
Scirch

Circuit Simulation Language

s

By:
Jeff Sinckler
Brian Hunter

Problem Statement

Circuits are tedious to analyze.
How can we make this a little bit easier?

The inspiration for Scirch

Scirch (The Ideal Version)
Scirch is a Circuit Simulation Language.
Scirch allows users to build individual circuits.

These circuits can be used as components for the main
circuit.

Inputs are able to be named and passed into these circuits.
Return values from circuit components can also be stored
and passed into other circuits.
Basic gates (and, or, not, nand, nor) are built into the
language and provided with special characters.
Multiplexers and Encoders are also built into the language
and provided to users.
Testing functions are provided to users

Pass in a circuit and see results for all possible inputs to
the circuit.

Scirch (What actually exists)

Basic code compiler.
Allows users to create functions (which are supposed to
represent circuits)

Functions return values corresponding with the last
calculation performed.

Store outputs of gates in variables.
Call/use those variables in other logic calculations.

Print outputs of values to the console.
Generate and print bytecode listing.
Generate and run bytecode.
No types. All variables hold integers.

Scirch Syntax

Scirch is not interactive; source code must be placed in a
file.
Main function declared inside curly braces

{ main function text here; }
Other functions declared before main function

Functions declared with a name followed by curly
braces.
sampleFunction{ function body here; }

Functions called using parenthesis
 { sampleFunction(); } </ Calling sampleFunction() in the
main function />

Scirch Syntax
Variables declared in functions, in the main, or globally.

sampleFunction{ declare sampleVar; } </ Variable
declared in function />
{ sampleVar = 1; } </ Variable declared in main function
/>
If a variable is being initialized without a value, use the
declare keyword.
If a variable is being set, do not include the declare
keyword.

Semicolons separate statements
sampleFunction{ stmt1; stmt2; stmt3; }

Comments are placed between </ and />
</ This is a comment line! />

Scirch Syntax

Variables declared globally are defined outside of any
function.

sampleFunction{0^0; sampleVar = 0;}
declare sampleVar;
{sampleVar = 1; sampleFunction(); print(sampleVar);}
All functions, including sampleFunction() can access and
modify sampleVar.
Allows multiple values to be returned from a function.

Running Scirch

The command line scirch executable takes two arguments.
Arg1: Selects what exactly you want Scirch to do with
your code.
Arg2: Specifies the location of the source file that you
want Scirch to work with.

Command line syntax:
./scirch [-i | -c | -e] <file path>
The arguments cannot be ignored. Must be run with both
an option and a filename.

Scirch Arguments and Features

-i -- Interpret - Translate the source into native Scirch code
using the abstract syntax tree and execute.
-c -- Compile - Translate the source into native Scirch code
and translate that into faux bytecode. Print the bytecode.
-e -- Execute - Translate the source into bytecode and
execute the bytecode.

File Breakdown
File Name Number of Lines Purpose

gates_scanner.ml 25 Provides the tokens needed in order to parse source
files.

gates_parser.ml 53 Context free grammar that states how to reduce lines.

gates_ast.ml 32 Abstract syntax tree that provides types used in the
background by scirch.

gates_main.ml 33 Holds the functions that perform appropriate actions on
lists of translated source code.

firstgates2.ml 20 Library file that holds the functions for the five basic
gates in Scirch.

compile.ml 29 Holds the code that translates a list of commands into
bytecode.

execute.ml 32 Holds the functions that perform the appropriate actions
on the bytecode generated from the source list

bytecode.ml 13 Abstract syntax tree that provides types used in the
background by scirch after translating to bytecode.

scirch.ml 32 Top level of scirch.

How it works in Ocaml

Summary

In making Scirch, we made many decisions with realistic
circuit development in mind.
Scirch doesn't have everything imagined, but still worked
out to be an acceptible compiler that translates text into
executable code of different forms.

Learned Ocaml (functional programming languages)
Experienced Lambda Calculus
Learned how bytecode works and how a compiler can
(possibly) translate it.

Gives a different perspective on how to program,
what programs can do, and how to make them do it.

