THE FILE JOURNALING LANGUAGE (FJL)

COMS w4115
Programming Languages and Translators
Summer 2007

John Petrella
jep2l24@columbia.edu

Table of Contents

Introduction: The Whitepaperttt ittt ittt 4
7= T 4
Y i ot = 4
@ it s Y 4
I wit= Y L 5

Language Tutorialttt ittt ittt tneeeeneeeeneeeeneeeeneens 6

Language Reference Manualttt tiintinennennenennenneas 9

Lexical ConveNnT ion S .t it it ittt et e e et e e e e e e e e e e e e et et et 9

(@) 11111 'o X it 9
0 1 o e i == 9
LS 7A@ 3 ate = P 9
[L0 T 9
Wit SPACE vttt ittt ittt et ettt ee s et e taeeeeeeeeeeeeeaeeneeaeeas 10
S w1 Y 10
@Y <=3 o 1= 10

174 1= T 10
0 10
D e 10
= = i 10
e 10
o B 11

g ot Y= e) o 11
0 1S o e e == 11
SEring Constant s it ittt ittt ittt ettt ittt ettt e 11
Number Constant s .. i ittt ittt ettt ettt ettt eeeeeeeneensensensenns 11
Element EXPreSSion ACCESS v vttt tneeneeneeeeeeeeeeoeeneeneenns 11
ReguUlar EXPTr eSS IiONS vt vttt ittt tetneeneeneeneeeeeeeeeeoeeneeaeenns 11
(@] €7 S ar= N A S 11

Arithmetic OpPerator S v i vttt ittt et ittt et eeeeeeeeneeneeaeeans 11
Relational Operator s i v vt i ittt ettt eteeeeeeeeeeeeeeeeeeeeenan 12
Logical OpPerator S v it ittt ettt et ettt ettt et eeeeeeeeeeaeeeea 12
Regular EXpPression Operator S ..t iieeeeeeeeeeeeeeoeeneeneenens 12

R = = 0110wl 12
DY A= = i 1 @) o 1= 12
I D i o 13

Loop Statements ..ttt ittt i e e e e e e e e ettt e e e 13

Conditional Statementsttt ittt ittt ettt eeeeeaeeeeneens 13
Print Statement s ... ittt it e et e e e e e e e e e e e e e e e e e e 13
Println Statement s ...ttt ettt e e e e e e e e e e e e e e e e 13
Readfile Statement s ...ttt ittt ittt et eeeeeseesansaneans 14
Readdir Statements ...ttt ittt ettt eeeeenensansaneans 14
Matches Statement s ittt ittt it ittt ettt tieteeeteaeeaeean 14
Exit Statement s ...ttt ittt et et et et e e e e e e e e e e e e e 15
Date Statements ...ttt it it it e e e et ettt 15

S U 5 A 15

Project Plan ...t ittt ittt ettt e e e e e e e e e e e e 16

Planning, Specification and Developmentiiiiiintintnnennenas 16

Programming Style GUIidettt ittt ettt ettt teteeteeteeeeeneean 16

ANt lr CONVENE L ONS vttt it it et et ettt ettt et ettt eeeeeeeeeeeeeeeneen 17

Java Conventions v ittt ittt ittt ettt ittt eeteeeeeeeseesansaeeans 17

€D 01t Y 17
Project Timeline .. ittt ittt ittt et ettt eeeeeeeeeeeeenoenoeeneeneeas 17
ProO el LOT ittt ittt ettt ettt et et aetaeeaeeeeeeeeeeeenoeeoeeneeaeeas 17
Team Responsibilities ...ttt ittt ettt eeeeeeeeneeeesas 18
Development Environmentttt it inteeteeeeeeeeeeeeneneenesas 18
Architectural DesSignttt ittt ittt ettt e ettt e 19
Test Plan ..ttt e e e e e e e et et e 21
Lessons Learnedttt ittt et e e e e 277
2N 03 o7 o e < 28

Introduction: The Whitepaper

In today's day and age the cost of hard drives are nominal and
has consequently created the notion of unlimited file storage. Due to
this trend, remembering a file's location in a directory structure or
keeping track of which files are living on a system has become a
chore. The use of updatedb and locate, has become cumbersome
returning a long listing of files, most of which are typically
useless. FJL was invented as a way to keep track of the files a user
owns. It is eloquent and useful, providing tailored file views
consisting of file type groupings and sorting mechanisms to
effortlessly customize a hierarchical wview. Organizing a list of your
own files has never been so easy and simply presented.

Goal:

With file storage becoming seemingly endless, the necessity to
clean up and delete less frequently used files has diminished. Files
are now kept forever and their location easily forgotten. Currently,
there is no programming language designed to help ease the burden of
remembering file location or organizing files into a personalized
representation. This has resulted in enormous amounts of wasted time
fiddling with specialized 1ls, grep, and find commands.

The main goal in the design of FJL, is to provide an easy to use
programming language that focuses on filesystem information and
provide a handy programming notion to the user. A simple, useful
organization tool for users concerned with keeping track of files
living throughout their filesystem hierarchy. The FJL programming
language will provide mechanisms to view you filesystem hierarchy in
a personalized manner. Grouping of files and sorting through files by
type or name has never been easier.

Providing a way to customize the file view of your system was
paramount in the design.

More on FJL's Features:

Building FJL meant providing data types and mechanisms to make
filesystem information readily and simply available to a programmer.
FJL developers envisioned that a mere function call should read in a
permissible directory or recursed set of directories. The FJL
language supplies this mechanism in the standard library. The
standard library provides extremely useful directed functions. The
data types in the programming language were carefully crafted to
supply the programmer with the all the file information he/she could
ever have use for.

Portability:

FJL is an interpreted language, that was developed to be
portable to all versions of Linux and Unix.

4

Details:

FJL provides several functions to enable easy access to the
filesystem. A call to readdir given a directory will read in the
directory specified and assign it to our dir type. Array mechanisms,
have been provided to access file elements in dir types. FJL has also
crafted several language specific data types. Some of the most useful
being the file and dir data types. The file data type has attributes
"name", "time" and "type" that provide an enormously simple way of
accessing details of files. While the dir data type serves as a
container for file types, it has it's own set attributes "nof"
(number of files), "1t" (last touched), and "name" to give directory
specific information. FJL also provides flow control with the usage
of while loops and if statements, which provide the looping feature
needed to access individual file attributes. Comparison operators are
also made available. Examples: A brief example of the simplicity of
the code is shown below. The example below shows how easy it is read
in the current directory. The example also groups by a particular
file type that has size over a certain threshold.

Language Tutorial

FJL was primarily designed to interface with the filesystem more
easily than ever before. Paramount in the design of FJL was the idea
that simple calls could be used to access files and there associated
attributes.

To start off we will look at a simple FJL example.

|* A Simple Example *|

int 7J;
int 1i;
fsatt word;

word = "Assign this String";

println word;

print "This is that wvalue of 1 ";
println i;
exit;

The above example is a very basic one. It details how to declare
variables. It also assigns a mathematical expression to an int and
assigns a string to fsatt type. The variables are then printed to
standard out.

The output is as follows:

Assign this String
This is that wvalue of i 30

To get a better feel of the language’s capabilities, Lets look a
little further at a more intermediate example.

| * An Intermediate Example: *|
int i;

dir first;

file foo;

first = readdir ("/home/jp/school");

while (1 < first.nof) {
foo = first[i];

print "The file name is ";
println foo;

i =14+ 1;

exit ;

The FJL program above first starts off by declaring some variable
types. Then using the built in function readdir reads files a given
directory. The wvalue of which is stored as a dir type. The dir type
is than walked by the while loop, assigning each file to “foo’. The
filename is than printed out, with the program exiting when there are
no more files held in the dir type.

The output is as follows:

The file name is plt
The file name is whim
The file name is temp

Moving on to one of the more interesting examples shows will print
all the files that do not have a‘’.txt’ file ending. It will also sum
up those that do and do not have the file name ending.

| * A More Complicated Example: *|

int did;

int didnot;

file first;

dir second;

int i;

fsatt directory;

directory="/home/jp/school/temp";
second = readdir (directory);

while (i<second.nof) {
first = second[i];
if (!'(first.name —- /[.]txt$/)){
println first.name;
didnot = didnot + 1;
} else {
did = did + 1;

}

i =14+ 1;
}
print did;

println " Did match .txt ";
print didnot;

println " Did not match .txt";

The FJL program above starts off by defining some variable types. It
then reads in a directory assigned to the fsatt type directory. The
program continues to loop over all the files in the directory and
print out the names of the files that do not have ‘.txt’ at the end
of the file using the match operator. It keeps a count of those that
match and do not match and prints out the results. The contents of

“/home/jp/school/temp” are { samplel.txt, sample2.txt, sample3.txt,
second }.

The output is as follows:

second
3 Did match .txt
1 Did not match .txt

Language Reference Manual

1. Lexical Conventions:

1.1 Comments:

FJL supports only multiple line comments.
and continue to

begin with

||*|

|*||

Multiple line comments

the comment markers are ignored by the parser.

|* This is a comment *|
| * Comments can span
Multiple lines and have tabs or other whitespace inside of the

comment tags.

*|

1.2 Identifiers:

An identifier in FJL must start with a letter.

of characters,

if any,

must be a letter,

Identifiers are case sensitive.

1.3 Keywords:

digit,

is found. Any text living inside

The following sequence
or underscore.

The following identifiers are reserved for use as keywords used in

FJL, and may not be used otherwise:
int long
type int
nof dir
1t fsatt
name else
curpath if
true while
false print
readfile println
readdir exit
file date

1.4 Numbers:

A number can only be an integer.
No decimal points or exponents are allowed.

digits.
listed below.

An integer consists of one or more

Examples are

2 223

1.5 White Space:

White space is defined as a space, tab or newline character.

1.6 Strings:

A string is sequence of one or more characters contained within
double quotes. You may not escape single quotes.

1.7 Other Tokens:

The following tokens are used by the FJL language:

$ > < _
<= ! && /
- + ’ |
n ’ ()
{ } []
- * ? \
2. Types:
FJL defines 5 different data types as follows:
int Int object which will default to 0 if not assigned.
long Long object which will default to 0 if not assigned.
fsatt Sequence of letters or a sequence of letters and
forward slashes.
file File object containing information about a particular
file.
dir Directory object is essentially an array, containing
file objects and directory information.

2.1 file:

The file type is an object descriptive of Unix files. It contains the
follow attributes:

10

name fsatt The name of a Unix file.

type fsatt The type of a Unix file.
1t int The last modified time of a Unix file.
2.2 dir:

The dir type is an object detailing directories in a Unix filesystem.
It is essentially an array of files and a few descriptive details
about the concerned directory. It contains the following attributes:

name fsatt The name of a Unix directory.
nof int The number of Unix files in a directory.
1t int The last modified time of a directory.

3. Expressions:

Expressions consist of identifiers, constants, element access,
regular expression patterns, and operators.

3.1 Identifiers:

An identifier is a left value expression. It is evaluated to the
results of a right value expression.

3.2 String Constants:

A string constant is a right value expression. It is a sequence of
characters, excluding the double quote, encased in double quotes.

3.3 Number Constants:

A number constant is a right value expression. It is an expression
that is evaluated to an int.

3.3 Element Expression Access:

Elements of dir types are accessed by naming the identifier followed
by an integer contained in left and right square brackets.

3.4 Regular Expressions:

Regular expressions are right value expressions. The expression is
compared to a left value expression and returns true or false.

3.5 Operators:

Grouping can take place by enclosing an operation in parenthesis. The
expression contained in parenthesis is evaluated left to right.

3.5.1 Arithmetic Operators:
11

The precedence follows as multiplication, division, addition, and
subtraction, respectively. These operators can only be used when
evaluating an int type.

Operators of this type are contained in the below chart:

* /

+ —

3.5.2 Relational Operators:

Their evaluated result is true or false. Type int can be evaluated by
all operators in the set.

= I = <=
=> < >
4.5.3 Logical Operators:
Their evaluated result is true or false. Logical operators make

comparisons based on Boolean types returned by expressions.

5 & | | |

4.5.4 Regular Expression Operators:

The dollar sign symbolizes the end of the string. The left and right
brackets are used for grouping of the regular expression. The forward
slash is representative of the start and end of the regular
expression.

$ (] /

5. Statements:

Statements in FJL are executed sequentially unless directed otherwise
by flow control statements.

5.1 Declarations:

Type declarations in FJL are defined as follows and listed in the
beginning of the language.

type Identifier ;

12

The identifier is assigned a type. The semicolon must be present in
the declaration.

5. 2 Flow Control Statements:

5.2.1 Loop Statements:

A looping mechanism is provided by FJL in the form of a while
statement. While statements allow you to amongst other things, walk

through directory listings gracefully. They take the following form:

while (expression) {
statement (s)
}

5.2.2 Conditional Statements:

Conditional statements use the if and else keywords and have the
following syntax:

if (expression) {
statement (s)

}

or

if (expression) {
statement (s)

} else {
statement (s)

}

5.2.4 Print Statements:

Print statements can be used any where in the program. The are used
to print the contents of a single identifier or constant.

5.2.4.1 Print:

Calling the print function will print the given identifier or

13

constant to the line.
print identifier ;
or
print constant ;
5.2.4.2 Println:

Calling the print function will print the given identifier or
constant and a newline.

println identifier ;

or

println constant ;
5.2.5 Readfile Statements:
Readfile statements are used to change to another directory. The
function is called with an identifier or string constant contained in
parenthesis. It returns a value of type fsatt representing the name
of the current directory. The syntax is as follows:

file fl= readfile(identifier) ;

or

file £f1 = readfile(String constant) ;

5.2.6 Readdir Statements:

Readdir statements are used to read the given directory supplied to
the function. The function is called with an identifier or string
constant contained in parenthesis. It returns a value of type dir
representing the given directories Unix files. The syntax is as
follows:

dir givendir = readdir (identifier) ;
or
dir givendir = readdir (String constant) ;

5.2.7 Matches Statements:

Matches statements are used to equate a give left value identifier

14

with some right value regular expression. The statement is evaluated
to true or false. The syntax is as follows:

if (identifier —- / [.] txt$/){

étatement(s)

; else {

étatement(s)

)
5.2.8 Exit Statements:
An exit statement is symbolic of the end of the program. Only one can
exist in a program and when met it will terminate. The syntax is as

follows:

exit;

5.2.9 Date Statements:
A date statement was added so that the time could be accessed in FJL.
It is particularly useful when evaluating your filesystem based on
some time criteria; It is a right hand assignment.

[long] Identifier = date;
6. Structure:
The program is read starting from the first non-comment line. It will

read until an exit statement is read or the end of file is reached.
Once the exit statement is reached the program will terminate.

15

Project Plan

1. 1Identify process used for planning, specification, and
development:

The beginning of the project incorporated me watching the
lectures on ANTLR and Small Examples time and time again. I worked
to come up with a language construct that would allow me to detail a
filesystem.

The project plan for me, since I was working all alone on the
project was to give myself plenty of time to learn Antlr and get
stuff wrong. I spent a great portion of the time on this project
getting stuff really wrong and fixing it although that wasn’t
necessarily the over the plan. The plan to give myself enough time
paid off greatly.

I started off by designing my lexer. Once I thought I had
looked at enough examples and evaluated the lexer enough, I moved on
to the parser quickly realizing that the lexer needed more work.
After coming up with what I though was a complete lexer and parser, I
figured out how to visually display the AST and then when back to the
drawing board after seeing my results. With the use of the display
AST window, I eventually worked out all the bugs in the lexer and
parser.

From there I pain staking read over 4 or 5 different tree
walkers to figure out what the heck they were doing and how I should
move on from the point. I was stuck. It took me a good amount of
time, I would say on the order of 20-25 hours or so to really start
to be able to read the tree walker code and apply it for my needs.
It took me even longer to get vaguely correct.

I would develop java objects and expressional functions as I
made my way through the tree walker. I started off very small at
first. I wrote FJL code consisting of just declarations and then
tried to walk that. Once I got that correct I proceeded in the same
fashion first with assignments, then with built in functions and then
moved on to expressions and flow control. I found that by making to
many great leaps, left me destined for hours of debugging. Slow and
steady, testing at all intervals was paramount.

After finishing the tree walker and doing a lot of testing and
reworking of my functions, I wrote the final report you are reading
now.

2. Programming Style Guide:

2.1 Antlr Conventions:

When coding the tree walker, parser and lexer, I attempted to
clearly define rules and definitions in as concise manor as possible.

16

I worked to write my .g file so that everything was spaced as close
vertically together and horizontally similar so that I would be able
to quickly glance and read the code. I found that by not adhering to
these rules left searching and scanning lines to find rules and
definitions.

2.2 Java Conventions:

I found that condensing objects and functions vertically was the
best format for me during the project. Because of the vast number of
files, and consequently objects defined, being able to see as much of
the code as possible was at the same time made it easier to go move
along in the project.

I was not limited to a defined set of rules to follow as there
was no one else reading my code, but I followed classic Java style
formatting and indentations. Naming conventions followed a style I
like to code with, which is a short and non descriptive naming style.
Strings for example were typically name sl, s2

2.3 General:

Conventions weren't necessarily taken into consideration to much
while working on the project. Since I did all the work my self, I
found that just keeping an organized view of the assignment was the
best way I could help myself out. Organizing classes that extended
other classes and maintaining a strong visual for progression in the
project helped me out the most.

3. Project Timeline:
The project time line hoped to follow the below chart. I deviated

some due to a mild case of indirection when learning how to write a
tree parser.

June 11, 2007 Whitepaper

June 25, 2007 Finish Lexer & Parser

June 27, 2007 LRM

July 10, 2007 Version 1 of tree walker

July 17, 2007 Version 2 or tree walker w/
working programs

July 24, 2007 Version 3 and all testing
done

July 31, 2007 Documentation Finished

4. Project Log:

The actual project log is shown below.

17

June 9, 2007 Project Proposal

June 10, 2007 Project Proposal

June 11, 2007 Whitepaper

June 20, 2007 First Version of Lexer

June 24, 2007 Updated Lexer, First Version
of Parser

June 26, 2007 Version 2 of Parser and Lexer
Done and testing

June 27, 2007 LRM

July 3, 2007 Tree walker research

July 7, 2007 Tree walker research

July 8, 2007 Tree walker research

July 14, 2007 Coding of interpreter and
tree walker

July 15, 2007 Continued work on interpreter
and walker

July 20, 2007 - August 5, Continued work on interpreter

2007 and walker, and testing

August 6, 2007 - August 9, Documentation & Testing

2007

5. Team Responsibilities

The team worked very well with eachother. Every group member stayed
in close contact with his self. John organized the team and as
leader handed out jobs to all the other members. Briefly John worked
on the lexer and parser. John also implemented the backend java
interpreter and designed, wrote out and fixed all the bugs in the
tree walker. John also worked on the test suite and wrote all the
documentation. John worked very hard on all aspects and was very
dedicated toward finishing the project.

6. Development Environment:

All development took place on a single Ubuntu linux machine running
the 2.6.17-12-generic kernel. I compiled everything with using java
version 1.4.2-02 as that is the native version of java on my Ubuntu
distribution. I used Antlr v2 (2.7.6-6) which was suggested by my
package manager as a stable edition for my distribution version. I
also used GNU Make version 3.81 to run make which I used as a
compilation tool.

18

Architectural Design

The FJL interpreter has a number of components that work
together to produce the journaling output. After creating your .fjl
file it is sent through the lexer and then to the parser after which
whitespace and comments have been removed and the FJL program is
represented as an AST tree. The AST is then walked by the tree
walker checking the tree semantically. The tree walker will store
variables inside of the Symbol Table for retrieval. It will then
evaluate expressions and statements using functions that live in the
Type and Expression classes as well as some that are defined within
the tree walker code itself.

The bulk of the work can be seen in the FJL grammer.g file. It
contains the lexer, parser and walker classes for the FJL language.
New objects are instantiated from with the walker classes.

The three major set of classes that are used are the Expr, Type
and SymbolTable classes. These classes do all the work that is not
implemented in the grammer.g file. The Expr class is extended by the
Id and Constant classes. The Type class is extended by several other
classes, one for each type. The Dir, Fsatt, Int, JLong, and JFile
classes all extend Type. The SymbolTable class does most of the work
storing objects and retrieving them so that expressions can be
evaluated.

19

il file

Customizec
File
Listing

The FJL Architectural Design

As the only member of my team, I, John implemented all the
classes from start to finish. He worked very hard.

20

Test Plan

The testing for FJL was done incrementally at every phase of the
assignment. Test programs were written to test the functionality of
all small changes made to the FJL interpreter. The following tests
were used to make the assertion that FJL was ready for its version
1.0 release.

I wrote a perl script to continually loop through all my tests
as I progressed through the testing phases. The following is the
source of each of the tests along with the output if any was
outputted. These test cases were all chosen so that I could be
assured that as I was progressing other things did not break. During
all the program testing I worked to assert that expressions were all
returning the correct values and that flow control was working
properly.

Again as the sole developer of FJL, I did all the work.

This program defines variables in FJL.

=====gsuite/decls.fjl========
| * This is My 1lst Comment *|
int foo;

int bar;

file first;

dir barbaz;

dir second;

long time;

fsatt directory;
=====/suite/decls.fjl=======

=========guite/decls.fjl Output=======
=====Fnd suite/decls.fjl Output=======

This program defines variables in FJL.
It then assigns the variables and prints them out using the println
and print built-ins.

=====gsuite/easy.fjl=======
|* A Smaller Example *|

int j;
int 1i;
fsatt word;

word = "Assign this String";

println word;

21

print "This is that value of i ";
println i;

exit ;

=========guite/easy.fjl Output=======
Assign this String
This is that wvalue of i 30

This program defines variables in FJL.

It then assigns the variables and prints them out using the println
and print built-ins.

Flow control is tested in this example with if and if/else
Statements.

=====gsuite/flow.fjl=======
int 1i;

int j;

fsatt f1;

fsatt £2;

i=6;
j=17

if (i< o)
println "I < J";
i =14+ 1;

}

if (1< 3)¢
println "This should not be printed.";

} else {
println "Incrementing worked and this should be printed.";
j=3+1;
if (1 <3) |
println "I < J —-—- Again";
}
}
exit;

22

I <Jd
Incrementing worked and this should be printed.
I < J -—- Again

=====Fnd suite/flow.fjl Output=======

This program defines variables in FJL.

It then assigns the variables and prints them out using the println
and print built-ins.

Assignment of operators is the major test here. Also this program
tests reassignment

This program also uses the built in readdir function and uses array
access. It also uses

readfile and date builtins.

=====guite/assignment.fjl=======
| * This is My 1lst Comment *|

int foo;

file first;

dir second;

int 1i;

long time;

fsatt directory;

foo = 10+50%1/4-5;
println foo;
time = date;
println time;
directory="/home/jp/school/temp";
second = readdir (directory);
println second.curpath;
while (i<second.nof) {
first = second[i];
println first.name;
println first.type;
println first.lt;
i =14+ 1;

}

first = readfile("/home/jp/school/plt/fjl/test.txt");
println first.lt;

println first.type;

println first.name;

23

17
1186686758544
/home/jp/school/temp
sample3.txt
file
1185653070000
second
directory
1186420043000
samplel.txt
file
1185653637000
sample2.txt
file
1185653072000
1186684399000
file

test.txt

This program defines variables in FJL.

It then assigns the variables and prints them out using the println
and print built-ins.

Flow control is tested in this example with if/else statements and
while loops.

This program also uses the built in readdir function and uses array
access.

=====gsuite/bigger.fjl=======
|* Simple Example: *|

int i;

dir first;

file foo;

first = readdir ("/home/jp/school/temp") ;

while (1 < first.nof){
foo = first[i];
if (foo.name —-- /txt$S/){
print "The file name is --——- ";
println foo.name;
} else {
print "This file name did not match —-—— ";

println foo.name;

24

=========gsuite/bigger.fjl Output=======

The file name is —-—— sample3.txt
This file name did not match —--- second
The file name is ——— samplel.txt
The file name is ——— sample2.txt

=====FEnd suite/bigger.fjl Output=======

This program defines variables in FJL.

It then assigns the variables and prints them out using the println
and print built-ins.

Flow control is tested in this example with if/else statements and

while loops.

This program also uses the built in readdir function and uses array
access.

Amongst other things this program is an example of using matching,

built-in functions,

displaying file attributes.

=====guite/complicated.fjl=======
int did;

int didnot;

file first;

dir second;

int 1i;

fsatt directory;

directory="/home/jp/school/temp";
second = readdir (directory);

while (i<second.nof) {

first = second[i];

if (!'(first.name —-—- /[.]txt$/)){
print first.name;
print " has file type ";
println first.type;
didnot = didnot + 1;

} else {
did = did + 1;

}

25

if (first.type

-— /file/

print first.name;

print " has file type

println first.type;

print did;
println " Did match
print didnot;

txt ";

println " Did not match .txt";

exit ;

=========gsuite/complicated.fjl Output

sample3.txt has file
second has file type
samplel.txt has file
sample2.txt has file
3 Did match .txt

1 Did not match .txt

type file
directory
type file
type file

) {

",

14

26

Lessons Learned

I learned that developing your own language is a lengthy
practice. It takes a lot of understanding to get all the little
parts of the process to talk to each other in the correct manor. I
first started off with a very large set of rules and attempted tackle
them all at the same time with out really completing any of them.
That is a terrible idea. The biggest lesson I learned from this
project was that you should start small and grow from there. Get the
smallest piece working properly and then move on from there.

Since I did the entire program by myself from beginning to end,

I was forced to overcome every obstacle by myself. In order to do so
I was forced to read a bunch of the older projects and try to
evaluate the code. It was a *very* lengthy process. I started early

on the project and if I didn’t I would never have completed.

Another very important lesson I learned is that taking this
course through CVN with out TA’s available made the project more time
consuming that it had to be. I think that a little advising here and

there would have moved me along a lot quicker. Teammates to share
the some of work load would have helped as well.
In the end the project is very rewarding. It allows you to get

a good feel of what it takes to actually build a useful language. I
will take away a good understanding of the amount time it takes to
learn Antlr and build a language using this tool. Because of this
project I have really understood the idea of following a time line
and getting to work early. It would have been disastrous had I
waited to the last minute.

My advice to future teams is to start early and learn how the
treewalker class really works.

27

Appendix

1.1

/**

Author: John Petrella - jep2l24@columbia.edu
Date: August 9, 2007

*
*
*
*
*
* Filename: Arith.java
*

*

***/

public class Arith extends Op {
public Expr exprl;
public Expr expr?2;
public Arith(String op, Expr x1, Expr x2) {
super (op, null);

exprl = x1;

expr2 = x2;
type = Type.max(exprl.type, expr2.type);
if (type == null) error ("type error");

}
public Expr gen() {
return new Arith (s, exprl.reduce(), expr2.reduce());

}
public String toString() {
return exprl.toString() + " " 4+ s + " " + expr2.toString();

}

1.2

/**
*

* Author: John Petrella - jep2l24@columbia.edu
*

* Date: August 9, 2007

*

* Filename: Constant. java

.

***/

public class Constant extends Expr {
public Constant (String tok, Type p) {
super (tok, p);
}

28

public static final Constant
True = new Constant ("true", Type.Bool),
False = new Constant("false", Type.Bool);

1.3

/**
*

Author: John Petrella - jep2l24@columbia.edu
Date: August 9, 2007

*
*
*
*
* Filename: Dir.java
*

*

***/

import java.io.*;
public class Dir extends Type {

public String curpath;
public int nof;

public long 1t;

public File[] files;

super ("dir");
this.files = null;
this.curpath = "";
this.nof = 0;
this.lt = 0;

}

public Dir () {
) .

public Dir(String directory) {
super ("dir");

this.curpath = directory;
this.files = null;

this.nof = 0;

this.lt = 0;

29

1.4

public File[] getFiles{() {
return this.files;

}

public File getFile(int 1) {
return this.files[i];

}

public int getFileCount () {
return this.files.length;
}

public String getCurPath () {
return this.curpath;

}

public int getNof () {
return this.nof;

}

public long getLt () {
return this.lt;

}

public void setFiles(File file) {
this.files=file.listFiles();
}

public void setCurPath (String curpath) {
this.curpath=curpath;
}

public void setNof (int nof) {
this.nof=nof;

}

public void setlLt (long 1t) {
this.lt=1t;
}

public String toString() {
return this.curpath;

}

/**

30

Author: John Petrella - jep2l24@columbia.edu

*

*

*

* Date: August 9, 2007
*

* Filename: Expr.java

*
*

***/

public class Expr {
public String s;
public Type type;
Expr (String tok, Type p) { s = tok; type = p; }
public String getToken() { return this.s; }
public Type getType() {return this.type;}
private Int i, j;
private JLong 1,k;

public Expr arith(int op, Expr e){
if (this.type.getName().equals("int") &&

e.getType () .getName () .equals("int")) {
i = (Int)this.type;
j = (Int)e.getType();
int c¢=0;
switch (op) {
case 1:
c = i.getValue() + j.getValue();
return new Expr(c+"",new Int(c));

case 2:
c = i.getValue() - j.getValue();
return new Expr (c+"",new Int(c));
case 3:

c = i.getValue() * j.getValue();
return new Expr(c+"",new Int(c));
case 4:
c = i.getValue() / j.getValue();
return new Expr (c+"",new Int(c));
}
} else if (this.type.getName().equals("long") &&
e.getType () .getName () .equals("long")){
1 = (JLong)this.type;
k (JLong)e.getType () ;
long c=0;
switch (op) {
case 1:
c = l.getValue() + k.getValue();
return new Expr (c+"",new JLong(c));
case 2:
c = l.getValue() - k.getValue();
return new Expr (c+"",new JLong(c));

31

case 3:

c = l.getValue() * k.getValue();
return new Expr (c+"",new JLong(c));
case 4:

c = l.getValue() / k.getValue();
return new Expr (c+"",new JLong(c));

}
}
return null;

}

public Expr not () {

if (this.type.getName().equals("bool")) {
String sl = this.s;
if (sl.equals("true")) {
return Constant.False;
} else {

return Constant.True;
}

}

return Constant.False;

}

public Expr boollogic(int op, Expr e){
if (this.type.getName () .equals("bool") &&
e.getType () .getName () .equals ("bool")) {
String sl = this.s;
String s2 = e.getToken();;
int c¢=0;
switch (op) {
case 1:
if (sl.equals("true") &&
s2.equals ("true"))
return Constant.True;

else

return Constant.False;
case 2:
if (sl.equals("true") ||

s2.equals ("true"))
return Constant.True;
else
return Constant.False;
}
}
return Constant.False;

}
public Expr matches (Expr e) {

if (this.type.getName () .equals("fsatt") &&
e.getType () .getName () .equals("fsatt")) {

32

Fsatt f1l (Fsatt)this.type;
Fsatt f2 = (Fsatt)e.getType();
String sl = fl.getValue();
String s2 = f2.getValue();

int length = s2.length();

if (s2.indexOf('['") !'= -1){
int m = s2.indexOf('1");
if (sl.indexOf(s2.substring(l,m)) != -1){
if (m == length-1) {return Constant.True;}
else {
m=m+1;

if (s2.substring(length-1, length)
.equals("s")) {
if (sl.endsWith(s2.substring(m, length-1)))
return Constant.True;
} else
if (sl.indexOf (s2.substring(m, length)) != -1){
return Constant.True;
}
}//else
}
}//Starts with []
else if (s2.substring(length-1,length).equals("S$")) {
if (sl.endsWith(s2.substring(0,length-1)))
return Constant.True;
}//Does not Start with [] but has $ at end
else if (sl.indexOf(s2) != -1){
return Constant.True;
}//Does not Start with [] or have a $ at end
}

return Constant.False;

}

public Expr logic(int op, Expr e){
if (this.type.getName().equals("int") &&

e.getType () .getName () .equals ("int")) {
i = (Int)this.type;

J = (Int)e.getTypel();

int c¢=0;

switch (op) {

case 1:

if (i.getValue() == j.getValue()) return Constant.True;
else return Constant.False;

case 2:

if (i.getValue() != j.getValue()) return Constant.True;
else return Constant.False;

case 3:

if (i.getValue() < j.getValue()) return Constant.True;

33

}

1.5

else return Constant.False;

case 4:

if (i.getValue() <= j.getValue()) return Constant.True;
else return Constant.False;

case 5:

if (i.getValue() > j.getValue()) return Constant.True;
else return Constant.False;

case 6:

if (i.getValue() >= j.getValue()) return Constant.True;

else return Constant.False;

}

} else if (this.type.getName () .equals("long") &&
e.getType () .getName () .equals("long")) {
1 = (JLong)this.type;
k = (JLong)e.getType();
long c=0;
switch (op) {
case 1:
if (l.getValue() == k.getValue()) return Constant.True;
else return Constant.False;
case 2:
if (l.getValue() != k.getValue()) return Constant.True;
else return Constant.False;
case 3:
if (l.getValue() < k.getValue()) return Constant.True;
else return Constant.False;
case 4:
if (l.getValue() <= k.getValue()) return Constant.True;
else return Constant.False;
case b5:
if (l.getValue() > k.getValue()) return Constant.True;
else return Constant.False;
case 6:
if (l.getValue() >= k.getValue()) return Constant.True;

else return Constant.False;
}
}

return null;

/**

*

* ok ok of

Author: John Petrella - jep2l24@columbia.edu

Date: August 9, 2007

34

* Filename: FJLMain. java
*

**/

import java.io.*;

import antlr.CommonAST;

import antlr.collections.AST;

import antlr.debug.misc.*;

import antlr.collections.AST;

import antlr.RecognitionException;
import antlr.TokenStreamException;
import antlr.TokenStreamIOException;

public class FJLMain {

public static void main(String args[]) {

try {
String file = args[0];
if (!'file.substring(file.length() -

4,file.length()).equals(".£31")) {
System.err.println("Wrong file type");
System.exit (1) ;

}
FileInputStream filename = new FilelInputStream(file);
DataInputStream input = new DatalInputStream(filename);
FJLAntlrLexer lexer = new FJLAntlrLexer (input);
FJLAntlrParser parser = new FJLAntlrParser (lexer);
parser.decls(); // "file" is the main rule in the parser
if (lexer.error > 0 || parser.error > 0){
System.err.println("Could not parse FJL Program");
System.exit (1) ;
}
CommonAST parseTree = (CommonAST)parser.getAST();
FJLAntlrWalker walker = new FJLAntlrWalker ();
Stmt s = walker.program(parseTree);

} catch(RecognitionException e) {

System.err.println("Recognition exception: " + e);
} catch(TokenStreamException e) {

System.err.println("TokenStream exception: " + e);
} catch (Exception e) {

System.err.println("Exception In Main: "+e);

}
}

1.6

/**
*

* Author: John Petrella - jep2l24@columbia.edu

35

Date: August 9, 2007

Filename: Fsatt.java

***/

public class Fsatt extends Type {
public String value ;

public Fsatt () {
super ("fsatt");
this.value = "";

}

public Fsatt (String wvalue) {
super ("fsatt");
this.value = value;

}

public String toString() {
return this.value;

}

public void setValue(String value) {
this.value = value;

}

public String getValue() {
return this.value;

}

1.7

/**
*

* Author: John Petrella - jep2l24@columbia.edu
*

* Date: August 9, 2007

*

* Filename: grammer.g

.

***/

class FJLAntlrParser extends Parser;
options {
exportVocab = FJLAntlr;

36

buildAST = true;

k=2;

}

tokens { DECLS; STMT;}
{

int error = 0;
public void reportError(String s) {
super .reportError(s);
error++;
}
public void reportError(RecognitionException e) {
super .reportError(e);
error++;

decls: (decl)* (stmt)* { #decls = #([DECLS, "DECLS"], #decls); }

decl
("int" | "long"™ | "fsatt"™ | "dir"™ | "file") ID SEMI!

stmt

: loc ASSIGN” bool SEMI!

| "print"” ((ID | STRING) | ext) SEMI!

| "println"”® ((ID | STRING) | ext) SEMI!

| "while"” LPAREN! bool RPAREN! stmt

| "if"” LPAREN! bool RPAREN! stmt

(options {greedy = true;}: "else"! stmt)7
| LBRACE! (stmt)* RBRACE!
{#stmt = # ([STMT, "STMT"], stmt); }

| "exit" SEMI!

14
loc : ID” (LBRACK! bool RBRACK!)~* ;
bool : join (OR”™ join)* ;
join : equality (AND” equality)™* ;
equality : rel ((EQ” | NE™) rel)* ;
rel : expr ((LT™ | LE~ | GT” | GE~ | MATCH") expr)* ;
expr : term ((PLUS” | MINUS”) term)* ;
term : unary ((MULT” | DIV”™) unary)?* ;
unary : NOT” unary | factor ;
factor

loc | NUMBER | "true" | "false" | ext | "date"
| STRING | LPAREN! bool RPAREN! | REGEX
| ("readdir" | "readfile"™) LPAREN! (ID | STRING) RPAREN!

.
’

37

ext : ID DOT” ("curpath" | "name" | "type" | "nof" | "1t") ;

class FJLAntlrlLexer extends Lexer;
options {

testLiterals = false;
k = 2;
charVocabulary = '"\3'..'\377';
}
{
int error = 0;
public void reportError(String s) {

super .reportError(s);
error++;

}

public void reportError (RecognitionException e) {
super.reportError(e);
error++;
}
}
REGEX : ('/'! ((LBRACK (DOT)? (LETTER | DIGIT)* RBRACK)?
(LETTER (LETTER | DIGIT)+ ('S')2)2) '"/'!');
WS (" " | "\t" | '"\n'" { newline(); } | "\r')
{ S$setType(Token.SKIP); } ;
STRING . '"'! (~rmr)* '"'! ;
protected LETTER = 'A' .. 'Z' | 'a' .. 'z' ;
protected DIGIT : '0O"'" .. '9' ;
NUMBER : (DIGIT)+ ;

ID options { testlLiterals = true; } : LETTER (US | DIGIT | LETTER)*

COMMENT : ((PIPE MULT) (options { greedy=false;} :.)* (MULT PIPE))
{ $setType(Token.SKIP); } ;

DS : '$S' ; GT : '">' ; LT : '<' ; us : '_' ;
EQ TR p— : NE : "!=" : OR : n| |n : GE : ">="
r

LE : "<=" ; NOT : '"!' ; AND : "&&" ; DIV : '/' ;
MINUS : '-'" ; PLUS : '"+' ; SEMI : ';' ; PIPE : '"|' ;

QuoTEE : """ , COMMA : ',' ; KARAT : '"~' ; LPAREN : "(' ;

RPAREN : '")' ; LBRACE : '"{'" ; RBRACE : '"}' ; LBRACK : '[' ;

RBRACK : '"]'" ; ASSIGN : '=' ; MULT : '"*' ; QUESTION : '?'!

BSLASH : '"\\' ; SQUOTE : '"\'' ; DOT : '.' ; MATCH : "—-"

’

{

import java.util.Calendar;
import java.io.File;
}

class FJLAntlrWalker extends TreeParser;

38

options {
importVocab = FJLAntlr;
}
{
SymbolTable top = null;
int scope=0;

}

program returns [Stmt s]
{ s = null; Type t = null; top = new SymbolTable();}
(DECLS
(t=type ID {
top.put (#ID.getText (), t, scope); }
)*

s=stmts

type returns [Type t]

{ £t = null; }
("bool" { t = Type.Bool; }

| "fsatt" { £t = new Fsatt(); }
| "int™" { £t = new Int(); }

| "file" { t = new JFile(); }

| "dir™" { t = new Dir(); }

| "long" { £t = new JLong(); }

)

’

stmts returns [Stmt s]
{ s = null; Stmt sl1,; }
(s=stmt) *

.
14

stmt returns [Stmt s]
{ Expr el, e2;

s = null;

Stmt sl, s2;

(ASSIGN el=expr e2=expr
{ if (((el !'= null && e2 != null) &&
(el instanceof Id))){
if (!'top.set(el.getToken(),e2))
top.error (" Type mismatch");
} else {
top.error (" Assignment contains errors");
}
}
)
| #("while" whileexpr:. whilestmt:.
{ el = expr (#whileexpr);

39

if (el !'= null){

while (el.getToken() .equals("true")){
s=stmt (#whilestmt) ;
el = expr (#whileexpr) ;
}
} else {
top.error (" While expression contains errors");
}
}
)
| #("if" el=expr thenp:. (elsep:.)?)
{ if ((el !'= null) &&
(thenp != null) &&
(el.getToken() .equals("true"))) {
s=stmt (#thenp) ;
} else if (null !'= elsep) {

s=stmt (#elsep) ;
}
}
| #("print" el=expr
{ if (el != null) {
if (el instanceof Id)
System.out.print (el.getType().toString());
else if (el.getToken().equals("file"))
System.out.print (el.getType () .toString());

else if (el.getToken() .equals("dir"))
System.out.print (el.getType().toString());
else if

(el.getType() .getName () .equals("fsatt"))
System.out.print (el.getToken());
} else {

top.error (" please declare and assign value");
}
}
)
| #("println" el=expr
{ if (el != null) {
if (el instanceof Id)
System.out.println(el.getType () .toString());
else if (el.getToken() .equals("file") ||
el.getToken() .equals("date"))
System.out.println(el.getType () .toString());

else if (el.getToken() .equals("dir"))
System.out.println(el.getType () .toString());
else if

(el.getType() .getName () .equals("fsatt"))

System.out.println(el.getToken());
} else {

top.error (" please declare and assign value");

}

40

.
14

)

#("exit"

{
}

expr returns [E

(
(
(
(LE
(GT
(GE
(MATCH
(NOT
(AND
(OR
(PLUS
(MINUS
(MULT
(DIV
NUMBER
e
STRING
e =
"true"
"false"
"readdir"
if

#
#
#
#
#
#
#
i
i
#
#
#
#
#

} e
} e

}
}

"readfile
try

{System.exit (0);})
(STMT stmt:.

s=stmts (#stmt) ;

xpr e]

a=expr b=expr { e a.logic(l,b); 1})
a=expr b=expr { e = a.logic(2,b); })
a=expr b=expr { e = a.logic(3,b); })
a=expr b=expr { e = a.logic(4,b); })
a=expr b=expr { e = a.logic(5,b); })
a=expr b=expr { e = a.logic(6,b); })
a=expr b=expr { e = a.matches(b); })
a=expr { e =a.not(); })
a=expr b=expr { e = a.boollogic(l,b); })
a=expr b=expr { e a.boollogic(2,b); })
a=expr b=expr { e = a.arith(l,b); })
a=expr b=expr { e = a.arith(2,b); })
a=expr b=expr { e a.arith(3,b); })
a=expr b=expr { e = a.arith(4,b); })

{ String s=#NUMBER.getText () ;

new Expr (s, new Int(Integer.parselnt(s))); }
{ String s=#STRING.getText ();

new Expr(s, new Fsatt(s)); 1}

{ e = Constant.True; }

{ e = Constant.False; }

a=expr {

(a instanceof Id

String directory =

e = new Expr (directory,

lse if

lse {

) {

a.getType () .toString () ;

new Dir (directory));

(a.getType () .getName () .equals("fsatt")){
e = new Expr(a.getToken(),)

new Dir (a.getToken()

top.error (" error in readdir assign value");

" a=expr {

{

File file = null;
a instanceof Id) {
ile = new File(a.getType() .toString());
a.getType () .getName () .equals("fsatt")
ile = new File(a.getToken());

if |
£

} els
£

e 1f (

41

) ;

) {

}
e = new Expr("file", new JFile(file));

} catch (NullPointerException ne) {
System.out.println("Bad File Assignment");
System.exit (1) ;

}

| "date" {
long 1 = Calendar.getInstance().getTimeInMillis();
e = new Expr(""+1,new JLong(l));
}
| #(ID
{ Id 1 = top.get (#ID.getText());
if (i == null) System.out.print (#ID.getText () + "
undeclared");
e = 1i;
}
(a=expr
{if (a.getType().getName () .equals("int"))
if (e.getType() .getName () .equals ("dir")) {
Dir d = (Dir)e.getTypel();
Int j = (Int)a.getTypel();
e = new Expr("file", new
JFile(d.getFile(j.getValue())));

}
}
) ?
)
| #(DOT a=expr b=expr

{ 1if (a instanceof Id) {
String type = a.getType () .getName () ;
String ext = b.getToken();

if (type.equals("dir")) {
Dir d = (Dir)a.getTypel();
if (ext.equals("nof")){
e = new Expr ("dir", new Int(d.getNof()));
} else if (ext.equals("curpath")){
e = new Expr("dir", new
Fsatt (d.getCurPath()));
} else if (ext.equals("1t")){
e = new Expr("dir", new
JLong (d.getLt ()));
}
} else if (type.equals("file")){
JFile jfile = (JFile)a.getTypel();
if (ext.equals("name")) {
e = new Expr("file", new
Fsatt(jfile.getFileName()));
} else if (ext.equals("type")){
e = new Expr("file", new
Fsatt (jfile.getFileType()));

42

} else if (ext.equals("1t")){

e:
JLong (jfile.getLt ()));

}

}

)
| #(REGEX

{ String holder = #REGEX.getText();

e = new Expr (holder, new Fsatt (holder)); }
)
| "nof" { e = new Expr("nof", new Fsatt("nof")),; }
| "curpath" { e = new Expr ("curpath", new Fsatt ("curpath"));
| "type" { e = new Expr("type", new Fsatt("type")); }
| "name" { e = new Expr ("name", new Fsatt("name")); }
| "1t" { e = new Expr("1lt", new Fsatt("1t")); }

1.8

new Expr("file",

new

/**

Author: John Petrella - jep2l24@columbia.edu

*
*
*
* Date: August 9, 2007
*
* Filename: Id.java

*

*

***/

public class Id extends Expr{
public String s;
public Type type;
public int scope;

public Id(String id, Type p,
super (id, p);
this.scope=scope;

}

public int getScope () {
return this.scope;

}

int scope)

43

{

}

/**

*
*
*
*
*
*
*
*

Author: John Petrella - jep2l24@columbia.edu
Date: August 9, 2007

Filename: Int.java

***/

public class Int extends Type {

public int value ;

public Int () {
super ("int") ;
this.value = 0;

}

public Int (int wvalue) {
super ("int") ;
this.value = value;

}

public String toString() {
return ""+this.value;

}

public void setValue(int value) {
this.value = value;

}

public int getValue () {
return this.value;

}

1.10

/**

*

*
*
*
*
*
*
*

Author: John Petrella - jep2l24@columbia.edu
Date: August 9, 2007

Filename: JFile.java

***/

import java.io.*;

44

public class JFile extends Type

public long 1t;

public String fname;
public String ftype;

public File jfile;

public JFile()

{

super ("file");

this.fname
this.ftype

this.lt = 0;

this.jfile
}

public JFile(File f1)

’

wiw.,.
’

wiw.,.
’

null;

super ("file");
this.jfile =

this.fname = fl.getName() ;

£f1;

{

this.lt = fl.lastModified();

if (fl.isDirectory()) this.ftype =
else if (fl.isFile()) this.ftype =
else if (fl.isHidden()) this.ftype
else this.ftype = "Unknown";

}

public String toString() {
return this.fname;

}

public void setFileName (String s) {

this.fname=s;

}

public void setFileType(String s) {

this.ftype=s;

}

public void setlLt (long 1t) {

this.lt=1t;
}

public void setJFile(File f£1) {
this.jfile=£f1;

}

public String getFileName () {

return this.fname;

}

public String getFileType () {

45

"directory";
"file";

"hidden file";

return this.ftype;
}

public long getLt () {
return this.lt;

}

1.11

/**
*

Author: John Petrella - jep2l24@columbia.edu
Date: August 9, 2007

*
*
*
*
* Filename: JLong. java
*

*

***/

public class JLong extends Type {
public long wvalue ;

public JLong () {
super ("long") ;
this.value = 0;

}

public JLong(long value) {
super ("long") ;
this.value = value;

}

public String toString() {
return ""+this.value;

}

public void setValue(long value) {
this.value = value;

}

public long getValue () {
return this.value;

}

46

1.12

/**
*

Author: John Petrella - jep2l24@columbia.edu
Date: August 9, 2007

*
*
*
*
* Filename: Stmt.java
*

*

***/

public class Stmt {
public Stmt () {}
}

1.13

/**
*

Author: John Petrella - jep2l24@Qcolumbia.edu
Date: August 9, 2007

*
*
*
*
* Filename: SymbolTable. java
*

*

***/

import java.util.x*;
import java.lang.Runtime.*;
import java.io.*;

public class SymbolTable {
private Hashtable table;
protected SymbolTable outer;
public SymbolTable () {
table=new Hashtable();
outer=null;
}
public SymbolTable (SymbolTable st) {
table = new Hashtable();
outer = st;
}
public Id get(String token) {
Id id = (Id) (table.get (token));
if (id !'= null) return id;
return null;

}

47

public void put (String token, Type t, int scope) {
if (get(token) == null) {
table.put (token, new Id(token, t, scope));
} else {
System.err.println(token+" is already defined in £j1");
System.exit (1) ;
}
}

public boolean checkType (Type t, Type e) {
return t.getName().equals(e.getName());

}

public void error (String s) {
System.out.println(s);
System.exit (0);

}

public String getType (Type t) {return t.getName(); }

public boolean set (String token, Expr e) {
Id id = (Id) get(token);
boolean same = checkType(id.getType(),e.getType());
if (same) {
String value = getType(id.getType());

if (value.equals("fsatt")){
Fsatt fl1 = (Fsatt)id.getTypel();
Fsatt f£2 = (Fsatt)e.getTypel();

fl.setValue(f2.getValue());
return true;

} else if (value.equals("int")){
Int 1 = (Int)id.getTypel();

Int m = (Int)e.getType();
i.setValue (m.getValue());

return true;

} else if (value.equals("long")) {
JLong 1 = (JLong)id.getType();
JLong k = (JLong)e.getType();
l.setValue (k.getValue());

return true;

} else if (value.equals("dir")){

Dir dir = (Dir)id.getTypel();

Dir d = (Dir)e.getTypel();

try {
File tl = new File(d.curpath);
boolean isDir = tl.isDirectory();
if (isDir) {

dir.setCurPath (d.curpath);

dir.setlLt(tl.lastModified());
dir.setFiles(tl);

dir.setNof (dir.getFileCount());

48

} else {
error ("Directory Assignment Failed for Identifier
"+token);

}

} catch (NullPointerException ne) {
System.out.println("Null Pointer In Set");

} catch (SecurityException se) {
System.out.println("Security In Set");

}

return true;

} else if (value.equals("file")){

JFile jfl1 = (JFile)id.getTypel();

JFile jf2 = (JFile)e.getType();

try {
jfl.setdFile(jf2.jfile);
jfl.setFileName (jf2.fname);
jfl.setFileType(jf2.ftype);
jfl.setlLt (jf2.1t);

} catch (NullPointerException ne) {
System.out.println("Null Pointer In Set");

}

return true;

}
}

return false;

}

public boolean hasEls () {
return table.isEmpty();
}

public String toString() {

String s = ""; String key = "";

boolean debug = true;

if (debug){
Enumeration keys = table.keys();
while (keys.hasMoreElements()) {
key = (String)keys.nextElement () ;

Id id = (Id) get(key);
System.out.println(key+" "+id.getType().toString());
} // end while
} else {
s = table.toString();

}

return sj;

49

1.14
/**
*

Author: John Petrella - jep2l24@columbia.edu
Date: August 9, 2007

*
*
*
*
* Filename: Type.java
*

*

***/

public class Type {
public String name = "";
public Type(String s) {
name = s;
}
public static final Type Bool = new Type("bool");
public String getName () {
return this.name;

}

50

