
May 8, 2007

Internet Radio running on uClinux

Final Project 2007
@ Columbia
University
Embedded System Design:
Computer Science & Electrical
Engineering

PROFESSOR: Stephen A. Edwards, PhD
TAS: David Lariviere
 YingJian Gu
STUDENTS Min Yang
 Sing Wang Ho

Kai Li

i

1. Background
The internet is an increasingly popular communication media. The number of applications in

the internet grows at an exponential rate. More and more applications are transferred to the internet,

radio is one of them. There are many popular internet radio stations on the web already, a well-

known server is http://www.shoutcast.com.

Our project aims to build an embedded system designed to get these radio streams and process

it. Radio broadcasting over the internet is a lot different then broadcasting over internet. Unlike AM

and FM broadcasting, where the signal is analog and is transmitted throught a carrier signal, internet

radio transmit data as a digital signal encapsulated in a TCP/IP packet. Since bandwidth is costly with

respect to the server (which is the equivalent of an antenna), the raw sound wave is rarely sent. In

fact, in most cases these are transmitterd using the popular MPEG-I audio layer 3 or more commonly

known as MP3 compression. This is a lossy compression techique, the original signal cannot be

completely recovered. A waveform can be converted into a MP3 by converting it into frequency

domain using discrete cosine transform, then filtering the signal, and finally, compressing it using

huffman coding. The client, or receiver, performs the opposite: decoding, requantizing and perform

inverse discrete cosine transform.

http://en.wikipedia.org/wiki/MP3

2. Table of Contents

1. Background
2. Introduction
3. Overall Design
4. System Architecture
5. Hardware system
6. uClinux Operation System
7. Software Structure
8. System Optimization
9. Conclusion
10.Appendix

a. dct64.vhd
b. mul64_with_shift.vhd
c. audio_wrapper.vhd
d. dct64.vhd
e. audio_dummy.c
f. Modelsim result for dct64.vhd

Internet radio running on uClinux

1. Introduction
In this project, we design the client side for a shoutcast streaming server using Cyclone II

DE2 boards. The board contains all the peripheral we will need. The board has an audio

controller and an ethernet controller. The development tools we will use are Altera Quartus with

SOPC builder. The objective is to be able to play up to 44kHz stereo MP3 from an internet

server using the components built-in on DE2 board, namely DM9000A ethernet controller and

WM8731 Wolfson Audio Codec. To accomplish this objective we also used nios uClinux and

mpg123 mp3 player.

2. Overall Design
The operation of the internet radio can be divided into three operations: converting the

TCP stream into MP3 frames, decoding the mp3, and playing the decoded mp3.

2.1 Converting the TCP/IP stream to MP3 frames

TCP/IP is a complicated protocol with many cases and many states. Programming

TCP/IP in hardware makes a very fast controller but is very difficult due to the number of states

and special cases it has to handle. Writing our own C code to manage the DM9000A is just as

hard. The easiest way to accomplish this is to use uClinux's library and its pre-built controller.

Hence, we implemented uClinux for nios onto the board to create internet capabilities. The

stream that passes through is very similar to that of HTTP. It contains a header very similar to

HTTP and the parsing method for the header is identical to that of HTTP. We use the mpg123

library to extract the mp3 frames from the TCP/IP stream. A sample of a TCP stream captured

from www.shoutcast.com internet server is attached to the Appendix A. The mp3 frames can be

obtained by splitting the frames at the mp3 header. Each mp3 frame always has a sync word

which could be used to identify the headers. Using an open source program with uClinux,

mpg123, we are able to retrieve an mp3 from the internet.

iv

Internet radio running on uClinux

2.2 Mp3 Decoding

Mp3 decoding involves three main stages. Each frame is Huffman encoded with the code

bits specified in the header. The first task is to decode the frame, which means decompressing

the frame. There is a CRC checksum in the header as well, this can safely be ignored. Second,

the decompressed frame is passed through a filterbank, which is a series of bandpass filters,

requantized, and anti-aliasing is done in this stage. Finally, inverse discrete cosine transform

(IDCT) is performed to convert the data back into time domain. Using mpg123 and a custom C

audio driver, we can feed a 16-bit unsigned audio to the hardware and is ready to be played by

the audio controller.

2.3 Stream to sound conversion

Finally, the decoded sound is passed to a custom audio controller which controls the

audio signal of wm8731 sound controller. The audio controller also acts as a buffer for sound to

be played to the speakers. This controller is built in hardware so we have the quickest and most

direct access to the wm8731 controller.

v

Internet radio running on uClinux

3. System Architecture

vi

Inet.h IO.h

Avalon Bus

DCT
Audio

Controller

SDRAM
Interface

Flash
memory
Interfac

e

SDRAM
Chip

FLASH
Chip

Stream
Downloader

Decoder Audio
Control

Hardware
Abstraction

Layer

NIOSII
Hardware
System

SpeakersRemote
server

Processor

Clinuxμ

Hardware Abstraction Layer

DMA 9000A
Ethernet

Controller

Software
Application

Internet radio running on uClinux

4. Hardware Components
We used many components to build the hardware system. The hardware includes

Cyclone-II level-3 Processor, Avalon Bus, 10/100 DM9000A Ethernet Controller with socket

and 24-bit CD-Quality Audio Wolfson CODEC, 8 Mbits SDRAM, 4Mbits FLASH Memory,

16Kbits FIFO, one Custom Logic Unit dedicated to discrete Cosine Transform, Build-in USB

Bluster for FPGA configuration and some LEDs for testing purpose.

The audio controller is configured to 18.43MHz using a phase lock loop. Since uClinux

does not support fork, meaning that when the system decode, it cannot play sound at the same

time. This means we have to buffer a chunk of audio data long enough for the decoder to decode

the next set. To do this, we implement a First-In-First-Out (FIFO) buffer to hold every chunk of

sound data. To optimize speed and minimize space, we set the size of the buffer to match the

size of each chunk received from the C program, which is 16kBytes. This creates the maximum

delay after filling the buffer without using too much M4Ks on the board. To prevent a

overflowing the buffer, the system performs a busy-wait (or polling) on the audio controller.

The audio controller is responsible for returning the number of data left in buffer so the software

system when to write without overflowing the buffer. The audio controller is configured to be

able to run at three rates. These rates can be changed by writing to a pre-defined address the

audio controller owns. The rates are 44kHz, 22kHz and 11kHz. The audio controller achieves

these rates without changing the configuration of the wm8731 controller. The wm8731 is pre-

configured to play at 44kHz. The other rates are then achieved by playing a sample multiple

times.

We ran into several problems in implementing the audio controller. When the FIFO was

initially implemented, it did not fit on the board. After looking at the fitter resource report, we

realize that there is a large block of on-chip memory which used up most of our M4Ks. This

block was not necessary and was removed from the project. Wiring the ports for the audio

controller is also tricky. Since there are three clocks (which are the system clock, the audio

clock and a external audio clock), it is easy to accidentally miss use clock as a system clock.

vii

Internet radio running on uClinux

We also designed a custom component which calculates the discrete cosine transform

(DCT) of a 128kBytes sample with each sample being 4Bytes long. The calculation is identical

to dct64.c done in mpg123. The data is fed into an array of register with size 64 with each cell

being 4Bytes long via the function writel(). The data is fed into to the address and then a write to

(base_address + 64) is used tell the DCT that we're done sending data. Then we do a busy wait

on the same address to wait for the process to finish. The user can then access the data by using

readl().

5. uClinux Operation System
The uClinux was, in fact, not part of our original design to implement the radio

controller. After finding out that we need to create a TCP/IP stream which requires writing a

hardware driver to handle the Berkeley sockets in C library. We soon find out that it is very

difficult and time consuming to write the IO control to handle the Berkeley socket in C library.

When we try to resolve for an alternative solution, we discovered uClinux.

uClinux is a very compact version of linux that can fit into thumb drives. After some

research, we discovered a nios version which also supports DM9000A. We decided to try it out

and chose uClinux-dist-20070130 release as our operation system. This is the most recent stable

release at the time this project is has started. This version has good online references and

includes Ethernet driver (but no audio device driver). For reference check the website:

http://nioswiki.jot.com/WikiHome/OperatingSystems/%C2%B5Clinux/UClinuxDist

To compile an image running to run on the DE2 board, we have to download a cross-

compiler toolchain. The purpose of the cross-compiler is to allow compilation of a platform

other than the current system's platform. In our case, the cross-compiler compiles for a nios

systems on Redhat linux. Since this toolchain is not part of our environment, we have to add it

to the PATH variable in our environment before compilation. Suppose the tool chain is installed

in: ~/download/opt, then we set the path by typing:

PATH=$PATH:~/download/opt/nios2/bin

viii

http://nioswiki.jot.com/WikiHome/OperatingSystems/?Clinux/UClinuxDist

Internet radio running on uClinux

We configure the kernel by selecting the following options which enables ethernet when

compilation is completed:

Vendor/Product Selection --->
--- Select the Vendor you wish to target
(Altera) Vendor
--- Select the Product you wish to target
(nios2nommu) Altera Products

Kernel/Library/Defaults Selection --->
(linux-2.6.x) Kernel Version
(None) Libc Version
[] Default all settings (lose changes)
[*] Customize Kernel Settings
[] Customize Vendor/User Settings
[] Update Default Vendor Settings
We setup memory and io port address map of our Nios II board by:

make vendor_hwselect SYSPTF=~/download/NET2.ptf

Networking support is enabled on the DE2 board using the following kernel options:
Networking -->
[*] Networking support
Networking options --->
<*> Packet socket
<*> Unix domain sockets
[*] TCP/IP networking

Device Drivers -->Network device support ─>
[*] Network device support
[*] Ethernet (10 or 100Mbit)

[] SMC 91C9x/91C1xxx support

[] Opencores (Igor) Emac support
[] MoreThanIP 10_100_1000 Emac support
[] DM9000 support
[*] DM9000A with checksum offloading

We type 'make' and 'make linux image' to build an image. Next we install the kernel and start the
kernel by the following command:

PATH=$PATH:/usr/cad/altera/6.1/nios2eds/

sdk_shell

nios2-download -g ~/download/uClinux-dist/images/zImage

nios2-terminal

ix

Internet radio running on uClinux

After booting the uClinux, we need to enable the ethernet connection. If there is dhcp, then we
can type 'dhcpcd' after bring the ethernet control up. Assume that we do not, then we can assign
a static IP to the device as follows:

ifconfig eth0 up

ifconfig eth0 192.168.1.2

route add default gw 192.168.1.1

Now the uClinux system is network enabled, the applications running on it can access internet by

specifying the IP address, port number and file directory on the remote server:

mpg123 -@http://192.168.1.1:8000/ices.m3u

If we want to install a typical gcc program, which has the general 'configure', 'make' and

'make install' installation commands, we need to tell the system to invoke the cross-compiler

instead of the standard gcc compiler. To do this, we need to set certain flags when configuring.

In compiling mpg123, we used the following command and flags:

./configure –host=nios2-linux-uclibc –target=nios2-linux-uclibc –with-cpu=generic_nofpu

--with-audio=dummy CC=”nios2-linux-uclibc-gcc –D_KERNEL__ -elf2flt”

--with-optimization=4 --enable-gapless=no

The explanation for each flag is as follows:

■ elf2flt: This flag converts the default elf file format for nios to flat format needed
by uClinux

■ with-cpu=generic_nofpu: This is an optimization flag to turn off floating point.

■ D__KERNEL__: This flag causes the toolchain to include kernel libraries which
gives us access to read and write ios to communicate with our hardware
components

■ with-opimization=4: This flag cause the kernel to perform optimization in
compile stage.

■ enable-gapless=no: This is a flag specific to mpg123 to turn off gapless which is a
feature that removes 'blank' sound from mp3s but sacrificing speed.

■ with-audio=dummy: Since mpg123 supports multiple sound drivers (alsa, oss,
etc.), it also has a 'driver' with empty functions. We use this to write about
custom sound driver.

When the configuration is finished, we use the 'make' command to compile the program.

We should check that the system has invoked the correct compiler. When make is done, we grab

x

mailto:-@http://192.168.1.1:8000/ices.m3u

Internet radio running on uClinux

the program executable and put it in ~/download/uClinux-dist/romfs/bin and then rebuild the

uClinux's kernel image using 'make linux image'.

6. Software Architecture
The mpg123 is one of the two most popular open-source encoders available. mpg123's

library is used by many programs such as xine. The other library that is frequently used is

libMAD. We compared the size of mpg123 and libMAD and discover that mpg123 is

significantly smaller in file size than mpg123. This usually means a smaller program size and

hence a smaller kernel image. Furthermore, mpg123 has built-in ICY support which also plays

shoutcast streams. This makes it the better library to use.

In mpg123, the program initializes two tables for synthesizing sound: cosine table and

decwin table. The program then fetches the stream or file and add it to the playlist and play

begin decoding the mp3. Mpg123 decompress the signal and perform filterbank operation

together to optimize speed. Discrete cosine transform type-II using the cosine table generated at

startup is and the well-known butterfly method is operated on the result. Lastly, we do

windowing, which is a type of filter in filterbank, on the samples using the decwin table. The

final output is stored into a temporary buffer which is later fed to the audio controller when 16kB

of samples have been decoded.

Mpg123 provides multiple audio drivers. There is a dummy file which contains the

function headers with an empty body. We decide that this is a good place to write our audio

controller. The main function that is called is audio_play_samples() which is where the samples

is played. We perform the busy-wait and writes into the buffer mentioned in the 'Hardware

Implementation' section. Every time this function is called, the rate is written to the pre-defined

address in the audio controller to configure the channel to play that the requested rate.

xi

Internet radio running on uClinux

7. System Optimization
7.1 Software Optimization

The mpg123 program is designed to be a very fast library. However, it also added

features that slow it down such as gapless mentioned in section 5. uClinux Operating System.

Another feature is the transfer of memory. This is not necessary and it tries to invoke a fork

hence it is also removed from the simulation. TermIOs is also another feature that ran inside the

play_frame() loop, which is also turned off. Next, all redundant codes in the system should be

removed. For example, the equalizer is taken out of the program. After changing these options,

the decoding speed of a benchmarked mp3 went from 5mins13secs to 4mins59secs, hence an

improvement of 5%.

More importantly, the floating point should be turned off using the flags mentioned in

section 5. uClinux Operating System. This converts all floating points into type long. This

prevents the cpu from performing floating multiplication and division which is VERY slow. The

imporvement is almost tripled (270%).

7.2 Hardware Optimization

Since we have a time constraint, converting the entire mp3 in hardware is infeasible.

There are three areas in the code where we could choose to do optimization: Huffman decoding,

filterbank and DCT. We chose to optimize the DCT because it performs we realize all its

additions, subtraction, and multiplications can be done concurrently.

In theory, each cosine point can be calculated in one clock cycle if the butterfly method is

used. This means we can multiply, subtract and add in the same cycle to get the results for the

next point. However, multipliers are expensive in terms of lookup tables, we decided to only

initiate one, and the multiplications becomes the longest delay in calculating each point for the

cosine table. A modelSim of a cosine point being calculated is attached to the Appendix of this

file. From the waveform, we can see using the addition and subtraction as dividers for each

xii

Internet radio running on uClinux

cosine point. After this optimization is completed, we benchmarked the time and found out the

delay has been reduced by 20%.

However, the audio controller still fails to play at the required rate of 44kHz. The

reduction was not even significant enough for the sound to play at 22kHz. It was found that

another bottleneck is windowing. This process performs more than 520 multiplications and

would induce a huge delay. We done some experiments by removing windowing from the code

and running it in test mode, which is a “decode only” option,and found out this is the bottleneck

of decoding the MP3. The delay was reduced by about 220%.

8. Conclusion
In Conclusion, we set out to design and implement a peripheral that plays music from the

internet at 44kHz. We could only play music at 11kHz seamlessly. This is because we fail to

identify the biggest bottleneck. Though specialized multipliers are expensive in terms of lookup

table's usage, they save a lot of CPU cycles and should be studied carefully when doing

optimization.

xiii

Internet radio running on uClinux

APPENDIX - A

An example of TCP stream from www.shoutcast.com server

xiv

Internet radio running on uClinux

Appendix B
dct64.vhd

library IEEE;

use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity dct is
 port (
 reset_n: in std_logic;
 clk: in std_logic;
 waitrequest : out std_logic;
 byteenable: in std_logic_vector(3 downto 0);
 begintransfer: in std_logic;
 chipselect: in std_logic;
 read: in std_logic;
 write: in std_logic;
 address: in std_logic_vector(18 downto 0);
 writedata: in std_logic_vector(31 downto 0);
 readdata : out std_logic_vector(31 downto 0)
);
end dct;

architecture behav of dct is

type buf_type is array (31 downto 0) of std_logic_vector (31 downto 0);
type buf_type0 is array (15 downto 0) of std_logic_vector (31 downto 0);
type buf_type1 is array (7 downto 0) of std_logic_vector (31 downto 0);
type buf_type2 is array (3 downto 0) of std_logic_vector (31 downto 0);
type buf_type3 is array (1 downto 0) of std_logic_vector (31 downto 0);

signal pnt0 : buf_type0;
signal pnt1 : buf_type1;
signal pnt2 : buf_type2;
signal pnt3 : buf_type3;
signal pnt4 : std_logic_vector (31 downto 0);

signal buf1,buf2 : buf_type;
signal index, counter : integer;
signal start,start_pre : std_logic;
signal end_flg : std_logic;

signal add_a : buf_type;
signal add_b : buf_type;
signal add_result : buf_type;

signal sub_a : buf_type;
signal sub_b : buf_type;
signal sub_result : buf_type;

signal mult_a: std_logic_vector (31 downto 0);
signal mult_b: std_logic_vector (31 downto 0);
signal mult_result: std_logic_vector (31 downto 0);

signal i,j,m,n : integer;

xv

Internet radio running on uClinux

signal operation_done : std_logic;

component add is
port
(

dataa : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
datab : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
result : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)

);
end component;

component sub IS
PORT
(

dataa : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
datab : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
result : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)

);
end component;

component mul_wrapper IS
PORT
(

dataa : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
datab : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
result64 : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)

);
end component;

begin
waitrequest <= '0';

-- Make 16 adders

loop_add_inst:
for i in 0 to 16 generate

add_inst : add PORT MAP (
dataa => add_a(i),
datab => add_b(i),
result => add_result(i)

);
end generate;

-- Make 16 subtractors

loop_sub_inst:
for j in 0 to 16 generate

sub_inst : sub PORT MAP (
dataa => sub_a(j),
datab => sub_b(j),
result => sub_result(j)

);
end generate;

-- Make only 1 multiplier
-- 64bits*64bits=128bits, only the lower 64bits of mult_result are used

xvi

Internet radio running on uClinux

mult_inst : mul_wrapper PORT MAP (

dataa => mult_a,
datab => mult_b,
result64 => mult_result

);

-- save previous value of "start" signal

process (clk,reset_n)
begin
 if reset_n='0' then

start_pre <= '0';
 elsif (clk'event and clk='1') then

start_pre <= start;
 end if;
end process;

-- counter begin from "start" signal
-- end @ 146
-- generate "end-flg" signal
-- end-flg <= '1' when counter=146

operation_done <= '1' when counter = 89 else '0';

process (clk,reset_n)
begin
 if reset_n='0' then
 start <= '0';
 elsif (clk'event and clk='1') then

if(chipselect='1' and write='1' and index=64) then
 start<=writedata(0);
 elsif (operation_done = '1') then
 start <= '0';
 end if;
 end if;
end process;

process (clk,reset_n)
begin
 if reset_n='0' then

counter <= 0;
end_flg <= '0';

 elsif (clk'event and clk='1') then
if (start_pre='0' and start='1') then

counter <= 1;
 end_flg <= '0';
elsif (operation_done = '1') then

counter <= 89;
 end_flg <= '1';
elsif (start='1') then
 counter <= counter +1;
end if;

xvii

Internet radio running on uClinux

 end if;
end process;

-- transfer address from avalon to integer

index <= conv_integer(address(7 downto 0));

-- output "end_flg" to avalon bus

process(chipselect, read, index, buf1, buf2)
begin

if (chipselect='1' and read='1') then
 for i in 0 to 31 loop
 if(index = i) then readdata <= buf1(i)(31 downto 0); end if;
 end loop;
 for i in 0 to 31 loop
 if(index = i +32) then readdata <= buf2(i)(31 downto 0); end if;
 end loop;

 if(index = 64) then
 readdata <= "0000000000000000000000000000000" & end_flg;
 end if;
 else
 readdata <= (others => '0');
 end if;
end process;

process (clk,reset_n)
begin
 if reset_n='0' then
 for i in 0 to 31 loop

 buf1(i) <= (others=>'0');
 buf2(i) <= (others=>'0');
 end loop;

 elsif (clk'event and clk='1') then
if (chipselect='1' and write='1') then
 for i in 0 to 31 loop
 if (index = i) then
 buf1(i)(31 downto 0) <= writedata;

 buf2(i)(31 downto 0) <= writedata;
 end if;

 end loop;
 elsif (start_pre='1' and start='1') then
--
-- pnt0
--
 if (counter = 1) then
 for i in 0 to 15 loop
 buf1(i) <= add_result(i);
 buf1(i+16) <= sub_result(i);
 end loop;
 end if;

for i in 0 to 15 loop
 if (counter = i+2) then buf1(i+16) <= mult_result; end if;
end loop;

xviii

Internet radio running on uClinux

-- pnt1

 if(counter = 18) then
 for i in 0 to 7 loop
 buf2(i)<= add_result(i);
 buf2(i+8)<= sub_result(i);
 buf2(i +16)<= add_result(i+8);
 buf2(i+8+16)<= sub_result(i+8);
 end loop;
 end if;
 for i in 0 to 7 loop
 if (counter = i+19) then buf2(i+8) <= mult_result; end if;
 end loop;
 for i in 0 to 7 loop
 if (counter = i+27) then buf2(i+8+16) <= mult_result; end if;
 end loop;

-- pnt2

 if(counter = 35) then
 for i in 0 to 3 loop
 buf1(i)<= add_result(i);
 buf1(i+4)<= sub_result(i);
 buf1(i +8)<= add_result(i+4);
 buf1(i+4+8)<= sub_result(i+4);
 buf1(i +16)<= add_result(i+8);
 buf1(i+4 +16)<= sub_result(i+8);
 buf1(i +8+16)<= add_result(i+12);
 buf1(i+4+8+16)<= sub_result(i+12);
 end loop;
 end if;
 for i in 0 to 3 loop
 if (counter = i+36) then buf1(i+4) <= mult_result; end if;
 end loop;
 for i in 0 to 3 loop
 if (counter = i+40) then buf1(i+4+8) <= mult_result; end if;
 end loop;
 for i in 0 to 3 loop
 if (counter = i+44) then buf1(i+4 +16) <= mult_result; end if;
 end loop;
 for i in 0 to 3 loop
 if (counter = i+48) then buf1(i+4+8+16) <= mult_result; end if;
 end loop;

-- pnt3

 if(counter = 52) then
 for i in 0 to 1 loop
 buf2(i)<= add_result(i);
 buf2(i+2)<= sub_result(i);
 buf2(i +4)<= add_result(i+2);
 buf2(i+2+4)<= sub_result(i+2);
 buf2(i +8)<= add_result(i+4);
 buf2(i+2 +8)<= sub_result(i+4);
 buf2(i +4+8)<= add_result(i+6);
 buf2(i+2+4+8)<= sub_result(i+6);
 buf2(i +16)<= add_result(i+8);
 buf2(i+2 +16)<= sub_result(i+8);

xix

Internet radio running on uClinux

 buf2(i +4 +16)<= add_result(i+10);
 buf2(i+2+4 +16)<= sub_result(i+10);
 buf2(i +8+16)<= add_result(i+12);
 buf2(i+2 +8+16)<= sub_result(i+12);
 buf2(i +4+8+16)<= add_result(i+14);
 buf2(i+2+4+8+16)<= sub_result(i+14);
 end loop;
 end if;
 for i in 0 to 1 loop
 if (counter = i+53) then buf2(i+2) <= mult_result; end if;
 end loop;
 for i in 0 to 1 loop
 if (counter = i+55) then buf2(i+2+4) <= mult_result; end if;
 end loop;
 for i in 0 to 1 loop
 if (counter = i+57) then buf2(i+2+8) <= mult_result; end if;
 end loop;
 for i in 0 to 1 loop
 if (counter = i+59) then buf2(i+2+12) <= mult_result; end if;
 end loop;
 for i in 0 to 1 loop
 if (counter = i+61) then buf2(i+2+16) <= mult_result; end if;
 end loop;
 for i in 0 to 1 loop
 if (counter = i+63) then buf2(i+2+20) <= mult_result; end if;
 end loop;
 for i in 0 to 1 loop
 if (counter = i+65) then buf2(i+2+24) <= mult_result; end if;
 end loop;
 for i in 0 to 1 loop
 if (counter = i+67) then buf2(i+2+28) <= mult_result; end if;
 end loop;

-- pnt4

 if(counter = 69) then
 for i in 0 to 15 loop
 buf1(i*2)<= add_result(i);
 buf1(i*2+1)<= sub_result(i);
 end loop;
 end if;
 for i in 0 to 15 loop
 if(counter = i+70) then buf1(i*2+1) <= mult_result; end if;
 end loop;

 if(counter = 86) then
 for i in 0 to 7 loop
 buf1(2+i*4) <= add_result(i);
 end loop;
 end if;
 if(counter = 87) then
 for i in 0 to 3 loop
 buf1(4+i*8) <= add_result(i*3);
 buf1(6+i*8) <= add_result(i*3+1);
 buf1(5+i*8) <= add_result(i*3+2);
 end loop;
 end if;
 if(counter = 88) then

xx

Internet radio running on uClinux

 for i in 0 to 1 loop
 buf1(8+i*16) <= add_result(i*7);
 buf1(12+i*16) <= add_result(i*7+1);
 buf1(10+i*16) <= add_result(i*7+2);
 buf1(14+i*16) <= add_result(i*7+3);
 buf1(9+i*16) <= add_result(i*7+4);
 buf1(13+i*16) <= add_result(i*7+5);
 buf1(11+i*16) <= add_result(i*7+6);
 end loop;
 end if;

--
 end if; --start_pre start
 end if; --clock'event
end process;

-- assign input value to adder/sub/multiplier

process(counter,add_a,add_b,sub_a,sub_b,mult_a,mult_b)
begin
loop_add_assign: for m in 0 to 31 loop
 add_a(m) <= (others=>'0');
 add_b(m) <= (others=>'0');
end loop;
loop_sub_assign: for n in 0 to 31 loop
 sub_a(n) <= (others=>'0');
 sub_b(n) <= (others=>'0');
end loop;
mult_a <= (others=>'0');
mult_b <= (others=>'0');

--
-- pnt0
--
 if(counter = 1) then
 for i in 0 to 15 loop
 add_a(i) <= buf1(i);
 add_b(i) <= buf1(31-i);
 sub_b(i) <= buf2(16+i);
 sub_a(i) <= buf2(15-i);
 end loop;
 end if;
 for i in 0 to 15 loop
 if(counter = i+2) then
 mult_a <= buf1(i+16);
 mult_b <= pnt0(15-i);
 end if;
 end loop;

-- pnt1

 if (counter = 18) then
 for i in 0 to 7 loop
 add_a(i) <= buf1(i);
 add_b(i) <= buf1(15-i);
 sub_b(i) <= buf1(8+i);
 sub_a(i) <= buf1(7-i);

xxi

Internet radio running on uClinux

 add_a(i+8) <= buf1(0+i +16);
 add_b(i+8) <= buf1(15-i+16);
 sub_b(i+8) <= buf1(7-i +16);
 sub_a(i+8) <= buf1(8+i +16);
 end loop;
 end if;
 for i in 0 to 7 loop
 if(counter = i+19) then
 mult_a <= buf2(i+8);
 mult_b <= pnt1(7-i);
 end if;
 end loop;
 for i in 0 to 7 loop
 if(counter = i+27) then
 mult_a <= buf2(i+8+16);
 mult_b <= pnt1(7-i);
 end if;
 end loop;

-- pnt2

 if (counter = 35) then
 for i in 0 to 3 loop
 add_a(i) <= buf2(i);
 add_b(i) <= buf2(7-i);
 sub_b(i) <= buf2(4+i);
 sub_a(i) <= buf2(3-i);

 add_a(i+4) <= buf2(0+i +8);
 add_b(i+4) <= buf2(7-i +8);
 sub_b(i+4) <= buf2(3-i +8);
 sub_a(i+4) <= buf2(4+i +8);

 add_a(i+8) <= buf2(0+i +16);
 add_b(i+8) <= buf2(7-i +16);
 sub_b(i+8) <= buf2(4+i +16);
 sub_a(i+8) <= buf2(3-i +16);

 add_a(i+12) <= buf2(i +24);
 add_b(i+12) <= buf2(7-i +24);
 sub_b(i+12) <= buf2(3-i +24);
 sub_a(i+12) <= buf2(4+i +24);
 end loop;
 end if;
 for i in 0 to 3 loop
 if(counter = i+36) then
 mult_a <= buf1(i+4);
 mult_b <= pnt2(3-i);
 end if;
 end loop;
 for i in 0 to 3 loop
 if(counter = i+40) then
 mult_a <= buf1(i+4+8);
 mult_b <= pnt2(3-i);
 end if;
 end loop;
 for i in 0 to 3 loop

xxii

Internet radio running on uClinux

 if(counter = i+44) then
 mult_a <= buf1(i+4+16);
 mult_b <= pnt2(3-i);
 end if;
 end loop;
 for i in 0 to 3 loop
 if(counter = i+48) then
 mult_a <= buf1(i+4+8+16);
 mult_b <= pnt2(3-i);
 end if;
 end loop;

-- pnt3

 if (counter = 52) then
 for i in 0 to 1 loop
 add_a(i) <= buf1(i);
 add_b(i) <= buf1(3-i);
 sub_b(i) <= buf1(2+i);
 sub_a(i) <= buf1(1-i);

 add_a(i+2) <= buf1(i +4);
 add_b(i+2) <= buf1(3-i +4);
 sub_b(i+2) <= buf1(1-i +4);
 sub_a(i+2) <= buf1(2+i +4);

 add_a(i+4) <= buf1(0+i +8);
 add_b(i+4) <= buf1(3-i +8);
 sub_b(i+4) <= buf1(2+i +8);
 sub_a(i+4) <= buf1(1-i +8);

 add_a(i+6) <= buf1(0+i +12);
 add_b(i+6) <= buf1(3-i +12);
 sub_b(i+6) <= buf1(1-i +12);
 sub_a(i+6) <= buf1(2+i +12);

 add_a(i+8) <= buf1(0+i +16);
 add_b(i+8) <= buf1(3-i +16);
 sub_b(i+8) <= buf1(2+i +16);
 sub_a(i+8) <= buf1(1-i +16);

 add_a(i+10) <= buf1(0+i +20);
 add_b(i+10) <= buf1(3-i +20);
 sub_b(i+10) <= buf1(1-i +20);
 sub_a(i+10) <= buf1(2+i +20);

 add_a(i+12) <= buf1(i +24);
 add_b(i+12) <= buf1(3-i +24);
 sub_b(i+12) <= buf1(2+i +24);
 sub_a(i+12) <= buf1(1-i +24);

 add_a(i+14) <= buf1(0+i +28);
 add_b(i+14) <= buf1(3-i +28);
 sub_b(i+14) <= buf1(1-i +28);
 sub_a(i+14) <= buf1(2+i +28);
 end loop;
 end if;
 for i in 0 to 1 loop

xxiii

Internet radio running on uClinux

 if(counter = i+53) then
 mult_a <= buf2(i+2);
 mult_b <= pnt3(1-i);
 end if;
 end loop;
 for i in 0 to 1 loop
 if(counter = i+55) then
 mult_a <= buf2(i+2+4);
 mult_b <= pnt3(1-i);
 end if;
 end loop;
 for i in 0 to 1 loop
 if(counter = i+57) then
 mult_a <= buf2(i+2+8);
 mult_b <= pnt3(1-i);
 end if;
 end loop;
 for i in 0 to 1 loop
 if(counter = i+59) then
 mult_a <= buf2(i+2+12);
 mult_b <= pnt3(1-i);
 end if;
 end loop;
 for i in 0 to 1 loop
 if(counter = i+61) then
 mult_a <= buf2(i+2+16);
 mult_b <= pnt3(1-i);
 end if;
 end loop;
 for i in 0 to 1 loop
 if(counter = i+63) then
 mult_a <= buf2(i+2+20);
 mult_b <= pnt3(1-i);
 end if;
 end loop;
 for i in 0 to 1 loop
 if(counter = i+65) then
 mult_a <= buf2(i+2+24);
 mult_b <= pnt3(1-i);
 end if;
 end loop;
 for i in 0 to 1 loop
 if(counter = i+67) then
 mult_a <= buf2(i+2+28);
 mult_b <= pnt3(1-i);
 end if;
 end loop;

-- pnt4

 if(counter = 69) then
 for i in 0 to 7 loop
 add_a(i*2) <= buf2(i*4);
 add_b(i*2) <= buf2(i*4+1);
 sub_b(i*2) <= buf2(i*4+1);
 sub_a(i*2) <= buf2(i*4);

 add_a(i*2+1) <= buf2(i*4+2);

xxiv

Internet radio running on uClinux

 add_b(i*2+1) <= buf2(i*4+3);
 sub_b(i*2+1) <= buf2(i*4+2);
 sub_a(i*2+1) <= buf2(i*4+3);
 end loop;
 end if;
 for i in 0 to 15 loop
 if(counter = i+70) then
 mult_a <= buf1(i*2+1);
 mult_b <= pnt4;
 end if;
 end loop;

 if(counter = 86) then
 for i in 0 to 7 loop
 add_a(i) <= buf1(2+i*4);
 add_b(i) <= buf1(3+i*4);
 end loop;
 end if;
 if(counter = 87) then
 for i in 0 to 3 loop
 add_a(i*3) <= buf1(4+i*8);
 add_b(i*3) <= buf1(6+i*8);
 add_a(i*3+1) <= buf1(6+i*8);
 add_b(i*3+1) <= buf1(5+i*8);
 add_a(i*3+2) <= buf1(5+i*8);
 add_b(i*3+2) <= buf1(7+i*8);
 end loop;
 end if;
 if(counter = 88) then
 for i in 0 to 1 loop
 add_a(i*7) <= buf1(8+i*16);
 add_b(i*7) <= buf1(12+i*16);
 add_a(i*7+1) <= buf1(12+i*16);
 add_b(i*7+1) <= buf1(10+i*16);
 add_a(i*7+2) <= buf1(10+i*16);
 add_b(i*7+2) <= buf1(14+i*16);
 add_a(i*7+3) <= buf1(14+i*16);
 add_b(i*7+3) <= buf1(9+i*16);
 add_a(i*7+4) <= buf1(9+i*16);
 add_b(i*7+4) <= buf1(13+i*16);
 add_a(i*7+5) <= buf1(13+i*16);
 add_b(i*7+5) <= buf1(11+i*16);
 add_a(i*7+6) <= buf1(11+i*16);
 add_b(i*7+6) <= buf1(15+i*16);
 end loop;
 end if;
end process;

-- cosine table
pnt0(0)(31 downto 0)<=conv_std_logic_vector(16403,32);
pnt0(1)(31 downto 0)<=conv_std_logic_vector(16563,32);
pnt0(2)(31 downto 0)<=conv_std_logic_vector(16890,32);
pnt0(3)(31 downto 0)<=conv_std_logic_vector(17401,32);
pnt0(4)(31 downto 0)<=conv_std_logic_vector(18124,32);
pnt0(5)(31 downto 0)<=conv_std_logic_vector(19101,32);
pnt0(6)(31 downto 0)<=conv_std_logic_vector(20398,32);
pnt0(7)(31 downto 0)<=conv_std_logic_vector(22112,32);
pnt0(8)(31 downto 0)<=conv_std_logic_vector(24396,32);

xxv

Internet radio running on uClinux

pnt0(9)(31 downto 0)<=conv_std_logic_vector(27503,32);
pnt0(10)(31 downto 0)<=conv_std_logic_vector(31869,32);
pnt0(11)(31 downto 0)<=conv_std_logic_vector(38320,32);
pnt0(12)(31 downto 0)<=conv_std_logic_vector(48633,32);
pnt0(13)(31 downto 0)<=conv_std_logic_vector(67429,32);
pnt0(14)(31 downto 0)<=conv_std_logic_vector(111660,32);
pnt0(15)(31 downto 0)<=conv_std_logic_vector(333906,32);

pnt1(0)(31 downto 0)<=conv_std_logic_vector(16463,32);
pnt1(1)(31 downto 0)<=conv_std_logic_vector(17121,32);
pnt1(2)(31 downto 0)<=conv_std_logic_vector(18577,32);
pnt1(3)(31 downto 0)<=conv_std_logic_vector(21195,32);
pnt1(4)(31 downto 0)<=conv_std_logic_vector(25826,32);
pnt1(5)(31 downto 0)<=conv_std_logic_vector(34756,32);
pnt1(6)(31 downto 0)<=conv_std_logic_vector(56441,32);
pnt1(7)(31 downto 0)<=conv_std_logic_vector(167154,32);

pnt2(0)(31 downto 0)<=conv_std_logic_vector(16704,32);
pnt2(1)(31 downto 0)<=conv_std_logic_vector(19704,32);
pnt2(2)(31 downto 0)<=conv_std_logic_vector(29490,32);
pnt2(3)(31 downto 0)<=conv_std_logic_vector(83981,32);

pnt3(0)(31 downto 0)<=conv_std_logic_vector(17733,32);
pnt3(1)(31 downto 0)<=conv_std_logic_vector(42813,32);

pnt4 (31 downto 0)<=conv_std_logic_vector(23170,32);

end behav;

xxvi

Internet radio running on uClinux

Appendix C
mul64_with_shift.vhd

-- mult128_wrapper is used to get the lower 63bits of the 128bits output from
component mult128 defined inmult128.vhd
-- mult128_wrapper is a component in dct64-final-5-2.vhd
-- created at May 3th. by kai

library IEEE;

use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity mul_wrapper is
 PORT

(
signal dataa : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
signal datab : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
signal result64 : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)

);

end mul_wrapper;

architecture datapath of mul_wrapper is

component mul IS

PORT
(

dataa : in STD_LOGIC_VECTOR (31 DOWNTO 0);
datab : in STD_LOGIC_VECTOR (31 DOWNTO 0);
result : out STD_LOGIC_VECTOR (63 DOWNTO 0)

);

END component;

signal mult_result: std_logic_vector (63 downto 0);

begin

 mult_inst : mul PORT MAP (
dataa => dataa,
datab => datab,
resul => mult_result

);

result64 <= mult_result(31)&mult_result(31)&mult_result(31)&mult_result(31)&
mult_result(31)&mult_result(31)&mult_result(31)&mult_result(31)&mult_result(3
1)&mult_result(31)&mult_result(31)&mult_result(31)&mult_result(31)&mult_resul
t(31)&mult_result(31)&mult_result(31 downto 15);

end datapath;

xxvii

Internet radio running on uClinux

Appendix D
audio_wrapper.vhd
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_ARITH.all;
use IEEE.STD_LOGIC_SIGNED.all;

--
-- entity

--

entity audio_wrapper is
port (
 clk : in std_logic;
 reset_n : in std_logic;

 -- Bus master signals
 address : in std_logic_vector (7 downto 0);
 byteenable : in std_logic_vector (1 downto 0);
 writedata : in std_logic_vector (15 downto 0);
 read : in std_logic;
 write : in std_logic;
 chipselect : in std_logic;

 -- Slave signals
 readdata : out std_logic_vector (15 downto 0);
 waitrequest : out std_logic;

 -- Audio interface signals
 klcoidua : in std_logic; -- 18.43MHz audio
clock AUD_XCK
 AUD_ADCLRCK : out std_logic; -- Audio CODEC ADC LR
Clock
 AUD_ADCDAT : in std_logic; -- Audio CODEC ADC
Data
 AUD_DACLRCK : out std_logic; -- Audio CODEC DAC LR
Clock
 AUD_DACDAT : out std_logic; -- Audio CODEC DAC
Data
 AUD_BCLK : inout std_logic; -- Audio CODEC Bit-
Stream Clock

 -- Test signals --
 ledr : out std_logic_vector (17 downto 0)
);
end entity audio_wrapper;

--
-- architecture

--

architecture imp of audio_wrapper is

xxviii

Internet radio running on uClinux

--component fifo
 component aud_fifo
 port (

data : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
rdclk : IN STD_LOGIC ;
rdreq : IN STD_LOGIC ;
wrclk : IN STD_LOGIC ;
wrreq : IN STD_LOGIC ;
q : OUT STD_LOGIC_VECTOR (15 DOWNTO 0);
rdempty : OUT STD_LOGIC ;
wrempty : OUT STD_LOGIC ;
wrusedw : OUT STD_LOGIC_VECTOR (12 DOWNTO 0)

);
 end component;

 component de2_wm8731_audio
 port (
 clk : in std_logic;
 reset_n : in std_logic;
 test_mode : in std_logic;
 audio_request : out std_logic;
 data : in std_logic_vector(15 downto 0);

 -- Audio interface signals
 AUD_ADCLRCK : out std_logic;
 AUD_ADCDAT : in std_logic;
 AUD_DACLRCK : out std_logic;
 AUD_DACDAT : out std_logic;
 AUD_BCLK : inout std_logic
);
 end component;

 signal reset : std_logic;

 signal sound_request : std_logic;
 signal write_fifo : std_logic;
 signal data_from_bus : std_logic_vector (15 downto 0);
 signal mdata : std_logic_vector (15 downto 0);
 signal rdempty : std_logic;
 signal wrempty : std_logic;
 signal writefifo : std_logic;

 signal counter : std_logic_vector (13 downto 0);
 signal sin_counter : std_logic_vector (5 downto 0);
 signal sin_out : std_logic_vector (15 downto 0);

 signal rate : std_logic_vector(2 downto 0); -- "XX1" 11kHz, "01X" 22kHz,
"1XX" 44kHz
 signal rate_counter : std_logic_vector (2 downto 0);
 signal req_fifo : std_logic;

 signal used_buf : std_logic_vector (12 downto 0);

 --test
 signal ledr_count : std_logic_vector (16 downto 0);
begin

 -- assignments

xxix

Internet radio running on uClinux

 ledr(16 downto 0) <= ledr_count(16 downto 0);
 ledr(17) <= wrempty;

 process (clk, reset_n)
 begin
 if (clk'event and clk = '1') then
 writefifo <= '0';
 if(write = '1' and chipselect = '1') then
 if(address = "0000") then
 data_from_bus <= writedata;
 writefifo <= '1';
 else
 rate <= writedata(13 downto 11);
 end if;
 end if;
 if(read = '1' and chipselect = '1' and address = "0000") then
 readdata <= "000"& used_buf;
 end if;
 end if;
 end process;

 process (klcoidua)
 begin
 if(klcoidua'event and klcoidua = '1') then
 req_fifo <= '0';
 if(sound_request = '1') then
 if((rate_counter(2) = '1' and rate(2) = '1') or
 (rate_counter(1) = '1' and rate(1) = '1') or
 (rate_counter(0) = '1' and rate(0) = '1')) then
 rate_counter <= "100";
 req_fifo <= '1';
 else
 rate_counter <= '0' & rate_counter (2 downto 1);
 end if;
 end if;
 end if;
 end process;

 process(wrempty)
begin
 if(wrempty'event and wrempty = '1') then

 ledr_count <= ledr_count + '1';
 end if;
 end process;

 audio : de2_wm8731_audio
 port map (
 clk => klcoidua,
 reset_n => reset_n,
 test_mode => '0',
 audio_request => sound_request,
 data => mdata,

 AUD_ADCLRCK => AUD_ADCLRCK,
 AUD_ADCDAT => AUD_ADCDAT,
 AUD_DACLRCK => AUD_DACLRCK,
 AUD_DACDAT => AUD_DACDAT,
 AUD_BCLK => AUD_BCLK

xxx

Internet radio running on uClinux

);

 the_fifo : aud_fifo
 port map (

data => data_from_bus,
rdclk => klcoidua,
rdreq => req_fifo,
wrclk => clk,
wrreq => writefifo,
q => mdata,
rdempty => rdempty,
wrempty => wrempty,
wrusedw => used_buf

);

end architecture imp;

xxxi

Internet radio running on uClinux

Appendix E
dct64.c
#include "config.h"
#include "mpg123.h"
#include <asm/io.h>

#include <stdio.h>

void dct64(real *out0,real *out1,real *samples)
{
 register int i;
 register real *b1;
 real bufs[64];
 b1 = bufs;
 for(i=0; i<32; i++)
 writel(*b1++, 0x00600000+i);
 writel(0xffffffff, 0x00600000+64);
 while(readl(0x00600000+64) != 1);

 for(i=0; i<64; i++)
 bufs[i] = readl(0x00600000+i);

 out0[0x10*16] = bufs[0];
 out0[0x10*15] = bufs[16+0] + bufs[16+8];
 out0[0x10*14] = bufs[8];
 out0[0x10*13] = bufs[16+8] + bufs[16+4];
 out0[0x10*12] = bufs[4];
 out0[0x10*11] = bufs[16+4] + bufs[16+12];
 out0[0x10*10] = bufs[12];
 out0[0x10* 9] = bufs[16+12] + bufs[16+2];
 out0[0x10* 8] = bufs[2];
 out0[0x10* 7] = bufs[16+2] + bufs[16+10];
 out0[0x10* 6] = bufs[10];
 out0[0x10* 5] = bufs[16+10] + bufs[16+6];
 out0[0x10* 4] = bufs[6];
 out0[0x10* 3] = bufs[16+6] + bufs[16+14];
 out0[0x10* 2] = bufs[14];
 out0[0x10* 1] = bufs[16+14] + bufs[16+1];
 out0[0x10* 0] = bufs[1];

 out1[0x10* 0] = bufs[1];
 out1[0x10* 1] = bufs[16+1] + bufs[16+9];
 out1[0x10* 2] = bufs[9];
 out1[0x10* 3] = bufs[16+9] + bufs[16+5];
 out1[0x10* 4] = bufs[5];
 out1[0x10* 5] = bufs[16+5] + bufs[16+13];
 out1[0x10* 6] = bufs[13];
 out1[0x10* 7] = bufs[16+13] + bufs[16+3];
 out1[0x10* 8] = bufs[3];
 out1[0x10* 9] = bufs[16+3] + bufs[16+11];
 out1[0x10*10] = bufs[11];
 out1[0x10*11] = bufs[16+11] + bufs[16+7];
 out1[0x10*12] = bufs[7];
 out1[0x10*13] = bufs[16+7] + bufs[16+15];
 out1[0x10*14] = bufs[15];
 out1[0x10*15] = bufs[16+15];

xxxii

Internet radio running on uClinux

}

Appendix F
audio_dummy.c

#include "config.h"
#include "mpg123.h"
#include <stdlib.h>
#include <stdio.h>
#include <asm/io.h>

#include <asm/ioctl.h>

int audio_open(struct audio_info_struct *ai)
{
 ai->handle = NULL;
 return 0;
}

int audio_get_formats(struct audio_info_struct *ai)
{
 return AUDIO_FORMAT_SIGNED_16;
}

#define CAN_WRITE 220
int audio_play_samples(struct audio_info_struct *ai,unsigned char *buf,int
len)
{
 writew(ai->channels, 0x00500004);
 writew(ai->rate, 0x00500002);
 for(i=0; i<8192; i++)
 if(readw(0x00500000) < 8190)
 writew((buf[i*2+1]<<8)|(buf[i*2]), 0x00500000);
 return len;
}

int audio_close(struct audio_info_struct *ai)
{
 return 0;
}

void audio_queueflush(struct audio_info_struct *ai)
{
printf("We don't queue damnit!\n");
}

xxxiii

Internet radio running on uClinux

Appendix G
Modelsim result for dct64.vhd

xxxiv

