixel or percentage

Slide: Does not do anything

height(integer height) Component: Specifies the height of the component; can be
pixel or percentage

Slide: Does not do anything
next(string next-slide-id) Component: Does not do anything
Slide: Specifies the slide that goes after the current slide

prev(string prev-slide-id) Component: Does not do anything

Slide: Specifies the slide that comes prior to the current slide

image(string url) Component: Specifies an image to be displayed based on a
passed-in link to the image file

Slide: Specifies a background for the slide image to be
displayed based on a passed-in link to the image file

text(string text) Component: Specifies the text to be displayed based on a
string that is passed in

Slide: Does not do anything
Setting Component Attributes
Attributes for a component are set upon the initialization of the component. For example, the following
code declares a text box with a pink background, red text, and a border:
box(“my-box”’)

text(“Text goes here.”)

13

COMS W4115 Language Reference Manual Lauren Zou, Aftab Khan, Richard Chiou
Simple Presentation Web App Generator (SPWAG) Yunhe (John) Wang, Aditya Majumdar

background-color(“pink”’)
text-color(“red”)
border(1px)

This box can be changed later in the program. In order to change the box, one must first get the box
using the get(string component-id) function and then list the new attributes under the box. For
example, to change the background color and text color, one can write:

var box-to-change = get(“my-box”)

box-to-change
background-color(“blue”)
text-color(“green®)

Program Structure

Statements and Control Flow

Programs consist of blocks of statements. A statement is a complete line of code. Statements include
valid expressions, variable assignments, control structures (i.e. if and while), or function definitions.
Assignment statements are used to assign a value to an identifier (or variable), and have the following
syntax: identifier = expression

A code block is a set of tabbed statements under a header statement (e.g. a function declaration). The
end keyword ends a block of code, started by a define statement (defining a function), or an if, else,
orwhile block.

Since SPWAG does not utilize brackets to surround blocks of statements, white-space indentations
delimit the structure of the program. Each indentation of white space indicates a different block in the
program. For example, in the following code:

slide main()

box(“ss-text”)
text(“Welcome to my slide show!”’)
font(“Consolas”)
font-size(20px)
font-decoration(bold)

box(“ss-img”’)
image(“cats.gif”)
border(5px)
border-color(“#222”)

14

COMS W4115 Language Reference Manual Lauren Zou, Aftab Khan, Richard Chiou
Simple Presentation Web App Generator (SPWAG) Yunhe (John) Wang, Aditya Majumdar

end

There are three blocks: the block under slide main(), the block under box(“ss-text”), and the block
under box(“ss-img”). Each block modifies the contents of the statement that it lies under. So
box(“ss-text”) and box(“ss-img”) are components in the main slide, the font attributes describe what
the font of the text looks like, and the border attributes describe what kind of border the image has.

The unit of white-space does not matter in SPWAG. A unit of white-space can be two spaces, four
spaces, a tab, etc. The only unit of white-space that is accepted is a single (1) space character. All empty
lines are ignored in SPWAG.

SPWAG supports two types of keywords that allows for algorithmic, conditional execution of particular
blocks of code: the while keyword (continually executes a block of statements while a particular
condition is true), and the if keyword (execute a certain section of code only if a particular test
evaluates to true). An end keyword will return control to outside the conditional block. Optionally, a
block with an if header statement may be immediately succeeded by a block with an else header
statement, which must be terminated by an end statement.

if <condition> if-else conditional
eléé

en;I

while <condition> while loop

end

Expressions and any operators associated with them (discussed in the next section), are applied in the
following order, listed from highest to lowest precedence).

O parenthesized expressions

function(parameters) function calls, referencing
get-attr(attribute)

* / multiplication, division
+ - addition, subtraction
== l= <> comparison

15

COMS W4115 Language Reference Manual Lauren Zou, Aftab Khan, Richard Chiou
Simple Presentation Web App Generator (SPWAG) Yunhe (John) Wang, Aditya Majumdar

! logical negation
& and

| or

Basic Expressions

The following are all considered to be direct expressions:
e |dentifiers, which refer to variables or functions

Primitive types (i.e. integers, boolean, strings)

Components

Attributes

Slides

The sole unary expression in SPWAG is !, i.e. the negation operator. This operator, used with a single
boolean constant or a boolean variable, gives a boolean type with value opposite that of the operand.
Unary expressions are grouped right-to-left.

SPWAG implements four standard arithmetic operators: +, -, *, and /. These operators are defined for
any two integers, producing the arithmetic sum, difference, product, and quotient (all integers) of these
numbers, respectively. While + and - are commutative, * and / are not.

String concatenation is performed using the + operator as follows: string + string, where each string
is a string literal or a string variable. The expression evaluates to a single string, the concatenation of the
two string operands.

Parenthesized expressions have type and value are identical to those of the expression within the
parentheses.

Logical Expressions

There are four types of logical expressions: direct boolean expressions, unary boolean expressions,
comparison expressions, and binary boolean expressions, all of which evaluate to boolean values.

Unary boolean expressions involve boolean expressions that are immediately preceded by the negation
operator (!). These expressions evaluate to the boolean value opposite that of the expression directly
following the negation operator. The ! operator has higher precedence than the other boolean
operators (&, |), but lower precedence than the equality and comparison operators.

Binary boolean expressions have the following form: operand operator operand. Operands are
boolean expressions, while the operator is either the & or | operator. Operations involving the & (and)

16

COMS W4115 Language Reference Manual Lauren Zou, Aftab Khan, Richard Chiou
Simple Presentation Web App Generator (SPWAG) Yunhe (John) Wang, Aditya Majumdar

operator return true if both operands have the value true, and false otherwise. The | (or) operator
returns false if both have the value false, and true otherwise. The & operator has higher precedence
than the | operator, and the equality comparison has higher precedence than both the & and |
operators.

Comparison expressions share the same form as binary boolean expressions. Operands can be of any
primitive type, an identifier whose value is a primitive type, or an expression which evaluates to a
primitive type, while operators may be one of ==, !=, <, or >. The operands must have the same type.

The == and != operators are valid for all primitive types. The == operator functions as an XNOR
comparison, returning true if both operands have the same value and false otherwise. The = operator
functions as an XOR comparison, returning true if the operands have different values and false
otherwise. (For strings, character-wise comparisons are performed.)

The < and > operators are valid for integers, but not strings and booleans. For integers, the strictly less
than operator (<) returns true if the first operand is less than the second, and false otherwise. The
strictly greater operator (>) returns true if the first operand is greater than the second, and false
otherwise.

Scoping

Global scope is equivalent to file scope. That is, when the keyword import is used to combine code in
several different files, the code in those different files are treated as if they are in one file. All Functions,
then, are “global” in scope. That means all functions are visible from any other Function.

This visibility does not mean, however, that all functions may be called from other functions - other
rules, not associated with scoping, apply (see Function specific headings above). In particular, specific
instances of slide or of a component must be retrieved using the native function get().

In addition, all variables declared outside any function are global in scope. However, unlike functions,
the scope of a global variable begins from when it’s declared. In particular, since an import statement
replaces the statement with all the code from the file to be imported, any variables declared in the file to
be imported will only be visible starting from the import statement.

Finally, there is the unique scope of an id passed in when creating a component. This id must be unique
to the component or slide in which its corresponding component is contained. See get() in the Native
Functions section for more details on how components that are created can be uniquely accessed.

The other scope considered is local scope within a “block”, or block scope. Because all functions are

17

COMS W4115 Language Reference Manual Lauren Zou, Aftab Khan, Richard Chiou
Simple Presentation Web App Generator (SPWAG) Yunhe (John) Wang, Aditya Majumdar

global, it makes sense to consider only variables in the local scope. All variables in a block are visible
starting from when they are declared in the block to the end of the same block. In particular, a function
formal parameter is visible throughout the whole block that makes up the function. Finally, when
defining inheritance, formal parameters for the component being defined is immediately visible to the
call to the component being inherited from after the isa keyword.

Inheritance

Only components may have inheritance, and in fact, all custom components must inherit from another
component. See the Function Definition section for details on how to use the isa keyword to define
custom components.

Component inheritance can be thought of in this way. Assume comp1 inherits from comp2. Then, the
syntax for defining comp1 would be as follows, where id can be any valid identifier, and (...) refers to a
list of parameters:

define comp compl(id, ...) isa comp2(id, ...)

end

When comp1 is called (that is, created), comp2 is first called (that is, created) using the parameters passed
in. Next, the body of compl is evaluated on the instance of comp2 created. This changed component is
then referred to as an instance of comp1, uniquely identified by the passed in ID. Note that in the above
example, ID is separated from all other parameters because it is the first parameter passed into comp1,
and must be directly passed into comp2 as the first parameter. This is the string passed in that is the
unique identifier of the component when it’s created.

Finally, note that because any components created by comp2 will necessarily be created when comp1 is
called, unigue ID’s assigned to components created by comp2 cannot be repeated by any components
created by compl. The native component box() does not create any components in its definition.

Execution

SPWAG compiles to a single HTML file (.html file extension), containing all necessary HTML, CSS, and
JavaScript code. As such, SPWAG output HTML files may be executed by any modern web browser, and,
as such, are platform agnostic and HTML5/CSS3 standards compliant.

18

