
  

 
 

 

COMS W4115 – Fall 2011 

Prof. Stephen Edwards 

Language Reference Manual 

 

Eric Chao | [ehc2129] 

Susan Fung | [sgf2110] 

Jim Huang | [jzh2103] 

Jack Shi | [xs2139] 

 

 

 

 DES CARTES 
 



COMS W4115 - Fall 2011 DES CARTES 
  page 2 

   
 

  

Introduction 

Card games have been a popular form of entertainment for centuries, evolving from the 
traditional 52 unique cards (Poker) to over 10000 unique cards (Magic the Gathering).  
Descartes is a specialized computer language specifically designed to allow the easy 
creation of simple card games that use the standard 52-card deck. This Language 
Reference Manual is intended to help developers understand how to develop their own 
card game using this language and also describes the different components in the 
language that can be used. 

Printing 

To print constants, use the print keyword. Commas between constants denote adding 
spaces. Integers and Booleans are automatically converted to Strings and printed. 
Expressions that can be evaluated to constants are evaluated and printed. When calling 
print on nonconstant objects, the toString method is called on the object and the 
returned value is printed. 
 
Example: 

String A = “100”; 
int i = 999; 
 
print i,“-”,A, “=”, 999-100; 
 
Output: 
999 – 100 = 899 

Lexical Convention 

There are four types of tokens that Descartes uses: comments, identifiers, constants and 
keywords.  Blanks, tabs, newlines, and comments are ignored unless used as token 
separators.  At least one of these characters must be used to separate the other adjacent 
tokens. 

Comments 

Comments start with the characters /* and are terminated with */ 
     
Examples: 



COMS W4115 - Fall 2011 DES CARTES 
  page 3 

   
 

  

    /* This is a comment */ 
    /* This is  
 
   a multi-line 
 
    comment */ 

Identifiers 

An identifier is a sequence of letters, numbers, and/or underscore characters ‘_’.  The 
identifier must start with a character.  Upper and lower case letters are considered 
different.  For example, the identifier “cat” is different from “Cat.” 
 

Constants 

There are several types of constants: integer, string, escape, boolean, tuple and list.    

Integer constants 

 An integer constant is a sequence of digits. 

String constants 

A string constant is a sequence of characters enclosed in double quotes (“).  If the string 
needs a double quote to be part of the string, it must use the escape constant with a 
back slash (\”). 

Escape constants 

An escape constant is a special string constant of 1 or 2 characters preceded by a 
backslash. Without a backslash, they would be regular string constants: 

 

Escape constant Description 

\n new line 



COMS W4115 - Fall 2011 DES CARTES 
  page 4 

   
 

  

\t tab 

\’ single quote 

\” double quote 

\\ back slash 

 
 

 

Boolean constants 

 
A boolean constant is used to define whether an expression is true or false. It has either 
a true or false value.  As an alternative, the integer constant 0 can be used in place of 
true and any other integer constant can be used to represent false. 

 

Tuple constants 

A tuple constant is an ordered set of string, boolean, or integer constants separated by 
commas and enclosed in parenthesis except when included in a list as stated below.  
 
Example: 

tuple a = (1,2); 
tuple b = (“alpha”,100); 
tuple c = (true, false); 
 

List constants 

A list constant is an immutable sequence of the same data type.  It is defined by placing 
the list items in brackets using a semicolon to separate each item.  A List can contain 
tuple constants which are represented as comma-separated-values without a parenthesis. 
 
 
Example: 
 
List aList = [1;2;3;4];  /* This is a list of 4 integers */   



COMS W4115 - Fall 2011 DES CARTES 
  page 5 

   
 

  

 
List a = [1,2; 3,4; 5,6]; /* This is a list of 3 tuples */ 
 

Keywords 

The following identifiers are reserved as keywords and cannot be used other than its sole 
purpose: 

int break for String true 

char continue while List false 

null if switch  goto boolean 

return else extend case default 

print     

 

Default Object Types 

Descartes includes default object types that allow the creation of representations of 

simple games that use the standard 52-card deck. These objects are Card, CardStack, 
Player, Field and Game. These objects can be customized for a specific card game.  
 

 

Card 
This object represents a card to be played in the game. 
 

Functions Description 

initialize(String value) Returns a card object. Takes in a String value (“5H”). 

toString() Returns a printable descriptive string representation of 
the object. (“5H”) 

getValue() Returns the value (A,2,3…J,Q,K) of the card as a string. 

getSuit() Returns the suit (spades, hearts, diamonds or clubs) of 
the card as a String 

getSuitLetter() Returns the suit (S, H, D, or C) of the card as a 1-



COMS W4115 - Fall 2011 DES CARTES 
  page 6 

   
 

  

character String 

getColor() Returns the color (black or red) of the card as a String 

getColorLetter() Returns the color (B or R) of the card as a 1-character 
String 

getVisibility() Returns a list of Players that can see this card 

setVisibility(Player []) Sets which players have access to the card. It takes an 
array of Player objects as a parameter 

removeVisibility(Player 
[]) 

Revokes players’ access to the card. It takes an array of 
Player objects as a parameter 

 

Cards are compared based on value and suit. Equal comparisons are based on suit and value. 

Less than and more than comparisons are based on value. 

You can also use shorthand Card A = (Card) “S5” instead of Card A = Card.initialize(“S5”) 

Examples: 

Card A = Card.initialize(“S5”); 

String x = A.getValue(); 

String y = A.getSuit(); 

String z = A.getColor(); 

print x,y,z; 

 

Output: 

5 S black 

 

CardStack 

A card stack can be the deck of the card or an individual hand that a player has. 

 



COMS W4115 - Fall 2011 DES CARTES 
  page 7 

   
 

  

Functions Description 

initialize(int) Generates a cardStack object. This is to represent either 

a deck to pick from or an individual player’s hand. Must 
be called first to declare. It takes an integer as a 
parameter that defines how many cards to create in this 
stack.  

toString() Returns a printable string representation of the object. 

setPoints(int) This is how many points the card stack is worth. It takes 
an integer as a parameter 

getPoints() Returns the number of points in the card stack 

changePoints(int) Takes in an integer and changes the number of points by 

that number. 

addCard(Card, int) Adds a Card to the stack. It takes a Card object as a 

parameter and an int to represent where in the stack to 
add the card. 

getCard(String) Returns a Card in the stack. It takes a String, the value 
of the card, as a parameter. 

drawCard() Removes the first Card off the stack and returns a Card 
object  

drawCard(int) Takes a positive integer as a parameter and returns that 
many Card objects in reverse order. 

shuffle() Randomizes the sequence of the cards in the card stack 

reverse() Reverses the current sequence of cards in the card stack 

contain(Card) Returns a boolean whether a card is in the stack or not. 
It takes a Card object as a parameter 

setVisibility(Player []) Sets which players have access to the cards in the card 
stack. This is the default access if the individual access 
in the Card objects is not set. It takes an array of Player 

objects as a parameter 

removeVisibility(Player 

[]) 

Revokes players’ access to the cards in the stack. It 

takes an array of Player objects as a parameter 

getVisibility() Returns an array of Players that can access this card 



COMS W4115 - Fall 2011 DES CARTES 
  page 8 

   
 

  

stack 

size() Returns an integer that describes the size of the card 

stack 

default() Generates the CardStack with the default 52-card deck 

 
CardStacks support the plus (+) and minus (-) operators.  

 

The addition operator adds CardStacks together in order, as if the right CardStack is stacked 

on top of the left one. 

Example: 

CardStack deck = CardStack.default() + CardStack.default(); 

 

The subtract operator removes Cards and is the same as getCard. 

Example: 

CardStack A = CardStack.default(); 

print (A.getCard(“A5”) == A-“A6”); 

Output: 

False 

 

Player 

A player is the person involved in a game. It can be a dealer or any participant of the 
game. 
 

Functions Description 

setName(String) Sets who the player’s name. It takes a string as a 
parameter 

getName() Returns the name of the player 

setBetSize(int) Sets the current size of the bet the user wishes to 
place. If not set, the default is 0 meaning that no bet is 
required for the game. 

getBetSize() Returns the size of the bet 

setPoints(int) Sets the total points in the player has. If not set, the 
default is 0. It takes an integer as a parameter. 



COMS W4115 - Fall 2011 DES CARTES 
  page 9 

   
 

  

getPoints() Returns an int that describes the total points a player 
has. 

setPlayerType(String) Sets the type of player. It takes a string as a 
parameter. Some examples of player types are 
“dealer”, “team A” 

getPlayerType() Returns a string to represent the type of the player 

setCardStack(CardStack) Sets the hand that the player holds. It takes a 
CardStack as a parameter 

getCardStack() Returns a CardStack that represents the player’s hand 

 

Field 
This object will help in dividing a board game if needed. 
 

Functions Description 

setName(String) Sets what the field’s name. It takes a string as a 
parameter 

getName() Returns a string that represents the field’s name 

setValue(String) Sets the value of the field. It takes a string as a 
parameter 

getValue() Returns a string that represents the value of the field 

setPosition(int) Takes in an integer representing the position of the 
field. Possible values are integers from 0 to 9 and the 
positions correspond to the same positions of the 
numbers on a standard keyboard numeric keypad. 
This corresponds to where the CardStacks of this field 
are printed. The default position is 0 which denotes 
that the CardStack is not printed. 

getPosition() Returns the position as an integer value. 

addCardStack(CardStack) Adds a CardStack to the Field. 

getCardStack() Returns an array of CardStacks in the Field in order. 

removeCardStack(int) Removes a CardStack from the Field. 



COMS W4115 - Fall 2011 DES CARTES 
  page 10 

   
 

  

setCardStack(CardStack[]) Sets the Field’s CardStacks to an array of given 
CardStacks. 

 

Game 

This is the core of the card game. It encapsulates all the required elements that make up 
a card game.  
 

Functions Description 

getPlayers() Returns the List of Player objects currently in the game 

setBetSize(int) Sets the size of the bet for a given game. It takes an int as a 
parameter. If not set, the default is 0 meaning that no bet is 
required for the game. 

getBetSize() Returns an int that represents the size of the bet for a given 
game 

end() This stops/finishes the game and determines the winner. It 
returns a Player object 

start() This starts the game. 

nextTurn() This will control the order that the Players go. This returns 
the Player object 

move(Card, 
CardStack, 
CardStack) 

This will move a Card Object from one card stack to another 
card stack. It removes the card in the second parameter 
(CardStack) to the third parameter (CardStack) 

setTurnOrder(List 
Player) 

This sets the order the players’ turn in the game. It takes a 
Player List as a a parameter  

getTurnOrder() Returns a List of Player objects to represent the order that 
the players are playing in 

setFields(Field[]) Takes in an array of Fields and adds them to the Game. 
There must be no Fields with the same printed position 
(multiple Fields can have position 0. 

print() prints the CardStacks according to Fields. 

 



COMS W4115 - Fall 2011 DES CARTES 
  page 11 

   
 

  

Conversions 
The cast operator can be used to convert numerical types (int) into string and the 
reverse. It can also convert Cards to Strings and the reverse. 
 
(String) 122 will convert into “122” 
(int) “122” will convert into 122 
(String) Card.initialize(“A5”) will convert into A5. 
(Card) “A5” will convert into the corresponding card. 
 

Primary Expressions 
 

The primary expressions in Descartes are identifiers, constants, strings, and expressions 
contained inside parentheses. 
 
primary_expression: 
identifier 
constant 
literal 
(expression) 
 
An identifier is a primary expression only if it has the lexical conventions as defined in 
section Identifiers. Each identifier must have a type, which is determined by its 
declaration. 
 
A constant is a primary expression only if it has the lexical conventions as defined in 
Constants section and is one of the types defined in Descartes. 

 
A literal is a primary expression that has the primitive type string. It must follow the 
lexical conventions of the type string as defined in String Constants section and is 
immutable. 
 
An expression contained inside parentheses is a primary expression that has the same 
type and value as that not contained inside parentheses. The parentheses are only used 
to administer order of operations.  
 

Unary Operators 

 
unary_expression:    unary_operator: one of 
 postfix_expression     + 
 unary_operator expression    - 
        ! 
 
 
  



COMS W4115 - Fall 2011 DES CARTES 
  page 12 

   
 

  

 
The unary plus operator (+) must have an operand of an arithmetic type. The type and 
value of the result are consistent with those of the operand. 
 
The unary minus operator (-) must have an operand of an arithmetic type. The type of 
the result is consistent with that of the operand. The value of the result is the negative 
value of the operand. 
 
The unary negation operator (!) must have an operand of boolean type. The type of the 
result is boolean and the result is true if the value of the operand compares equal to 
false and the result is false if the value of the operand compares equal to true. 
 

Cast Operators 

 
cast_expression: 
 unary_expression 
 (type_name) cast_expression 
 
The cast operator will convert the expression after the parentheses to the desired type 
specified in the parentheses before. It only operates on the unary expression 

immediately following the operator unless parentheses are used to alter. 
 

Multiplicative Operators 

 
multiplicative_expression: 
 unary_expression 
 multiplicative_expression * unary_expression 
 multiplicative_expression / unary_expression 
 multiplicative_expression % unary_expression 
 
The multiplicative operator * evaluates from left to right and denotes multiplication. The 
* operator can only take integers as operands and is a binary operator. The result is the 
expected arithmetic calculation, which is an integer. 

 
The multiplicative operator / evaluates from left to right and denotes division. The / 
operator can only take integers as operands and is a binary operator. The result is integer 
quotient for integer operands.  
 
The multiplicative operator % evaluates from left to right and denotes the modulus 
function. The % operator can only take integers as operands and is a binary operator. The 
result is an integer remainder of the division of the first operand by the second. 
Additive Operators 
 



COMS W4115 - Fall 2011 DES CARTES 
  page 13 

   
 

  

additive_expression: 
 multiplicative_expression 
 additive_expression + multiplicative_expression 
 additive_expression – multiplicative_expression 
 
The additive operator + evaluates from left to right and denotes addition. The + operator 
can only have integers as operands. It is a binary operator, so both operands must only be 
integers. The + operator also denotes string concatenation, but only if both operands are 
or string type. 
 
The additive operator - evaluates from left to right and denotes subtraction. The -
operator can only have integers and floats as operands separately. It is a binary operator, 
so both operands must only be integers or only floats. 
 

Relational Operators 

 
Relational expressions can only evaluate to the result of true or false, which can be 
expressed as 1 an 0, respectively. 
 
relational_expression: 

 additive_expression 
 relational_expression < additive_expresion 
 relational_expression > additive_expression 
 relational_expression <= additive_expression 
 relational_expression >= additive_expression 
 
The relational operator < evaluates left to right and denotes less than. The < operator 
can only have integers as operands. The result, if the expression evaluates to true will be 
integer 1 and the result, if the expression evaluates to false will be integer 0. 
 
The relational operator > evaluates from left to right and denotes greater than. The > 
operator can only have integers as operands. The result, if the expression evaluates to 
true will be integer 1 and the result, if the expression evaluates to false will be integer 
0. 
 
The relational operator <= evaluates from left to right and denotes less than or equal to. 
The <= operator can only have integers as operands. The result, if the expression 
evaluates to true will be integer 1 and the result, if the expression evaluates to false will 

be integer 0. 
 
The relational operator >= evaluates from left to right and denotes greater than or equal 
to. The >= operator can only have integers as operands. The result, if the expression 
evaluates to true will be integer 1 and the result, if the expression evaluates to false will 
be integer 0. 



COMS W4115 - Fall 2011 DES CARTES 
  page 14 

   
 

  

 

Equality Operators 

 
equality_expression: 
 relational_expression 

 equality_expression == relational_expression 
 equality_expression != relational_expression 
 
The equality operator == evaluates from left to right and result in true or false, which 
can be expressed as integer 1 and integer 0, respectively. The == operator denotes equal 
to and accepts integers and strings as operands. The result, if the expression evaluates to 
true will be integer 1 and the result, if the expression evaluates to false will be the 
integer 0. 
 
The equality operator != evaluates from left to right and result in true or false, which can 
be expressed as integer 1 and integer 0, respectively. The != operator denotes not equal 
to and accepts integers and strings as operands. The result, if the expression evaluates to 
true will be integer 1 and the result, if the expression evaluates to false will be the 
integer 0. 
 
In Descartes, equality operators only compare by value. 
 

Logical AND Operator 
 
logical_AND_expression: 
 equality_expression 
 (logical_AND_expression AND equality_expression) 
 
The logical AND operator is represented by &&. If the expression evaluates to true, the 
result will be integer 1 and if the expression evaluates to false, the result will be integer 
0. The parentheses are required for the logical AND expression. 
 

Logical OR Operator 
 
logical_OR_expression: 
 logical_AND_expression 
 (logical_OR_expression OR logical_AND_expression) 
 
The logical OR operator is represented by ||. If the expression evaluates to true, the 
result will be integer 1 and if the expression evaluates to false, the result will be integer 
0. The parentheses are required for the logical OR expression. 
 

Assignment Operator 



COMS W4115 - Fall 2011 DES CARTES 
  page 15 

   
 

  

 
expression: 
 logical_OR_expression 
 unary_expression assignment_operator expression 
 
The assignment operator is represented by =. The type of the left operand must be the 
end type of the operand on the right. The value that the expression on the right 
evaluates to replaces the value of the left operand. 
 

Declarations 
 

Declarations are used within function definitions to specify the interpretation of each 

identifier. A declaration is composed of declaration-specifiers (one or two) and the 

necessary declarator list (any number one or more). 

 

Form: 

declaration-specifiers declarator-list; 

 

Sample: 

List lista; 

List lista, listb; 

 

The declarator-list contains a number of comma-separated identifiers being specified. 

The declaration-specifier consists of optional storage specifiers and one type-specifier. 

 

Form: 

storage–specifier type-specifier 

 

Sample: 

static final List lista; 

 

Storage Specifier 
 

The possibilities are: 

static - Shared by any instance of the class 

no-modifier - Unique to that class 

final - Cannot be changed, immutable. 

 



COMS W4115 - Fall 2011 DES CARTES 
  page 16 

   
 

  

Type-Specifiers 

 

int 

boolean 

String 

List 

standard and user-defined types 

 

 

Declarators 

 

The declarator-list appearing in a declaration is a comma-separated sequence of 

declarators. 

 

Form: 

declarator 

declarator, declarator-list 

 

The specifiers in the declaration indicate the type and storage of the objects to which 

the declarators refer. 

 

Declarator Form: 

identifier 

declarator [constant-expression] or declarator[] 

 

 

Meaning of declarators 

 

Each declarator is an assertion that when the declarator form is used in an expression, it 

yields an object of the specified type and storage. Each declarator is declaring one 

identifier and if an identifier without specifiers appears as a declarator in a declarator-

list, then it has the type indicated by the specifier heading the declarator list. 

 

A declarator may have the form 

D[constant-expression] or D[ ] 

The constant expression represents the a compile-time-determinable value whose type is 

int and defaults to 1 if left blank. This generates an array of the type of the declarator 



COMS W4115 - Fall 2011 DES CARTES 
  page 17 

   
 

  

identified by the identifier. 

 

Some restrictions are: functions may not return functions and there are no arrays of 

functions.  

Statements 
 

Statements in DesCartes are executed sequentially unless otherwise noted. There are 

several different types of statements. 

 

 

Expression Statement 

 

The majority of statements in DesCartes are expression statements, which typically make 

assignments or call functions. The format of the expression statement is: 

 

expression; 

 

 

Compound Statement 

 

A sequence of statements can be executed where one is expected by using the compound 

statement: 

 

compound-statement: 

{ statement-list } 

 

statement-list: 

statement 

statement statement-list 

 

 

If Statement 

 

There are two basic conditional statements in DesCartes: 

 

if ( expression ) statement 

if ( expression ) statement else statement 



COMS W4115 - Fall 2011 DES CARTES 
  page 18 

   
 

  

 

In both cases, the expression is evaluated first. If it is true, the following statement is 

executed. If it is false, the first conditional statement does not do anything but the 

second conditional statement executes the statement indicated by else. 

 

While Statement 

 

The while statement allows for looping over a statement until a certain condition is no 

longer valid. The format is as follows: 

 

while ( expression ) statement 

 

The statement is executed repeatedly until the expression is no longer true. The test of 

the expression happens before each statement is executed. 

 

For Statement 

 

The for statement is another looping statement with the following format: 

 

for (expression-1; expression-2; expression-3) statement 

 

It is equivalent to: 

 

expression-1; 

while (expression-2) { 

statement 

expression-3; 

} 

 

Expression-1 initializes the loop. Expression-2 sets the condition of the loop that is tested 

each time the loop starts. Expression-3 usually determines the increment value that is 

considered after each iteration, which allows for looping over the statement a finite 

number of times. 

 

Any or all of the expressions in the for statement may be dropped, resulting in the for 

statement’s equivalent without the dropped expressions. 



COMS W4115 - Fall 2011 DES CARTES 
  page 19 

   
 

  

 

 

Switch Statement 

 

The switch statement allows for multiple execution paths based on the value of a single 

expression. 

 

switch ( expression ) statement 

 

With the expression being a primitive type, the switch statement leads to the following 

statement, which is typically compound. The statements within the compound statement 

are typically of the following forms: 

 

case expression 

default expression 

 

Depending on the expression, one of the case constants will be executed. They are 

checked in an undefined order. If none of the case constants are satisfied, then the 

default constant will execute. If there is no default constant, then nothing happens. Two 

case constants cannot have the same value. 

 

Here is an example. The formatting is as follows: 

 

int month = 8; 

String monthString; 

switch (month) { 

case 1: monthString = "January"; 

case 2: monthString = "February"; 

case 3: monthString = "March"; 

case 4: monthString = "April"; 

case 5: monthString = "May"; 

case 6: monthString = "June"; 

case 7: monthString = "July"; 

case 8: monthString = "August"; 

case 9: monthString = "September"; 

case 10: monthString = "October"; 

case 11: monthString = "November"; 



COMS W4115 - Fall 2011 DES CARTES 
  page 20 

   
 

  

case 12: monthString = "December"; 

default: monthString = "Invalid month"; 

} 

 

 

Break Statement 

 

The break statement terminates the smallest while, do, for, or switch statement and 

allows for the execution of the statement following the terminated statement. 

 

Form: 

break; 

 

 

Continue Statement 

 

The continue statement skips the current iteration of a while, do, or for statement. 

 

Form: 

continue; 

 

Return Statement 

 

A return statement allows a function to return to its caller. The two forms are: 

 

Form: 

return; 

return ( expression ); 

 

In the second case, the value of the expression is returned to the caller, converted to the 

proper type if needed. Note that transferring flow to the end of a function is equivalent 

to the first case. 

Scope Rules 

 

The lexical scope of an identifier is the region of a program during which it may be used. 



COMS W4115 - Fall 2011 DES CARTES 
  page 21 

   
 

  

The lexical scope of external definitions, those outside functions and compound 

statements, extends from their definition to the end of the file. The lexical scope of 

names declared at the head of functions is limited to the body of the function. Declaring 

identifiers already declared in the current scope will cause an error. 

Special Compiler Commands 

 

Special Compiler Commands 

This is an explanation of some special compiler commands not especially treated 

elsewhere in this document. 

 

Token replacement (static final) 

A compiler-control line of the form: 

Static final identifier token-string 

 

Without a trailing semicolon will cause the compiler to replace all instances of the 

identifier after this line with the string of tokens, given that the string of tokens is a 

constant. This is the same as Java’s static final declaration. The replacement token-

string has comments removed from it, and it is surrounded with blanks. It is treated as a 

constant. 

 

Sample: 

static final size 100 

int List[size]; 

Multiple Classes 

To include other classes or files, use the import statement. 

 

Form: 

import "filename”; 

Compiling and Running a program 



COMS W4115 - Fall 2011 DES CARTES 
  page 22 

   
 

  

Our language will be compiled to a java program so sample command-line instructions 

can be: 

 

desc Texas.des -> Creates a Texas.java 

javac Texas.java -> Creates a Texas.class 

java Texas -> Runs the Texas java program. 

 

“desc” will compile a “.des” Descartes program into a JAVA file. 

Then, JAVA-related commands “javac” and “java” will respectively compile a java 

program into a JAVA class and run the compiled JAVA program. 

 

The rationale for this is  

1) Our language is built to be similar to JAVA but specialized for a game using a 52-card 

standard deck and compiled by/written using O’Caml. 

2) JAVA is universal and there is a high chance that the JAVA runtime environment is 

already installed in the machines on which our language is used. 

Example 

 
This sample code shows what the setup for a game of Texas Hold’Em might look like: 
 
Texas 
{ 
 CardStack deck, p1Hand, p2Hand; 
 Player[] players;  
 Game(int numPlayers) 
 { 
  /* If number of players is not 2, print “Wrong number of players.” and quit.*/ 

  if(numPlayers!=2) 
  { 
   print "Wrong number of players."; 
   end(); 
  } 
  /* Create a deck composing of 2 default 52 card decks. */ 
  CardStack Deck1 = CardStack.default().shuffle();  
  CardStack Deck2 = CardStack.default().shuffle(); 
  CardStack deck = Deck1 + Deck2; 
  deck.visibility = []; 
  /* Initialize players and hands with default visibility. */ 
  Player P1 = Player(); 
  Player P2 = Player(); 



COMS W4115 - Fall 2011 DES CARTES 
  page 23 

   
 

  

  players = [P1;P2]; 
  p1Hand.visibility = [P1]; 
  P1.setCardStack(p1Hand); 
  p2Hand.visibility = [P2]; 
  P2.setCardStack(p2Hand); 
  /* Deal card to each player. */ 
  Deal(2, [p1Hand,p2Hand]); 
 } 
  
 /* Deal function. Moves numCards from top of deck to designated card stack.*/ 
 Deal(int numCards, CardStack[] cardStacks) 
 { 
  /* For each card stack, move numCards from deck to that stack. */ 
  for(int i = 0; i < cardStack.size(); i++) 
  { 
   deck.drawCard(numCards)>> cardStack[i]; 
  } 

 } 
} 

 


