EZ-ASCIl: Language Reference Manual

Dmitriy Gromov (dg2720), Feifei Zhong (fz2185),

Yilei Wang (yw2493), Xin Ye (xy2190), Joe Lee (jyl2157)

Table of Contents

1
2

Program Definition

Lexic

2.1

2.2

2.3

24

2.5
2.5.1
2.5.2
253
254

2.6

Meaning of Identifiers

3.1
3.1.1
3.1.2
3.13
3.14

4.1
4.2
4.3
4.4
4.5

al Conventions.......cccceee.....

Tokens

Commentscceeeveverennnnnnne
Identifiersccoccveevvcineennn.
Keywords.....ccccceeeeeeecnnnnnns
Constants.......cccceeeevevenennnnee
Boolean Constants.....
Integer Constants......
String Constants
Mapping Constants....

Granularity and Intensity...

Unary Minus Operator

Multiplicative Operators ...

Additive Operators

Relational Operators

Logical Negation Operator

4.6 e [UE=] LAV @ 01T =Y oY £ UUUUURROE 8

4.7 (oY q ot | I 1D O] o Y=T - | o oS UUSUURROE 8
4.8 (oY qTor: | O 2 0T 01T =1 o] (P UUUUURROt 8
4.9 (o]0 0100 IO o =T -] o] OO PR P PUPPPPIIN 8
O Y = Yot o] s W O 01T =1 o1 (U UUR 8
4.10.1 Selection of @ SiNGIE POINTuuiiiiiiiieii e e e e e e e e e rr e e e e e e e e e e eeeannennes 8
4.10.2 Selection of rectangles/SHCESecc it e e e e aaae e 8
4.10.3 Selection by bool€an EXPreSSiONcuiiiic it e e e e e e e e e e e e e e annraees 9
I R |V =1 [0T 01T =1 oY U UUR 9
A N o)V A O] o 1=T =) o] ST PPPTPRORPPPNY 9
e et R N1 =4 0] 1 0 1= T o} SO PPPPPPPR 9
A © ¥ 1 o 11 | APPSR PPPPPP 10
4.13 Canvas Attribute Accessor (read-0Nly)cooccciiiiiiieee e e e e e e e e e e e e e eeennneaees 10
A 14 FUNCHION CallS weeiieiieeie ettt ettt e st st e e bt e e sabe e e et e e e s beeesabeeesareeesareas 10
R [Tl [V Lo = O TP PP P PP TSP PRRPURROP 11
D Tol T Ao o T3 TP PSP RO PSP 11
51 FUNCEION DECIAratiONS. ... eiiiiiie ettt et ettt e sab e st e e s e e sabeeesareeesareeens 11
5.2 Variable DECIarationsc.eioiieieiiiieeee et s e e b s sreee e 12
STALEMENTS ..o e e 12
6.1 EXPresSioON STatemMENT..cu i e e e et e e e aaraaa 12
6.2 ConditioNal SEAtEMENT ..c..eeii e 12
6.3 FOr STatemENt ... e 13
6.4 RetUIN StatemMENTceiiiiiiiiiii e 13
SCOPE ANA LINKAZE ...ttt e e e e e e e e e e s bbbt a e e e e e e aeeseessasasbaaareaaaaaeeeaannnrranes 14
7.1 [ToF | BT oo o 1T PRUUURRNE 14
7.1.1 (VL= o] [T o] o =T PERPRRN 14
7.1.2 (U] aTotaTo] g BN Yolo] o 1= ISP PP PPPPUPPRRPRt 14
RV 0=] ¢ U T o o] 1= PP PPPPPPP 14
8.1 2] T o T T PSPPSR U PP PPPOPI 14
8.2 o T Lo T TSP PSR PUPRPUPROPI 15

1 Program Definition

This reference manual defines the language of EZ-ASCIL.

The structure of an EZ-ASCII program source file consists of expression statements and functions.
Amain () function may be optionally specified to denote the main entry point of the program.

< global expressions >
< function declarations >

fun main () {
<main program code>

2 Lexical Conventions

2.1 Tokens

There are six types of tokens: identifiers, keywords, constants, string literals, operators, and other
separators. Blanks, horizontal, and vertical tabs, newlines, formfeeds, and comments as described
below (collectively, “white space”) are ignored except as they separate tokens. Some white space is
required to separate otherwise adjacent identifiers, keywords, and constants.

2.2 Comments

When a // symbol is encountered, the // symbol and the rest of the line is considered a comment
and is ignored by the compiler.

// This is a comment line
img[x1l, yl] <= 1; // This is another comment

2.3 Identifiers

An identifier is a sequence of letters and digits. The first character must be a letter; the underscore

counts as a letter. Upper and lower case letters are different.

2.4 Keywords

The following identifiers are reserved for use as keywords, and may not be used otherwise:

blank load
else main
false map
Fun out
for if
return true
include

2.5 Constants

2.5.1 Boolean Constants

A boolean constant is either true or false (case-sensitive).
2.5.2 Integer Constants

An integer constant consists of a sequence of digits.

i <= 213

There are 4 labeled integer constants to define shifting directions

SHIFT UP, SHIFT LEFT, SHIFT DOWN, SHIFT RIGHT

Their values are 0,1,2,3 respectively.

2.5.3 String Constants

A string constant consists of a sequence of characters enclosed in double quotes “”. The following
characters may be used with escape sequences:

Character Escape Sequence
newline \n
horizontal tab \t
single quote \
double quote \”
backslash \\

2.5.4 Mapping Constants

An intensity mapping consists of a table mapping intensities to characters. A custom mapping can be
defined using the keyword map:

map <- {Ig:"Co”, I1:"Cy", ..., In:"Cy"}

where each | is an intensity, and the corresponding C is the character mapped to that intensity. Any
reference to the intensity mapping will refer to the most recent assignment of MAP or the default if
none has been assigned.

The default mapping is a map of all printable ASCII characters ordered in ascending order based on how
many pixels each character takes up in each character space.

2.6 Granularity and Intensity

A mapping must have at least two values and the granularity must be at least 2. The minimum intensity
will be the least intense item in the map and the maximum will be the most intense. For intensities
between 1 andn - 1 where n is the size of the mapping the distance between each intensity is as close
to even as possible. The formula for this is defined as follows:

diff = (n - 2) / ((g - 2) + 1)

where n is again the size of the map, and g is the granularity.

3 Meaning of Identifiers

Identifiers may refer to objects (locations in storage) or functions. A function and an object may not be
referred to using the same identifier — the following is a syntax error:

foo <- 3
fun fool() {
<function-body>

3.1 Types

There are four types:

* boolean
* integer
* string

* canvas

3.1.1 Boolean Type

A boolean stores one bit of information and may have the value true or false.

3.1.2 Integer Type

Integers can store 32-bits of data and are signed.

3.1.3 String Type

Strings are sequences of characters, and are bounded only by available memory.

3.1.4 Canvas Type

A canvas is the primary storage type in EZ-ASCII. All of the image modification happens on this type.
Internally, it is represented as a two-dimensional array of integers referred to as intensities. This canvas
can be loaded from an existing image file or it can be created manually. Additionally, a canvas has the
following readable attributes: width and height in number of characters, and granularity.

There are two methods of creating a canvas in EZ-ASCII. The first is to load an existing image using the
load built-in function, and the second is to use the blank built-in function (see built-in functions). In
the case of loading an external image file, a custom intensity mapping may be specified to specify the

granularity of the image, or the default will be used.

Various operations may be performed on canvases, including selection, movement, and masking.

4 Expressions
4.1 Unary Minus Operator

The operand of the unary - operator must have arithmetic type, and the result is the negative of its
operand.

i <= -(1 + 4) // i assigned -5
4.2 Multiplicative Operators

The multiplicative operators *, /, and % group left-to-right and require their operands to be of the same
primitive types.

If the operands are of integer type, then the result of the * operator is the product of the operands. The
result of the / operator is the quotient of the operands and the result of the % is the remainder after
integer division on the operands. The / operator results in an integer (fractions truncated).

If the operands are of any other type, a syntax error will occur.

i<-2*3 // i assigned 6
i<-3/2 // i assigned 1
i<-2/3 // i assigned 0
i<-3%6 // i assigned 0
i<-5%3 // i assigned 2

4.3 Additive Operators

The additive operators + and — group left-to-right and require their operands to be of the same primitive
types. The grammar is as follows:

If the operands are of integer type, then the result of the + operator is the sum of the operands, and the
- operator is the difference of the operands.

If the operands are of string type, then the result of the + operator is the concatenation of the operands,
and the - operator will result in a syntax error.

If the operands are of type canvas, then the result of the + operator is a new canvas where each
intensity is the result of adding the two corresponding intensities from the operand canvases, truncated
to the maximum mapped intensity. The result of the — operator is a new canvas where each intensity is
the result of the difference between the two corresponding intensities from the operand canvases,
truncated to the minimum intensity of 0.

If the operands are of boolean type, a syntax error will occur.

i<-1+2* 3+ 4 // 1 assigned 11

j <- 5 -3 // 3 assigned 2

k <- “hello ™ + “world!” // k assigned “hello world!”

k <- “hello ™ - “world!” // syntax error

img3 <- imgl([3:8, 2:4] + img2[,] // img3 assigned additive layering
img4 <- imgl[,] - img3 // img4 assigned difference layering
m <- k + img4 // syntax error

n <- true + img4 // syntax error

4.4 Relational Operators

The relational operators group left to right,i.e. a < b < c isparsedas (a < b) < c. The operators
< (less), > (greater), <= (less than or equal), and >= (greater than or equal) all yield a boolean true or
false. The two variables on either side of a relational operator must be of the same type.

4.5 Logical Negation Operator

The operand of the ~ operator must have boolean type, and the result is true if the value of its operand
compares equal to false, and false otherwise.

b <= ~(3 > 2) // b assigned false

4.6 Equality Operators

The = (equal to) and ~= (not equal to) operators are analogous to the relational operators except for
their lower precedence. For example, a<b = c<dis parsed as (a<b) = (c<d) and evaluatesto true
if a<b and c<d have the same truth-value.

4.7 Logical AND Operator

The s & operator groups left-to-right, returning true if both its operands compare unequal to false,
and false otherwise. Both operands must be of boolean type, except in the case of boolean
expressions used in a selection operator, in which case both operands must be of a boolean expression
type that satisfies the selection operator (see selection operator).

4.8 Logical OR Operator

The || operator groups left-to-right, returning t rue if either of its operands compares unequal to
false, and false otherwise. Both operands must be of boolean type, except in the case of boolean
expressions used in a selection operator, in which case both operands must be of a boolean expression
type that satisfies the selection operator (see selection operator).

4.9 Comma Operator

o on

A pair of expressions separated by a comma “,” is evaluated left to right.
4.10 Selection Operator

The selection operator [] denotes a selection on the canvas that it is applied to. When the selection
operator is used on a canvas, the return value is a canvas of equal size which contains only the points of
interest (rest are blank). There are multiple types of selections possible depending on different integer
parameters for the selection operator, as follows:

4.10.1 Selection of a single point

identifier[x, y] —x and y are integer types which denote the x and y coordinates of a single point.

4.10.2 Selection of rectangles/slices

identifier[x1:x2, y1:y2] — x1:x2 denotes a range of rows (inclusive), and y1:y2 denotes a range of columns
(inclusive).

identifier[x, y1:y2] — A horizontal slice in row x from columns y1 to y2 (inclusive).
identifier[x1:x2, y] — A vertical slice in column y from rows x1 to x2 (inclusive).

identifier[,] — Returns a new copy of the canvas (all rows and columns).

4.10.3 Selection by boolean expression

identifier[boolean expression] — selects elements with intensity that satisfy the boolean expression.
Boolean expressions for the selection operator must be of the format [condition][intensity], where
[condition] may be either a relational or equality operator (<, >, <=, >=, ~=, =), and [intensity]is
an integer value. Boolean expressions may be chained by a logical AND operator (&) or logical OR
operator (| |).

img[>2 && <10] // selects intensities between 2 and 10 (non-inclusive)
// from img as a new canvas

4.11 Mask Operator

The s operator groups left-to-right, operating on canvas types. It returns a new canvas where at any
given position, the intensity is 0 if the corresponding intensity in the second operand is 0, and the
intensity is the corresponding intensity in the first operand if the corresponding intensity in the second
operand is greater than 0. In other words, it returns the first canvas operand, but where the
corresponding areas in the second canvas are 0, the corresponding areas in the first canvas are
“masked” out. Any operand type other than a canvas type is a syntax error.

img3 <- imgl & img2 // img3 1is imgl with img2 applied as a mask
i<-2 463 // syntax error

4.12 Arrow Operator

There are two arrow operators <- (left) and -> (right), which are used for assignment and output,

respectively.

4.12.1 Assignment

The <- left arrow operator assigns the value of the expression to its right to the variable to its left. If the
variable is undefined, it is created. If the variable is already in memory, its contents are overwritten
with the new value.

identifier <- expression
Examples:
canvas <- load(‘pic.jpg’, 10); // the variable canvas holds image data

canvas <- 2; // the variable canvas holds an integer
for i <- 2 | 1 <10 | 1 <=1 + 1 {

4.12.2 OQutput

The -> right arrow operator outputs the value of the variable or expression to its left to either a file
specified by a filepath string to its right, or to standard output, specified by the keyword out. If the left

operand is a variable, it must be have been assigned previously, otherwise a compiler error will result.

“output string” -> out; // outputs “output string” to standard out
1 + 2 -> out; // outputs “3” to standard out

If the left operand is a canvas, an intensity map may be optionally supplied to dynamically change the
intensity mapping.

canvas —-> out, render; // outputs image canvas to standard out
canvas (map) -> “test2.txt”, render; // outputs image canvas to file with new

mapping

render must be a boolean value that specifies whether or not the intensities should be converted to
their corresponding characters before being printed. If render is false and it is printed to a file, the file is
post pended with the extension .i. If render is true, then the file will map will be applied and the actual
image will be printed.

4.13 Canvas Attribute Accessor (read-only)

The s operator may be appended to a canvas identifier along with one of [w, h, g] for width, height,
and granularity, respectively, to read the attribute of interest from an existing canvas object as follows:

canvas <- load(“test.]jpg”, map)
canvas$w -> [width-integer]
canvas$h -> [height-integer]
canvas$g -> [granularity-integer]

This puts the values of the canvas’s width, height, and granularity into variables a, b, and c, respectively.
4.14 Function Calls

A function call moves program execution to the target function. The syntax of a function call is:
function-name (identifier-list,:)
where identifier-list is defined as:

identifier

identifier-list , identifier

A function must be declared before the function call.

10

4.15 Include

The include keyword allows you to add functionality from another EZ-ASCII code file to the one you

are currently working on and has the following syntax:

include [filepath]

filepath must be the location of another EZ-ASCII file. At compilation time the code included in the
desired file will be copied into the file being compiled. Note that identically named global variables or

function names in both files will cause compilation errors.

5 Declarations
5.1 Function Declarations

A function is declared as:
fun Function-name (identifier-list,,:) { <function-body> }
where identifier-list is defined as:

identifier

identifier-list , identifier

Functions act as blocks of code that can be called when desired. Functions can be optionally passed a
list of input parameters which are passed by value, and the parameters will be copies of the inputs for
the function body. Functions can also optionally return some value at the end of their execution. A
function may also call itself recursively in its body.

fun foo (img) {
tmpimg <- img[>3 || <6]
tmpimg <- tmpimg[4:8, 3:6]
return tmpimg

// recursive factorial
fun factorial (x) {
if(x = 1) return 1;
else return x * factorial(x - 1);

11

5.2 Variable Declarations

Variable declarations are declared as:
Variable-name <- expression

Type declarations are not required - variable types are inferred from the declaration. A variable may be
set to a different value with a different type even if previously declared, e.g. the following will not result

in an error:

i<-3 // i holds 3
i <- load(“test.jpg”, map) // i now holds a canvas

6 Statements

Except as described, statements in EZ-ASCII are executed in sequence. Statements are executed for
their effect and do not have return values. They fall into several groups.

Statement:
expression-statement
selection-statement
for-statement

6.1 Expression Statement

Most statements in EZ-ASCII are expression statements, which are expressions ending with semicolons.
img (map) -> "test2.txt";

img[xl, yl] <- 1;
img2 <- shift(img, SHIFT UP, 5);

6.2 Conditional Statement

Conditional statements allow for one of several flows of control. An if statement may be used with or
without an else clause. The grammar is as follows:

if (expression) statement
if (expression) statement else statement

The expression in the i f statement must be of boolean type, and if it evaluates to true, the first sub-
statement is executed. In the second form, the second sub-statement is executed if the expression
evaluates to false.

if(1 > 0) “true case” -> out; // “true case” is output to standard out

12

if (true) {

if(3 > 4) “three is greater than four” -> out;
else “the world is sane” -> out;

The else ambiguity is resolved by connecting an else with the last encountered else-less i f at the
same block nesting level.

if(2 ~= 2)
1f(3 > 2)
else “this else binds to the second if” -> out;

6.3 For Statement
The for statement specifies looping.
for expressiongy,: | expressiong: | expression,,: statement

In the for statement, the first expression is evaluated once, and thus specifies initialization for the loop.
There is no restriction on its type. The second expression must be a boolean expression; it is evaluated
before each iteration, and if it becomes false, the for is terminated. The third expression is evaluated
after each iteration, and thus specifies a re-initialization for the loop. There is no restriction on its type.
Any of the three expressions may be dropped. A missing second expression makes the implied test
equivalent to testing a true constant.

for i <- 2 | 1 <10 | 1 <=1 +1

{
img[i, i] <- 3;

6.4 Return Statement

return expressiongy: ;

A function returns to its caller by the return statement. When return is followed by an expression, the
value is returned to the caller of the function. A function without a return statement is equivalent to a
return with no expression, and in both cases, the return value is undefined.

fun a(x) {
return x + 1;

// boo has no return value
fun boo () {

13

<body>

7 Scope and Linkage

7.1 Lexical Scope

7.1.1 Variable Scope

Parameters declared in function definitions and variables declared within function bodies have scope
through the end of the function (local scope). Any identically-named identifiers declared previous to the
function call are suspended until the end of the function call. If an identifier is referenced in a function
body but has not been declared in the function, the identifier in global scope (all identifiers defined
outside of functions) is used.

i <=1
fun a() {
i<-3 // 1 is assigned the value 3 for the duration of the function
}
i -> out // global scope - prints 1
fun b () {

i -=> out // i is undefined locally, so use global scope - prints 1

7.1.2 Function Scope

Functions have global scope. A function may not be referred to unless it has been previously declared.

fun a() {
<body>
}
al)
b() // error - b undefined

8 System Functions

8.1 Blank
blank ([width], [height], [granularity])

Blank takes three integer input parameters (width and height in number of characters, and a
granularity level), and outputs an empty canvas with attributes set accordingly. An empty canvas in EZ-
ASCll is one such that all of the intensities are 0.

14

8.2 Load

load ([filepath], [granularity])

load takes a string filepath to an existing image file and an integer granularity level as inputs, loads the
image file into memory, performs Floyd-Steinberg dithering and normalizes the values using granularity
input, and finally returns a canvas corresponding to the image. If the file name contains the extension .i,
it is assumed to be an EZ-ASCII intensity file. In this case, it will load the image directly without any
processing. The latter case will throw an error if the intensities found in file are not compatible with the
granularity specified.

8.3 Shift

shift ([canvas], [shift dir], [dist])

shift takes a valid canvas identifier canvas, a integer value shift dir representing which direction to
shift in and a distance to shift, dist. For simplicisty, shift_dir will accept only 4 possible values:
SHIFT_UP, SHIFT_DOWN, SHIFT_LEFT, SHIFT_RIGHT. These values are described in section 2.5.2. The
purpose of shift is to take all of the characters in on a canvas and shift them in the shift_dir direction,
dist spaces.

The direction itself is implied by the names of the variables (e.g. SHIFT_LEFT means left). Dist must be
greater than 0 and less than the width of the canvas if shifting left or right or less than the height if
shifting up or down. The result of this function will be to return a representation of the canvas with
everything shifted.

Please note, if the movement causes a character to go beyond the border of the canvas it will disappear.
Shifting one column past the right edge will cause the right most edge to disappear and the second to
right most column will take its place. Furthermore in this case, the left most column will be padded with
intensities of 0. The analogous situation is true for all other shifting directions.

15

