Optical Mouse Scanner

CSEE4840: Embedded Systems Design

David Calhoun
Kishore Padmaraju
Serge Yegiazarov

An Overview

Our project was...
— Relatively balanced in terms of SW/HW.
— Relatively simple in terms of HW.

Our project has become...
— Much more HW than SW because of speed concerns.
— More Ul and visual aid-centric.

Systems engineering played a key role, since both
HW and SW are largely indispensable.

Reverse engineering was heavily used, as the
ADNS-2051 datasheet needed to be converted
entirely into usable logic.

Inside the FPGA: RTL Viewer

SRAM |/O

! SRAM

/

VGAI/0

GPIO /O I

NIOS I
SRAM

IDE 40-
PIN

Internal GPIO O
Memory -

Peripheral Ctrl.

VGA
Disp.

Mouse
HW

=]

sw |

L _

Compilation Report

-& Compilation Report - full_project x|
Table of Contents e

E2 Flow Summary Flow Status Successful - Thu May 16 09:44:02 2013
== Flow Settings Quartus II 32-bit Version 12.1 Build 177 11/07/2012 5] Web Edition
== Flow Non-Default Global Settingd | Revision Name full_project
=2 Flow Elapsed Time Top-level Entity Name full_project
== Flow OS Summary Family Cyclone II
E| Flow Log Device EP2C35F672C6
> (3 Analysis & Synthesis Timing Models Final
> (1 Fitter Total logic elements 3,235 /33,216 (10 %)
> 1 Assembler Total combinational functions 3,060/ 33,216 (9 %)
> 3 TimeQuest Timing Analyzer Dedicated logic registers 1,407 [33,216 (4 %)
> 1 EDA Netlist Writer Total registers 1407
Total pins 424 [475 (89 %)
Total virtual pins 0
Total memory bits 115,712 [483,840 (24 %)
Embedded Multiplier 9-bit elements 0/70(0 %)
Total PLLs 0/4(0%)

* Image storage and aggregation memory
— Internal to FPGA using ALTSYNCRAM megafunction

— Actual memory storage uses 128*128*6 + 16*16*6*4 =
104448 bits

— Compilation reports 115,712 bits, which means some other
bits were used for other peripheral registers

Image Acquisition and Aggregation

Polling State Machine

POIImg State Machine 16| 17| 18| 19| 20| 21| 22| 23| 24| 25| 26| 27| 28| 29| 30| 31
32| 33| 34| 35| 36| 37| 38| 39| 40| 41| 42| 43| 44| 45| 46| 47
48| 49| 50| 51| 52| 53| 54| 55| 56| 57| 58| 59| 60| 61| 62| 63
64| 65| 66| 67| 68| 69| 70| 71| 72| 73| 74| 75| 76| 77| 78| 79
80| 81| 82| 83| 84| 85| 86| 87| 88| 89| 90| 91| 92| 93| 94| 95
96| 97| 98| 99|100|101|102|103|104| 105| 106| 107| 108| 109| 110| 111
112|113]114] 115| 116|117/ 118| 119] 120| 121| 122| 123| 124] 125| 126| 127
128|129]130[131|132/ 133|134 135| 136| 137| 138| 139| 140| 141| 142 143
|mage Aggregate 144/ 145| 146| 147 148| 149| 150| 151| 152| 153 154 155| 156| 157| 158| 159
160| 161| 162| 163| 164| 165|166 167 168| 169| 170| 171| 172| 173| 174| 175
176|177|178[179|180/ 181/ 182| 183| 184| 185| 186| 187| 188| 189| 190| 191
192|193|194| 195| 196|197/ 198 199] 200| 201| 202| 203| 204| 205 206 207
208|209| 210| 211| 212| 213| 214| 215| 216| 217| 218| 219| 220| 221| 222| 223
128 x 128 pXx 224|225| 226| 227| 228| 229| 230| 231|232 233 234| 235| 236| 237| 238| 239
240| 241| 242| 243| 244| 245 246| 247| 248 249| 250| 251| 252| 253| 254| 255

Image Samples

/7
/
/
/7
16384 d
p Image Index

16384 y

163-

P 55127

o~ 54126

163-

2 53124
% %124
9, ()

O @
162-
o 313 7
162-
% el
& 294
162- 28 0

= Memory
Mapping

16257

Pixel Doubling

O 10 |k |k IN IN W |w
O 10 |k |k IN N W |w

16257]

write Configurations_bits register:
Sleep = 1 [Always awake] S f I I .
oftware Implementation
Y
> read Motion register Q MOT == ad We had implemented this
OT o= 1 algorithmic version to test the
Y , .
d Delta X ist 5|gr:edh Write Image Sample Optlcal prOcessor
read Delta_X register 7 X_coordinate Y k b ‘ |
OorkKs, out very siow
¥
signed .
read Delta_Y register 7—> Wnt$ IQ;%?S;.—? aa;g'lple

\

write Configuration_bits register:

PixDump = 1 AI . .
gorithmic Procedure
v
read Data_Out_Lower register; L 1. Polls for Mouse motion
init pix_addr = 0x00 Data_Out_Lower(MSB) == - -
o st | [Date_out Tomerss) - 2. Retrieve coordinates of
ix addr ++ , | Write Image Sample movement
PR ! (pix_addr, pix_value) -]

[pix_adar == oxrr 3. Retrieve image from mouse

write Configuration_bits register:

PixDump =0

wi2
SCLK=1
SDIO =1

Finite State Machine

PO=1 FD =0
" — : a Implemented as an FSM with
et count!=100us_wait Cli==1 count!=4ms_wait 75 states

O Runs much faster than
software implementation

CLK==1
count==100us_wait
pxd_en==0

CLK==1
count==100us_wait
prd_en==1

RC
SCIK=1
SDIo=X

wiite_mem =1

SClk=1
SDIO=X
write_fem=1
ClLK==1

N1
SCLK=1
SDIO=X

img_smp++

ClKk==1

CLK==0

Mouse Optical Processor (ADNS-2051) interfaced using SPI protocol

O SCLK line always driven by FGPA
Q Control of SDIO line toggled during read/write operations

O Additional PD (power-down) line was required to initialize and resync communication

Datasheet Waveforms

SCLK |
CYCLE #

scLK I I I I I I I I I I I I I I I I

smoZIf1 I{Aa:xnf,?(m;:xna:xnz:xm:xnu:xnr}:DEI‘(DE}:D4}:DS}:DZ}:D1}:nu&%

A

1 | 2 | a3 | a | s | 6 | 7 | 8 | o | 10 [11]| 12] 13 | 1a] 15 | 16 |

e
SDIO DRIVEN BY MICRO-COMTROLLER

Simulated Waveforms

| [S Y Y I I
o | — — —

Software

The software performs/assists with the
following tasks:

— Coordinates the left/right click functionality.
— Ensures new samples are unique.

— Performs aggregation by telling hardware where
to write the next samples.

— Coordinates the location/color of highlight box.

— Checks various boundary conditions and allows
for/tracks out of bounds traversal.

Ensuring Uniqueness

Read 16 bit “select number” from hardware
on every loop iteration.

If this number is equivalent to the last such
number, ignore and continue to next iteration.

If it’s not equivalent, figure out which portion
of the value differs, and write that to the
hardware’s “read select”.

This value determines the next sample.

Aggregation

e Since deltaX and deltaY are relative movement
coordinates, software needs to keep track of
absolute coordinates.

* Reads deltaX and deltaY, adds them to global
position, checks boundaries, and writes back.

* The value written back is normalized to the
following form in order to map to RAM:
ycoordinate+(xcoordinate*128)

Boundary Checking

Firstly, checks when user is about to leave
boundaries and warns with red box.

Secondly, allows out of bounds traversal.
Thirdly, tracks the out of bounds movement

by moving red box along edge.
Prevents strange bugs (such as

128x128

splitting and syncing) with Aggregate

some corner case handling.

Experiences

Power of the ADNS-2051
— Or lack thereof...
— dx and dy are calculated based on an image gradient,
but they are also rounded arbitrarily

* Considerdxof 0.625=>1

— This skews the image, although it provides sensitivity for
mouse movement

— Image blurring adds skew
* Quick movements are not supported
Fast Movement

Slow Movement

Hardware interfacing is simple using the DE2

— Several ways to approach this project

* Could have created our own microprocessor core

— Set up digital I/0 pins (GPIO) with buffers, multiplexers,
etc. for communicating with the mouse

— Same memory on FPGA still required

— This would enable a “fully software-defined”
implementation

Timing diagrams are a good aid, however...
— They do not always reflect what will happen in real time
— Simulation vs. synthesizable

— Heed the warnings given by Quartus Il
e litter
* Llatches
* Timing concerns, etc.

SCLK [1

Xa[2

xB[3

YB[4

YA| 5

XY_LED[&

REFA [7

REFB[8

E—
O A2051
XYywwz

0%0%%

e
O

,
C
TN
Y I
o(o
O

1

| 16 | sDio

[15 | PD

| 14 |R_BIN

| 13 |vpp

[12 | GND

| 11| osc out
[10 | GND

| 9 JoscN

ADNS-2051 Optical Processor,
Agilent/Avago Technologies

Issues Experienced

Timing and synchronization

— Image acquisition and software control are difficult to synchronize
* Need to remove bottlenecks in software to get smooth acquisition and
aggregation
— It’s hard to determine the response time of software with respect to
our clock speed on the FPGA (our queue system helped resolve any
issues we would face from this issue)

State machine
— Specification
* Need to consider all conditions outlined in ADNS-2051 datasheet
— Timing required between sending and receiving commands
— Timing required between different types of commands

— Layout of the state machine in an efficient way
— Toggling Power-Down pin in order to reset and synchronize the serial communication

— Timing
* Data handling (outputs, changes) based on state changes vs. clock pulses

* Simulations showed perfect behavior, actual communication generated by
FPGA completely wrong [cannot trust simulation, had to use logic analyzer to
verify what was going on]

