LGA Language Reference Manual - V0.1

Hang Qian
Pindan Hao
Yuanli Dong
Tian Xia
{hq2124, ph2389, yd2270, tx2126}@columbia.edu

Contents

1 Introduction

2 Lexical Conventions
2.1 Tokens e
Comments e e
Identifiers
Keywords
Numeric Literals
Character Literals
String Literals. o oo
2.2 Operators e
Computational operators
Compound assignment operators
Logical operators L L
Comparison operators e

3 Grammar
3.1 Syntax Notation
3.2 Program structure L0000
Root

Code e

Block
3.3 Identifiers, Numerics and Literals
Identifier
AlphaNumeric
Literal
This e
3.4 Control Flow
If . e

w

U U U1 UL UL O UL B B B s

© © © 00 WO WOOWTJIJTDHDHDHDD

For 10
3.5 Others e 10
Assign . ..o 10
Assignable 10
AssignObj oL 11
ObjAssignment Lo 11
Array ..o 11
Object o 11
AssignList 11
OptComma 12
Return 12
Comment e e 12
Invocation Lo 12
Arguments oL 13
Arglist o 13
FuncGlyph 13
ParamList 13
Param 13
Index 14
Parentheticalo oo 14
4 Sample Code 15

Chapter 1

Introduction

LGA, with a unique syntax, is designed to make writing expressive manipulation
of graphics and animation very easily. By targeting on Javacript, LGA can be
viewed as an alternative to handle web graphical and animation task.

The syntax of LGA is inspired by R!, Coffeescript? and Python®. It is de-
signed to be minimalized and expressive, just focus on the target task. Compare
to the target language Javascript, LGA provides a more succint, expressive and
programmer-friendly syntax and core functions.

In this manual, we provide the comprehensive lexical and syntactic details
of LGA, in order to easily generate the front-end part of the compiler. The
following of this manual is structured as follows: Chapter 2 consists of the lexical
details of LGA; Chapter 3 consists of the syntactic details of LGA; Chapter 4
gives a brief cample code.

IR-Project: http://www.r-project.org/
2Coffeescript: http://coffeescript.org/
3Python: http://python.org/

Chapter 2

Lexical Conventions

2.1 Tokens

There are five classes of tokens: identifiers, keywords, literals, operators
and separators. LGA use whitespaces as separators(similar to Python pro-
gramming language). If the input stream has been separated into tokens up to

a given character, the next token is the longest string of characters that could
constitute a token.

Comments

The character # introduce a comment and the next \n(newline) terminates it.
Comments do not occur within string or character literals.

Identifiers

Identifiers(names) must start with _ or any lowercase and uppercase letters. The
rest of the string can contain the same characters plus number digits (0’ -
)9;).

Keywords

The following identifiers are reserved for the use as keywords, and may not be
used otherwise. These include the superset of both JavaScript keywords and
reserved words.

Numeric Literals

An integer constant consisting of a sequence of digits is taken to be octal if it
begins with 0 (digit zero), decimal otherwise. A floating constant consists of
an integer part, a decimal part, a fraction part, an e or E, an optionally signed
integer exponent and an optional type suffix, one of £, F, 1, or L. The integer

true false null this

new delete typeof in
instanceof return break continue
if else switch for
while do

Table 2.1: Keywords

and fraction parts both consist of a sequence of digits. Either the integer part,
or the fraction part (not both) may be missing; either the decimal point or the
e and the exponent (not both) may be missing.

Character Literals

A character literal is a single character surrounded by single quotes.

String Literals

A string constant is a sequence of characters surrounded by double quotes. Dou-
ble quotation marks can be contained in strings surrounded by single quotation
marks, and single quotation marks can be contained in strings surrounded by
double quotation marks.

2.2 Operators
Computational operators

+ - % /Y%

Compound assignment operators

—-_—= 4= /: *= %: Il: &&= 7= <<= >>= &= "= |=

Logical operators

& Il & | ~ !

Comparison operators

== l= < > <= >=

Chapter 3

Grammar

3.1 Syntax Notation

In the syntax notation used in this manual, syntactic categories are indicated
by typewriter style and forms as a capitalized word, as Expression. Literal
words, tokens, and characters are in all upper letter words, as TERMINATOR.

3.2 Program structure

Root

The Root is the top-level node in the syntax tree. Since we parse bottom-up,
all parsing must end here.

Root:
NULL
Body
Block TERMINATOR

Body

The Body node is any list of statements and expressions.

Body:
Line
Body TERMINATOR Line
Body TERMINATOR

Line

Line:
Expression
Statement

Statement

Statement:
Return
Comment
STATEMENT

Expression

Expression:
Value
Invocation
Code
Operation
Assign
If
While
For

Code

The Code node is the function literal. It’s defined by an indented block of
Block preceded by a function arrow, with an optional parameter list.

Function is a body of executable code which gets specific number of pa-
rameters then process statements inside the function body and return values if
needed. The following is some examples for functions:

sum = (x, y) —-> x+y
getdouble = (x) -> sum x, X
givemefive = () -> 5
sayhey = (hey) -> hey

In the first case, the function named sum, input parameters are x and y. For
the second case which has name of getdouble, it has only one parameter which
is x. Function body starts after the arrow operator. In the first case, statements
in function body sum up two input parameters. In the second case, it calls sum,
the function has been defined previously, and pass the input parameter x to sum.
Of course, LGA supports functions without any input parameter like shown in
the third case. In that case, no parameter will be defined and there will only be
a pair of empty parentheses. Default parameters are also well covered in LGA
just like the fourth case. A function could be called with its name followed by
a pair of parentheses inside which contains parameters if defined. The second is
an example of calling function sum and passing x as parameter. At the end of
function, the final value will be returned to the caller. For example, in the first
case, the returned value will be (x+y). Parameters will be passed to functions
by value. Any modification on the parameter inside a function will not put any
influence on the original object/variable

Code:
PARAM_START ParamList PARAM_END FuncGlyph Bock
FuncGlyph Block

Value

Value literal is the types of things that can be treated as values, which means
they can be assigned to, invoked as functions, indexed into, etc.

Value:
Assignable
Literal
Parenthetical
This

Block

LGA use whitespaces as levels of identation. A Block is an indented block of
expressions.

Block:
INDENT OUTDENT
INDENT Body OUTDENT

3.3 Identifiers, Numerics and Literals

Identifier
A literal identifier, which is a variable name or property.

Identifier:
IDENTIFIER

AlphaNumeric

AlphaNumeric is separated from the other Literal matchers because they can
slaso serve as keys in object literals.

AlphaNumeric:
NUMBER
STRING

Literal

All of immediate values. Generally these are fully campatible with our target
language, which means can be printed

Literal:
AlphaNumeric
NULL
BOOL

This

This:
THIS
Q

ThisProperty is a reference to a property on this

ThisProperty:
@ Identifier

3.4 Control Flow

LGA supports common If, While and For loop as control flows.

If

Addition to regular if block, LGA supports Post-If style. For example x = 2
if y > 3. Code in block will be executed if evaluation result of expression is
boolean true.

If:
IfBlock
IfBlock ELSE Block
statement POST_IF Expression
Expression POST_IF Expression

IfBlock:
IF Expression Block
IfBlock ELSE IF Expression Block

While

Similar to if block, Post-While style is support in LGA. For example x = x
* 2 while x < 100. Code in block will be executed repeatedly if evaluation
result of expression is boolean true.

While:
WhileSource Block
Statement WhileSource
Expression WhileSource

WhileSource:
WHILE Expression

For

For block iterate through ForValue. For example, in for x in [1, 2 ,3, 4],
x is repeated assigned as elements in the array. To iterate an Object, use two
ForValues separated by comma.

For:
ForBody Block

ForBody:
ForStart ForSource

ForStart:
FOR ForVar

ForVar:
ForValue
ForValue, ForValue

ForValue:
Identifier
Array
Object

ForSource:
FORIN Expression

3.5 Others

Assign
Assignment of a variable, property, or index to a value

Assign:
Assignable
Assignable
Assignable

Expression
TERMINATOR Expression
INDENT Expression OUTDENT

Assignable
This catagory consists of everything that can be assigned to.

Assignable:
SimpleAssignable
Array
Object

SimpleAssignable:
Identifier
ThisProperty

10

AssignObj

Assignment when it happens within an object literal. The difference from the
ordinary Assign is that these allow numbers and strings as keys. And we use :
as assign operator here.

Assign0bj:
ObjAssignable
ObjAssignable : Expression
ObjAssignable : INDENT Expression OUTDENT
Comment

ObjAssignment

ObjAssignable:
Identifiers
AlphaNumeric
ThisProperty

Array

Array:
]
[Arglist]

Object
In LGA, an object literal is simply a list of assignments.

Object:
{ AssignlList OptComma }

AssignList

Assignment of properties within an object literal can be separated by comma,
as in Javascript, or simply by newline

AssignList:
NULL
Assign0bj
Assign0Obj , Assign(Obj
AssignList OptComma TERMINATOR AssignObj
AssignlList OptComma INDENT AssignList OptComma OUTDENT

11

OptComma

An Optional, trailing comma.

OptComma:
NULL

B

Return

In LGA, functions will always return their final values even though when we
dont actually use any return statement or operator, as following: sqr = (x)
-> x*x. The value of x*x will be returned to the caller as the final value of the
function. As shown, flowing off the end of function then the final value will be
returned. Of course, return statement with which a function can return to the
caller is also provided. Examples of using return statement are as following:

return
return (expression)

The first sample dose not return any value but just terminal the process.
The second sample returns value of the expression to the caller. With a return
statement, logical flow of a function could be easily controlled. When some spe-
cific cases are captured, function could be terminated with or without returning
a value.

Return:
RETURN Expression
RETURN

Comment

LGA only support inline comment, starting with a # and terminates with a
newline

Comment :

COMMENT

Invocation

Ordinary function invocation.

Invocation:
Value Arguments
Invocation Arguments

12

Arguments

The list of arguments to a function call.

Arguments:
CALL_START CALL_END
CALL_START ArgList OptComma CALL_END

ArglList

The Arglist is both the list of objects passed into a function call, as well as
the contents of an array literal.

Arglist:
Expression
Arglist , Expression
Arglist OptComma TERMINATOR Expression
INDENT ArgList OptComma OUTDENT
Arglist OptComma INDENT ArgList OptComma OUTDENT

FuncGlyph

FuncGlyph:
->

ParamList

The list of parameters that a function accepts can be of any length

ParamList:
NULL
Param
ParamlList , Param
ParamList OptComma TERMINATOR Param
ParamList OptComma INDENT ParamList OptComma OUTDENT

Param

Param:
ParamVar
ParamVar = Expression

ParamVar:
Identifier
Array
Object
ThisProperty

13

Index
Indexing into an object or array using bracket notation.

Index:
INDEX_START IndexValue INDEX_END

IndexValue:
Expression

Parenthetical

Parenthetical:
(Body)
(INDENT Body OUTDENT)

14

Chapter 4

Sample Code

move_forward = (1) ->
if Qpos && Qvec
a = math.atan(@vec[0], @vec[1])
@pos[0] += math.cos(angle) * 1
@pos[1] += math.sin(angle) * 1
return

square = {
run : circle

pos : [2, B]
vec : [1, 1]
delay : 5

}

0BJ = [square]
OBJ.start ()

15

