CardCounter

Final Project Report

Team Members:
Christos Savvopoulos
Hugh Gordon
Nathan Rogan

Table of Contents

. Introduction

. Project Design
i. Design
ii. ~ Components
iii. Software

. Implementation Issues
i. Hardware & Interfacing
ii. Lighting
iii. ~ Physical

. Lessons and Work Done

i. Chris
1i. Nate
iii. Hugh

Code
i. Ccode

ii. lab5 (top-level entity)
iii. histo (histogram counter)
iv. communication

v. CCD_Capture (edited)

1. Introduction

We have written a playing card recognition system using the CCD camera provided with
the DE2 board. Using camera input and specialized histogramming techniques, our
project detects the value and suite of a given playing card. Given 10 minutes of training,
our system will work with a large variety of different playing cards.

The image data comes from the CCD camera into the DE2 board as a stream of pixels. As
each pixel is received, its color is determined using a set of hard coded thresholds. Each
time a pixel of a given color arrives, a register corresponding to that color is incremented.
Once the entire picture is received, the software can use the collected data to determine
how many pixels of each color are in the picture.

Each playing card has a unique number of colored pixels on it. The software program that
we wrote on top of the NIOS processor uses this data to determine which card has been
placed. While this method is not 100% effective, mainly due to noisy data from the CCD
camera, using range and averaging techniques has allowed us to achieve very high rates of
accuracy in card recognition.

It is worth noting that throughout the development process we implemented
unsuccessfully various solutions to solve different issues that had arisen. Some of these
failed solutions and the reasoning behind there implementation as well as their failure are
included in Appendix A.

2. Project Design
& System Architecture

i. Design

When we set off to design this system we had two goals in mind: recognizing cards by
counting pixels and separating the tasks better suited to software or hardware. Some parts
of the design are inherently hardware, such as the CCD Capture logic and the VGA
output. Other tasks, such as an algorithm that recognizes cards are clearly better done in
software. To count the number of pixels of a certain color, there are multiple approaches.
In the end, we decided to implement the system such that as the CCD_Capture unit reads
the data, they are counted by multiple histogram components. When a new frame arrives,
the counter is stored in a register.

On the software side of things, we want to know the number of pixels for each color. The
communication between the two worlds happens through the Avalon bus. In addition to
that, to make the system more flexible we decided to give the program the power to define
the color of each counter on the fly. This is done specifying a minimum and maximum
red, green, and blue component.

Not only did this save a huge amount of compiling time (since software compiles a lot
faster than hardware) but it also made the system a lot more expandable, since different
algorithms could try to change the thresholds on the fly.

ii. Components
CCD_Capture:
Reads from the CCD Camera, and outputs the data component of the currently
read pixel.
Clock speed: 25 MHZ
Input: Clock, GPIO_1
Output: data (10 bits), new frame flag, new pixel flag

RAW2RGB:
The CCD is a 2D Array of either red, green, or blue sensors. This component
does some basic image processing (averaging pixels) and gives out the red, green
and blue components for each pixel.
Input: pixel clock, data (10 bits), X & Y position
Output: red, green, blue (10 bits each)

Histogram:
This histogram logic takes in the stream of RGB data from the camera logic. Each
module (there are 8) is configurable from the software to count up pixels that
match a given set of tolerances placed on the red, green and blue values. For
instance, to match red, one could set the R tolerance to be between 700 and 1023
and the G and B tolerances to be from 0 to 300. The suitability of these values is
highly dependent on the environment.
Input: min and max threshold (32 bits each)
Output: Count (32 bit wide) of how many pixels fit the RGB constraints

VGA GPIO
Buttons Monitor (CCD)
|
\d
Config
\J
VGA - CCD_Capture
Controller Logic
NIOS 2 4
DEZ2 Board
Y
A > Histogram
X8
1
\ 4
C Program
VGA Controller:

The VGA controller takes the data from the camera logic and turns it intoa VGA
signal so that it can be displayed on a normal computer monitor.

Input: 1, g, b: 10bits each

Output: VGA signals

Config and Buttons:
The buttons were configured as input to control the settings on the camera. We
needed a way to adjust the exposure and turn the camera on and off. The buttons
on the DE2 board provided a simple solution.

NIOS 2e:
The standard processor used with the DE2 board. The edition we used had a
50MHZ clock, 524K of onboard SRAM and used the JTAG UART system to
communicate with the terminal.

Communication:
This component, as the name suggests, was responsible for communicating data
between the hardware part and the software part of our solution. It uses the Avalon
bus to perform 32 bit reads (accum) and writes (min, max) from/to the hardware.
Input: 8 x accum (32 bits each)
Output: 8 x min, max (32 bits each)

iii. Software

Aside from counting the pixels of various colors, this is where all the image processing got
accomplished. The software program has two modes of operation. The first mode is the
learning mode. In this mode, the user is asked to place cards down and type in their
values (i.e. king of spades or 2 of clubs). The software then records range of values that
are read for number of red and black pixels over a large number of frames. These two
ranges (one for red and one for black) are unique for each card. Once the ranges are
paired with a given card, that card can be recognized. The second mode of operation is
the reorganization mode. In this mode, the software accesses its previously learned data
and attempts to match a given card to it. In this case, instead of taking the range of values
over a large number of frames, it takes the average of these values and looks to see
weather or not this average fits inside each given remembered range. If it does, the
corresponding card value is printed out, otherwise, it tries again. Pseudo code is provided
below.

pseudocode
setThresholds();

//Learning phase
while(1) {

read card number and suit from user

if user enters 0 as number, proceed to next phase

take 2000 readings from camera

store the minimum and maximum results for each color, under the
card index

}

//Recognizing phase

while(1) {
take 1000 readings and average the results for each color
for each card X that we learned in the previous phase
if the averages are within the ranges of X
keep the card that is the best fit*
print that card

}

*falls most closely in the centre of the range

3. Implementation Issues

i. Hardware & Interfacing

During the proposal period, we decided to break the project into three separate pieces:
interfacing with camera, hardware processing and software. We assumed that interfacing
with the software would be simple, as we had already done that previously.

This approach worked, until we tried to combine software and hardware. With the timing
differences between the camera logic and the processor, the software would not upload on
the DE2 board. The camera module runs at 25MHz. In addition to that, an inverted
version of that clock is also used that can optionally have an offset. The processor, as well
as the rest of the system, runs at 50MHz.

The problem being that we could not upload the software, we tried many different
approaches. First, we tried to follow the lab3 tutorial over and over again, making sure we
added every NIOS_System component correctly. The next approach was to strip down
the system, component by component so as to find the cause of the trouble. Though, we
were able to confine the problem within ~30 lines of code, we were not able to resolve the
problem. Having tracked down the problem, we experimented with re-writing the
obtained code to VHDL, and thalso with generating the NIOS System in Verilog.

Our next approach was to research how the NIOS system works and try to track down
online discussions from people who had the same issues. The consensus seemed to be the
reason we mention above, namely the timing differences. A careful review of the
info/warnings produced by Quartus confirmed this.

The multiple clocks in a single module solution could have been solved in two ways. Add
a method to align clock skew consistently over the module or to remove the component
from the NIOS system and connect the two in the top level component. We chose the
latter.

ii. Lighting

With any form of computer vision, obtaining good lighting conditions is paramount. In
this project, it was especially important that we had reproducible and optimal lighting
conditions. To this end, we researched and tested numerous different lighting choices to
find one that would work optimally for us. A central concern was whether to use
incandescent light or fluorescent light. Through our research, we learned that the issue at
hand was obtaining a proper white balance for our CCD camera. We learned that
incandescent light has a waveform that would offset our image in a negative way:

incandescent
lamp

relative intensity

TOO 650 &00 550 s500 450 400
wavelength [nm)

From http://users.mis.net/~pthrush/lighting/glow.html

As one can see from the above diagram, incandescent light has a lot of red in it. This red
interfered significantly with our ability to detect red in cards. Fluorescent lamps however
proved to be much more evenly spread:

Intensity
(Counts) s 12
4000| - /
4
N\
30001
2000} 2
3
10007 l
‘\ 21 /2:
400 §00 600 700 800
Wavelength (nanometers)
From

http://en.wikipedia.org/wiki/Image:Fluorescent lighting spectrum peaks labelled.gif

The above spectra is from a typical fluorescent lamp, as can be seen, the peaks are much
more in the green and blue regions, which could easily ignore. We also realized that
multiple light sources were significantly better than one as many light sources delivered
much more uniform light to the face of the card. Having uniform light hitting the card is
very important. It means that moving the card does not affect the intensity perceived by
the camera.

iii. Physical

Similar to lighting, we had a lot of physical issues with this project. It turned out that the
placement of the camera, and the isolation of the camera-card system was highly
important. Again, we did significant testing in this area, trying everything from a wood

box with a green felt bottom to a cardboard box lit with Christmas lights to an opaque
cake cover with a hole in the top for the camera.

4. Lessons Learned

i. Chris
Contribution:
e Designed the system and the specifics of the hardware architecture.
e Developed camera and communication logic that ultimately allowed for successtul
use of the Avalon bus.
e Developed C interface.

Lesson: This project taught me the importance of being patient with other team
members. There were some times when I thought that the voiced ideas were wrong, but
upon further consideration proved insightful. Also, when comparing this experience with
the PLT project, I can understand how important it is to appoint a team leader. Finally, I
wish we had researched the workings of NIOS more systematically. We could have
avoided a lot of time-consuming experimentation if we had done so.

ii. Hugh
Contribution:
e Helped with VHDL.
e Built a stabilized box which allowed for optimal data acquisition.

Lesson: Doing something this low level in system design was a real eye opener. Besides
sharpening my VHDL skills and broadening my understanding of digital systems, I was
shown the importance of good communication and planning amongst team members.
We could have planned and shared out the project much more effectively. We were
sometimes working on the same thing. Good planning and communication could have
made us much more effective as a working unit. Finally, I learned that the lower level you
are, the more time you need to leave for debugging. Debugging this took orders of
magnitude more time than my most complex operating systems endeavors.

iii. Nate
Contribution:
o Tested various algorithms for suitability.
e Extensively researched cause of failure with the Avalon and tried different
hardware configurations.
e Developed C program.

Lesson: The main thing I learned in this project was that a clear review of a system on
paper is worth days in development time. The ability to understand the tools design

implementation from the top level allows for a cleaner solution and a less buggy
implementation. While I did take a systematic debugging approach when our system was
show to have a critical flaw I did not have enough sense to stop and reanalyze the system.
Working with team members gave a fresh review of the system and eventually led to the
solution from Chris. There were some fun times when things went well. There were other
times when the tension was so thick it was palpable. A calm demeanor and patience as
hard as it was to obtain at those times led to a better working environment.

5. Code

The code for the following components follows in the order shown below. They were
printed to .pdf from the editors of these files, and then appended to the final pdf (for
highlighting).

i. C code

ii. lab5 (top-level entity)

iii. histo (histogram counter)
iv. communication

v. CCD_Capture (edited)

Edited: new frame flag, used by the accumulators.

N
*

* "Hello World" example.

*

* This example prints "Hello from Nios 11" to the STDOUT stream. It runs on

* the Nios 11 "standard®, “"full_featured®, "fast®", and "low_cost" example

* designs. It runs with or without the MicroC/0S-11 RTOS and requires a STDOUT
* device in your system®"s hardware.

* The memory footprint of this hosted application is ~69 kbytes by default

* using the standard reference design.

*

* For a reduced footprint version of this template, and an explanation of how
* to reduce the memory footprint for a given application, see the

* "small_hello_world" template.

*

*/

#include <io.h>
#include <system.h>
#include <stdio.h>

typedef unsigned int uint;
#define N 2

uint pack(uint red, uint green, uint blue) {
return ((red&0x3FF)<<20)
| ((green&0x3FF)<<10)
| ((blue&0x3FF));

}

void put(int n, int minR, int minG, int minB, int maxR, int maxG, int maxB) {
I10WR_32DIRECT(COMMUNICATION_O_BASE, 4*n*2, pack(minR, minG, minB));
I10WR_32DIRECT(COMMUNICATION_O_BASE, 4*(n*2+1), pack(maxR, maxG, maxB));

}

uint get(int n) {
return I0RD_32DIRECT (COMMUNICATION_O_BASE, 4*n);
}

struct range {
uint min,max;

¥

struct range db[15][4]1[2]; // { spades, clubs, hearts, diamonds } * 14 cards * {redRange,
blackRange}
int vw[15][4];

int cardlndex(char c) {
switch(c) {

case "s": case "S": return O;
case "c": case "C": return 1;
case "h": case "H": return 2;
case "d": case "D": return 3;

default: return -1;
}
}
const char cardLookup[4] = { °S", "C", "H", "D" };

uint min(uint a, uint b) {
if(a<h)
return a;
else
return b;

uint max(uint a, uint b) {
if(a>b)
return a;
else
return b;

}

uint sqClamp(uint a) {
if(a>=1000)
return 1000*1000;
else
return a*a;

}

void multiGet(struct range col[8], int n) {
int val,i,j;

for(i=0;i<8;i++) {
col[i] -min=0OxFFFFFFff;
col[i].max=0;

}

//printf("'Reading'™);
for(i=0; i<1000;i++) {
usleep(5000);

for(3=0;3<8;3++) {
val=get(}j);
col[j]-min=min(val,col[j]-min);
col[j]-max=max(val,col[j]-max);
}
}
//printf ("' Done!\n");
}

void waitStable() {
struct range col[8];
int i1;
while(1) {
multiGet(col,300);
Ffor(i=0;i<8;i++)
if(col[i]-max-col[i]-min > 1000)

break;
return;
}
}
int main()
{

int n,s,i,j;

uint red,black;

char c;

struct range col[8];

memset(vv,0,sizeof(int)*15*4);
put(0, 700,0,0, 1023,300,300);
put(1, 0,0,0, 300,300,300);

while() {

printfF("'Please enter card number (1-14) followed by [s]pade, [c]lub, [h]eart,
[d]iamond, and press enter to “"teach" that card: ');

scanf("%i%c',&n,&C);

s=cardIndex(c);

iT(n==0)
break;

printf("'Reading... ™);
multiGet(col,1000);
printf("'Done!\n");
db[n][s][0]=col[0];
db[n][s]1[1]=col[1];
wn][s]=1;

db[n][s]1[0]-min*=0.96; db[n][s][0]-max*=1.04;
db[n][s1[1]-min*=0.96; db[n][s][1]-max*=1.04;

printf("'red=%u,%u) black=(%u,%u)\n", db[n][s]1[0]-min,db[n][s][0]-max,db[n][s]
[1]-min,db[n][s]1[1]-max);
}

while(1) {
waitStable();
printf("'Recognizing... ");

const int samples = 1000;

uint i,red=0,black=0;

for(i=0; i<samples; i++) {
usleep(5000);
red+=get(0);
black+=get(1);

red/=samples;
black/=samples;
//printf("'Red=%u Black=%u\n",red,black);

uint closest=0xFFffffff;
uint closeN=0, closeS=0;
for(i=1;i<=14;i++) {
for(=0;j<4;3++) {
ifCvwlilD
continue;
iT(b[i1[J]1[0]-min <= red && red <= db[i][jJ]1[0]-max &&
db[i11[1]-min <= black && black <= db[i]J[J1[1]-max) {
uint redAvg = (db[i][J1[0]-min+db[i][j]1[0]-max)/2;
uint blackAvg=(db[i][J1[1]-min+db[i]1[j1[1]-max)/2;

iT(sqClamp(red-redAvg)+sqClamp(black-blackAvg) < closest) {
closest=sqClamp(red-redAvg)+sqClamp(black-blackAvg) ;
closeN=i; closeS=j;

}
}
}
}
iT(closeN)
printf('%u %c\n", closeN, cardLookup[closeS]);
}
return O;

Date: May 09, 2007 lab5.vhd Project: lab5

library I1EEE;

use IEEE.std_logic_1164_all;

use IEEE.std logic arith.all;
use IEEE.std_logic_unsigned.all;

entity lab5 is

port (
signal CLOCK 50 : in std_logic; -- 50 MHz clock

SRAM_DQ : inout std logic_vector(l5 downto 0); -- Data bus 16 Bits
SRAM_ADDR : out std_logic_vector(17 downto 0); -- Address bus 18 Bi

ts

SRAM_UB_N, -- High-byte Data Ma
sk

SRAM_LB_N, -- Low-byte Data Mas
k

SRAM_WE_N, -- Write Enable

SRAM_CE_N, -— Chip Enable

SRAM_OE_N : out std_logic; -— Output Enable

KEY - in std_logic_vector(3 downto 0); -- Push buttons

SW : in std _logic_vector(17 downto 0); -— DPDT switches

HEXO, HEX1, HEX2, HEX3, HEX4, HEX5, HEX6, HEX7 -- 7-segment display
s

: out std_logic vector(6 downto 0);

LEDG : out std_logic_vector(8 downto 0); -- Green LEDs

LEDR : out std_logic_vector(17 downto 0); -- Red LEDs

GP10_1 : inout std_logic vector(35 downto 0);

-- SDRAM

DRAM_DQ : inout std_logic_vector(15 downto 0); -- Data Bus

DRAM_ADDR : out std_logic_vector(11l downto 0); -- Address Bus

DRAM_LDQM, -- Low-byte Data Mas
k

DRAM_UDQM, -- High-byte Data Ma
sk

DRAM_WE_N, -- Write Enable

DRAM_CAS N, -— Collumn Address St
robe

DRAM_RAS_N, -- Row Address Strob
e

DRAM_CS_N, -- Chip Select

DRAM_BA O, -- Bank Address 0O

DRAM_BA 1, -- Bank Address O

DRAM_CLK, -- Clock

DRAM_CKE : out std _logic; -- Clock Enable

-- VGA output

VGA_CLK, -- Clock

VGA_HS, -- H_SYNC

VGA VS, -- V_SYNC

VGA_BLANK, —-- BLANK

VGA_SYNC : out std logic; -— SYNC

VGA_R, -- Red[9:0]

VGA_G, -- Green[9:0]

Page 1 of 11 Revision: lab5

Date: May 09, 2007

VGA_B

);

end lab5;

architecture rtl of lab5

component nios_system is

CTOR
CTOR
CTOR
CTOR
CTOR
CTOR
CTOR
CTOR
ECTOR
ECTOR
ECTOR
ECTOR
ECTOR
ECTOR
ECTOR
ECTOR
ECTOR
ECTOR
ECTOR
ECTOR

ECTOR

1
(31
31
(31
31
(31
31
(31
(31
(31
(31
(31
31
(31
31
(31
(31
(31
(31
(31
(31

lab5.vhd

: out std_logic_vector(9 downto 0)

is

port (

-- 1) global signals:

signal
signal

clk :
reset_n :

IN STD_LOGIC;
IN STD_LOGIC;

-- the_communication O

DOWNTO
DOWNTO
DOWNTO
DOWNTO
DOWNTO
DOWNTO
DOWNTO
DOWNTO
DOWNTO
DOWNTO
DOWNTO
DOWNTO
DOWNTO
DOWNTO
DOWNTO
DOWNTO
DOWNTO
DOWNTO
DOWNTO
DOWNTO

DOWNTO

signal
0);
signal
0);
signal
0);
signal
0);
signal
0);
signal
0);
signal
0);
signal
0);
signal
0);
signal
0);
signal
0);
signal
0);
signal
0);
signal
0);
signal
0);
signal
0);
signal
0);
signal
0);
signal
0);
signal
0);
signal
0);
signal

CountO_to_the_communication O :

Countl _to the communication_O

Count2_to_the_communication O :

Count3_to_the communication_O

Count4_to_the_communication O :

Count5_to_the communication_O

Count6_to_the_communication O :

Count7_to_the communication_O

max0_from_the_communication O :

maxl from the communication_O

max2_from_the_communication O :

max3_from_the communication_O

max4_from_the_communication O :

max5_ from_ the communication_O

max6_from_the_communication O :

max7_from_ the communication_O

minO_from_the_communication O :

minl_ from the communication_O

min2_from_the_communication O :

min3_from_ the communication_O

mind_from_the_communication O :

min5_from_ the communication_O

Page 2 of 11

IN

IN

IN

IN

IN

IN

IN

IN

ouT

ouT

ouT

ouT

ouT

ouT

ouT

ouT

ouT

ouT

ouT

ouT

ouT

ouT

Project: lab5
Blue[9:0]

STD_LOGIC_VE
STD_LOGIC_VE
STD_LOGIC_VE
STD_LOGIC_VE
STD_LOGIC_VE
STD_LOGIC_VE
STD_LOGIC_VE
STD_LOGIC_VE
STD_LOGIC_V
STD_LOGIC_V
STD_LOGIC_V
STD_LOGIC_V
STD_LOGIC_V
STD_LOGIC_V
STD_LOGIC_V
STD_LOGIC_V
STD_LOGIC_V
STD_LOGIC_V
STD_LOGIC_V
STD_LOGIC_V
STD_LOGIC_V

STD_LOGIC_V

Revision: lab5

Date: May 09, 2007

ECTOR (31 DOWNTO 0);

signal min6_from_the communication O :

ECTOR (31 DOWNTO 0);

lab5.vhd

Project: lab5

OUT STD_LOGIC_V

signal min7_from_the_communication_O : OUT STD LOGIC_V

ECTOR (31 DOWNTO 0);

-— the_sram

signal
(17 DOWNTO 0);
signal
signal
VECTOR (15 DOWNTO 0);
signal
signal
signal
signal
)

end component;

SRAM_ADDR_from_the_sram :

SRAM_CE_N_from_the_sram :
SRAM_DQ_to_and_from_the sram :

SRAM_LB N from_the sram :
SRAM_OE_N_from_the_sram :
SRAM_UB_N_from_the_sram :
SRAM_WE_N_from_the_sram :

OUT STD_LOGIC_VECTOR

OUT STD_LOGIC;
INOUT STD_LOGIC_

OUT STD_LOGIC;
OUT STD_LOGIC;
OUT STD_LOGIC;
OUT STD_LOGIC

component histo is port (

clk > in std_logic; --50MHz

R - in std_logic vector(9 downto 0);

G : in std_logic vector(9 downto 0);

B - in std_logic _vector(9 downto 0);
new_pixel - in std_logic;

new_frame : in std_logic;

Min : in std_logic vector(31 downto 0);
Max - in std_logic vector(31 downto 0);
count : out std_logic_vector(31 downto 0));

end component;

component VGA_Controller is port (

signal
signal
signal
signal

iRed : in std_logic_vector(9 downto 0);
iGreen : in std _logic_vector(9 downto 0);
iBlue : in std_logic _vector(9 downto 0);

ORequest : out std logic;

-- signal VGA Side

signal
signal
signal
signal
signal
signal
signal
signal

OVGA_ R : out std_logic _vector(9 downto 0);
OVGA_G : out std_logic vector(9 downto 0);
OVGA B : out std_logic_vector(9 downto 0);

OVGA_H _SYNC : out std_logic;
OVGA_V_SYNC : out std_logic;
OVGA_SYNC : out std logic;

OVGA BLANK : out std logic;
OVGA_CLOCK : out std_logic;

-— Control Signal

signal
signal

iCLK : in std_logic;
iRST_N : in std _logic);

end component;

component Reset _Delay is port (

signal
signal
signal
signal
signal

iCLK : in std _logic;
iRST : in std logic;
ORST_0O: out std_logic;
ORST_1: out std_logic;
ORST_2: out std_logic);

end component;

Page 3 of 11 Revision: lab5

Date: May 09, 2007 lab5.vhd Project: lab5

component CCD_Capture is port (
signal oDATA out std _logic_vector(9 downto 0);
signal oDVAL out std_logic;
signal oX_Cont out std_logic_vector(10 downto 0);
signal oY_Cont out std_logic_vector(10 downto 0);
signal oFrame_Cont out std _logic_vector(31 downto 0);
signal oNewFrame out std_logic;
signal iDATA in std _logic_vector(9 downto 0);
signal iFVAL in std_logic;
signal iLVAL in std logic;
signal iSTART in std _logic;
signal i1END in std _logic;
signal iCLK in std_logic;
signal iRST in std logic);

end component;

component RAW2RGB is port (
signal oRed out std _logic_vector(9 downto 0);
signal oGreen out std_logic_vector(9 downto 0);
signal oBlue out std_logic_vector(9 downto 0);
signal oDVAL out std_logic;
signal iX Cont in std logic_vector(10 downto 0);
signal iY_Cont in std _logic_vector(10 downto 0);
signal iDATA in std _logic_vector(9 downto 0);
signal iDVAL in std_logic;
signal iCLK in std logic;
signal iRST in std _logic);

end component;

component Sdram_Control_4Port is port (
-- HOST Side
signal REF_CLK
signal RESET_N
-— FIFO Write Side 1

std_logic;
std_logic;

signal WR1 DATA - in std_logic vector(15 downto 0);
signal WR1 - in std_logic;
signal WR1_ADDR - in std_logic vector(23 downto 0);
signal WR1_MAX ADDR : in std _logic vector(23 downto 0);
signal WR1 LENGTH - in std_logic vector(8 downto 0);
signal WR1_LOAD > in std_logic;
signal WR1_CLK : in std_logic;
signal WR1_ FULL : out std_logic;
signal WR1 _USE : out std_logic _vector(8 downto 0);

-- FIFO Write Side 2
signal WR2_DATA : in std_logic_vector(15 downto 0);
signal WR2 : in std_logic;

signal WR2_ADDR - in std_logic vector(23 downto 0);
signal WR2_MAX_ ADDR > in std_logic _vector(23 downto 0);
signal WR2_LENGTH : in std_logic vector(8 downto 0);

signal WR2_LOAD in std logic;

signal WR2_CLK - in std_logic;

signal WR2_FULL : out std_logic;

signal WR2_USE : out std_logic vector(8 downto 0);
-- FIFO Read Side 1

signal RD1_DATA : out std_logic _vector(15 downto 0);
signal RD1 - in std_logic;

Page 4 of 11 Revision: lab5

Date: May 09, 2007 lab5.vhd Project: lab5

signal RD1_ADDR
signal RD1_MAX_ADDR
signal RD1_LENGTH
signal RD1_LOAD
signal RD1_CLK
signal RD1_EMPTY
signal RD1_USE

-- FIFO Read Side 2
signal RD2_DATA
signal RD2

signal RD2_ADDR
signal RD2_MAX_ADDR
signal RD2_LENGTH
signal RD2_LOAD
signal RD2_CLK
signal RD2_EMPTY
signal RD2_USE

in std_logic _vector(23 downto 0);
in std_logic vector(23 downto 0);
in std_logic vector(8 downto 0);
in std_logic;
in std_logic;
out std_logic;
out std _logic_vector(8 downto 0);

out std_logic_vector(15 downto 0);
in std_logic;
in std_logic vector(23 downto 0);
in std_logic vector(23 downto 0);
in std_logic _vector(8 downto 0);
in std_logic;
in std_logic;
out std_logic;
out std_logic_vector(8 downto 0);

-—- SDRAM Side

signal SA out std _logic_vector(11l downto 0);
signal BA out std_logic_vector(1 downto 0);
signal CS_N out std_logic;

signal CKE out std_logic;

signal RAS N
signal CAS N

out std_logic;
out std_logic;

signal WE_N out std_logic;
signal DQ inout std_logic vector(15 downto 0);
signal DQM out std _logic_vector(1 downto 0);

signal SDR_CLK
end component;

out std_logic);

component SEG7_LUT 8 is port (
signal 0oSEGO,0SEG1,0SEG2,0SEG3,0SEG4,0SEG5,0SEG6,0SEG7
: out std_logic vector(6 downto 0);
signal iDIG : in std _logic vector(31 downto 0));
end component;

component 12C_CCD_Config is port (
signal iCLK : IN std_logic;
signal iRST_N : IN std _logic;
signal iExposure : IN std_logic_vector(15 downto 0);
signal 12C_SCLK OUT std_logic;
signal 12C_SDAT INOUT std_logic);
end component;

component Mirror_Col is port (-- |Input Side
iCCD_R : in std_logic vector(9 downto 0);
iCCD_G : in std_logic _vector(9 downto 0);
iCCD_B > in std_logic_vector(9 downto 0);
iCCD_DVAL - in std_logic;
iCCD_PIXCLK : in std_logic;
iRST_N - in std_logic;
-- Output Side
oCCD_R : out std_logic vector(9 downto 0);
oCCD_G : out std_logic vector(9 downto 0);
oCCD_B : out std_logic_vector(9 downto 0);
oCCD_DVAL : out std_logic);

Page 5 of 11 Revision: lab5

Date: May 09, 2007

lab5.vhd

end component;

-- CCD
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

CCD_DATA : std_logic_vector(9 downto 0);
CCD_SDAT : std_logic;

CCD_SCLK : std_logic;

CCD_FLASH : std _logic;

CCD_FVAL : std_logic;

CCD_LVAL : std_logic;

CCD_PIXCLK : std _logic;

CCD_MCLK : std_logic; -—- CCD Master Clock
Read_DATA1 : std_logic_vector(15 downto 0);
Read DATA2 : std_logic_vector(15 downto 0);
VGA_CTRL_CLK : std_logic;

AUD_CTRL_CLK : std_logic;

mCCD_DATA : std_logic_vector(9 downto 0);
mCCD_DVAL : std _logic;

mCCD_DVAL _d : std_logic;

X_Cont : std_logic_vector(10 downto 0);
Y_Cont : std_logic_vector(10 downto 0);
X_ADDR : std_logic_vector(9 downto 0);
Frame_Cont : std_logic_vector(31 downto 0);
mCCD_R : std_logic_vector(9 downto 0);
mCCD_G : std_logic_vector(9 downto 0);
mCCD_B : std_logic_vector(9 downto 0);

DLY RST O : std_logic;

DLY RST_ 1 : std _logic;

DLY_RST 2 : std_logic;

Read : std logic;

rCCD_DATA : std_logic_vector(9 downto 0);
rCCD_LVAL : std_logic;

rCCD_FVAL : std_logic;

sCCD_R : std _logic_vector(9 downto 0);
sCCD_G std_logic_vector(9 downto 0);
sCCD_B : std_logic_vector(9 downto 0);
sCCD_DVAL : std_logic;

mNewFrame : std_logic;

signal clk : std _logic;

signal counter : std_logic_vector(15 downto 0);
signal reset_n : std logic;
signal CountO,Countl,Count2,Count3,Count4,Count5,Count6,Count7 : st

d _logic_

vector(31 downto 0);

signal minO,minl,min2,min3,mind4,min5,min6,min7 :
1 downto 0);

signal max0,maxl,max2,max3,max4,max5,max6,max7 :
1 downto 0);

begin

clk <= CLOCK_50;
-— LEDR(17) <= "17;
-- LEDR(16) <= "1";

process (CLOCK_50)

begin

Page 6 of 11

Project: lab5

std_logic_vector(3

std_logic_vector(3

Revision: lab5

Date: May 09, 2007 lab5.vhd Project: lab5

if CLOCK 50"event and CLOCK 50 = "1" then
if counter = x"ffff" then
reset_n <= "1%;
else
reset n <= "0";
counter <= counter + 1;
end if;
end if;
end process;

nios : nios_system port map (
clk => CLOCK_50,
reset_n => reset_n,
CountO_to_the_communication_0 => CountO,
Countl_to_ the_communication_ 0 => Countl,
Count2_to_the_communication_0 => Count2,
Count3_to_the communication 0 => Count3,
Count4_to_the_communication_0 => Count4,
Count5_to_the_communication_0 => Count5,
Count6_to_the_communication_0 => Count6,
Count7_to_the _communication 0 => Count7,
minO_from_the_communication_0 => minO,
max0_from_the_communication 0 => max0,
minl_from_the_communication_0 => minl,
maxl from the communication 0 => max1,
min2_from_the_communication_0 => min2,
max2_from_the_communication 0 => max2,
min3_from_the_communication_0 => min3,
max3_from the communication 0 => max3,
min4_from_the_communication_0 => min4,
max4_from_the_communication 0 => max4,
min5_from_the_communication_0 => min5,
max5_ from the communication 0 => max5,
min6_from_the_communication_0 => min6,
max6_from_ the_communication 0 => max6,
min7_from_the_communication_0 => min7,
max7_from_ the communication 0 => max7,

- leds_from_the_ leds => LEDR(15 downto 0),

SRAM_ADDR_from_the_sram => SRAM_ADDR,

SRAM_CE_N_from_the_ sram => SRAM _CE_N,

SRAM_DQ_to_and_from_the_sram => SRAM_DQ,

SRAM_LB N from_the_sram => SRAM LB N,

SRAM_OE_N_from_the_sram => SRAM_OE_N,

SRAM_UB_N_from_the sram => SRAM _UB N,

SRAM_WE_N_from_the_sram => SRAM_WE_N

)

--histo

hO: histo port map(clk,mCCD_R,mCCD_G,mCCD_B,mCCD_DVAL_d,mNewFrame,m
in0,max0,Count0);

hl: histo port map(clk,mCCD_R,mCCD_G,mCCD_B,mCCD_DVAL_d,mNewFrame,m
inl,max1,Countl);

h2: histo port map(clk,mCCD_R,mCCD_G,mCCD_B,mCCD_DVAL_d,mNewFrame,m
in2,max2,Count2);

h3: histo port map(clk,mCCD_R,mCCD_G,mCCD_B,mCCD_DVAL_d,mNewFrame,m

Page 7 of 11 Revision: lab5

Date: May 09, 2007 lab5.vhd Project: lab5

in3,max3,Count3);

h4: histo port map(clk,mCCD_R,mCCD_G,mCCD_B,mCCD_DVAL_d,mNewFrame,m
in4,max4,Count4);

h5: histo port map(clk,mCCD_R,mCCD_G,mCCD_B,mCCD_DVAL_d,mNewFrame,m
in5,max5,Count5);

h6: histo port map(clk,mCCD_R,mCCD_G,mCCD_B,mCCD_DVAL_d,mNewFrame,m
in6,max6,Count6b);

h7: histo port map(clk,mCCD_R,mCCD_G,mCCD_B,mCCD_DVAL_d,mNewFrame,m
in7,max7,Count?);

CCD_DATA(0) <= GP10_1(0);
CCD_DATA(1) <= GPI10_1(1D);
CCD_DATA(2) <= GPI10_1(5);
CCD_DATA(3) <= GPI10_1(3);
CCD_DATA(4) <= GPI10_1(2);
CCD_DATA(5) <= GP10_1(4);
CCD_DATA(6) <= GP10_1(6);
CCD_DATA(7) <= GPI10_1(7);
CCD_DATA(8) <= GP10_1(8);
CCD_DATA(9) <= GP10_1(9);
GPI10_1(11) <= CCD_MCLK;
-- GPIO_1(15) <= CCD_SDAT;
-- GPIO_1(14) <= CCD_SCLK;
CCD_FVAL <= GPIO_1(13);
CCD_LVAL <= GPIO_1(12);
CCD_PIXCLK <= GPI0_1(10);
LEDR <= SW;
LEDG <= Y_Cont(8 downto 0);
VGA CTRL _CLK<= CCD_MCLK;

--halve module
process (CLOCK_50)
begin
iT CLOCK 50"event and CLOCK 50 = "1" then
CCD_MCLK <= not CCD_MCLK;
end if;
end process;

process (CCD_PIXCLK)
begin
iT CCD_PIXCLK"event and CCD_PIXCLK="1" then
rCCD_DATA <= CCD_DATA;
rCCD_LVAL <= CCD_LVAL;
rCCD_FVAL <= CCD_FVAL;
end if;
end process;

ul : VGA_Controller port map(
iRed => Read DATA2(9 downto 0),
iGreen => Read DATA1(14 downto 10)&Read DAT
A2(14 downto 10),
iBlue => Read DATA1(9 downto 0),
oRequest => Read,
-—- VGA Side
OVGA_R => VGA_R,
OVGA G => VGA G,

Page 8 of 11 Revision: lab5

Date: May 09, 2007

u2: Reset Delay

u3: CCD_Capture

u4: RAW2RGB

us: SEG7_LUT_8

u6: Sdram_Control_4Port

lab5.vhd

OVGA B => VGA B,
OVGA H SYNC => VGA HS,
OVGA_V_SYNC => VGA_VS,
OVGA_SYNC => VGA_SYNC,
OVGA BLANK => VGA BLANK,
OVGA CLOCK => VGA_CLK,
-— Control Signal

iCLK => VGA_CTRL_CLK,
iIRST_N => DLY_RST_2);

port map(

iCLK => CLOCK_50,

iRST => KEY(0),

ORST_0 => DLY_RST O,
ORST_1 => DLY_RST 1,
ORST_2 => DLY_RST 2);

port map(

ODATA => mCCD_DATA,

oDVAL => mCCD_DVAL,
oX_Cont => X Cont,
oY_Cont => Y_Cont,
oFrame_Cont => Frame_Cont,
oNewFrame => mNewFrame,
iDATA => rCCD_DATA,

iFVAL => rCCD_FVAL,

iLVAL => rCCD_LVAL,
iISTART => "1°,

1END => not(KEY(2)),

iCLK => CCD_PIXCLK,

iRST => DLY_RST_1);

port map(

oRed => mCCD_R,

oGreen => mCCD_G,
oBlue => mCCD_B,

oDVAL => mCCD_DVAL d,
iX_Cont => X_Cont,
iY_Cont => Y_Cont,
iDATA => mCCD_DATA,
iDVAL => mCCD_DVAL,
iCLK => CCD_PIXCLK,
iRST => DLY_RST 1);

port map(

OSEGO => HEXO0,0SEG1 => HEX1,
O0SEG2 => HEX2,0SEG3 => HEX3,
O0SEG4 => HEX4,0SEG5 => HEX5,
0SEG6 => HEX6,0SEG7 => HEX7,

iDIG => Frame_Cont);

port map(

-- HOST Side
REF_CLK => CLOCK_50,
RESET_N => =17,

-— FIFO Write Side 1
WR1_DATA =>

Page 9 of 11

"0"&sCCD_G(9

Project: lab5

downto 5)&sCCD

Revision: lab5

Date: May 09, 2007 lab5.vhd Project: lab5

_B(9 downto 0),
WR1 => sCCD_DVAL,
WR1_ADDR => *"000000000000000000000000",
WR1_ MAX_ ADDR => "000001010000000000000000",
WR1_ LENGTH => ''100000000",
WR1_LOAD => not(DLY_RST_0),
WR1 CLK => CCD_PIXCLK,
-- FIFO Write Side 2
WR2_DATA => "0"&sCCD_G(4 downto 0)&sCCD_R(9
downto 0),
WR2 => sCCD_DVAL,
WR2_ADDR => *"000100000000000000000000",
WR2_MAX_ADDR => "000101010000000000000000",
WR2_LENGTH => ''100000000",
WR2_LOAD => not(DLY_RST_0),
WR2_CLK => CCD_PIXCLK,
-- FIFO Read Side 1
RD1_DATA => Read DATAL,
RD1 => Read,
RD1_ADDR => "'000000000010100000000000",
RD1_MAX ADDR => '*000000000000000111110000",
RD1_LENGTH => ""100000000",
RD1 _LOAD => not(DLY_RST 0),
RD1 CLK => VGA CTRL_CLK,
-- FIFO Read Side 2
RD2_DATA => Read DATA2,
RD2 => Read,
RD2_ADDR => "'000100000010100000000000",
RD2_MAX_ ADDR => ''000101001101100000000000",
RD2_LENGTH => ""100000000",
RD2_LOAD => not(DLY_RST _0),
RD2_CLK => VGA CTRL_CLK,
-- SDRAM Side
SA => DRAM_ADDR,
BA(1)=>DRAM_BA 1,
BA(0)=>DRAM_BA 0,
CS N => DRAM CS N,
CKE => DRAM_CKE,
RAS N => DRAM_RAS N,
CAS N => DRAM_CAS N,
WE_N => DRAM_WE_N,
DQ => DRAM_DQ,
DQM(1) => DRAM_UDQM,
DQM(0) => DRAM_LDQM,
SDR_CLK => DRAM_CLK);

u7: 12C_CCD_Config port map (
iCLK => CLOCK_50,
iRST_N => KEY(1),
iExposure => SW(15 downto 0),
12C_SCLK => GP10_1(14),
12C_SDAT => GP10_1(15));

u8: Mirror_Col port map(-— Input Side
iCCD_R => mCCD_R,
iCCD_G => mCCD_G,
iCCD_B => mCCD_B,

Page 10 of 11 Revision: lab5

Date: May 09, 2007 lab5.vhd Project: lab5
iCCD_DVAL => mCCD_DVAL d,

iCCD_PIXCLK => CCD_PIXCLK,

iRST_N => DLY_RST_1,

-— Output Side

oCCD R => sCCD_R,

oCCD_G => sCCD_G,

oCCD_B => sCCD_B,

oCCD_DVAL => sCCD_DVAL);

end rtl;

Page 11 of 11 Revision: lab5

Date: May 09, 2007 histo.vhd Project: lab5

library ieee;

use ieee.std_logic_1164_all;

use ieee.std logic arith.all;
use ieee.std_logic_unsigned.all;

entity histo is port (

clk > in std_logic; --50MHz

R - in std_logic vector(9 downto 0);

G : in std_logic vector(9 downto 0);

B : in std_logic _vector(9 downto 0);

new_pixel - in std_logic;

new_frame : in std_logic;

Min : in std_logic vector(31 downto 0);

Max - in std_logic vector(31 downto 0);

count : out std_logic_vector(31 downto 0));
end histo;

architecture rtl of histo is

signal zero : std logic;

signal counter,counter2 : std _logic_vector(31 downto 0);

signal RedMin,RedMax,GreenMin,GreenMax,BlueMin,BlueMax : std_logic_vect
or(9 downto 0);

begin

count <= counter2;

RedMin <= Min(29 downto 20);
GreenMin<= Min(19 downto 10);
BlueMin <= Min(9 downto 0);
RedMax <= Max(29 downto 20);
GreenMax<= Max(19 downto 10);
BlueMax <= Max(9 downto 0);

process (clk)
begin
ifT clk®event and clk="1" then
if new_frame="0" and zero="1" then

Zero <="0";
counter <= ""00000000000000000000000000000000™ ;
end if;

if new frame="1" then
counter2 <= counter;
zero <="1";

end if;

iT new_pixel="1" then
if R >= RedMin and R<=RedMax and
G >= GreenMin and G<=GreenMax and
B >= BlueMin and B<=BlueMax then
counter <= counter+1;
end if;
end if;
end if;

Page 1 of 2 Revision: lab5

Date: May 09, 2007 histo.vhd Project: lab5

end process;

end rtl;

Page 2 of 2 Revision: lab5

Date: May 09, 2007 communication.vhd Project: lab5

library ieee;

use ieee.std_logic_1164_all;

use ieee.std logic arith.all;
use ieee.std_logic_unsigned.all;

entity communication is

port (
avs_sl clk
avs_sl reset n
avs_sl read
avs_sl write
avs_sl1 chipselect
avs_sl address
avs_sl readdata
avs_sl writedata

> in std _logic;
: in std_logic;
: in std logic;
: in std_logic;
> in std _logic;
: in std logic_vector(7 downto 0);
: out std _logic_vector(31 downto 0);
- in std_logic_vector(31 downto 0);
CountO,Countl,Count2,Count3,Count4,Count5,Count6,Count?
: in std_logic vector(31 downto 0);
minO,max0,minl,maxl,min2,max2,min3,max3,min4,max4,min5,max5,min6,ma
X6 ,min7 ,max7
: out std_logic vector(31 downto 0)
)

end communication;
architecture rtl of communication is

signal reset : std_logic;
signal rmin0,rmax0,rminl,rmaxl,rmin2,rmax2,rmin3, rmax3,rmin4,rmax4,rmi
n5, rmax5, rmin6, rmax6, rmin7, rmax7
: std_logic_vector(31 downto 0);
signal rCountO, rCountl,rCount2,rCount3, rCount4,rCount5,rCount6, rCount?7
: std_logic_vector(31 downto 0);

begin
reset<="0";
min0 <= rmin0; minl <= rminl; min2 <= rmin2; min3 <= rmin3; mind <=
rmind; min5 <= rmin5; min6 <= rmin6; min7 <= rmin7;
max0 <= rmax0; maxl <= rmaxl; max2 <= rmax2; max3 <= rmax3; max4 <=
rmax4; max5 <= rmax5; max6 <= rmax6; max7 <= rmax7;
rCount0 <= CountO; rCountl <= Countl; rCount2 <= Count2; rCount3 <=
Count3; rCount4 <= Count4; rCount5 <= Count5; rCount6 <= Count6; rCoun
t7 <= Count7;

process (avs_sl clk)
begin
if avs_sl clk"event and avs_sl1l clk = 1" then
if reset = "1" then
avs_sl readdata <= (others => "0%);
else
if avs_sl chipselect = "1° then
if avs sl read = "1" then
if avs_sl address="'00000000" then avs_ sl readdata
<=rCountO;
elsif avs_sl address=''00000001" then avs_sl readdata
<=rCountl;

Page 1 of 2 Revision: lab5

Date: May 09, 2007

<=rCount2;
<=rCount3;
<=rCount4;
<=rCount5;
<=rCount6;

<=rCount7;

elsif
elsif
elsif
elsif
elsif
elsif

else

communication.vhd

avs_sl address=
avs_sl address=
avs_sl address=
avs_sl address=
avs_sl address=

avs_sl address=

10101010101010101010101010101010"";

elsif avs_sl write =

end if;

if
writedata;

elsif
writedata;

elsif
writedata;

elsif
writedata;

elsif
writedata;

elsif
writedata;

elsif
writedata;

elsif
writedata;

elsif
writedata;

elsif
writedata;

elsif
writedata;

elsif
writedata;

elsif
writedata;

elsif
writedata;

elsif
writedata;

elsif
writedata;

end if;

end if;
end if;
end if;
end if;

end process;

end rtl;

"1" th
avs_sl address=

avs_sl address=
avs_sl address=
avs_sl address=
avs_sl address=
avs_sl address=
avs_sl address=
avs_sl address=
avs_sl address=
avs_sl address=
avs_sl address=
avs_sl address=
avs_sl address=
avs_sl address=
avs_sl address=

avs_sl address=

Page 2 of 2

'*00000010""

'*00000011™"

'*00000100""

'*00000101™""

''00000110"

'*00000111""

en
'*00000000""

'*00000001™"

'*00000010""

'*00000011™"

'*00000100""

'*00000101""

''00000110"

'*00000111""

'*00001000""

'*00001001""

''00001010"

'*00001011""

''00001100"

'*00001101"

''00001110"

''00001111™

then
then
then
then
then

then

Project: lab5

avs_sl readdata
avs_sl readdata
avs_sl readdata
avs_sl readdata
avs_sl readdata

avs_sl readdata

avs_sl readdata <="

then
then
then
then
then
then
then
then
then
then
then
then
then
then
then

then

rmin0 <=avs_sl_
rmax0 <=avs_sl_
rminl <=avs_sl_
rmaxl <=avs_sl_
rmin2 <=avs_sl_
rmax2 <=avs_sl_
rmin3 <=avs_sl_
rmax3 <=avs_sl_
rmind <=avs_sl_
rmax4 <=avs_sl_
rmin5 <=avs_sl_
rmax5 <=avs_sl_
rminé <=avs_sl_
rmax6 <=avs_sl_
rmin7 <=avs_sl_
rmax7 <=avs_sl_

Revision: lab5

Date: May 09, 2007 CCD_Capture.v Project: lab5

module CCD_Capture(oDATA,
oDVAL,
oX_Cont,
oY_Cont,
oFrame_Cont,
oNewFrame,
iDATA,
iFVAL,
iLVAL,
iSTART,
1END,
iCLK,
iRST);

input [9:0] iDATA;
input iFVAL;
input iLVAL;
input iSTART;
input 1END;
input iCLK;
input iRST;
output [9:0] ODATA;
output [10:0] oX Cont;
output [10:0] oY _Cont;
output [31:0] oFrame_Cont;

output oNewFrame;

output OoDVAL;

reg Pre_FVAL;

reg mCCD_FVAL;

reg mCCD_LVAL;

reg [9:0] mCCD_DATA;

reg [10:0] X Cont;

reg [10:0] Y_Cont;

reg [31:0] Frame_Cont;

reg MSTART ;

reg rNewFrame;

assign oX_Cont = X _Cont;
assign oY_Cont = Y_Cont;
assign oFrame_Cont = Frame_Cont;
assign ODATA = mCCD_DATA;
assign ODVAL = mCCD_FVAL&MCCD_LVAL;
assign oNewFrame = rNewFrame;

always@(posedge iCLK or negedge iRST)
begin
iT(TIRST)
mSTART <= O0;
else
begin
iT(iSTART)
mSTART <= 1;
iT(1iEND)
mSTART <= O0;
end
end

Page 1 of 3 Revision: lab5

Date: May 09, 2007 CCD_Capture.v Project: lab5
always@(posedge iCLK or negedge iRST)

begin
iT(TIRST)
begin
Pre_FVAL <= 0;
mCCD_FVAL <= O0;
mCCD_LVAL <= O0;
mCCD_DATA <= O0;
X_Cont <= 0;
Y_Cont <= 0;
end
else
begin
Pre_FVAL <= 1FVAL;
iT(({Pre_FVAL, iFVAL}==2"b01) && mSTART)
mCCD_FVAL <= 1;
else If({Pre_FVAL,iFVAL}==2"b10)
mCCD_FVAL <= O0;
mCCD_LVAL <= iLVAL;
mCCD_DATA <= iDATA;
iT(mCCD_FVAL)
begin
iT(mCCD_LVAL)
begin
iT(X_Cont<1279)
X_Cont <= X Cont+1l;
else
begin
X _Cont <= O0;
Y_Cont <= Y_Cont+l;
end
end
end
else
begin
X _Cont <= O0;
Y Cont <= O0;
end
end
end

always@(posedge iCLK or negedge IRST)

begin
iT(1IRST)
Frame Cont <= O0;
else
begin
iT(({Pre_FVAL,iFVAL}==2"b01) && mSTART)
begin
Frame_Cont <= Frame_Cont+1;
rNewFrame <= 1%"b1;
end
else
begin
rNewFrame <= 0;
end
end

Page 2 of 3 Revision: lab5

Date: May 09, 2007 CCD_Capture.v Project: lab5

end
endmodule

Page 3 of 3 Revision: lab5

	CardCounter
	C_code
	lab5
	histo
	communication
	CCD_Capture

