Language Reference Manual

Alex Dong aqd2000
Katherine Haas kah2190
Matt Meisinger mrm2205
Akshata Ramesh ar3120

Contents

L INEEOAUCEION «.....oooooeeeeeeeeeessiss e sessssss s esssss s s RRR R ES
2. LeXICAl CONVEMTIOMSoourieeeeereeeeeeseeessseeeessssessssssssesssssss s ssssss s essss s es s es bbb bbb
08 B 0 =) U PP
B2 000114 0 1=) o Lt PP
2.3 TAENTITIET'S .evcurieureereeeeteeueestese s et seesse s e s s ease s RS seER £ R bR At s b
2.4 KEYWOTAS couucvieuesrnssessssssssssssssssesssssssssssssssssssssssssessss s sss s s s ssssssas s s ssss s sessss s s sss s ssss s sssss s s s ssnssnns
2.5 CONSTANTS ..uvcurieureeseeueteesseessessesssesseessessaesse s sessesseesse s s £ S se£ae R R AR E s eE AR SRR AR bR R b seb s R nE s
B IA@IIEIFIETS ... essssss s RS RRRR R R R R R ES
A FUINCHIOMISoceeeeevteeeeesssseesesssssesesss s esss s8R RS S R R R0
4.1 DefiNiNG FUNCHOMNS ..ot seeeeesressesse s sssess s sssess s s sssesssess s s s s sssssssssssssans
T D0 g o T 7 0T

TG TLY E= 1 0 30 0 Ut (o) o PSP

5.0 LIST TYPES ctvueeuerurerseenreeseessessesseessessessseseess s s sesse s s s ssed s R £ s R £ R bR Rt
5.2 INSTANTIATING LISTS . iuuierernersreesseesseessseesseesssesseesss e sssesssesssssssssssessssessss s e sssasssessssssssssssesssessssssmsesssassasssessssesss
5.3 ACCESSING ELBIMENEScuuivuieeeereeeseeeseesseesssesseesss e sssesssees s sssssssses s s ss st sesssssssssssssessss s sssesssasssesssseens
5.4 LiSt CONCALENATION OPEIALOT ..euiuueueerresreesresseessesseessessesssrssessesssesssssssssessesssesssssesssssesssessasssessssssssasessassssssssans
6. EXPI@SSIOINSccoeeeeeeceteeiesse s ests e ssssse s s es s s bR R SRR E R
6.1 POINTET COMNVETSIONS ...eueueurerresressessessessessessessessssessssssssssssessessessessessessessessessessss s st sessssssssssssessessessessessessesssssnssnsane
6.2 PriMary EXPIrESSIONS ueresessessessssssssssss s ssassssssssssessssssssssssssnssssans
6.3 POSHIX EXPIESSIONS . ..curieueerieerereesseeseesseieesssessesseesse s sessse s s s s s s se bbb R ne e s
6.4 ATTAY REETEIICES .uuvvuieererneirsinessssss s s s s s s b s
6.5 EQUAlITY EXPIESSIONS..itiiuiirrersessessnessasssssssssssssssssssssssssssssnssssanssssssnns
7 DI@CLATATIOMISoooeeeeeeeeeeesiss e cessssss s s s eSS RS R R EES
8. STATEIMEIILS ... RS R R
8.1 EXPresSion STAtEIMENT ... ssssssssss st st st s ssssss s snssnsane
8.2 CONAItIONA] STALEIMENT... ... ieeieeeereerreese et ees e s b srs e s s s ses s bR bbb s b s bbb
LSS VAT o U (] w U =) =) o O PP

o e T0) 0T L =) 0 4 1<) o L T PSP

TSI S0 o o B 7= =) 0 1) L o 7

8.6 NUIL SEALEIMENT ...curereesees s e sess s ssss s sees s s s s RS R R R R R e 7
O, SCOPIC......ooeeeeeteee et eb e ss e e s bR RS R R AR 7
10, BUIIE-IN TYPES ...cooreeereectscesissseesssns 7
T10. D UL EYPC ceureurreureereeuserseesseessessesusesseesseeseesse e easeesse s s s s e sE eSS RS eE AR R A s A b e AR Eare b 7
110.2 ElEIMENT LYPE coreereereeriereeeseeaseseesses s sesssesssessesase s sesse s s sse s s E s s £ bR e R s e EArE s R bbb Eare bt 8
110.3 SELECTOT LY P terirerrirnersssesssssss s s s s SRR R 8
11, BUIlt-in FUNCHONScoooovvieeeerreressssssisssssseses s sssssssssssssssss s sssssssssssssssssss s sssssssssssssssssnssssssssees 9
00 I o) 0 L 150 0 U o) o PSP 9
12, EXQAIMIPLE COAE.......oceecerresecetisssecss 10
0 B 3 (= 0T ¢ U PP 10

12.2 FUIL EXAIMPIE coueeieitieretseiuseesecesetssessessessesssssseessesess s s sss e sessassse e s bbb st s 10

1. Introduction

Spidr is a programming language that allows for users to sift through a large amount of HTML data.
The purpose of our language is to retrieve and parse HTML pages, as well as traverse through them.
Spidr allows for the use of following all links on a page, compiling all links from a page into a list,
getting a list of the URLs of all the images on a page, getting a list of all dead links within a domain,
and other HTML manipulations.

2. Lexical Conventions

2.1 Tokens

The following constitute the tokens in Spidr: identifiers, reserved keywords, constants, string
literals, operators, newlines, and other separators. Blanks, spaces and horizontal and vertical tabs
may be used to separate tokens. Otherwise they are ignored.

2.2 Comments

The characters (* introduce a comment, which terminates with the characters *). Comments can be
nested as such (* (* *) *). They do not occur within a string or character literals. Any characters
within these comments are ignored.

2.3 Identifiers

An identifier is any alpha-numeric sequence. The first character of an identifier must be a letter.
Upper and lower case letters in an identifier are considered to be different. Identifiers may have
any length.

2.4 Keywords
The following identifiers are reserved for the use as keywords, and may not be used otherwise:

url int main
loop string false
selector element true

if while return
null void boolean

2.5 Constants

In Spidr there are integer constants, and string literals.

An integer constant may contain any numbers from 0 to 9 and is stored as a signed integer.

Anything between double quotes is considered a string literal. String literals may be concatenated
using the ‘+’ sign.

3. Identifiers

Each primitive, object and function is represented by an identifier.

4. Functions

4.1 Defining Functions

Functions are defined by using the function keyword. They follow the syntax:

function type functionName ([parameter List]) { expression }

Example:

function int addTwo(int numl, int num2) {
return numl + num2

Functions can’t be overloaded.

4.2 Return Types

Functions may return any type of object. They may also be marked as void, in which case no return
statement is needed in the body of the function.

4.3 Main Function

Spider looks for a main function with a return type of void to use as a entry point when running an
application. If this function is not found, an error is thrown at compile-time.

4.4 List-Valued Function Execution

In addition to the standard mode of function execution, a function may be executed as a list-valued
function by surrounding one or more of its input parameters with angle braces (<’ and ‘>’). If one
parameter is list-valued, the function will execute using each value in that list once as the
parameter.

5. Lists

Primitives and objects may be declared either as a single-value variable, or a list variable.

5.1 List Types

A list may only contain elements of a single type. If an attempt is made to concatenate two lists of
different types, an error will be thrown.

5.2 Instantiating Lists

An empty list may be instantiated by following the primitive or type identifier by []. For instance,
the following would instantiate an empty string:

string[]

Lists may also be instantiated with initial values by listing identifiers and/or constants, separated
by commas, and surrounding them with square brackets (“[“ and “]”). The following illustrates
how to instantiate arrays:

[“Valuel”]

[exampleValue]

[“Valuel” , “Value2” , “Value3”]
[“Valuel” , exampleValue]
[15,42,54]

When instantiating a new list with initial values, all of the values must be of the same type.therwise
a compile-time error is thrown.

5.3 Accessing Elements
Members of a list may be accessed by placing square brackets after the list identifier. For instance:
int[] values = [1, 4, 6, 7]

int singleValue = values[2]
(* singleValue is 6 *)

5.4 List Concatenation Operator

Lists may be concatenated using the & operator, resulting in a new list. The elements from the list
on the right will be at the beginning of the resulting lists.

string[] newList = [“vall”, “val2”] & “val3” & [“val4”, “vals”]

6. Expressions

6.1 Pointer Conversions

Pointer conversion only occurs in the case of objects, arrays, and strings. The value of a declared
object type is a pointer to the struct that exists in memory. The value of an array is a pointer to the
first element of the array, and, as strings are represented as a list of chars in memory, the value of a
string is a pointer to the first char in the string.

6.2 Primary Expressions
Primary expressions are identifiers, constants, strings, or expressions in parentheses.

primary-expression
identifier

constant

string

(expression)

An identifier is a primary expression that has type pointer, object, or value. An identifier is always
an lvalue as its type is always a pointer. A constant is a primary expression. A string literal is a
primary expression with type pointer to char, the address to the first character in the string array.
An expression surrounded by parentheses is a primary expression identical to one without them.

6.3 Postfix Expressions

The operators in postfix expressions group left to right.

postfix-expression:
primary-expression
postfix-expression[expression]
postfix-expression++
postfix-expression--

argument-expression-list:
assignment-expression
assignment-expression-list , assignment-expression

All of these expressions behave as they do in C.
postfix-expression[<argument-expression-list>]

This notation maps the function on all elements in the argument list and returns a new list that
contains the new elements. The given list must be in between the angled braces; otherwise the
expression will assume that the function takes a list as argument.

string[] food = [“cake”, “apple”, “tiger”]
string[] capFood = toUpperCase(<food>) (*Assuming toUpperCase() exists *)

6.4 Array References

An array expression followed by an expression inside of square brackets denotes an array
reference. The first element of the array is held at index 0, and the length of the array can be
obtained using calling list.length.

string[] food = [“cake”, “apple”, “tiger”]

food[@] -> returns “cake”
food.length -> returns 3

6.5 Equality Expressions

The notation “==" compares whether the values of the adjoining expressions are equal. When more
than two expressions are listed in succession, the comparison is made between all expressions.
Even primitive types such as string and url, the comparison made will be made between their
values rather than any underlying pointers. When applied to a list, the values at each index are
compared. When this notation is applied to any object types created by the user, unless there is an
equal method declared for it, the “==" is evaluated as “. =" (See below). When the types of the two
expressions are not the same, false is returned:

string urlList = [“http://www.google.com”, “http://www.microsoft.com”]
string urlList2 = [“http://www.google.com”, “http://www.columbia.edu”]
string urlList3 = [“http://www.google.com”, “http://www.columbia.edu”]

boolean testl = urlList[@] == urllList2[9] (* Returns True *)
boolean test2 = urlList == urllList2 (* Returns False *)
boolean test3 = urlList2 == urlLIst3 (* Returns True *)
boolean test4 = urlList == urllList2 == urllList3 (* Returns False *)
boolean test5 = urlList[@] == urllList (* Returns False *)

To compare the base pointer values of expressions, the notation “. =" is required. This notation can

be used to compare the pointer values of urls, strings, and any other types. When more than two
expressions are listed in succession, the comparison is made between all expressions.

string urlList = [“http://www.google.com”, “http://www.microsoft.com”]
string urlList2 = [“http://www.google.com”, “http://www.columbia.edu”]
string urlList3 = [“http://www.google.com”, “http://www.columbia.edu”]

boolean testl = urlList .= urllList2 (* Returns False *)
boolean test2 = urlList .= urllList3 (* Returns False *)
boolean test3 = urlList .= urllList (* Returns True *)

The notation “!=" and “.!=" designate the negation of the values of the “==" and “.=” operator,

respectively.

7. Declarations
To declare an identifier, the one of the following syntaxes must be used:
datatype identifier

datatype identifier = expression
datatype identifier = null

If the initial value expression is not provided as part of the declaration, the identifier is initialized
with a null value.

The following datatype tokens are allowed:
e int
® string

url
® element
® selector

The following are valid declarations:

int a
int b = null
int c = 0

int testList = [4, 2, 5, 6, 74, -4]
string e = [“first”, “second”]
url £ =: “http://www.columbia.edu”

8. Statements
Except as indicated, assume that all statements are executed in sequence. Each statement must be
terminated by a semicolon.

8.1 Expression Statement
Most statements will be expression statements.

8.2 Conditional Statement
The two forms of conditional statements are:

if (expression) statement
if (expression) statement else statement

In both cases the expression is evaluated, and it if it is non-zero, then the first statement will be

executed. In the second case, the second statement will be executed if the first expression is equal to
Zero.

8.3 While Statement
The while statement takes the form of:

while (expression) statement

This statement can be executed repeatedly as long as the expression never takes the value of zero.

8.4 Loop Statement
The loop statement takes on the following form:

loop (expression,, expression,, expressions;) statement

The first expression specifies initialization for the loop. The second expression specifies a test,

http://www.columbia.edu/

made before each iteration, where the loop will exit when the expression becomes 0. The third
expression specifies an increment that is performed after each iteration.

8.5 Return Statement
The return statement is used when a function returns to its caller and it takes on the following
forms:

return
return expression

In the first case the value is undefined, whereas in the second case the value of the expression is
returned to the caller of the function.

8.6 Null Statement
The null statement takes on the following form:

null

You can include a label before a null statement (refer to 8 for an example). You can also label a null
statement and insert it immediately before the item to get the same effect.

9. Scope

An object that is declared in a block has its scope restricted to that block and any sub-blocks. All
functions are declared in the global scope.

10. Built-in Types

10.1 url type

The url type may be instantiated by placing a colon directly in front of a string literal. For instance:

url microsoftUrl = :”http://www.microsoft.com”

The same syntax can be used to convert a list of strings into a list of urls:

string[] sites = [“http://www.google.com”, “http://www.microsoft.com”]
url[] urlList = :sites

Appending the colon to the front of a parenthesized expression yields the same result as if there
weren’t any parentheses:

url microsoftUrl = :”http://www.microsoft.com”
url micUrl = :(“http://www.microsoft.com”)

http://microsoft.com/
http://www.google.com/
http://www.microsoft.com/
http://microsoft.com/
http://www.microsoft.com/

microsoftUrl == micUrl (* returns true *)

10.2 element type

The element type represents a XML-type formatted string. It may have child elements. This type
can be automatically cast into a string, or filtered by applying a selector to it.

10.3 selector type

A selector object is used to parse through an element tree and returns an array of either element or
string objects that match the selection criteria. A selector is instantiated using the following syntax:

<element-selector [@ attribute-selector]>

A selector may be applied to any element object, url object, or list of either of these two types
of object.

This is a special selector that has its own set of token rules, separate from the rest of the language.
This token may contain any combination of the following types of example token patterns:

input - All elements on the page of with a certain name can be selected by simply using
that name. This example code returns all input controls on the page.

div input - If two selectors are separated by a space, it matches the first selector, then
finds all of their children that match the second selector. In this example, the selector
returns all inputs that are children of a div.

.header-image - A period prefixing a string indicates that all items matching that contain
the class matching that string be returned.

#example-input - The pound sign indicates that all elements with the specified ID should be
returned.

[href] - If a string is surrounded with square brackets, all elements that contain that
attribute will be returned. In this case, all elements that contain the attribute href will be
returned (though whether href has a value or not is not checked).

[href="“/images.htm”] - An element name may be followed by an equals sign. Only
elements with that attribute, and where the attribute matches the value in quotes will be
returned. In this case, only elements that have an href element pointing to the images.htm
page will be returned.

[href=“*images*”] - In attribute selectors, the star may be used as a wildcard selector.

It matches any character(s). In this example, only elements that have an href attribute
and the contain the word ‘images’ in this attribute will be returned.

[href=“{vari}”] - Spidr variables may be included in the selection strings by adding them
in curly braces. The example above indicates that all elements should be returned which
have an href equal to the current value of varl.

Here is an example of how an element selector can be used to gather a list of all input html elements
that exist under a
with the ID of “survey”:

url testUrl = :“http://www.columbia.edu/”
element[] inputFields = testUrl <div#survey input>

This selector is optional, and indicates whether an attribute should be read from each of the
elements selected and returned. An ‘at’ sign (@) must precede the attribute selector. The selector
may be the name of an attribute, or an underscore to return the contents of the attribute. For
instance, the following example shows how to retrieve a string array of all hrefs from all anchors on

a page:

url testUrl = :“http://www.columbia.edu/”
string[] links = testUrl <a @ href>

11. Built-in Functions

11.1 print() function

The print function converts any object to a string and displays it in the console.
For instance:
print(55)

Output:
55

If the type is a list, it uses the notation “[“elementl”, “element2”, “element3”]”to to show the
differing elements in the list.

If the object being printed has sub-lists of objects underneath it, it will print out all child objects
also, up to a depth of 5. After 5, it will show all child lists as “[..]”".

Example code:

http://www.columbia.edu/

string[][] example = [[1, 2] , [30, 40]]
print(example)

Output:
[[1, 2], 1[30,40]]

12. Example Code

12.1 Hello World

The following Spidr code prints Hello world! to the console.

function main() {
print(“Hello world!”) }

12.2 Full Example

The following example queries a url and returns a list of all fully qualified outgoing hyperlinks on
that page, and follows the links recursively to a depth of three levels.

function void main() {
url sourceUrl = :”http://www.columbia.edu”
url[] descendants = getChildPages(sourceUrl, 3)
loop descendants item {
print(item)

function url[] getChildPages(url startingPage, int depth) {
if (depth == 0) {
return startingPage

}

else {
url[] urlsOnPage = :(startingPage <a @ href>)
url[] descendantUrls = getChildPages(<urlsOnPage>, depth - 1)
return startingPage ++ descendantUrls

}

10

http://www.columbia.edu/

	Contents
	2. Lexical Conventions
	2.1 Tokens
	2.2 Comments
	2.3 Identifiers
	2.5 Constants
	2.5.1 Integer Constants
	2.5.3 String Literals

	3. Identifiers
	4. Functions
	4.1 Defining Functions
	4.2 Return Types
	4.3 Main Function
	4.4 List-Valued Function Execution

	5. Lists
	5.1 List Types
	5.2 Instantiating Lists
	5.3 Accessing Elements
	5.4 List Concatenation Operator

	6. Expressions
	primary-expression�identifier�constant�string�(expression)
	An identifier is a primary expression that has type pointer, object, or value. An identifier is always an lvalue as its type i
	7. Declarations
	8. Statements�Except as indicated, assume that all statements are executed in sequence. Each statement must be terminated by
	You can include a label before a null statement (refer to 8 for an example). You can also label a null statement and insert it
	9. Scope
	10. Built-in Types
	10.1 url type
	10.2 element type
	10.3 selector type
	10.3.1 element-selector
	10.3.2 attribute-selector (optional)

	11. Built-in Functions
	11.1 print() function

	12. Example Code
	12.1 Hello World
	12.2 Full Example

