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An Overview  

• Our project was… 
– Relatively balanced in terms of SW/HW. 
– Relatively simple in terms of HW. 

• Our project has become… 
– Much more HW than SW because of speed concerns. 
– More UI and visual aid-centric.  

• Systems engineering played a key role, since both 
HW and SW are largely indispensable. 

• Reverse engineering was heavily used, as the 
ADNS-2051 datasheet needed to be converted 
entirely into usable logic. 



Inside the FPGA: RTL Viewer 
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The Architecture: As We Designed It 



Compilation Report 

• Image storage and aggregation memory 
– Internal to FPGA using ALTSYNCRAM megafunction 
– Actual memory storage uses 128*128*6 + 16*16*6*4 = 

104448 bits 
– Compilation reports 115,712 bits, which means some other 

bits were used for other peripheral registers 



Polling State Machine 
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Software Implementation 

 We had implemented this 
algorithmic version to test the 
optical processor 

 Works, but very slow 

Algorithmic Procedure 

1. Polls for Mouse motion 

2. Retrieve coordinates of 
movement 

3. Retrieve image from mouse 



Finite State Machine 

 Implemented as an FSM with 
75 states 

 Runs much faster than 
software implementation 



Mouse Optical Processor (ADNS-2051) interfaced using SPI protocol 

 SCLK line always driven by FGPA 

 Control of SDIO line toggled during read/write operations  

 Additional PD (power-down) line was required to initialize and resync communication 

Simulated Waveforms 

Datasheet Waveforms 

Captured Waveforms using Logic Analyzer 



Software 

• The software performs/assists with the 
following tasks: 

– Coordinates the left/right click functionality. 

– Ensures new samples are unique. 

– Performs aggregation by telling hardware where 
to write the next samples. 

– Coordinates the location/color of highlight box. 

– Checks various boundary conditions and allows 
for/tracks out of bounds traversal. 



Ensuring Uniqueness 

• Read 16 bit “select number” from hardware 
on every loop iteration. 

• If this number is equivalent to the last such 
number, ignore and continue to next iteration. 

• If it’s not equivalent, figure out which portion 
of the value differs, and write that to the 
hardware’s “read select”. 

• This value determines the next sample. 



Aggregation 

• Since deltaX and deltaY are relative movement 
coordinates, software needs to keep track of 
absolute coordinates. 

• Reads deltaX and deltaY, adds them to global 
position, checks boundaries, and writes back. 

• The value written back is normalized to the 
following form in order to map to RAM: 
ycoordinate+(xcoordinate*128) 



Boundary Checking 

• Firstly, checks when user is about to leave 
boundaries and warns with red box. 

• Secondly, allows out of bounds traversal. 

• Thirdly, tracks the out of bounds movement 
by moving red box along edge. 

• Prevents strange bugs (such as  

    splitting and syncing) with 

    some corner case handling. 
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Experiences 

• Power of the ADNS-2051 
– Or lack thereof…  
– dx and dy are calculated based on an image gradient, 

but they are also rounded arbitrarily 
• Consider dx of 0.625 => 1 

– This skews the image, although it provides sensitivity for  
mouse movement  

– Image blurring adds skew  
• Quick movements are not supported 
       Slow Movement                     Fast Movement 

 
 
 
 
 
 

• Hardware interfacing is simple using the DE2 
– Several ways to approach this project 

• Could have created our own microprocessor core 
– Set up digital I/O pins (GPIO) with buffers, multiplexers,  

etc. for communicating with the mouse 
– Same memory on FPGA still required 
– This would enable a “fully software-defined”  

implementation 

• Timing diagrams are a good aid, however… 
– They do not always reflect what will happen in real time 
– Simulation vs. synthesizable 
– Heed the warnings given by Quartus II 

• Jitter 
• Latches 
• Timing concerns, etc. 

ADNS-2051 Optical Processor, 
Agilent/Avago Technologies 



Issues Experienced 
• Timing and synchronization 

– Image acquisition and software control are difficult to synchronize 
• Need to remove bottlenecks in software to get smooth acquisition and 

aggregation 

– It’s hard to determine the response time of software with respect to 
our clock speed on the FPGA (our queue system helped resolve any 
issues we would face from this issue) 

• State machine  
– Specification 

• Need to consider all conditions outlined in ADNS-2051 datasheet 
– Timing required between sending and receiving commands 
– Timing required between different types of commands 
– Layout of the state machine in an efficient way 
– Toggling Power-Down pin in order to reset and synchronize the serial communication 

– Timing 
• Data handling (outputs, changes) based on state changes vs. clock pulses 
• Simulations showed perfect behavior, actual communication generated by 

FPGA completely wrong [cannot trust simulation, had to use logic analyzer to 
verify what was going on] 

 


