
1

Gamma Language Reference Manual

Matthew H. Maycock - mhm2159@columbia.edu
Arthy Sundaram - as4304@columbia.edu

Weiyuan Li - wl2453@columbia.edu
Ben Caimano - blc2129@columbia.edu

October 28, 2013

2

Contents

1 Introduction 6
1.1 Why GAMMA? – The Core Concept 6
1.2 The Motivation Behind GAMMA 6

2 Lexical Elements 8
2.1 Whitespace . 8
2.2 Identifiers . 8
2.3 Keywords . 8
2.4 Operators . 8
2.5 Literal Classes . 8

2.5.1 Integer Literals . 8
2.5.2 Float Literals . 9
2.5.3 Boolean Literals . 9
2.5.4 String Literals . 9

2.6 Comments . 10
2.7 Separators . 10
2.8 Whitespace and Noncanonical Gamma 10

3 Semantics 12
3.1 Types and Variables . 12

3.1.1 Array Types . 12
3.2 Classes, Subclasses, and Their Members 12

3.2.1 The Object Class . 13
3.2.2 The Literal Classes . 13
3.2.3 Anonymous Classes . 13

3.3 Methods . 13
3.3.1 Operators . 14

3.4 Refinements . 14
3.5 Constructors (init) . 14
3.6 Main . 14
3.7 Expressions and Statements . 15

4 Syntax 16
4.1 Statement Grouping via Bodies 16
4.2 Variables . 16

4.2.1 Variable Assignment . 16
4.2.2 Variable Declaration . 17
4.2.3 Array Declaration . 17
4.2.4 Array Dereferencing . 18

4.3 Methods . 18
4.3.1 Method Invocation . 18
4.3.2 Method Invocation Using Operators 18
4.3.3 Operator Precedence . 19
4.3.4 Method Declaration & Definition 19

3

4.4 Classes . 20
4.5 Section Definition . 20

4.5.1 Class Declaration & Definition 20
4.5.2 Class Instantiation . 21
4.5.3 Anonymous Classes . 21

4.6 Conditional Structures . 22
4.6.1 If Statements . 22
4.6.2 While Statements . 22

4.7 Refinements . 22
4.7.1 The Refine Invocation . 22
4.7.2 The Refinable Test . 23
4.7.3 The Refinement Declaration 23

5 Operators and Literal Types 24
5.1 The Operator = . 24

5.1.1 Integer . 24
5.1.2 Float . 24
5.1.3 Boolean . 24
5.1.4 String . 24

5.2 The Operators =/= and <> . 24
5.2.1 Integer . 24
5.2.2 Float . 24
5.2.3 Boolean . 24
5.2.4 String . 25

5.3 The Operator < . 25
5.3.1 Integer and float . 25
5.3.2 String . 25

5.4 The Operator > . 25
5.4.1 Integer and float . 25
5.4.2 String . 25

5.5 The Operator <= . 25
5.5.1 Integer and float . 25
5.5.2 String . 25

5.6 The Operator >= . 26
5.6.1 Integer and float . 26
5.6.2 String . 26

5.7 The Operator + . 26
5.7.1 Integer and Float . 26
5.7.2 String . 26

5.8 The Operator - . 26
5.8.1 Integer and Float . 26

5.9 The Operator * . 26
5.9.1 Integer and Float . 26

5.10 The Operator / . 26
5.10.1 Integer and Float . 26

5.11 The Operator % . 26

4

5.11.1 Integer and Float . 26
5.12 The Operator ^ . 27

5.12.1 Integer and Float . 27
5.13 The Operator := . 27

5.13.1 Integer, Float, Boolean, and String 27
5.14 The Operators +=, -=, *=, /= %=, and ^= 27

5.14.1 Integer, Float, Boolean, and String 27
5.15 The Operator and . 27

5.15.1 Boolean . 27
5.16 The Operator or . 27

5.16.1 Boolean . 27
5.17 The Operator not . 27

5.17.1 Boolean . 27
5.18 The Operator nand . 27

5.18.1 Boolean . 27
5.19 The Operator nor . 27

5.19.1 Boolean . 27
5.20 The Operator xor . 28

5.20.1 Boolean . 28
5.21 The Operator refinable . 28

5.21.1 Boolean . 28

6 Grammar 29

5

1 Introduction

1.1 Why GAMMA? – The Core Concept

We propose to implement an elegant yet secure general purpose object-oriented
programming language. Interesting features have been selected from the history
of object-oriented programming and will be combined with the familiar ideas
and style of modern languages.

GAMMA combines three disparate but equally important tenants:

1. Purely object-oriented

GAMMA brings to the table a purely object oriented programming lan-
guage where every type is modeled as an object–including the standard
primitives. Integers, Strings, Arrays, and other types may be expressed in
the standard fashion but are objects behind the scenes and can be treated
as such.

2. Controllable

GAMMA provides innate security by choosing object level access control
as opposed to class level access specifiers. Private and protected members
of one object are inaccessible to other objects of the same type. Overriding
is not allowed. No subclass can turn your functionality on its head.

3. Versatile

GAMMA allows programmers to place ”refinement methods” inside their
code. Alone these methods do nothing, but may be defined by subclasses
so as to extend functionality at certain important positions. The idea
of refining methods are inherited from the great work that went into the
BETA programming language and were further explored in BetaJava and
are a part of PLTScheme/Racket (and, of course, there are perlisms to
copy the behavior, as is to be expected from that community).

Refinement in GAMMA is different than the above, though – the GAMMA
philosophy of refinement is that methods themselves are singular objects of
computation associated with classes and these objects themselves provide
an extendable interface.

In addition to refinement, anonymous instantiation allows for extension of
your classes in a quick & easy fashion.

1.2 The Motivation Behind GAMMA

GAMMA is a reaction to the various object-oriented languages that came before
it. Obtuse syntax, flaws in security, and awkward implementations plague the
average object-oriented language. GAMMA is intended as a step toward ease
and comfort as an object-oriented programmer.

The first goal is to make an object-oriented language that is comfortable
in its own skin. It should naturally lend itself to constructing API-layers and

6

abstracting general models. It should serve the programmer towards their goal
instead of exerting unnecessary effort through verbosity and awkwardness of
structure.

The second goal is to make a language that is stable and controllable. The
programmer in the lowest abstraction layer has control over how those higher
may procede. Unexpected runtime behavior should be reduced through firmness
of semantic structure and debugging should be a straight-forward process due
to pure object oriented nature of GAMMA.

7

2 Lexical Elements

2.1 Whitespace

The new line (line feed), form feed, carriage return, and vertical tab characters
will all be treated equivalently as vertical whitespace. Tokens are separated
by horizontal (space, tab) and vertical (see previous remark) whitespace of any
length (including zero).

2.2 Identifiers

Identifiers are used for the identification of variables, methods and types. An
identifer is a sequence of alphanumeric characters, uppercase and lowercase, and
underscores. A type identifier must start with an uppercase letter; all others
must start with a lower case letter. Additionally, the lexeme of a left bracket
followed immediately by a right bracket – [] – may appear at the end of a type
identifier in certain contexts, and that there may be multiple present in this
case (denoting arrays, arrays of arrays, etc, etc). The legal contexts for such
will be described later.

2.3 Keywords

The following words are reserved keywords. They may not be used as identifiers:

and class else elsif extends false

if init main nand new nor

not null or private protected public

refinable refine refinement return super this

to true void while xor

2.4 Operators

There are a large number of (mostly binary) operators:

= =/= <> < <= > >=

+ - * / % ^ :=

+= -= *= /= %= ^=

and or not nand nor xor refinable

2.5 Literal Classes

A literal class is a value that may be expressed in code without the use of the
new keyword. These are the fundamental units of program.

2.5.1 Integer Literals

An integer literal is a sequence of digits. It may be prefaced by a unary minus
symbol. For example:

8

• 777

• 42

• 2

• -999

• 0001

2.5.2 Float Literals

A float literal is a sequence of digits and exactly one decimal point/period. It
must have at least one digit before the decimal point and at least one digit
after the decimal point. It may also be prefaced by a unary minus symbol. For
example:

• 1.0

• -0.567

• 10000.1

• 00004.70000

• 12345.6789

2.5.3 Boolean Literals

A boolean literal is a single keyword, either true or false.

2.5.4 String Literals

A string literal consists of a sequence of characters enclosed in double quotes.
Note that a string literal can have the new line escape sequence within it (among
others, see below), but cannot have a new line (line feed), form feed, carriage
return, or vertical tab within it; nor can it have the end of file. Please note that
the sequence may be of length zero. For example:

• "Yellow matter custard"

• ""

• "Dripping\n from a dead"

• "’s 3y3"

The following are the escape sequences available within a string literal; a
backslash followed by a character outside of those below is an error.

• \a - u0007/alert/BEL

9

• \b - u0008/backspace/BB

• \f - u000c/form feed/FF

• \n - u000a/linefeed/LF

• \r - u000d/carriage return/CR

• \t - u0009/horizontal tab/HT

• \v - u000b/vertical tab/VT

• \’ - u0027/single quote

• \" - u0022/double quote

• \\ - u005c/backslash

• \0 - u0000/null character/NUL

2.6 Comments

Comments begin with the sequence /* and end with */. Comments nest within
each other. Comments must be closed before the end of file is reached.

2.7 Separators

The following characters delineate various aspects of program organization (such
as method arguments, array indexing, blocks, and expressions):

[] () { } , ;

A notable exception is that [] itself is a lexeme related to array types and there
can be no space between the two characters in this regard.

2.8 Whitespace and Noncanonical Gamma

Canonical Gamma, which is described by this document’s syntax and gram-
mar sections, ignores whitespace outside of string literals. Gamma code with
rigid whitespace (pythonesque Gamma) – a la python and without ;, {, or } –
can transformed to canonical Gamma easily. Such transformation respects the
following rules:

• Tab characters are equivalent to eight spaces

• Wherever a { could be used to start a scope, a : can be used instead;
in such case a closing } is not necessary as it will be inferred by the
indentation level

• After starting a scope with : the next line with non-whitespace characters
determines the indentation level of that scope.

10

– If there is no such line (end of file) then the scope is assumed to end
and is equivalent to {}.

– If the next such line is indented no more than the line introducing
the scope, then the scope is again equivalent to {}.

– If the next line is indented more than the line introducing the scope
then this sets the indentation level of the scope – all statements in
this scope must be at the same exact level of indentation. The scope
continues until end of file or the indentation returns to the indentation
level of an outer scope.

• If the line after a statement not ending in a colon is indented more than
the given line, then it is considered a continuation of that statement.

• At the end of a statement (either the end of the line starting the statement,
or subsequent lines that are indented more as per the rule above), a new
line is equivalent to a semicolon ;.

• If a scope is explicitly marked with { and } then all further scoping within
that scope must be handled in a whitespace insensitive manner via the
use of {, }, ;.

11

3 Semantics

3.1 Types and Variables

Every variable in Gamma is declared with a type and an identifier. The typing
is static and will always be known at compile time for every variable. The
variable itself holds a reference to an instance of that type. At compile time,
each variable reserves space for one reference to an instance of that type; during
run time, each instantiation reserves space for one instance of that type (i.e.
not a reference but the actual object). To be an instance of a type, an instance
must be an instance of the class of the same name as that type or an instance of
one of the set of descendants (i.e. a subclass defined via extends or within the
transitive closure therein) of that class. While it is possible for any reference to
be null, the null value is not an instance of a class – it cannot execute methods
or access any fields. null represents the lack of an instance. For the purposes
of method and refinement return types there is a special keyword, void, that
allows a method or refinement to use the return keyword without an expression
and thus not produce a value.

3.1.1 Array Types

When specifying the type of a variable, the type identifier may be followed by
one or more [] lexemes. The lexeme implies that the type is an array type of
the element type that precedes it in the identifier. So if BankAccount is the
name of a class (which is associated with a type), then BankAccount is the type
of a zero dimensional array – i.e. the type of BankAccount. The type associated
with BankAccount[] is the that of an one-dimensional array of elements of
class BankAccount. BankAccount[][][][] can be considered the type of an
array of four dimension and element class BankAccount. It is in fact an array
of one dimension which has elements of type BankAccount[][][]. Elements
of an array are accessed via an expression resulting in an array followed by a
left bracket [, an expression producing an offset index of zero or greater, and
a right bracket]. Elements are of one dimension less and so are themselves
either arrays or are individual instances of the overall class/type involved (i.e.
BankAccount), or of course null.

3.2 Classes, Subclasses, and Their Members

GAMMA is a pure object-oriented language, which means every value is an
object – with the exception that null represents the lack of an instance /
object to refer to and this is a special reference for the object of the current
context; the use of this is only useful inside the context of a method, init, or
refinement and so cannot be used in a main where, technically, it is null but its
use will be reported with a more descriptive error. init and main are defined
later.

A class always extends another class; a class inherits all of its superclass’s
methods and may refine the methods of its superclass. A class must contain a

12

constructor routine named init and it must invoke its superclass’s constructor
via the super keyword – either directly or transitively by referring to other
constructors within the class. In the scope of every class, the keyword this

explicitly refers to the instance itself. Additionally, a class contains three sets of
members organized in private, protected, and public sections. Members may be
either variables or methods. Members in the public section may be accessed (see
syntax) by any other object. Members of the protected section may be accessed
only by an object of that type or a descendant (i.e. a subtype defined transitively
via the extends relation). Private members are only accessible by the members
defined in that class (and are not accessible to descendants). Note that access is
enforced at object boundaries, not class boundaries – two BankAccount objects
of the same exact type cannot access each other’s balance, which is in fact
possible in both Java & C++, among others. Likewise if SavingsAccount

extends BankAccount, an object of savings account can access the protected
instance members of SavingsAccount related to its own data, but cannot access
those of another object of similar type (BankAccount or a type derived from it).

3.2.1 The Object Class

The Object class is the superclass of the entire class hierarchy in GAMMA. All
objects directly or indirectly inherit from it and share its methods. By default,
class declarations without extending explicitly are subclasses of Object.

3.2.2 The Literal Classes

There are several literal classes that contain uniquely identified members (via
their literal representation). These classes come with methods developed for
most operators. They are also all subclasses of Object.

3.2.3 Anonymous Classes

A class can be anonymously subclassed (such must happen in the context of
instantiation) via refinements. They are a subclass of the class they refine,
and the objects are a subtype of that type. Note that references are copied at
anonymous instantiation, not values.

3.3 Methods

A method is a reusable subdivision of code that takes multiple (possibly zero)
values as arguments and can either return a value of the type specified for the
method, return null, or not return any value in the case that the return type is
void.

It is a semantic error for two methods of a class to have the same signature
– which is the return type, the name, and the type sequence for the arguments.
It is also a semantic error for two method signatures to only differ in return
type in a given class.

13

3.3.1 Operators

Since all variables are objects, every operator is in truth a method called from
one of its operands with the other operands as arguments – with the notable
exception of the assignment operators which operate at the language level as
they deal not with operations but with the maintenance of references (but even
then they use methods as += uses the method for + – but the assignment part
itself does not use any methods). If an operator is not usable with a certain
literal class, then it will not have the method implemented as a member. Classes
that are not literal classes may implement those methods so as to allow that
operation to be performed between two instances of the appropriate type.

3.4 Refinements

Methods and constructors of a class can have refine statements placed in their
bodies. Subclasses must implement refinements, special methods that are called
in place of their superclass’ refine statements, unless the refinements are guarded
with a boolean check via the refinable operator for their existence – in which
case their implementation is optional.

It is a semantic error for two refinements of a method to have the same
signature – which is the return type, the method they refine, the refinement
name, and the type sequence for the arguments. It is also a semantic error for
two method signatures to only differ in return type in a given class.

A refinement cannot be implemented in a class derived by a subclass, it must
be provided if at all in the subclass. If it is desired that further subclassing
should handle refinement, then these further refinements can be invoked inside
the refinements themselves (syntactic sugar will make this easier in future re-
leases). Note that refining within a refinement results in a refinement of the
same method. That is, using refine extra(someArg) to String inside the
refinement String toString.extra(someType someArg) will (possibly, if not
guarded) require the next level of subclassing to implement the extra refinement
for toString.

3.5 Constructors (init)

Constructors are invoked to arrange the state of an object during instantia-
tion and accept the arguments used for such. It is a semantic error for two
constructors to have the same signature – that is the same type sequence.

3.6 Main

Each class can define at most one main method to be executed when that class
will ‘start the program execution’ so to speak. Main methods are not instance
methods and cannot refer to instance data. These are the only ‘static’ methods
allowed in the Java sense of the word. It is a semantic error for the main to have
arguments other than a String array or for more than one main to be defined
in a class.

14

3.7 Expressions and Statements

The fundamental nature of an expression is that it generates a value. A state-
ment can be a call to an expression, thus a method or a variable. Not every
statement is an expression, however.

15

4 Syntax

The syntaxic structures presented in this section may have optional elements.
If an element is optional, it will be wrapped in the lexemes << and >>. This
grouping may nest. On rare occasions, a feature of the syntax will allow for
truly alternate elements. The elements are presented in the lexemes {{ and
}}, each feature is seperated by the lexeme |. If an optional element may be
repeated without limit, it will finish with the lexeme

4.1 Statement Grouping via Bodies

A body of statements is a series of statements bounded by curly braces.

1 {
2 <<stmt1 statement>>
3 <<stmt2 statement>>
4 <<...>>
5 }

This is pattern is elementry to write.

1 {
2 Mouse mouse = new Mouse () ;
3 mouse . c l i c k () ;
4 mouse . c l i c k f a s t () ;
5 mouse . c l i c k (” Screen won ’ t respond ”) ;
6 mouse . d e f e n e s t r a t e () ;
7 }

Example 1: Statement Grouping of a Typical Interface Simulator

4.2 Variables

4.2.1 Variable Assignment

Assigning an instance to a variable requires an expression and a variable iden-
tifier:

1 v a r i d e n t i f i e r := va l expr ;

If we wanted to assign instances of Integer for our pythagorean theorem,
we’d do it like so:

1 a := 3 ;
2 b := 4 ;

16

Example 2: Variable Assignment for the Pythagorean Theorem

4.2.2 Variable Declaration

Declaring a variable requires a type and a list of identifiers deliminated by
commas. Each identifier may be followed by the assignment operator and an
expression so as to combine assignment and declaration.

1 var type v a r 1 i d e n t i f i e r << := va l1 expr >> << , v a r 2 i d e n t i f i e r <<
:= va l2 expr >> >> <<...>>;

If we wanted to declare variables for the pythagorean theorem, we would do
it like so:

1 Float a , b , c ;

Example 3: Variable Initialization for the Pythagorean Theorem

4.2.3 Array Declaration

Declaring an array is almost the same as declaring a normal variable, simply
add square brackets after the type. Remember that an array is a type as well,
and so the source type can very well be an array of arrays of a certain type
before you make declaration. And note that not all dimensions need be given
(and for you may want to later make non-rectangular multi dimensional arrays).

1 e lement type [] . . . [] a r r a y i d e n t i f i e r << := new element type [] (
dim1 expr , . . . , dimN expr) >>;

If we wanted a set of triangles to operate on, for instance:

1 Tr iang l e [] t r i a n g l e s := new Tr iang l e [] (4 2) ;

Example 4: Array Declaration and Instantiation of Many Triangles

Or perhaps, we want to index them by their short sides and initialize them
later:

1 Tr iang l e [] [] t r i a n g l e s ;

Example 5: Array Declaration of a 2-Degree Triangle Array

17

4.2.4 Array Dereferencing

To dereference an instance of an array type down to an instance its element
type, place the index of the element instance inside the array instance between
[and] lexemes after the variable identifier. This syntax can be used to provide
a variable for use in assignment or expressions.

1 v a r i d e n t i f i e r [dim1 index] . . . [dimN index]

Perhaps we care about the fifth triangle in our array from before for some
reason.

1 Tr iang l e my tr iang l e := t r i a n g l e s [4] ;

Example 6: Array Dereferencing a Triangle

4.3 Methods

4.3.1 Method Invocation

Invoking a method requires at least an identifier for the method of the current
context (i.e. implicit this receiver). The instance that the method is invoked
upon can be provided as an expression. If it is not provided, the method is
invoked upon this.

1 << i n s t anc e exp r .>>method i d en t i f i e r (<<arg1 expr>> <<, arg2 expr>>
<<...>>)

Finishing our pythagorean example, we use method invocations and assign-
ment to calculate the length of our third side, c.

1 c := ((a . power (2)) . p lus (b . power (2))) . power (0 . 5) ;

Example 7: Method Invocation for the Pythagorean Theorem Using Methods

4.3.2 Method Invocation Using Operators

Alternatively, certain base methods allow for the use of more familiar binary
operators in place of a method invocation.

1 op1 expr operator op2 expr

18

Using operators has advantages in clarity and succinctness even if the end
result is the same.

1 c := (aˆ2 + bˆ2) ˆ 0 . 5 ;

Example 8: Method Invocation for the Pythagorean Theorem Using Operators

4.3.3 Operator Precedence

In the previous examples, parentheses were used heavily in a context not directly
related to method invocation. Parentheses have one additional function: they
modify precedence among operators. Every operator has a precidence in relation
to its fellow operators. Operators of higher precedence are enacted first. Please
consider the following table for determining precidence:

:= += -= *= /= %= ^=

or xor nor
and nand
= <> =/=

> < >= <=

+ -

* / %

unary minus
not ^

array dereferencing ()

method invocation

Table 1: Operator Precedence

4.3.4 Method Declaration & Definition

A method definition begins with the return type – either a type (possibly an
n-dimensional array) or void. The identifier for the function is followed by a
pair of parentheses that may enclose the parameter declarations. There is one
type and one identifier for each parameter; and they are delimited by commas.
Following the parentheses are a pair of braces around the body of the method.
There can be zero or more statements in the body. Additionally, refinements
may be placed throughout the statements.

1 {{ r e tu rn type | Void}} method i d en t i f i e r (<<arg1 type
a r g 1 i d e n t i f i e r >> <<, a rg2 type a r g 2 i d e n t i f i e r >> <<...>>)
method body

Finally, we may define a method to do our pythagorean theorem calculation.

19

1 Float pythagorean theorem (Float a , Float b) {
2 Float c ;
3 c := (aˆ2 + bˆ2) ˆ 0 . 5 ;
4 r e turn c ;
5 }

Example 9: Method Definition for the Pythagorean Theorem

4.4 Classes

4.5 Section Definition

Every class always has at least one section that denotes members in a certain
access level. A section resembles a body, it has the lexemes { and } surrounding
a set of variable and method declarations, including init methods.

1 {
2 <<{{method1 decl | va r1 de c l | i n i t 1 d e c l }}>>
3 <<{{method2 decl | va r2 de c l | i n i t 2 d e c l }}>>
4 <<...>>
5 }

4.5.1 Class Declaration & Definition

A class definition always starts with the keyword class followed by a type (i.e.
capitalized) identifier. There can be no brackets at the end of the identifier, and
so this is a case where the type must be purely alphanumeric mixed with under-
scores. It optionally has the keyword extends followed by the identifier of the
superclass. What follows is the class body enclosed in braces: an optional main
method, the three access-level member sections, and refinements. There may
be init methods in any of the three sections, and there must be (semantically
enforced, not syntactically) an init method either in the protected or public
section (for otherwise there would be no way to generate instances).

While the grammar allows multiple main methods to be defined in a class,
any more than one will result in an error during compilation.

1 c l a s s c l a s s i d e n t i f i e r <<extends s u p e r c l a s s i d e n t i f i e r >> {
2 <<main method>>
3 <<{{pr i va t e | protec ted | pub l i c | re f inement }} s e c t i on1>>
4 <<{{pr i va t e | protec ted | pub l i c | re f inement }} s e c t i on1>>
5 <<...>>
6 }

20

Let’s make a basic geometric shape class in anticipation of later examples.
We have private members, two access-level sections and an init method. No
extends is specified, so it is assumed to inherit from Object.

1 c l a s s Geometric Shape {
2 pr i va t e {
3 St r ing name ;
4 Float area ;
5 Float c i r cumfrence ;
6 }
7 pub l i c {
8 i n i t (S t r ing name) {
9 t h i s . name = name ;

10 i f (r e f i n a b l e (improve name)) {
11 t h i s . name += r e f i n e improve name () to St r ing ;
12 }
13 r e turn ;
14 }
15 Float g e t a r e a () {
16 Float area ;
17 area := r e f i n e custom area () to Float ;
18 }
19 }
20 }

Example 10: Class Declaration for a Geometric Shape class

4.5.2 Class Instantiation

Making a new instance of a class is simple.

1 new c l a s s i d e n t i f i e r (<<arg1 expr>> <<,arg2 expr>> <<...>>)

For instance:

1 Geometric Shape = new Geometric Shape (” c i r c l e ”) ;

Example 11: Class Instantiation for a Geometric Shape class

4.5.3 Anonymous Classes

An anonymous class definition is used in the instantiation of the class and can
only provide refinements, no additional public, protected, or private members.
Additionally no init or main can be given.

1 new s u p e r c l a s s i d e n t i f i e r (<<arg1 expr>> <<,arg2 expr>> <<...>>) {
2 <<re f inements>>
3 }

21

4.6 Conditional Structures

4.6.1 If Statements

The fundamental unit of an if statement is a keyword, followed by an expres-
sion between parentheses to test, and then a body of statements between curly
braces. The first keyword is always if, each additional condition to be tested in
sequence has the keyword elsif and a final body of statements may optionally
come after the keyword else.

1 i f (t e s t 1 exp r) i f 1 body
2 << e l s i f (t e s t 2 exp r) i f2 body>>
3 << e l s i f (t e s t 3 exp r) i f3 body>>
4 <<...>>
5 <<e l s e i f4 body>>

4.6.2 While Statements

A while statement consists of only the while keyword, a test expression and a
body.

1 whi le (t e s t e xp r) whi le body

4.7 Refinements

4.7.1 The Refine Invocation

A refine invocation will eventually evaluate to an expression as long as the ap-
propriate refinement is implemented. It is formed by using the keyword refine,
the identifier for the refinement, the keyword to, and the type for the desired
expression. Note that a method can only invoke its own refinements, not others
– but refinements defined within a class can be called. This is done in addition
to normal invocation. Also note that all overloaded methods of the same name
share the same refinements.

1 r e f i n e r e f i n e i d e n t i f i e r to r e f i n e t y p e

22

4.7.2 The Refinable Test

The original programmer cannot garuantee that future extenders will implement
the refinement. If it is allowable that the refinement does not happen, then
the programmer can use the refinable keyword as a callable identifier that
evaluates to a Boolean instance. If the programmer contrives a situation where
the compiler recognizes that a refinement is guarded but still executes a refine
despite the refinement not existing, a runtime error will result.

1 r e f i n a b l e (r e f i n em e n t i d e n t i f i e r)

4.7.3 The Refinement Declaration

To declare a refinement, declare a method in your subclass’ refinement section
with the special identifier supermethod_identifier.refinement_identifier.

23

5 Operators and Literal Types

The following defines the approved behaviour for each combination of operator
and literal type. If the literal type is not listed for a certain operator, the
operator’s behaviour for the literal is undefined. These operators never take
operands of different types.

5.1 The Operator =

5.1.1 Integer

If two Integer instances have the same value, = returns true. If they do not
have the same value, it returns false.

5.1.2 Float

If two Float instances have an absolute difference of less than or equal to an
epsilon of 2−24, = returns true. If the absolute difference is greater than that
epsilon, it returns false.

5.1.3 Boolean

If two Boolean instances have the same keyword, either true or false, = returns
true. If their keyword differs, it returns false.

5.1.4 String

If two String instances have the same sequence of characters, = returns true. If
their sequence of characters differs, it returns false.

5.2 The Operators =/= and <>

5.2.1 Integer

If two Integer instances have a different value, =/= and <> return true. If they
do have the same value, they returns false.

5.2.2 Float

If two Float instances have an absolute difference of greater than than an epsilon
of 2−24, = returns true. If the absolute difference is less than or equal to that
epsilon, it returns false.

5.2.3 Boolean

If two Boolean instances have different keywords, =/= and <> return true. If
their keywords are the same, they return false.

24

5.2.4 String

If two String instances have the different sequences of characters, =/= and <>

return true. If their sequence of characters is the same, they return false.

5.3 The Operator <

5.3.1 Integer and float

If the left operand is less than the right operand, < returns true. If the right
operand is less than or equal to the left operand, it returns false.

5.3.2 String

If the left operand comes before the right operand in dictionary order, < returns
true. If the left operand comes after the right operand in dictionary order ,
it returns false. If the two operands have the same sequence of characters, it
returns false.

5.4 The Operator >

5.4.1 Integer and float

If the left operand is greater than the right operand, > returns true. If the right
operand is greater than or equal to the left operand, it returns false.

5.4.2 String

If the left operand comes after the right operand in dictionary order, < returns
true. If the left operand comes before the right operand in dictionary order ,
it returns false. If the two operands have the same sequence of characters, it
returns false.

5.5 The Operator <=

5.5.1 Integer and float

If the left operand is less than or equal to the right operand, < returns true. If
the right operand is less than the left operand, it returns false.

5.5.2 String

If the left operand comes before the right operand in dictionary order, < returns
true. If the left operand comes after the right operand in dictionary order ,
it returns false. If the two operands have the same sequence of characters, it
returns true.

25

5.6 The Operator >=

5.6.1 Integer and float

If the left operand is greater than or equal to the right operand, > returns true.
If the right operand is greater than the left operand, it returns false.

5.6.2 String

If the left operand comes after the right operand in dictionary order, < returns
true. If the left operand comes before the right operand in dictionary order ,
it returns false. If the two operands have the same sequence of characters, it
returns true. ¡¡¡¡¡¡¡ HEAD

5.7 The Operator +

5.7.1 Integer and Float

+ returns the sum of the two operands.

5.7.2 String

+ returns the concatenation of the right operand onto the end of the left operand.

5.8 The Operator -

5.8.1 Integer and Float

- returns the right operand subtracted from the left operand.

5.9 The Operator *

5.9.1 Integer and Float

* returns the product of the two operands.

5.10 The Operator /

5.10.1 Integer and Float

/ returns the left operand divided by the right operand.

5.11 The Operator %

5.11.1 Integer and Float

% returns the modulo of the left operand by the right operand.

26

5.12 The Operator ^

5.12.1 Integer and Float

^ returns the left operand raised to the power of the right operand.

5.13 The Operator :=

5.13.1 Integer, Float, Boolean, and String

:= assigns the right operand to the left operand and returns the value of the
the right operand. This is the sole right precedence operator.

5.14 The Operators +=, -=, *=, /= %=, and ^=

5.14.1 Integer, Float, Boolean, and String

This set of operators first applies the operator indicated by the first character
of each operator as normal on the operands. It then assigns this value to its left
operand.

5.15 The Operator and

5.15.1 Boolean

and returns the conjunction of the operands.

5.16 The Operator or

5.16.1 Boolean

or returns the disjunction of the operands.

5.17 The Operator not

5.17.1 Boolean

not returns the negation of the operands.

5.18 The Operator nand

5.18.1 Boolean

nand returns the negation of the conjunction of the operands.

5.19 The Operator nor

5.19.1 Boolean

nor returns the negation of the disjunction of the operands.

27

5.20 The Operator xor

5.20.1 Boolean

xor returns the exclusive disjunction of the operands.

5.21 The Operator refinable

5.21.1 Boolean

refinable returns true if the refinement is implemented in the current subclass.
It returns false otherwise.

28

6 Grammar

The following conventions are taken:

• Sequential semicolons (even separated by whitespace) are treated as one.

• the ‘digit’ class of characters are the numerical digits zero through nine

• the ‘upper’ class of characters are the upper case roman letters

• the ‘lower’ class of characters are the lower case roman letters

• the ‘ualphanum’ class of characters consists of the digit, upper, and lower
classes together with the underscore

• a program is a collection of classes; this grammar describes solely classes

• the argument to main is semantically enforced after parsing; its presence
here is meant to increase readability

The grammar follows:

• Classs may extend another class or default to extending Object
〈class〉 ⇒

class 〈class id〉〈extend〉 { 〈class section〉* }
〈extend〉 ⇒

ε
| extends 〈class id〉

• Sections – private protected public refinements and main
〈class section〉 ⇒

〈refinement〉
| 〈access group〉
| 〈main〉

• Refinements are named method dot refinement
〈refinement〉 ⇒

refinement { 〈refine〉* }
〈refine〉 ⇒

〈return type〉〈var id〉.〈var id〉〈params〉 { 〈statement〉* }

• Access groups contain all the members of a class
〈access group〉 ⇒

〈access type〉 { 〈member〉* }
〈access type〉 ⇒

private
| protected

29

| public
〈member〉 ⇒

〈var decl〉
| 〈method〉
| 〈init〉

〈method〉 ⇒
〈return type〉〈var id〉〈params〉 { 〈statement〉* }

〈init〉 ⇒
init 〈params〉 { 〈statement〉* }

• Main is special – not instance data starts execution
〈main〉 ⇒

main (String[] 〈var id〉) { 〈statement〉* }

• Finally the meat and potatoes
〈statement〉 ⇒

〈var decl〉 ;
| 〈var decl〉 := 〈expression〉 ;
| 〈super〉 ;
| 〈return〉 ;
| 〈conditional〉
| 〈loop〉
| 〈expression〉 ;

• Super invocation is so we can do constructor chaining
〈super〉 ⇒

super 〈args〉

• Methods yield values (or just exit for void/init/main)
〈return〉 ⇒

return
| return 〈expression〉

• Basic control structures
〈conditional〉 ⇒

if (〈expression〉) { 〈statement〉* } 〈else〉
〈else〉 ⇒

ε
| 〈elseif〉 else { 〈statement〉* }

〈elseif〉 ⇒
ε
| 〈elseif〉 elsif (〈expression〉) { 〈statement〉* }

〈loop〉 ⇒
while (〈expression〉) { 〈statement〉* }

30

• Anything that can result in a value
〈expression〉 ⇒

〈assignment〉
| 〈invocation〉
| 〈field〉
| 〈var id〉
| 〈deref〉
| 〈arithmetic〉
| 〈test〉
| 〈instantiate〉
| 〈refine expr〉
| 〈literal〉
| (〈expression〉)
| this
| null

• Assignment – putting one thing in another
〈assignment〉 ⇒

〈expression〉〈assign op〉〈expression〉
〈assign op〉 ⇒

:=
| +=
| -=
| *=
| /=
| %=
| ˆ=

• Member / data access
〈invocation〉 ⇒

〈expression〉 . 〈var id〉〈args〉
| 〈var id〉〈args〉

〈field〉 ⇒
〈expression〉 . 〈var id〉

〈deref〉 ⇒
〈expression〉 [〈expression〉]

• Basic arithmetic can and will be done!
〈arithmetic〉 ⇒

〈expression〉〈bin op〉〈expression〉
| 〈unary op〉〈expression〉

〈bin op〉 ⇒
+
| -

31

| *
| /
| %
| ˆ

〈unary op〉 ⇒
-

• Common boolean predicates
〈test〉 ⇒

〈expression〉〈bin pred〉〈expression〉
| 〈unary pred〉〈expression〉
| refinable (〈var id〉)

〈bin pred〉 ⇒
and
| or
| xor
| nand
| nor
| <
| <=
| =
| <>
| =/=
| >=
| >

〈unary pred〉 ⇒
not

• Making something
〈instantiate〉 ⇒

new 〈type〉〈args〉〈optional refinements〉
〈optional refinements〉 ⇒

ε
| { 〈refine〉* }

• Refinement takes a specialization and notes the required return type
〈refine expr〉 ⇒

refine 〈var id〉〈args〉 to 〈type〉

• Literally necessary
〈literal〉 ⇒

〈int lit〉
| 〈bool lit〉
| 〈float lit〉
| 〈string lit〉

32

〈float lit〉 ⇒
〈digit〉+ . 〈digit〉+

〈int lit〉 ⇒
〈digits〉+

〈bool lit〉 ⇒
true
| false

〈string lit〉 ⇒
“〈string escape seq〉”

• Params and args are as expected
〈params〉 ⇒

()
| (〈paramlist〉)

〈paramlist〉 ⇒
〈var decl〉
| 〈paramlist〉 , 〈var decl〉

〈args〉 ⇒
()
| (〈arglist〉)

〈arglist〉 ⇒
〈expression〉
| 〈arglist〉 , 〈expression〉

• All the basic stuff we’ve been saving up until now
〈var decl〉 ⇒

〈type〉〈var id〉
〈return type〉 ⇒

void
| 〈type〉

〈type〉 ⇒
〈class id〉
| 〈type〉[]

〈class id〉 ⇒
〈upper〉〈ualphanum〉*

〈var id〉 ⇒
〈lower〉〈ualphanum〉*

33

	Introduction
	Why GAMMA? – The Core Concept
	The Motivation Behind GAMMA

	Lexical Elements
	Whitespace
	Identifiers
	Keywords
	Operators
	Literal Classes
	Integer Literals
	Float Literals
	Boolean Literals
	String Literals

	Comments
	Separators
	Whitespace and Noncanonical Gamma

	Semantics
	Types and Variables
	Array Types

	Classes, Subclasses, and Their Members
	The Object Class
	The Literal Classes
	Anonymous Classes

	Methods
	Operators

	Refinements
	Constructors (init)
	Main
	Expressions and Statements

	Syntax
	Statement Grouping via Bodies
	Variables
	Variable Assignment
	Variable Declaration
	Array Declaration
	Array Dereferencing

	Methods
	Method Invocation
	Method Invocation Using Operators
	Operator Precedence
	Method Declaration & Definition

	Classes
	Section Definition
	Class Declaration & Definition
	Class Instantiation
	Anonymous Classes

	Conditional Structures
	If Statements
	While Statements

	Refinements
	The Refine Invocation
	The Refinable Test
	The Refinement Declaration

	Operators and Literal Types
	The Operator =
	Integer
	Float
	Boolean
	String

	The Operators =/= and <>
	Integer
	Float
	Boolean
	String

	The Operator <
	Integer and float
	String

	The Operator >
	Integer and float
	String

	The Operator <=
	Integer and float
	String

	The Operator >=
	Integer and float
	String

	The Operator +
	Integer and Float
	String

	The Operator -
	Integer and Float

	The Operator *
	Integer and Float

	The Operator /
	Integer and Float

	The Operator %
	Integer and Float

	The Operator ^
	Integer and Float

	The Operator :=
	Integer, Float, Boolean, and String

	The Operators +=, -=, *=, /= %=, and ^=
	Integer, Float, Boolean, and String

	The Operator and
	Boolean

	The Operator or
	Boolean

	The Operator not
	Boolean

	The Operator nand
	Boolean

	The Operator nor
	Boolean

	The Operator xor
	Boolean

	The Operator refinable
	Boolean

	Grammar

