
The Project:
RPN Calculator

Shensi Ding and Joshua Boggs

The Introduction
Over the course of the past semester we have rewritten

the firmware for the calculator.
The contents of this document include a user guide,

social implications, hardware and software architectures,
details of the software, our lessons learned, and criticisms of
the course.

HP 20b Business Calculator

The calculator
consists mainly of a

LCD connected to an
Atmel at91sam7l128

processor. The
calculator has been
modified to connect

to a computer through
a JTAG port.

The User Guide
The calculator we have programmed uses reverse
Polish notation. In this notation, the operators come
after the operands. No parentheses are used, simply
number keys, operators, and the input key.

User Guide (part 2)
To carry out a simple
operation, begin by typing
your first operand into the
keyboard. Then, press INPUT.
The number you entered will
appear on the LCD. Next, type
out the second operand, and
again press INPUT. Finally,
press the operator you would
like to use. The answer will
then appear on the LCD.

Example 1: A simple operation

Let's walk through the calculation 9 + 12
● Press the 9 digit key
● Press input to save the first operand
● Press 1, the first digit of 12
● Press 2, the second digit of 12
● Press input to save the second operand
● Press the addition opera +
If all is entered correctly, the number 21 will
appear on the screen.

Stack

[9]

[9, 12]
[21]

Example 2: A more complex operation
Let's walk through the calculation (3+5)x(7-2)
● Press the 3 digit key
● Press input to save the first operand
● Press the 5 digit key
● Press input to save the second operand
● Press the addition operator + to add the first two operands
● Press the 7 digit key
● Press input to save the third operand
● Press the 2 digit key
● Press input to save the fourth operand
● Press the subtraction operator - to subtract the third and fourth

operands
● Press the multiplication operator x to multiply the resultant

operands in the stack
If all is entered correctly, the number 40 will appear on the screen.

Stack

[3]

[3, 5]
[8]

[8, 7]

[8, 7, 2]
[8, 5]

[40]

The Social Implications
● Efficient handheld calculations
● Simplifies problems and tasks
● Organizes and tracks calculations, making error-prone hand

calculations more obsolete

Improvements in:
● Education
● Business
● Scientific research
● Overall study of mathematics

The Platform - Processor
The calculator utilizes an
Atmel AT91SAM7L128
processor. To the right is
a block diagram, and
below is a picture of the
processor.

The Platform - LCD
The calculator has
a large 2-line
display which can
show up to 12
numbers at once.

The Platform - Keyboard
When a key is pressed,
one pin is shorted for the
column, and another pin is
shorted for the row. This
is how we are able to read
which key is pressed.

The Software Architecture
void lcd_print_int_neg(int n)

- function prints out the desired number

int keyboard_key()
- returns the pressed key

main.c
- allows the display for the correct character for keyboard_key()
- holds and organizes the stack for calculations

The Software Details

The process began with writing the software to display a
desired number on the calculator's screen.

Lab 1 - Goal

Lab 1 - Code
In hello.c - int main()
int main()
{

lcd_init();

void lcd_print_int_neg(int n)
{

// checks to see if the number is negative
int isNegative = 0;
if(n < 0)
{

isNegative = 1;
n = n*(-1);
// make the negative number positive

}

// counter keeps track of the column
int columnCounter = 0;
// while then number doesn't equal 0, we keep
// printing out the next digit in a new column
if(n != 0) {

while(n!= 0 && columnCounter < 11) {
int d = n%10;
lcd_put_char7(48+d, 11-columnCounter);
n = n/10;
columnCounter++;

}
// if the number was negative, we then add a negative
// sign in front of the number's absolute value
if(isNegative == 1)

lcd_put_char7('-', 11-columnCounter);
}
else // for if the number equals 0

lcd_put_char7(48 , 11);
}
}

We then wrote a code which would respond to a pressed
key by displaying the key on the calculator screen.

Lab 2 - Goal

Lab 2 - Code
In keyboard.c - int keyboard_key()
int keyboard_key()
{

keyboard_init(); // sets all columns high
int row;
for(row = 0; row <6; row++)
{

int col;
for(col = 0; col<7; col++)
{

keyboard_column_low(col);
// goes through each column and sets it low
if(!keyboard_row_read(row))
// reads the column, and if row is high

return row * 10 + col;
keyboard_column_high(col);

}
}
return -1;

}

In main.c - int main
char calculator[7][6] = { {'N', 'I', 'P', 'M', 'F', 'A'}, {'C', 'R',
'V', 'B', '%', 'L'}, {'T', '(', ')', '/', '<', ' '}, {'U', '7', '8', '9', '/', ' '},
{'D', '4', '5', '6', '*', ' '}, {'S', '1', '2', '3', '-', ' '}, {' ', '0', '.', '=',
'+', ' '}};

for(;;) // makes the for loop run forever
{
 int key = keyboard_key(); // receives the pressed key
 if(key != -1)
 {

row = key/10;
col = key%10;

 char chosen = calculator[col][row];
// goes through the array to find the pressed key

 lcd_put_char7(chosen, 4);
 // displays the pressed key

 }
 }

Next, we worked on a code which would allow users to
enter and edit numbers.

Lab 3 - Goal

Lab 3 - Code
In keyboard.c - int keyboard_key()
void keyboard_get_entry(struct entry *result)
{
 // set number to MAX_INT for when the user enters an
operation key without entering a number
 int number = INT_MAX;
 int pressedKey;
 int negative = 0;

 // runs
 for(;;)
 {
 pressedKey = keyboard_key();

 // once a key is pressed, then go through if statement.
 if(pressedKey != -1)
 {

switch(pressedKey) {
// if user enters an operation key, or INPUT
case '/': case '*': case '+': case '-': case '\r':
result->operation = pressedKey;
result->number = negative ? -number : number;
// if user enters an operation key without entering
a
//number
return;

Lab 3 - Code (continued)
// if the user enter a number
case '0': case '1': case '2': case '3': case '4': case '5':
case '6': case '7': case '8': case '9':
// if a number has not been entered already,
// then number = INT_MAX
if(number == INT_MAX)
{

number = pressedKey - '0';
lcd_print_int_neg(negative, number);

}
// if a number has been entered already
else
{

number = number*10 + (pressedKey - '0');
 lcd_print_int_neg(negative, number);

 }
 break;

// if the user wants to make the number negative
case '~':
negative = !negative;
number = 0;
break;

// if the user wants to erase the last character inputted
case '\b':
number /= 10;
break;
 }
}
// this is in case the user pushes the key for an extended
// period of time so that the if statement doesn't keep
// resetting what number is set to

while(pressedKey != -1)

pressedKey = keyboard_key();
}

Finally, we wrote the code which would allow user to
perform calculations using reverse Polish notation.

Lab 4 - Goal

Lab 4 - Code
In main.c - int main() :
lcd_print7("PRESS");
int stack[100]; // create a stack size 100
int pointer = -1;
// runs
for (;;) {
 keyboard_get_entry(&entry);
 lcd_put_char7(entry.operation, 0);
 // prints out the operation key this is in case the user
 // pushes the key for an extended period of time so
that
 // the for loop doesn't keep resetting what
pressedKey
 // is set to
 int pressedKey = keyboard_key();
 while(pressedKey != 0)

pressedKey = keyboard_key();

// if the new entry number does not equal the maximum
// number, then we add it to the stack, and move the
// pointer to the left by one place
int newNumber = entry.number;
if(newNumber != INT_MAX)
{
 pointer++;
 stack[pointer] = newNumber;
}
// first check, if the pointer is not at 0, and the operation
is
// not input, then "Error" will be printed out.
if(pointer == 0 && entry.operation != '\r')
 lcd_print7("Error");

Lab 4 - Code (continued)
// if this is not the case, then move on with the operations if
// the operation is not input
else if(entry.operation != '\r')
{
 pointer--;
 switch(entry.operation){

case '+': stack[pointer] = stack[pointer] + stack[pointer+1]; break;
case '-': stack[pointer] = stack[pointer] - stack[pointer+1]; break;
case '*': stack[pointer] = stack[pointer] * stack[pointer+1]; break;
case '/': stack[pointer] = stack[pointer] / stack[pointer+1]; break;

}
lcd_print_int(stack[pointer]); // prints out the result

}

}

The Lessons Learned
● how to edit prewritten code to accomplish a given goal
● to fully understand a process before beginning to code
● to be accurate is to be efficient (bugs are not good)
● to consider all possible scenarios while coding

The Criticisms of the Course
● We would have appreciated an intro to C++

before we began the first lab
● The course assumes that everyone knows

computer programming

