
COMS 4115 Project Proposal

Kevin Henrick (kph2115)

Ryan Jones (rlj2122)

Mark Micchelli (mm3710)

Hebo Yang (hy2326)

1 Project Description

Card Game Language (CGL) is a language for compiling turn-based card game variants which em-
ploy a standard 52-card deck (http://en.wikipedia.org/wiki/Standard_52-card_
deck). CGL will make it easier to translate popular card games to a digital form than it would with
general-purpose languages such as Java or C. We intend for the language to be elegant enough that
even the invention of new card games will be quick and fun.

2 Motivation

Our interest in this domain developed from our perceived contrast between the widespread popular-
ity and rich history of card games, and the lack of simple, flexible languages for describing them.
Hundreds of game variants have been developed over the half-millenia that the standard deck has
been used, but only a handful are commonly found on an average home computer (solitaire, poker,
hearts, etc).

Although the data requirements of card games are minimal, in our case requiring only the tracking
of 52 symbols and simple player information, algorithms that emerge from various rule sets can be
more difficult to define with current languages. We aim to simplify this process.

3 Objectives

Our team decided to place constraints on the games considered primarily due to the time frame and
our review of past card-game projects. Constraining the domain of games as previously mentioned
still yields a surprising diversity of genres, including single and multiplayer games, betting and non-
betting games, and stochastic and deterministic games. Games within this domain include common
varieties such as Solitaire, Texas Holdem Poker, Hearts, and many others.

We aim to implement a minimum of four card game examples (Blackjack, Five-Card Poker, Soli-
taire, and War) and also to incorporate a simple AI framework for the non-deterministic multiplayer
games (Blackjack and Five-Card Poker). If time allows, we hope to highlight the modularity of our
language design through the construction of variants of these examples, by employing only mini-
mum modifications to the original source code. For example, we could make the limit 25 before
you bust in Blackjack, we could change the number of piles you draw from in Solitaire, or we could
make new hands in Five-Card Poker that beat a royal flush.

1

http://en.wikipedia.org/wiki/Standard_52-card_deck
http://en.wikipedia.org/wiki/Standard_52-card_deck

4 Language Features

Each program in CGL will be a turn-based game playable with a standard 52-card deck. This class
of games can be fully represented with three programming components: setup, turn actions, and win
conditions. CGL will also provide easy-to-use data types commonly found in card games, such as
deck, collection (i.e. hand), card, and perhaps others like suit, color, and value.

5 Program Structure

Each program in CGL will have the following layout:

GAME GAME−NAME
{

SETUP
{

/∗ s e t u p goes h e r e ∗ /
}

TURN
{

/∗ t u r n a c t i o n s go h e r e ∗ /
}

WIN
{

/∗ win c o n d i t i o n ch ec k s go h e r e ∗ /
}

/∗ o t h e r v a r i a b l e s , f u n c t i o n s , and AI d e t a i l s go h e r e ∗ /
}

6 Data Types

CGL will contain primitives for int, double, and bool. We also want to include objects for card,
collection, deck, player, and possibly lower-level elements like value, suit, and color. (Were not sure
yet whether or not any of these objects should be primitives in the language.) These objects will
also contain default operators and functions; for example, decks will contain a shuffle() function,
collections will contain a getFirst() function, and cards will contain a setVisible() function.

GAME NO−BETTING−FIVE−CARD−POKER
{

SETUP
{
PLAYER LIST = { p l a y e r 1 , p l a y e r 2 }

Deck deck = Deck .STANDARD;

C o l l e c t i o n hand1 ;

C o l l e c t i o n hand2 ;

i n t p l aye r1Wins = 0 ;

i n t p l aye r2Wins = 0 ;

i n t t u r n C o u n t = 1 ;
}

2

TURN
{

i f (t u r n C o u n t <= 10)
checkWin () ;

e l s e

{

deck . d e a l (hand1 , 5) ;

f o r Card c i n hand1 :

c . s e t V i s i b l e (p l a y e r 1) ;

i n t p l a y e r 1 P o i n t s = 0 ;

i f (c == ROYAL−FLUSH)

p l a y e r 1 P o i n t s = 4 ;

e l s e i f (c == FLUSH)

p l a y e r 1 P o i n t s = 3 ;

e l s e i f (c == STRAIGHT)

p l a y e r 1 P o i n t s = 2 ;

e l s e i f (c == FOUR−OF−A−KIND)

p l a y e r 2 P o i n t s = 1 ;

deck . d e a l (hand2 , 5) ;

f o r Card c i n hand2 :

c . s e t V i s i b l e (p l a y e r 2) ;

i n t p l a y e r 2 P o i n t s = 0 ;

i f (c == ROYAL−FLUSH)

p l a y e r 2 P o i n t s = 4 ;

e l s e i f (c == FLUSH)

p l a y e r 2 P o i n t s = 3 ;

e l s e i f (c == STRAIGHT)

p l a y e r 2 P o i n t s = 2 ;

e l s e i f (c == FOUR−OF−A−KIND)

p l a y e r 2 P o i n t s = 1 ;

i f (p l a y e r 1 P o i n t s > p l a y e r 2 P o i n t s)

3

p laye r1Wins ++;

e l s e i f (p l a y e r 2 P o i n t s > p l a y e r 1 P o i n t s)

p l aye r2Wins ++;

t u r n C o u n t ++;
}

}

WIN
{

i f (p l aye r1Wins > p laye r2Wins)
p l a y e r 1 . makeWinner ()

e l s e i f (p l aye r2Wins > p laye r1Wins)
p l a y e r 2 . makeWinner ()

}

C o l l e c t i o n ROYAL−FLUSH = ([AC, KC, QC, JC , 10C] , [AD,
KD, QD, JD , 10D] , [AH, KH, QH, JH , 10H] , [AS , KS , QS , JS , 10S]) ;

C o l l e c t i o n FLUSH = ([∗C , ∗C , ∗C , ∗C , ∗C] , [∗D, ∗D, ∗D,
∗D, ∗D] , [∗H, ∗H, ∗H, ∗H, ∗H] , [∗S , ∗S , ∗S , ∗S , ∗S]) ;

C o l l e c t i o n STRAIGHT = () ;

f o r Value $v from ACE t o 1 0 :
STRAIGHT . add ([$v ∗ , $ (v +1)∗ , $ (v +2)∗ , $ (v +3)∗ , $ (v + 4) ∗]) ;

C o l l e c t i o n FOUR−OF−A−KIND = () ;

f o r Value $v from ACE t o KING :

FOUR−OF−A−KIND . add ([$vC , $vD , $vH , $vS , ∗ ∗]) ;
}

GAME SOLITAIRE
{

SETUP
{

PLAYER LIST = { p l a y e r 1 } ;

Deck deck = Deck .STANDARD;

C o l l e c t i o n s t a c k 1 ;

C o l l e c t i o n s t a c k 2 ;

C o l l e c t i o n s t a c k 3 ;

C o l l e c t i o n s t a c k 4 ;

C o l l e c t i o n s t a c k 5 ;

C o l l e c t i o n s t a c k 6 ;

C o l l e c t i o n s t a c k 7 ;

4

C o l l e c t i o n s p a d e s ;

C o l l e c t i o n h e a r t s ;

C o l l e c t i o n diamonds ;

C o l l e c t i o n c l u b s ;

C o l l e c t i o n p i l e ;

deck . d e a l (s t a c k 1 , 1) ;

deck . d e a l (s t a c k 2 , 2) ;

deck . d e a l (s t a c k 3 , 3) ;

deck . d e a l (s t a c k 4 , 4) ;

deck . d e a l (s t a c k 5 , 5) ;

deck . d e a l (s t a c k 6 , 6) ;

deck . d e a l (s t a c k 7 , 7) ;

deck . d e a l (p i l e , deck . getNumCards ()) ;

s t a c k 1 . ge tTop () . s e t V i s i b l e (p l a y e r 1) ;

s t a c k 2 . ge tTop () . s e t V i s i b l e (p l a y e r 1) ;

s t a c k 3 . ge tTop () . s e t V i s i b l e (p l a y e r 1) ;

s t a c k 4 . ge tTop () . s e t V i s i b l e (p l a y e r 1) ;

s t a c k 5 . ge tTop () . s e t V i s i b l e (p l a y e r 1) ;

s t a c k 6 . ge tTop () . s e t V i s i b l e (p l a y e r 1) ;

s t a c k 7 . ge tTop () . s e t V i s i b l e (p l a y e r 1) ;

p i l e . ge tTop () . s e t V i s i b l e (p l a y e r 1) ;
}

TURN
{

f o r Card c i n s t a c k 1 :
{

i f (c . i s V i s i b l e (p l a y e r 1))
p r i n t (s t a c k 1 shows : + c + \ n) ;

}

/∗ do same f o r s t a c k s 2−7 and p i l e ∗ /

i n p u t i = n e x t L i n e () ;

/∗ c he ck s f o r v a l i d i t y go h e r e ∗ /

checkWin () ;

5

}

WIN
{

i f (s p a d e s . t o p == KS && h e a r t s . t o p == KH

&& diamonds . t o p == KD && c l u b s . t o p == KC)

{
makeWinner (p l a y e r 1) ;

}
}

}

6

	Project Description
	Motivation
	Objectives
	Language Features
	Program Structure
	Data Types

