
The Game of Life

Steven Chen, Juan Gutierrez, Vincenzo Zarrillo

{stc2104, jmg2048, vaz2001}@columbia.edu

Embedded Systems Design, CS 4840

May 8, 2007



2

Game of Life

Overview of the System

� Based on initial coordinates, outputs to VGA the 
game visualization (the ‘board’)
� White indicates ‘life’ and blue indicates ‘death’

� Each organism modeled as one pixel on a 256x256 
pixel board

� Generations occur roughly every second

� Hardware used to update each generation of the 
game

� Software (C program) used to pass to hardware the 
initial conditions of the board



3

Game of Life

Architectural Design

FPGA

vga_raster
VGA Video

Port

VGA

Monitor

Nios

Processor

Avalon bus



4

Game of Life

vga_raster Component Design

swap = 0

swap = 1

RAM 1

RAM 2

updater VGA

‘Load’ RAM
From Avalon Bus

To VGA Video Port



5

Game of Life

Overall System

� Nios sends initial coordinates to the ‘Load’ RAM 
through the Avalon bus

� ‘Load’ RAM contents loaded into RAM 1 (‘current’)

� VGA reads from ‘current’ while updater also reads 
from ‘current’ and writes to RAM 2 (‘next’)

� ‘next’ and ‘current’ are then swapped



6

Game of Life

Internal Representation of Game Board

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Each ‘cell’ holds 32 bits

8 cells X 32 bits = 256 bits total per row

8 cells X 256 rows = 2048 (211) cells total in board

256

Rows

8 cells per row



7

Game of Life

Dual-Port RAM - Current

q_b (32 bits)

q_a (32 bits)

address_a (11 bits)

data_a (32 bits)

clock

address_b (32 bits)

data_b (1 bit)

wren_b (1 bit)

wren_a (1 bit)

To updater

To VGA

From

Updater

From

VGA



8

Game of Life

Game Logic Implementation

1 0 1 … 0

0 0 0 … 0

0 0 1 … 0

sr_pos

dataOut1

dataOut2

dataOut3

34-bit registers

0 0 … 1outRegister

32-bit register

33 0

31 0

currentPositionInOutput

countNeighbors: 0011

From RAM 1

To RAM 2 

1

0

0



9

Game of Life



10

Game of Life

VGA Implementation

� Reads bit by bit and colors pixel accordingly

� After reading bottom right end of the board, updater 

turns on



11

Game of Life

Nios Implementation

� Writes 32 bits to each location in RAM

� Random set of numbers or hard-coded set of 

numbers as initial conditions



12

Game of Life

Implementation Experiences and 

Issues
� Necessity of Precise Timing

� Difficulties in deciding on best and easiest 

implementation of game logic

� Shift registers, components, etc.

� Writing Initial Conditions into the program

� Issues with addressing

� Reading from a file in C



13

Game of Life

Primary Roles

� Steve

� Updater Implementation

� Design Document, Final Report, Presentation

� Juan

� Updater/VGA/Nios Implementation

� System Integration

� Vinny

� VGA/Nios Implementation

� System Integration

� Everyone

� Design, Debugging, Troubleshooting



14

Game of Life

Lessons Learned

� Timing Diagrams – Draw them first!

� Test every potential thing that could go wrong as 

soon as you can.

� The simulator is your best friend

� Think Hardware, not Software

� It’s never too early to start



The Game of Life

Steven Chen, Juan Gutierrez, Vincenzo Zarrillo

{stc2104, jmg2048, vaz2001}@columbia.edu

Embedded Systems Design, CS 4840

May 8, 2007


