
SMURF Language Reference Manual
Serial MUsic Represented as Functions

Richard Townsend, Lianne Lairmore, Lindsay Neubauer, Van Bui, Kuangya Zhai

{rt2515, lel2143, lan2135, vb2363, kz2219}@columbia.edu

October 28, 2013

1

Contents

1 Introduction 3

2 Syntax Notation 3

3 Lexical Conventions 3
3.1 Comments . 3
3.2 Tokens . 4

3.2.1 Identifiers . 4
3.2.2 Keywords . 4
3.2.3 Constants . 4
3.2.4 Operators . 5
3.2.5 Newlines . 5
3.2.6 Separators . 5

3.3 Whitespace . 5

4 Meaning of Identifiers 5
4.1 Purpose . 6

4.1.1 Functions . 6
4.1.2 Variables . 6

4.2 Scope and Lifetime . 6
4.3 Basic Types . 6
4.4 Structured Types . 7
4.5 Derived Types . 7

5 Expressions 8
5.1 Description of Precedence in Expressions . 8
5.2 Primary Expressions . 8

5.2.1 Variables . 8
5.2.2 Constants . 8
5.2.3 Parenthesized Expression . 8
5.2.4 Lists . 9
5.2.5 Notes . 9

5.3 Postfix Operator Expressions . 9
5.4 Prefix Operator Expressions . 9
5.5 Binary Operator Expressions . 10

5.5.1 List operators . 10
5.5.2 Arithmetic operators . 11
5.5.3 Comparison operators . 12
5.5.4 Boolean operators . 12
5.5.5 Tone row operators . 12

5.6 Conditional expressions . 12
5.7 Let Expressions . 13
5.8 Function application expressions . 13

2

6 Declarations and Bindings 14
6.1 Type Signatures . 14
6.2 Definitions . 14
6.3 Function Declarations . 15
6.4 main Declaration . 16

7 Library Functions 16

1 Introduction

SMURF is a functional language that allows a composer to create serialist music based on the
twelve-tone composition technique. In general, serialism is a musical composition method
where a set of values, chosen through some methodical progress, generates a sequence of
musical elements. SMURF is based on the functional syntax and semantics set forth by
Haskell. The backend of SMURF generates MIDIs corresponding to the composition defined
by the user’s initial program in SMURF.

2 Syntax Notation

The syntax notation used in this manual is as follows. Syntactic categories are indicated by
italic type. Literal words and characters used in the SMURF language will be displayed in
typeset. Alternatives are listed on separate lines.

Regular expression notations are used to specify grammar patterns in this manual. r∗
means the pattern r may appear zero or more times, r+ means r may appear one or more
times, and r? means r may appear once or not at all. r1|r2 denotes an option between two
patterns, and r1 r2 denotes r1 followed by r2.

3 Lexical Conventions

SMURF programs are lexically composed of three elements: comments, tokens, and whites-
pace.

3.1 Comments

SMURF allows nested, multiline comments in addition to single line comments.

Comment Symbols Description Example

/* */ Multiline comments, nest-
ing allowed

/* This /* is all */ commented */

// Single-line comment // This is a comment

3

3.2 Tokens

In SMURF, a token is a string of one or more characters that is significant as a group.
SMURF has 6 kinds of tokens: identifiers, keywords, constants, operators, separators and
newlines.

3.2.1 Identifiers

An identifier consists of a letter followed by other letters, digits and underscores. The letters
are the ASCII characters a-z and A-Z. Digits are ASCII characters 0-9. SMURF is case
sensitive.

letter → [‘a’-‘z’ ‘A’-‘Z’]

digit → [‘0’-‘9’]

underscore → ‘_’

identifier → letter (letter | digit | underscore)*

3.2.2 Keywords

Keywords in SMURF are identifiers reserved by the language. Thus, they are not available
for re-definition or overloading by users.

Keywords Descriptions

Bool Boolean data type
Int Integer data type
Note Atomic musical data type
Beat Note duration data type
Chord Data type equivalent to [Note] type
System Data type equivalent to [Chord] type
True, False Boolean constants
let, in Allow local bindings in expressions
if, then, else Specify conditional expression, else compulsory
random Generate random numbers
print Print information to standard output
main Specify the value of a SMURF program

3.2.3 Constants

In SMURF, constants are expressions with a fixed value. Integer literals and Boolean key-
words are the constants of SMURF.

digit → [‘0’-‘9’]

4

constant → -? [‘1’-‘9’] digit*
0 digit*
True

False

3.2.4 Operators

SMURF permits arithmetic, comparison, boolean, list, declaration, and row operations, all
of which are carried out through the use of specific operators. The syntax and semantics
of all of these operators are described in sections 5.3, 5.4, and 5.5, except for declaration
operators, which are described in section 6.

3.2.5 Newlines

SMURF uses newlines to signify the end of a declaration, except when preceded by the \
token. In the latter case, the newline is ignored by the compiler (see example below). If
no such token precedes a newline, then the compiler will treat the newline as a token being
used to terminate a declaration.

3.2.6 Separators

separator → ,

&

\

Separators in SMURF are special tokens used to separate other tokens. Commas are
used to separate elements in a list. The & symbol can be used in place of a newline. That
is, the compiler will replace all & characters with newlines. The \ token, when followed by a
newline token, may be used to splice two lines. E.g.

1 genAltChords (x:y:ys) = [(x,Time 4,1)] \

2 :[(y,Time 4,-1)]: genAltChords ys

is the same as

1 genAltChords (x:y:ys) = [(x,Time 4 ,1)]:[(y,Time 4,-1)]: genAltChords ys

3.3 Whitespace

Whitespace consists of any sequence of blank and tab characters. Whitespace is used to
separate tokens and format programs. All whitespace is ignored by the SMURF compiler.
As a result, indentations are not significant in SMURF.

4 Meaning of Identifiers

In SMURF, an identifier is either a keyword or a name for a variable or a function. The
naming rules for identifiers are defined in section 3.2.1. This section outlines the use and
possible types of non-keyword identifiers.

5

4.1 Purpose

4.1.1 Functions

Functions in SMURF enable users to structure programs in a more modular way. Each
function has at least one argument and exactly one return value, whose types need to be
explicitly defined by the programmer. The function describes how to produce the return
value, given a certain set of arguments. SMURF is a side effect free language, which means
that if provided with the same arguments, a function is guaranteed to return the same value.

4.1.2 Variables

In SMURF, a variable is an identifier that is bound to a constant value or to an expression.
Any use of a variable within the scope of its definition refers to the value or expression to
which the variable was bound. Each variable has a static type which can be automatically
deduced by the SMURF compiler, or explicitly defined by users. The variables in SMURF
are immutable.

4.2 Scope and Lifetime

The lexical scope of a top-level binding in a SMURF program is the whole program itself. As
a result of this fact, a top-level binding can refer to any other top-level variable or function
on its right-hand side, regardless of which bindings occur first in the program. Local bindings
may also occur with the let declarations in expression construct, and the scope of a binding
in declarations is expression and the right hand side of any other bindings in declarations. A
variable or function is only visible within its scope. An identifier becomes invalid after the
ending of its scope. E.g.

1 prime = [2,0,4,6,8,10,1,3,5,7,9,11]

2 main = let prime = [0,2,4,6,8,10,1,3,5,7,9,11]

3 p3 = (head prime) + 3

4 in print (p3)

In line 1, prime is bound to a list of integers in a top-level definition, so it has global
scope. In line 2, the main identifier (a special keyword described in 6.4) is bound to a let

expression. The let expression declares two local variables, prime and p3. In line 3, the
head function looks for a definition of prime in the closest scope, and thus uses the binding
in line 2. So the result to be printed in line 4 should be 3. After line 4, the locally defined
prime and p3 variables will be invalid and can’t be accessed anymore.

4.3 Basic Types

There are three fundamental types in SMURF: Int, Bool and Beat.

• Int: integer type

• Bool: boolean type

6

• Beat: beat type, used to represent the duration of a note. A constant of type Beat is
any power of 2 ranging from 1 to 16.

4.4 Structured Types

Structured types use special syntactic constructs and other types to describe new types.
There are two structured types in SMURF: list types and function types.

A list type has the format [t] where t is a type that specifies the type of all elements of
the list. Thus, all elements of a list of type [t] must themselves have type t. Note that t
itself may be a list type.

A function type has the format t1 -> t2 -> . . . -> tn -> tret which specifies a function type
that takes n arguments, where the kth argument has type tk, and returns an expression of
type tret. Any type may be used to define a function type, except for a function type itself.
In other words, functions may not be passed as arguments to other functions, nor may a
function return another function.

4.5 Derived Types

Besides the basic types, SMURF also has several derived types.
Expressions of type Note are used to represent musical notes in SMURF. The note type

can be written as

(Int,Int)$Beat[.]*

The first expression of type Int must evaluate to an integer in the range from -1 to 11,
representing a pitch class or a rest. When this expression evaluates to -1, the note is a rest,
otherwise it represents the pitch class of the note. The second expression of type Int must
evaluate to an integer in the range of 0-3, representing the register of the note, where the
integer values and corresponding registers are given below.

• 1: Bass clef, B directly below middle C to first C below middle C

• 0: Bass clef, next lowest B to next lowest C

• 2: Treble clef, middle C to the first B above middle C

• 3: Treble clef, first C above middle C to next highest B

The expression of type Beat refers to the duration of the note, and may be followed by
optional dots. The dot is a postfix operator described in section 5.3. Using this format, a
quarter note on middle C could be written as (0,2)$4.

The Chord type is used to represent several notes to be played simultaneously. It is
equivalent to the list type [Note]. The compiler will check to make sure all the notes in a
chord have the same time duration.

The System type is used to represent a list of chords to be played sequentially. It is
equivalent to the list type [Chord].

7

5 Expressions

This section describes the syntax and semantics of expressions in SMURF. Expressions in
SMURF use prefix, infix, or postfix operators. Unless otherwise stated, all infix and postfix
operators are left-associative and all prefix operators are right-associative. Some examples
of association are given below.

Expression Association
f x + g y - h z ((f x) + (g y)) - (h z)

f g x ((f g) x)

let { ... } in x + y let { ... } in (x + y)

∼ <> [0,1,2,3,4,5,6,7,8,9,10,11] (∼ (<> [0,1,2,3,4,5,6,7,8,9,10,11]))

5.1 Description of Precedence in Expressions

Precedence describes the order of evaluation for subexpressions in a given expression. The
order of precedence for expressions and their operators mirrors our ordering of the following
subsections i.e. the first subsection describes the expressions with highest precedence, and
the last subsection describes the expressions with lowest precedence.

5.2 Primary Expressions

primary-expr → variable
constant
(expression)

[(expression?|expression (, expression)*)]
(expression, expression)$expression

variable → identifier

5.2.1 Variables

A variable x is a primary expression whose type is the same as the type of x. When we
evaluate a variable, we are actually evaluating the expression bound to the variable in the
closest lexical scope.

5.2.2 Constants

An integer or boolean constant, as described in section 3.2.3, is a primary expression with
type equivalent to the type of the constant.

5.2.3 Parenthesized Expression

An expression surrounded by parentheses is a primary expression.

8

5.2.4 Lists

A list is a primary expression. Lists can be written as:

[expression1, ..., expressionk]

or

expression1:(expression2:(... (expressionk:[]))

where k >= 0. These two lists are equivalent. The expressions in a list must all be of
the same type. The empty list [] is typeless until it is applied to a non-empty list of some
type [t], at which time it is assigned the same type.

5.2.5 Notes

A note is a primary expression, and is written as a tuple of expressions of type Int followed
by a $ symbol and an expression of type Beat. The values of each of these expressions must
follow the rules outlined in section 4.5.

5.3 Postfix Operator Expressions

postfix-expression → beat-expr.

The only expression in SMURF using a postfix operator is the partial augmentation of
an expression of type Beat, which uses the dot operator. We say “partial augmentation”
because a dot increases the durational value of the expression to which it is applied, but
only by half of the durational value of that expression. That is, if expr is an expression of
type Beat that evaluates to a duration of n, then expr. is a postfix expression of type Beat
that evaluates to a duration of n/2. The dot operator may be applied until it represents
an addition of a sixteenth note duration, after which no more dots may be applied. For
instance, 4.. is legal, as this is equivalent to a quarter note duration plus an eighth note
duration (the first dot) plus a sixteenth note duration (the second dot). However, 8.. is not
legal, as the second dot implies that a thirty-second note duration should be added to the
total duration of this expression. Our compiler will check the number of dots and return an
error if too many are applied.

5.4 Prefix Operator Expressions

9

prefix-expression → prefix-op expression

Prefix Operator Description Example

∼ Tone row inversion ∼ row (returns the inversion of row)
<> Tone row retrograde <> row (returns the retrograde of row)
! Logical negation if !(a == 5) then True else

False

SMURF has three prefix operators: logical negation, tone row inversion, and tone row
retrograde. There is another row transformation operator, but it takes multiple arguments
and is described in section 5.5.5. The logical negation operator can only be applied to
expressions of type Bool, and the two row operators can only be applied to expressions of
type [Int]. The compiler will check that all of the integers in a list are in the range 0−11 if
the list is passed to either of the tone row operators. All three operators return an expression
of the same type as the expression the operator was applied to.

5.5 Binary Operator Expressions

binary-expression → expression1 binary-op expression2

The following categories of binary operators exist in SMURF, and are listed in order of
decreasing precedence: list, arithmetic, comparison, boolean, tone row.

5.5.1 List operators

List Operator Description Example

++ List Concatenation [1,2,3] ++ [4,5,6] (result is [1,2,3,4,5,6])
: List Construction 1 : [2,3,4] (result is [1,2,3,4])

List operators are used to construct and concatenate lists. These two operators are : and
++, respectively. The : operator has higher precedence than the ++ operator. Both of these
operators are right-associative. List operators require that expression2 be an expression of
type [t], where t is the type of expression1. In other words, expression1 must have the
same type as the other elements in expression2 when doing list construction. When doing
list concatenation, both expression1 and expression2 must have type [t], where t is some
non-function type.

10

5.5.2 Arithmetic operators

Arithmetic Operator Description Example

+ Integer Addition a + 2

- Integer Subtraction 5 - a

* Integer Multiplication 5 * 10

/ Integer Division 4 / 2

% Integer Modulus, ignores nega-
tives

14 % 12

%+ Pitch Class Addition (addition
mod 12)

14 %+ 2 == 4

%- Pitch Class Subtraction (sub-
traction mod 12)

14 %- 2 == 0

$+ Rhythmic Addition 2 $+ 2 == 1

$- Rhythmic Subtraction 1 $- 2 == 2

$* Rhythmic Augmentation 8 $* 4 == 2

$/ Rhythmic Diminution 2 $/ 8 == 16

There are three types of arithmetic operators (listed in descending order of precedence):
basic, pitch class, and rhythmic. Basic arithmetic operators are those found in most pro-
gramming languages like +, -, *, /, and %, which operate on expressions of type Int. It
should be noted that the modulus operator ignores negatives e.g. 13 % 12 is equal to -13

% 12 is equal to 1. The pitch class operators are %+ and %-. These can be read as mod 12
addition and mod 12 subtraction. They also operate on expressions of type Int, but the
expressions must evaluate to values in the range 0 − 11. The built-in mod 12 arithmetic
serves for easy manipulation of pitch class integers. Lastly, there are rhythmic arithmetic
operators (both operands must be of type Beat). These include $+, $-, $*, and $/.

Out of the basic arithmetic operators, *, /, and % have higher precedence than + and -.
Both pitch class operators have the same precedence. Rhythmic arithmetic operators follow
the same form as basic arithmetic operators, with $* and $/ having higher precedence than
$+ and $-.

11

5.5.3 Comparison operators

Comparison Operator Description Example

< Integer Less than if a < 5 then True

else False

> Integer Greater than if a > 5 then True

else False

<= Integer Less than or equal to if a <= 5 then True

else False

>= Integer Greater than or equal to if a >= 5 then True

else False

$< Rhythmic Less than 4 $< 8 == False

$> Rhythmic Greater than 4 $> 8 == True

$<= Rhythmic Less than or equal to 4 $<= 4 == True

$>= Rhythmic Greater than or equal to 1 $>= 16 == True

== Structural comparison if a == 5 then a =

True else a = False

SMURF allows comparison operations between expressions of type Int or Beat. Structural
comparison, however, can be used to compare expressions of any type for equality. All of
the comparison operators have the same precedence except for structural comparison, which
has lower precedence than all of the other comparison operators.

5.5.4 Boolean operators

Boolean Operator Description Example

&& Logical conjunction if b && c then True else False

|| Logical disjunction if b || c then True else False

Boolean operators are used to do boolean logic on expressions of type Bool. Logical con-
junction has higher precedence than logical disjunction.

5.5.5 Tone row operators

The only binary tone row operator is the transposition operator, ∧∧. expression1 must be
an expression that evaluates to a list of pitch classes, and expression2 must have type Int.
The result of this operation is a new tone row where each pitch class has been transposed
up by n semitones, where n is the result of evaluating expression2.

5.6 Conditional expressions

conditional-expression → if expressionboolean then expressiontrue else expressionfalse

12

When the value of expressionboolean evaluates to true, expressiontrue is evaluated, otherwise
expressionfalse is evaluated. expressionboolean must have type Bool. Conditional expressions
do not have newline restrictions.

5.7 Let Expressions

let-exp → let decls+ in expression

Let expressions have the form let decls in e, where decls is a list of one or more declarations
and e is an expression. The scope of these declarations is discussed in section 6.

The declarations in a let expression can be separated by an & symbol and also by a
newline character. For example:

let x = 2 & y = 4 & z = 8

in x + y + z

The previous code is equivalent to the following:

let x = 2

y = 4

z = 8

in x + y + z

If the first code snippet were written without the & symbol and no newlines in between
the declarations, a compile-time error would be raised.

5.8 Function application expressions

function-app-expression → identifier expression+

A function gets called by invoking its name and supplying any necessary arguments.
Functions can only be called if they have been declared in the same scope where the call
occurs, or in a higher scope. Functions may be called recursively. Function application
associates from left to right. Parentheses can be used to change the precedence from the
default. The following evaluates function funct1 with argument b then evaluates function
funct2 with argument a and the result from evaluating (funct1 b):

funct2 a (funct1 b)

If the parentheses were not included, a compile-time error would be generated, as it would
imply that funct2 would be called with a as its first argument and funct1 as its second
argument, which is illegal based on the description of function types in section 4.4.

A function call may be used in the right-hand side of a binding just like any other
expression. For example:

let a = double 10

in a

evaluates to 20, where double is a function that takes a single integer argument and returns
that integer multiplied by two.

13

6 Declarations and Bindings

This section of the LRM describes the syntax and informal semantics of declarations in
SMURF. A program in SMURF, at its top-most level, is a series of declarations separated
by newline tokens. Declarations may also occur inside of let expressions (but still must be
separated with newline tokens). The scoping of such declarations is described in this section.
There are three types of declarations in SMURF: type signatures, definitions, and function
declarations.

Declaration Operator Description Example

:: Type specification number :: Int

-> Argument and function re-
turn type specification

isPositiveNum :: Int -> Bool

= Variable or function binding x = 3

6.1 Type Signatures

type-sig → identifier :: (type|function-type) newline

function-type → type -> type (-> type)*

type → Int

Bool

Beat

Note

Chord

System

identifier
[type]

A type signature explicitly defines the type for a given identifier. The :: operator can
be read as “has type of.” Only one type signature for a given identifier can exist in a given
scope. That is, two different type signatures for a given identifier can exist, but they must be
declared in different scopes. There are three categories of types in SMURF: basic, structured,
and derived types; types are described in sections 4.3-4.5.

6.2 Definitions

definition → identifier = expression newline

A definition binds an identifier to an expression. All definitions at a given scope must be
unique and can be mutually recursive. For example, the following is legal in SMURF:

14

let x = 4

z = if y == 7 then x else y

y = let x = 5

in x + 3

in x + z + y

The x in the nested let statement is in a different scope than the x in the global let
statement, so the two definitions do not conflict. z is able to refer to y even though y is
defined after z in the program. In this example, the three identifiers x, y, and z in the global
let will evaluate to values 4, 8, and 8, respectively, while the identifier x in the nested let
statement will evaluate to 5.

A type signature may be given for a definition but is not required.

6.3 Function Declarations

fun-dec → identifier args = expression newline (fun-dec)*

args → pattern
pattern args

pattern → pat
pat : pattern
[pattern-list?]

(pattern)

pattern-list → pat (, pat)*

pat → identifier
constant

A function declaration defines an identifier as a function that takes some number of
patterns as arguments and, based on which patterns are matched when the function is
called, returns the result of a given expression. Essentially, a function declaration can be
seen as a sequence of one or more bindings, where each binding associates an expression with
the function identifier. The binding associated with the identifier depends on the patterns
matched in the function call. There must be at least one pattern listed as an argument in a
function declaration. All bindings defining a function must be contiguous and separated by
newlines, and the number of patterns supplied in each binding must be the same.

As with definitions, only one set of bindings outlining a function declaration for a given
name can exist in a given scope. However, the same function name can be declared multiple
times if each instance is in a different scope.

If a function declaration for some identifier x occurs in scope n, then a type signature for
x in scope k >= n is required. That is if a function has been declared but its type has not
been explicitly stated in the same or a higher scope, a compile-time error will be generated.
The type of the arguments passed to a function are checked at compile-time as well, and an
error is issued if they don’t match the types specified in that function’s type signature.

15

A pattern can be used in a function declaration to “match” against arguments passed to
the function. The arguments are evaluated and the resultant values are matched against the
patterns in the same order they were given to the function. If the pattern is a constant, the
argument must be the same constant or evaluate to that constant value in order for a match
to occur. If the pattern is an identifier, the argument’s value is bound to that identifier in the
scope of the function declaration where the pattern was used. If the pattern is the wildcard
character ‘ ’, any argument will be matched and no binding will occur. If the pattern is
structured, the argument must follow the same structure in order for a match to occur.

Below, we have defined an example function f that takes two arguments. The value of
the function call is dependent on which patterns are matched. The patterns are checked
against the arguments from top to bottom i.e. the first function declaration’s patterns are
checked, then if there isn’t a match, the next set of patterns are checked, and so on. In
this example, we first check if the second argument is the empty list (we disregard the first
argument using the wildcard character), and return False if it is. Otherwise, we check if the
second argument is composed of two elements, and, if so, the first element is bound to x and
the second is bound to y in the expression to the right of the binding operator =, and that
expression is evaluated and returned. If that match failed, we check if the first argument is
zero and disregard the second. Finally, if none of the previous pattern sets matched, we bind
the first argument to m, the head of the second argument to x, and the rest of the second
argument to rest. Note we can do this as we already checked if the second argument was
the empty list, and, since we did not match that pattern, we can assume there is at least
one element in the list.

f :: Int -> [Int] -> Bool

f _ [] = False

f _ [x, y] = if x then True else False

f 0 _ = True

f x l = if x == (head x) then True else False

f m x:rest = f m rest

6.4 main Declaration

Every SMURF program must define the reserved identifier main. This identifier may only
be used on the left-hand side of a top-level definition. The expression bound to main is
evaluated and its value is the value of the SMURF program itself. That is, when a SMURF
program is compiled and run, the expression bound to main is evaluated and the result is
converted to our bytecode representation of a MIDI file. As a result, this expression must
evaluate to a value of type [], Note, Chord, System, or [System]. If a definition for main
is not included in a SMURF program or if the expression bound to it does not have one of
the types outlined above, a compile-time error will occur.

7 Library Functions

Below are the library functions that can be used in the SMURF language. These functions
are implemented in SMURF but are available to all users for their convenience. Each library

16

function will include a description and its SMURF definition.

Head
The function head takes a list and returns the first element. This function is commonly

used when working with lists. Although we do not currently support polymorphic typing
in SMURF, the head function can nonetheless be thought of as a function that takes an
expression of type [t] and returns an expression of type t, where t may be any non-function
type.

head_note :: [a] -> a

head (h:tl) = h

Tail
The function tail takes a list and returns the end of the list. This function is commonly

used when working with lists. The typing of this function is the same as the typing of head.

tail_note :: [a] -> [a]

tail (h:tl) = tl

MakeNotes
The function makeNotes takes in three lists and returns a list of notes. The first list

consists of expressions of type Int representing pitches or rests. The second list consists of
expressions of type Int representing the register that the pitch will be played in. The third
list is a list of expressions of type Beat representing a set of durations. It is common in 12
tone serialism to use lists of notes. This function allows the user to easily turn their modified
rows and columns into a list of notes to add to their system.

makeNotes :: [Int] -> [Int] -> [Beat] -> [Note]

makeNotes [] = []

makeNotes (h1:tl1) (h2:tl2) (h3:tl3) = (h1,h2)$h3:(makeNotes tl1 tl2 tl3)

17

