
Preliminary Information
101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com

Quartus II Version 6.1 Handbook
Volume 2: Design Implementation

& Optimization

QII5V2-6.1

http://www.altera.com

Copyright © 2006 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-
plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in-
formation and before placing orders for products or services.

ii Altera Corporation

Altera Corporation iii
Preliminary

Contents

Chapter Revision Dates ... xiii

About this Handbook .. xv
How to Contact Altera ... xv
Third-Party Software Product Information .. xv
Typographic Conventions .. xvi

Section I. Scripting & Constraint Entry

Chapter 1. Assignment Editor
Introduction .. 1–1
Using the Assignment Editor ... 1–1

Category, Node Filter, Information & Edit Bars .. 1–2
Viewing & Saving Assignments in the Assignment Editor ... 1–6

Assignment Editor Features ... 1–7
Using the Enhanced Spreadsheet Interface .. 1–8
Dynamic Syntax Checking .. 1–9
Node Filter Bar .. 1–10
Using Assignment Groups .. 1–11
Customizable Columns ... 1–12
Tcl Interface ... 1–13

Assigning Pin Locations Using the Assignment Editor ... 1–14
Creating Timing Constraints Using the Assignment Editor ... 1–14
Exporting & Importing Assignments ... 1–15

Exporting Assignments ... 1–16
Exporting Pin Assignments .. 1–16
Importing Assignments ... 1–18

Conclusion .. 1–20
Document Revision History ... 1–20

Chapter 2. Command-Line Scripting
Introduction .. 2–1
The Benefits of Command-Line Executables ... 2–1
Introductory Example ... 2–2
Command-Line Executables .. 2–3

Command-Line Scripting Help .. 2–6
Command-Line Option Details .. 2–7
Option Precedence ... 2–8

iv Altera Corporation
Preliminary

Quartus II Handbook, Volume 1

Design Flow .. 2–11
Compilation with quartus_sh --flow ... 2–11
Text-Based Report Files ... 2–12
Makefile Implementation .. 2–13

Command-Line Scripting Examples ... 2–16
Create a Project & Apply Constraints ... 2–16
Check Design File Syntax .. 2–18
Create a Project & Synthesize a Netlist Using Netlist Optimizations 2–19
Archive & Restore Projects ... 2–19
Perform I/O Assignment Analysis .. 2–20
Update Memory Contents without Recompiling .. 2–20
Fit a Design as Quickly as Possible .. 2–21
Fit a Design Using Multiple Seeds ... 2–21
The QFlow Script .. 2–23

Chapter 3. Tcl Scripting
Introduction .. 3–1

What is Tcl? ... 3–2
Quartus II Tcl Packages .. 3–3

Loading Packages ... 3–5
Executables Supporting Tcl .. 3–9

Command-Line Options: -t, -s & --tcl_eval .. 3–10
Using the Quartus II Tcl Console Window .. 3–11

End-to-End Design Flows ... 3–12
Creating Projects & Making Assignments ... 3–13

EDA Tool Assignments ... 3–14
Using LogicLock Regions .. 3–18

Compiling Designs .. 3–21
Reporting .. 3–22

Creating CSV Files for Excel ... 3–24
Timing Analysis ... 3–25

Classic Timing Analysis .. 3–26
TimeQuest Timing Analysis ... 3–29

Automating Script Execution ... 3–30
Making the Assignment .. 3–31
Script Execution .. 3–31
Execution Example ... 3–32
Controlling Processing .. 3–33
Displaying Messages ... 3–33

Other Scripting Features ... 3–33
Natural Bus Naming .. 3–33
Using Collection Commands .. 3–34
Using the post_message Command .. 3–35
Accessing Command-Line Arguments ... 3–36

Using the Quartus II Tcl Shell in Interactive Mode .. 3–39
Quartus II Legacy Tcl Support ... 3–42
Tcl Scripting Basics .. 3–42

Altera Corporation v
Preliminary

Contents

Hello World Example .. 3–42
Variables .. 3–43
Substitutions .. 3–43
Arithmetic .. 3–44
Lists .. 3–44
Arrays ... 3–45
Control Structures .. 3–46
Procedures ... 3–47
File I/O .. 3–48
Syntax & Comments .. 3–49
References .. 3–50

Chapter 4. Managing Quartus II Projects
Introduction .. 4–1
Creating a New Project ... 4–2
Using Revisions With Your Design .. 4–3

Creating & Deleting Revisions ... 4–3
Comparing Revisions .. 4–6

Creating Different Versions of Your Design .. 4–7
Archiving Projects with the Quartus II Archive Project Feature ... 4–8

Version-Compatible Databases ... 4–10
Quartus II Project Platform Migration .. 4–11

Filenames & Hierarchy .. 4–11
Search Path Precedence Rules .. 4–15
Quartus II-Generated Files for Third-Party EDA Tools ... 4–15
Migrating Database Files ... 4–15

Working with Messages ... 4–16
Messages Window ... 4–17
Hiding Messages .. 4–18

Message Suppression .. 4–19
Message Suppression Methods .. 4–21
Details & Limitations ... 4–21
Message Suppression Manager .. 4–22

Quartus II Settings File ... 4–25
Format Preservation ... 4–25

Quartus II Default Settings File ... 4–26
Scripting Support ... 4–26

Managing Revisions ... 4–27
Archiving Projects with a Tcl Command or at the Command Prompt 4–28
Restoring Archived Projects ... 4–28
Importing & Exporting Version-Compatible Databases .. 4–28
Specifying Libraries Using Scripts ... 4–29

Conclusion .. 4–30

vi Altera Corporation
Preliminary

Quartus II Handbook, Volume 1

Section II. I/O & PCB Tools

Chapter 5. I/O Management
I/O Planning Overview .. 5–1
Understanding Altera FPGA Pin Terminology ... 5–4

Package Pins .. 5–5
Pads .. 5–6
I/O Banks .. 5–6
VREF Groups .. 5–8

Importing & Exporting Pin Assignments .. 5–8
Comma Separated Value File ... 5–8
Quartus II Settings Files .. 5–9
Tcl Script .. 5–9
FPGA Xchange File .. 5–10
Pin-Out File ... 5–11

Creating Pin-Related Assignments ... 5–12
Assignment Editor ... 5–13
Tcl Scripts .. 5–17
Timing Closure Floorplan ... 5–18
Synthesis Attributes ... 5–19
Using the Pin Planner .. 5–21

Early I/O Planning Using the Pin Planner .. 5–52
Create a Megafunction or IP MegaCore Variation from the Pin Planner 5–53
Import a Megafunction or IP MegaCore Variation from the Pin Planner 5–54
Create a Top-Level Netlist for I/O Analysis .. 5–54

Using I/O Assignment Analysis to Validate Pin Assignments .. 5–58
I/O Assignment Analysis Design Flows .. 5–59
Inputs for I/O Assignment Analysis ... 5–66
Understanding the I/O Assignment Analysis Report & Messages .. 5–68
Scripting Support ... 5–76

Incorporating PCB Design Tools ... 5–78
Advanced I/O Timing .. 5–78

Default I/O Timing & Power with Capacitive Loading .. 5–79
Enabling & Configuring Advanced I/O Timing ... 5–81

Conclusion .. 5–90
Document Revision History ... 5–90

Chapter 6. Mentor Graphics PCB Design Tools Support
Introduction .. 6–1
FPGA-to-PCB Design Flow .. 6–2
Setting Up the Quartus II Software ... 6–5

Generating Pin-Out Files ... 6–7
Generating FPGA Xchange Files .. 6–7
Creating a Backup Quartus II Settings File .. 6–8

FPGA-to-Board Integration with the I/O Designer Software ... 6–8
I/O Designer Database Wizard .. 6–10
Updating Pin Assignments from the Quartus II Software ... 6–18
Sending Pin Assignment Changes to the Quartus II Software .. 6–21

Altera Corporation vii
Preliminary

Contents

Generating Symbols for the DxDesigner Software ... 6–23
Scripting Support ... 6–29

FPGA-to-Board Integration with the DxDesigner Software ... 6–31
DxDesigner Project Settings .. 6–31
DxDesigner Symbol Wizard ... 6–33

Conclusion .. 6–36

Chapter 7. Cadence PCB Design Tools Support
Introduction .. 7–1
Product Comparison ... 7–2
FPGA-to-PCB Design Flow .. 7–3
Setting Up the Quartus II Software ... 7–5

Generating Pin-Out Files ... 7–6
FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software 7–6

Symbol Creation ... 7–6
Instantiating the Symbol in the Cadence Allegro Design Entry HDL Software 7–17

FPGA-to-Board Integration with Allegro Design Entry CIS ... 7–18
Allegro Design Entry CIS Project Creation .. 7–19
Generate Part .. 7–19
Split Part .. 7–22
Instantiate Symbol in Design Entry CIS Schematic ... 7–24
Altera Libraries for Design Entry CIS ... 7–25

Conclusion .. 7–27

Section III. Area, Timing & Power Optimization

Chapter 8. Area & Timing Optimization
Introduction .. 8–1

Optimization Process Stages ... 8–1
Design Space Explorer .. 8–2
Optimization Advisors ... 8–3
Initial Compilation .. 8–5

Device Setting ... 8–5
Smart Compilation Setting .. 8–6
Partitions & Floorplan Assignments for Incremental Compilation .. 8–6
Timing Requirement Settings ... 8–6
Optimize Hold Timing .. 8–9
Optimize Fast Corner Timing ... 8–10
Asynchronous Control Signal Recovery/Removal Analysis .. 8–10
Fitter Effort Setting ... 8–11
I/O Assignments .. 8–12
Early Timing Estimation ... 8–12
Design Assistant ... 8–13

Design Analysis ... 8–14
Error & Warning Messages ... 8–14

viii Altera Corporation
Preliminary

Quartus II Handbook, Volume 1

Ignored Timing Assignments ... 8–14
Resource Utilization ... 8–14
I/O Timing (Including tPD) ... 8–16
fMAX Timing ... 8–18
Global Routing Resources ... 8–22
Compilation Time .. 8–23

Resource Utilization Optimization Techniques (LUT-Based Devices) .. 8–23
Resolving Resource Utilization Issues Summary .. 8–23
I/O Pin Utilization or Placement ... 8–24
Logic Utilization or Placement ... 8–25
Routing .. 8–36

I/O Timing Optimization Techniques (LUT-Based Devices) ... 8–40
Improving Setup & Clock-to-Output Times Summary .. 8–40
Timing-Driven Compilation ... 8–41
Fast Input, Output & Output Enable Registers ... 8–42
Programmable Delays ... 8–42
Use PLLs to Shift Clock Edges ... 8–45
Use Fast Regional Clocks in Stratix Devices & Regional Clocks in Stratix II Devices 8–46
Change How Hold Times are Optimized for MAX II Devices .. 8–46

fMAX Timing Optimization Techniques (LUT-Based Devices) .. 8–47
Improving fMAX Summary .. 8–47
Synthesis Netlist Optimizations & Physical Synthesis Optimizations 8–48
Turn Off Extra-Effort Power Optimization Settings ... 8–52
Optimize Synthesis for Speed, Not Area .. 8–52
Flatten the Hierarchy During Synthesis .. 8–53
Set the Synthesis Effort to High ... 8–54
Change State Machine Encoding ... 8–54
Duplicate Logic for Fan-Out Control .. 8–54
Prevent Shift Register Inference ... 8–55
Use Other Synthesis Options Available in Your Synthesis Tool ... 8–56
Fitter Seed .. 8–56
Optimize Source Code ... 8–57
LogicLock Assignments .. 8–58
Location Assignments & Back-Annotation .. 8–61

Resource Utilization Optimization Techniques (Macrocell-Based CPLDs) 8–65
Use Dedicated Inputs for Global Control Signals ... 8–65
Reserve Device Resources ... 8–66
Pin Assignment Guidelines & Procedures ... 8–66
Resolving Resource Utilization Problems .. 8–69

Timing Optimization Techniques (Macrocell-Based CPLDs) ... 8–73
Improving Setup Time ... 8–74
Improving Clock-to-Output Time ... 8–74
Improving Propagation Delay (tPD) ... 8–76
Improving Maximum Frequency (fMAX) .. 8–76
Optimizing Source Code—Pipelining for Complex Register Logic 8–77

Compilation-Time Optimization Techniques .. 8–80
Incremental Compilation .. 8–80
Reduce Synthesis Time & Synthesis Netlist Optimization Time .. 8–81

Altera Corporation ix
Preliminary

Contents

Check Early Timing Estimation before Fitting .. 8–81
Reduce Placement Time .. 8–82
Reduce Routing Time .. 8–84
Use Multiple Processors for Multi-Threaded Compilation ... 8–85

Scripting Support ... 8–86
Initial Compilation Settings .. 8–87
Resource Utilization Optimization Techniques (LUT-Based Devices) 8–87
I/O Timing Optimization Techniques (LUT-Based Devices) .. 8–88
fMAX Timing Optimization Techniques (LUT-Based Devices) .. 8–89

Conclusion .. 8–90
Document Revision History ... 8–91

Chapter 9. Power Optimization
Introduction .. 9–1
Power Dissipation ... 9–2
Design Space Explorer .. 9–3
Power-Driven Compilation .. 9–5

Power-Driven Fitter ... 9–10
Recommended Flow for Power-Driven Compilation .. 9–14

Area-Driven Synthesis ... 9–14
Gate-Level Register Retiming ... 9–16

Design Guidelines ... 9–19
Clock Power Management .. 9–19
Reducing Memory Power Consumption .. 9–22
Pipelining & Retiming ... 9–25
Architectural Optimization ... 9–28
I/O Power Guidelines ... 9–32
Power Optimization Advisor ... 9–34
Conclusion ... 9–37

Document Revision History ... 9–38

Chapter 10. Timing Closure Floorplan
Introduction .. 10–1
Invoking the Timing Closure Floorplan Editor ... 10–2

Timing Closure Floorplan Views ... 10–4
Viewing Assignments .. 10–6
Viewing Critical Paths ... 10–8
Physical Timing Estimates .. 10–12
LogicLock Region Connectivity ... 10–14
Viewing Routing Congestion ... 10–16

Conclusion .. 10–17
Document Revision History ... 10–18

Chapter 11. Netlist Optimizations & Physical Synthesis
Introduction .. 11–1
Synthesis Netlist Optimizations .. 11–3

WYSIWYG Primitive Resynthesis .. 11–3

x Altera Corporation
Preliminary

Quartus II Handbook, Volume 1

Gate-Level Register Retiming ... 11–5
Preserving Synthesis Netlist Optimization Results ... 11–10

Physical Synthesis Optimizations ... 11–11
Automatic Asynchronous Signal Pipelining .. 11–13
Physical Synthesis for Combinational Logic .. 11–14
Physical Synthesis for Registers—Register Duplication ... 11–15
Physical Synthesis for Registers—Register Retiming ... 11–16
Preserving Your Physical Synthesis Results .. 11–17

Applying Netlist Optimization Options .. 11–19
Scripting Support ... 11–20

Synthesis Netlist Optimizations ... 11–20
Physical Synthesis Optimizations .. 11–21
Incremental Compilation .. 11–22
Back-Annotating Assignments ... 11–22

Conclusion .. 11–23
Document Revision History ... 11–23

Chapter 12. Design Space Explorer
Introduction .. 12–1

DSE Concepts .. 12–1
DSE Exploration ... 12–2

General Description ... 12–2
Timing Analyzer Support ... 12–4

DSE Flow ... 12–5
DSE Support for Altera Device Families .. 12–6
DSE Project Settings .. 12–7

Setting Up the DSE Work Environment ... 12–7
Specifying the Revision ... 12–7
Setting the Initial Seed ... 12–7
Restructuring LogicLock Regions .. 12–7
Quartus II Integrated Synthesis ... 12–9

Performing an Advanced Search in Design Space Explorer ... 12–9
Exploration Space ... 12–10
Optimization Goal .. 12–13
Quality of Fit (QoF) .. 12–14
Search Method .. 12–15

DSE Flow Options ... 12–15
Create a Revision from a DSE Point .. 12–15
Stop If Zero Failing Paths are Achieved ... 12–17
Continue Exploration Even If Base Compilation Fails ... 12–17
Run Quartus II PowerPlay Power Analyzer During Exploration ... 12–17
Archive All Compilations ... 12–17
Stop Flow After Time ... 12–17
Save Exploration Space to File .. 12–17
Ignore SignalTap & SignalProbe Settings ... 12–18
Skip Base Analysis & Compilation If Possible ... 12–18
Lower Priority of Compilation Threads .. 12–18

Altera Corporation xi
Preliminary

Contents

DSE Configuration File .. 12–18
DSE Advanced Information ... 12–19

Computer Load Sharing in DSE Using Distributed Exploration .. 12–19
Concurrent Local Compilations ... 12–21
Creating Custom Spaces for DSE ... 12–21

Chapter 13. LogicLock Design Methodology
Introduction .. 13–1

Improving Design Performance ... 13–1
The Quartus II LogicLock Methodology .. 13–2
Preserving Timing Results Using the LogicLock Flow .. 13–3

Creating LogicLock Regions ... 13–4
Timing Closure Floorplan View ... 13–10
LogicLock Region Properties .. 13–11
Hierarchical (Parent and/or Child) LogicLock Regions .. 13–12
Assigning LogicLock Region Content ... 13–13
Excluded Resources ... 13–15
Tcl Scripts .. 13–17
Importing and Exporting LogicLock Regions .. 13–17
Additional Quartus II LogicLock Design Features ... 13–22

LogicLock Restrictions .. 13–31
Constraint Priority ... 13–31
Placing LogicLock Regions ... 13–32
Placing Memory, Pins & Other Device Features into LogicLock Regions 13–33

Back-Annotating Routing Information ... 13–34
Exporting Back-Annotated Routing in LogicLock Regions ... 13–35
Importing Back-Annotated Routing in LogicLock Regions ... 13–37

Scripting Support ... 13–38
Initializing & Uninitializing a LogicLock Region .. 13–38
Creating or Modifying LogicLock Regions .. 13–38
Obtaining LogicLock Region Properties ... 13–39
Assigning LogicLock Region Content ... 13–39
Prevent Further Netlist Optimization ... 13–39
Save a Node-level Netlist for the Entire Design into a Persistent Source File (.vqm) 13–40
Exporting LogicLock Regions .. 13–40
Importing LogicLock Regions .. 13–41
Setting LogicLock Assignment Priority .. 13–41
Assigning Virtual Pins ... 13–41
Back-Annotating LogicLock Regions .. 13–42

Conclusion .. 13–42

Chapter 14. Synplicity Amplify Physical Synthesis Support
Introduction .. 14–1
Software Requirements ... 14–1
Amplify Physical Synthesis Concepts .. 14–2
Amplify-to-Quartus II Flow ... 14–3

Initial Pass: No Physical Constraints ... 14–3

xii Altera Corporation
Preliminary

Quartus II Handbook, Volume 1

Iterative Passes: Optimizing the Critical Paths .. 14–5
Using the Amplify Physical Optimizer Floorplans .. 14–6

Multiplexers .. 14–7
Independent Paths ... 14–9
Feedback Paths ... 14–9
Starting & Ending Points ... 14–9
Utilization .. 14–11
Detailed Floorplans .. 14–11
Forward Annotating Amplify Physical Optimizer Constraints into
the Quartus II Software ... 14–12
Altera Megafunctions Using the MegaWizard Plug-In Manager with
the Amplify Software ... 14–13

Conclusion .. 14–14

Altera Corporation xiii
Preliminary

Chapter Revision Dates

The chapters in this book, Quartus II Handbook, Volume 2, were revised on the following dates. Where
chapters or groups of chapters are available separately, part numbers are listed.

Chapter 1. Assignment Editor
Revised: November 2006
Part number: QII52001-6.1.0

Chapter 2. Command-Line Scripting
Revised: November 2006
Part number: QII52002-6.1.0

Chapter 3. Tcl Scripting
Revised: November 2006
Part number: QII52003-6.1.0

Chapter 4. Managing Quartus II Projects
Revised: November 2006
Part number: QII52012-6.1.0

Chapter 5. I/O Management
Revised: November 2006
Part number: QII52013-6.1.0

Chapter 6. Mentor Graphics PCB Design Tools Support
Revised: November 2006
Part number: QII52015-6.1.0

Chapter 7. Cadence PCB Design Tools Support
Revised: November 2006
Part number: QII52014-6.1.0

Chapter 8. Area & Timing Optimization
Revised: November 2006
Part number: QII52005-6.1.0

Chapter 9. Power Optimization
Revised: November 2006
Part number: QII51016-6.1.0

xiv Altera Corporation
Preliminary

Chapter Revision Dates Quartus II Handbook, Volume 2

Chapter 10. Timing Closure Floorplan
Revised: November 2006
Part number: QII52006-6.1.0

Chapter 11. Netlist Optimizations & Physical Synthesis
Revised: November 2006
Part number: QII52007-6.1.0

Chapter 12. Design Space Explorer
Revised: November 2006
Part number: QII52008-6.1.0

Chapter 13. LogicLock Design Methodology
Revised: November 2006
Part number: QII52009-6.1.0

Chapter 14. Synplicity Amplify Physical Synthesis Support
Revised: November 2006
Part number: QII52011-6.1.0

Altera Corporation xv
Preliminary

About this Handbook

This handbook provides comprehensive information about the Altera®
Quartus®II design software, version 6.1.

How to Contact
Altera

For the most up-to-date information about Altera products, go to the
Altera world-wide web site at www.altera.com. For technical support on
this product, go to www.altera.com/mysupport. For additional
information about Altera products, consult the sources shown below.

Third-Party
Software
Product
Information

Third-party software products described in this handbook are not Altera
products, are licensed by Altera from third parties, and are subject to change
without notice. Updates to these third-party software products may not be
concurrent with Quartus II software releases. Altera has assumed
responsibility for the selection of such third-party software products and its use
in the Quartus II 6.1 software release. To the extent that the software products
described in this handbook are derived from third-party software, no third
party warrants the software, assumes any liability regarding use of the
software, or undertakes to furnish you any support or information relating to
the software. EXCEPT AS EXPRESSLY SET FORTH IN THE APPLICABLE
ALTERA PROGRAM LICENSE SUBSCRIPTION AGREEMENT UNDER
WHICH THIS SOFTWARE WAS PROVDED TO YOU, ALTERA AND
THIRD-PARTY LICENSORS DISCLAIM ALL WARRANTIES WITH RESPECT
TO THE USE OF SUCH THIRD-PARTY SOFTWARE CODE OR
DOCUMENTATION IN THE SOFTWARE, INCLUDING, WITHOUT
LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT. For more
information, including the latest available version of specific third-party
software products, refer to the documentation for the software in question.

Information Type USA & Canada All Other Locations

Technical support www.altera.com/mysupport/ altera.com/mysupport/

(800) 800-EPLD (3753)
(7:00 a.m. to 5:00 p.m. Pacific Time)

(408) 544-7000 (1)
(7:00 a.m. to 5:00 p.m. Pacific Time)

Product literature www.altera.com www.altera.com

Altera literature services literature@altera.com (1) literature@altera.com (1)

Non-technical customer
service

(800) 767-3753 (408) 544-7000
(7:30 a.m. to 5:30 p.m. Pacific Time)

FTP site ftp.altera.com ftp.altera.com

Note to table:
(1) You can also contact your local Altera sales office or sales representative.

http://www.altera.com/mysupport/
http://www.altera.com/mysupport/
http://www.altera.com
http://www.altera.com
mailto:lit_req@altera.com
mailto:lit_req@altera.com
ftp://ftp.altera.com
ftp://ftp.altera.com
http://www.altera.com
http://www.altera.com/mysupport

xvi Altera Corporation
Preliminary

Typographic Conventions Quartus II Handbook, Volume 2

Typographic
Conventions

This document uses the typographic conventions shown below.

Visual Cue Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold
type. Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital
Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75:
High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type.
Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-line help topics are
shown in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1,
tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an
actual file, such as a Report File, references to parts of files (e.g., the AHDL
keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in
Courier.

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

v, —, N/A Used in table cells to indicate the following: v indicates a “Yes” or “Applicable”
statement; — indicates a “No” or “Not Supported” statement; N/A indicates that
the table cell entry is not applicable to the item of interest.

■ ● • Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or the user’s work.

w A warning calls attention to a condition or possible situation that can cause injury
to the user.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information about a particular topic.

Altera Corporation Section I–1

Section I. Scripting &
Constraint Entry

As a result of the increasing complexity of today’s FPGA designs and the
demand for higher performance, designers must make a large number of
complex timing and logic constraints to meet their performance
requirements. Once you have created a project and your design, you can
use the Quartus® II software Assignment Editor and Floorplan Editor to
specify your initial design constraints, such as pin assignments, device
options, logic options, and timing constraints.

This section describes how to take advantage of these components of the
Quartus II software, how to take advantage of Quartus II modular
executables, and how to develop and run tool command language (Tcl)
scripts to perform a wide range of functions.

This section includes the following chapters:

■ Chapter 1, Assignment Editor
■ Chapter 2, Command-Line Scripting
■ Chapter 3, Tcl Scripting
■ Chapter 4, Managing Quartus II Projects

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section I–2 Altera Corporation

Scripting & Constraint Entry Quartus II Handbook, Volume 2

Altera Corporation 1–1
November 2006 Preliminary

1. Assignment Editor

Introduction The complexity of today’s FPGA designs is compounded by the
increasing density and associated pin counts of current FPGAs. It requires
that you make a large number of pin assignments that include the pin
locations and I/O standards to successfully implement a complex design
in the latest generation of FPGAs.

To facilitate the process of entering these assignments, Altera® has
developed an intuitive, spreadsheet interface called the Assignment
Editor. The Assignment Editor is designed to make the process of
creating, changing, and managing a large number of assignments as easy
as possible.

This chapter discusses the following topics:

■ Using the Assignment Editor
■ Assignment Editor Features
■ Assigning Pin Locations Using the Assignment Editor
■ Creating Timing Constraints Using the Assignment Editor
■ Exporting & Importing Assignments

Using the
Assignment
Editor

You can use the Assignment Editor throughout the design cycle. Before
board layout begins, you can make pin assignments with the Assignment
Editor. Throughout the design cycle, use the Assignment Editor to help
achieve your design performance requirements by making timing
assignments. You can also use the Assignment Editor to view, filter, and
sort assignments based on node names or assignment type.

The Assignment Editor is a resizable window. This scalability makes it
easy to view or edit your assignments right next to your design files. To
open the Assignment Editor, click the Assignment Editor icon in the
toolbar, or on the Assignments menu, click Assignment Editor.

1 You can also launch the Assignment Editor by pressing
Ctrl+Shift+A.

QII52001-6.1.0

1–2 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Category, Node Filter, Information & Edit Bars

The Assignment Editor window is divided into four bars and a
spreadsheet (Figure 1–1).

Figure 1–1. The Assignment Editor Window

You can hide all four bars in the View menu if desired, and you can
collapse the Category, Node Filter, and Information bars. Table 1–1
provides a brief description of each bar.

Category Bar

The Category bar lists all assignment categories available for the selected
device. You can use the Category bar to select a particular assignment
type and to filter out all other assignments. Selecting an assignment
category from the Category list changes the spreadsheet to show only
applicable options and values. To search for a particular type of
assignment, use the Category bar to filter out all other assignments.

Table 1–1. Assignment Editor Bar Descriptions

Bar Name Description

Category Lists the type of available assignments.

Node Filter Lists a selection of design nodes to be viewed or assigned.

Information Displays a description of the currently selected cell.

Edit Allows you to edit the text in the currently selected cell(s).

Altera Corporation 1–3
November 2006 Preliminary

Using the Assignment Editor

To view all tSU assignments in your project, select tsu in the Category list
(Figure 1–2).

Figure 1–2. tSU Selected in the Category List

If you select All in the Category bar (Figure 1–3), the Assignment Editor
displays all assignments.

Figure 1–3. All Selected in the Category List

1–4 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

When you collapse the Category bar, four shortcut buttons are displayed
allowing you to select from various preset categories (Figure 1–4).

Figure 1–4. Category Bar

Use the Pin category to create pin location assignments. The Pin category
displays additional information about each FPGA pin including its I/O
Bank number, VREF group number, corresponding pad number, and
primary and secondary functions.

When entering a pin number, the Assignment Editor auto completes the
pin number. For example, instead of typing Pin_AA3, you can type AA3
and let the Assignment Editor auto complete the pin number to
Pin_AA3. You can also choose a pin location from the pins list by double
clicking the cell in the location column. All occupied pin locations are
shown in italics.

Node Filter Bar

When Show assignments for specific nodes is turned on, the
spreadsheet shows only assignments for nodes matching the selected
node name filters in the Node Filter bar. You can selectively enable
individual node name filters listed in the Node Filter bar. You can create
a new node name filter by selecting a node name with the Node Finder or
typing a new node name filter. The Assignment Editor automatically
inserts a spreadsheet row and pre-populates the To field with the node
name filter. You can easily add an assignment to the matching nodes by
entering it in the new row. Rows with incomplete assignments are shown
in dark red. When you choose Save on the File menu, and there are
incomplete assignments, a prompt gives you the choice to save and lose
incomplete assignments, or cancel the save.

Altera Corporation 1–5
November 2006 Preliminary

Using the Assignment Editor

As shown in Figure 1–5, when all the bits of the d input bus are enabled
in the Node Filter bar, all unrelated assignments are filtered out.

1 In the Node Filter bar, selecting a d input bus only highlights the
row. If you want to enable the bus, you must turn on the bus.

Figure 1–5. Using the Node Filter Bar in the Assignment Editor

Information Bar

The Information bar provides a brief description of the currently selected
cell and what information you should enter into the cell. For example, the
Information bar describes if it is correct to enter a node name, or a
number value into a cell. If the selected cell is a logic option, then the
Information bar shows a description of that option.

f For more information on logic options, refer to the Quartus® II Help.

Edit Bar

The Edit bar is an efficient way to enter a value into one or more
spreadsheet cells.

1–6 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

To change the contents of multiple cells at the same time, select the cells
in the spreadsheet (Figure 1–6), then type the new value into the Edit box
in the Edit bar, and click Accept (Figure 1–7).

Figure 1–6. Edit Bar Selection

Figure 1–7. Edit Bar Change

Viewing & Saving Assignments in the Assignment Editor

Although the Assignment Editor is the most common method of entering
and modifying assignments, there are other methods you can use to make
and edit assignments. For this reason, you can refresh the Assignment
Editor after you add, remove, or change an assignment outside the
Assignment Editor.

Altera Corporation 1–7
November 2006 Preliminary

Assignment Editor Features

By default, all assignments made in the Quartus II software are first
stored into memory, then to the Quartus II Setting File (.qsf) on the disk
after you start a processing task, or if you save or close your project.
Saving assignments to memory avoids reading and writing to your disk
drive and improves the performance of the software.

After making assignments in the Assignment Editor, on the File menu,
click Save to save your assignments and update the Quartus II Settings
File outside the Assignment Editor.

Starting with the Quartus II software version 5.1, you can force all
assignments to be written to a disk drive. This is performed by turning off
Update assignments to disk during design processing only in the
Processing page of the Options settings dialog box on the Tools menu.

f For more information on how the Quartus II software writes to the
Quartus II Settings File, refer to the Quartus II Project Management
chapter in volume 2 of the Quartus II Handbook.

You can refresh the Assignment Editor window by clicking Refresh from
the View menu. If you make an assignment in the Quartus II software,
such as in the Tcl console or in the Pin Planner, the Assignment Editor
reloads the new assignments from memory. If you directly modify the
Quartus II Settings File outside the Assignment Editor, click Refresh on
the View menu to view the assignments.

1 If the Quartus II Settings File is edited while the project is open,
go to the File menu and click Save Project to ensure that you are
editing the latest Quartus II Settings File.

Each time the Assignment Editor is refreshed, the following message
displays in the Message window:

Info: Assignments reloaded -- assignments updated outside Assignment Editor

Assignment
Editor Features

You can open the Assignment Editor from many locations in the
Quartus II software, including the Text Editor, the Node Finder, the
Timing Closure Floorplan, the Pin Planner, the Compilation Report, and
the Messages window. For example, you can highlight a node name in
your design file and open the Assignment Editor with the node name
populated.

You can also open other windows from the Assignment Editor. From a
node listed in the Assignment Editor spreadsheet, you can locate the node
in any of the following windows: Pin Planner, Timing Closure Floorplan,
Chip Editor, Block Editor, or Text Editor.

1–8 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Using the Enhanced Spreadsheet Interface

One of the key features of the Assignment Editor is the spreadsheet
interface. With the spreadsheet interface, you can sort columns, use
pull-down list boxes, and copy and paste multiple cells into the
Assignment Editor. As you enter an assignment, the font color of the row
changes to indicate the status of the assignment. Refer to “Dynamic
Syntax Checking” on page 1–9 for more information.

There are many ways to select or enter nodes into the spreadsheet
including: the Node Finder, the Node Filter bar, the Edit bar, or by directly
typing the node name into the cell in the spreadsheet. A node type icon is
shown beside each node name and node name filter to identify its type.
The node type icon identifies the entry as an input, output, bidirectional
pin, a register, combinational logic, or an assignment group (Figure 1–8).
The node type icon appears as an asterisk for node names and node name
filters that use a wildcard character (* or ?).

Figure 1–8. Node Type Icon Displayed Beside Each Node Name in the Spreadsheet

The Assignment Editor supports wildcards in the following types of
assignments:

■ All timing assignments
■ Point-to-point global signal assignments (applicable to Stratix® II

and Stratix devices)
■ Point-to-point or pad-to-core delay chain assignments
■ All assignments that support wild cards are shown in the drop list

under the Assignment Name column of the Assignment Editor with
“(Accepts wildcards/groups)” displayed beside it

The spreadsheet also supports customizable columns that allow you to
show, hide, and arrange columns. For more information, refer to
“Customizable Columns” on page 1–12.

When making pin location assignments, the background color of the cells
coordinates with the color of the I/O bank shown in the Pin Planner
(Figure 1–9).

Altera Corporation 1–9
November 2006 Preliminary

Assignment Editor Features

Figure 1–9. Spreadsheet-Like Interface

Dynamic Syntax Checking

As you enter your assignments, the Assignment Editor performs simple
legality and syntax checks. This checking is not as thorough as the checks
performed during compilation, but it rejects incorrect settings. For
example, the Assignment Editor does not allow assignment of a pin name
to a no-connect pin. In this case, the assignment is not accepted and you
must enter a different pin location.

The color of the text in each row indicates if the assignment is incomplete,
incorrect, or disabled (Table 1–2). To customize the colors in the
Assignment Editor, on the Tools menu, click Options.

Table 1–2. Description of the Text Color in the Spreadsheet

Text Color Description

Green A new assignment can be created.

Yellow The assignment contains warnings, such as an unknown node
name.

Dark Red The assignment is incomplete.

Bright Red The assignment has an error, such as an illegal value.

Light Gray The assignment is disabled.

1–10 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Node Filter Bar

The Node Filter bar provides flexibility in how you view and make your
settings. The Node Filter bar contains a list of node filters. To create a new
entry, use the Node Finder or manually type the node name. Double-click
an empty row in the Node Filter list, click on the arrow, and click Node
Finder (Figure 1–10) to open the Node Finder dialog box.

Figure 1–10. Node Finder Option

Altera Corporation 1–11
November 2006 Preliminary

Assignment Editor Features

In the Node Filter bar, you can turn each filter on or off. To turn off the
Node Filter bar, turn off Show assignments for specific nodes. The
wildcards (* and ?) are used to filter for a selection of all the design nodes
with one entry in the Node Filter. For example, you can enter d* into the
Node Filter list to view all assignments for d[0], d[1], d[2], and d[3]
(Figure 1–11).

Figure 1–11. Using the Node Filter Bar with Wildcards

Using Assignment Groups

An assignment group is a collection of design nodes grouped together
and represented as a single unit for the purpose of making assignments
to the collection. Using assignment groups with the Assignment Editor
provides the flexibility required for making complex fitting or timing
assignments to a large number of nodes.

To create an assignment group, on the Assignments menu, click
Assignment (Time) Groups. The Assignment Groups dialog box is
shown. You can add or delete members of each assignment group with
wild cards in the Node Finder (Figure 1–12).

f For more information on using Assignment Groups for timing analysis,
refer to the Classic Timing Analyzer chapter in volume 3 of the Quartus II
Handbook.

1–12 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Figure 1–12. Assignment Groups Dialog Box

There are cases when wildcards are not flexible enough to select a large
number of nodes that have similar node names. You can use assignment
groups to combine wildcards, which select a large number of nodes, and
use exceptions to remove nodes that you did not intend to select.
Although settings may not always display correctly when you have
wildcards or assignment groups, the fitter always recognizes assignments
created with wildcards and assignment groups when the design is
compiled.

Customizable Columns

To provide more control over the display of information in the
spreadsheet, the Assignment Editor supports customizable columns.

You can move columns, sort them in ascending or descending order,
show or hide individual columns, and align the content of the column
left, center, or right for improved readability.

When the Quartus II software starts for the first time, you see a
pre-selected set of columns. For example, when the Quartus II software is
first started, the Comment column is hidden. To show or hide any of the
available columns, on the View menu, click Customize Columns. When
you restart the Quartus II software, your column settings are maintained.

Altera Corporation 1–13
November 2006 Preliminary

Assignment Editor Features

Depending on the category selected, there are many different hidden
columns you can display. For example, with the Pins category selected,
there are many columns that are not shown by default, such as VREF
group, pad number, output pin load, toggle rate, timing requirements,
and fast input and output register options.

You can use the Comments column to document the purpose of a pin or
to explain why you applied a timing or logic constraint. You can use the
Enabled column to disable any assignment without deleting it. This
feature is useful when performing multiple compilations with different
timing constraints or logic optimizations.

1 Even though you can make many pin-related assignments with
the Pin category selected, only the pin location assignment is
disabled when you disable a row using the Enabled column.

Tcl Interface

Whether you use the Assignment Editor or another feature to create your
design assignments, you can export them to a Tcl file. You can then use
the Tcl file to reapply the settings or to archive your assignments. On the
File menu, click Export to export your assignments (currently displayed
in the spreadsheet of the Assignment Editor) to a Tcl script.

1 On the Project menu, click Generate TCL File for Project to
generate a Tcl script file that sets up your design and applies all
the assignments.

In addition, as you use the Assignment Editor to enter assignments, the
equivalent Tcl commands are shown in the System Message window. You
can reference these Tcl commands to create customized Tcl scripts
(Figure 1–13). To copy a Tcl command from the Messages window,
right-click the message and click Copy.

Figure 1–13. Equivalent Tcl Commands Displayed in the Messages Window

1–14 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

f For more information on Tcl scripting with the Quartus II software, refer
to the Tcl Scripting chapter in volume 2 of the Quartus II Handbook.

Assigning Pin
Locations Using
the Assignment
Editor

There are two methods for making pin assignments with the Assignment
Editor. The first approach involves choosing a design node name for each
device pin location. It is important to understand the properties of each
pin on the FPGA device before you assign a design node to the location.
For example, when following pin placement guidelines, you need to
know which I/O bank or VREF group each pin belongs to.

On the Assignments menu, click Assignment Editor. To view all pin
numbers in the targeted package, click the Pin category. On the View
menu, click Show All Assignable Pin Numbers. You can customize the
columns shown in the Assignment Editor to display property
information about each pin including their pad numbers, as well as
primary and secondary functions.

f For more information on pin placement guidelines, refer to the Selectable
I/O Standards chapters in the appropriate device handbook.

The second approach involves choosing a pin location for each pin in
your design. To view all pin numbers in the targeted package, open the
Assignment Editor, click the Pin category, and on the View menu, click
Show All Known Pin Names. For each pin name, select a pin location.

f For more information about creating pin assignments, refer to the
I/O Management chapter in volume 2 of the Quartus II Handbook.

Creating Timing
Constraints
Using the
Assignment
Editor

Accurate timing constraints guide the place-and-route engine in the
Quartus II software to help optimize your design into the FPGA. After
completing a place-and-route, perform a static timing analysis using the
classic timing analyzer or the TimeQuest timing analyzer to analyze slack
and critical paths in your design.

If you are using the Classic Timing Analyzer, create timing constraints
using the Assignment Editor. On the Assignments menu, click
Assignment Editor. In the Category list, select Timing, and make timing
assignments in the spreadsheet section of the Assignment Editor.

f For more information on the Classic Timing Analyzer, refer to the Classic
Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

If you are using the TimeQuest Timing Analyzer, the TimeQuest Timing
Analyzer uses timing assignments from a Synopsys Design Constraint
(.sdc) file.

Altera Corporation 1–15
November 2006 Preliminary

Exporting & Importing Assignments

f For information on converting the timing assignments in your Quartus
Settings File to an Synopsys Design Constraint file, refer to the Switching
to the TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook.

Exporting &
Importing
Assignments

Designs that use the LogicLock™ hierarchal design methodology use the
Import Assignment command to import assignments into the current
project. You can also use the Export Assignments command to save all
the assignments in your project to a file to be used for archiving or to
transfer assignments from one project to another.

On the Assignments menu, click Export Assignments or Import
Assignments to do the following:

■ Export your Quartus II assignments to a Quartus II Settings File.
■ Import assignments from a Quartus II Entity Settings File (.esf), a

MAX+PLUS® II Assignment and Configuration File (.acf), or a
Comma Separated Value (.csv) file.

In addition to the Export Assignments and Import Assignments dialog
boxes, the Export command on the File menu allows you to export your
assignments to a Tcl Script (.tcl) file.

1 When applicable, the Export command exports the contents of
the active window in the Quartus II software to another file
format.

You can use these file formats for many different aspects of your project.
For example, you can use a Comma Separated Value file for
documentation purposes, or to transfer pin-related information to board
layout tools. The Tcl file makes it easy to apply assignments in a scripted
design flow. The LogicLock design flow uses the Quartus II Settings File
to transfer your LogicLock region settings.

1–16 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Exporting Assignments

You can use the Export Assignments dialog box to export your Quartus II
software assignments into a Quartus II Settings File, generate a
node-level netlist file, and export back-annotated routing information as
a Routing Constraints File (.rcf) (Figure 1–14).

Figure 1–14. Export Assignments Dialog Box

On the Assignments menu, click Export Assignments to open the Export
Assignments dialog box. The LogicLock design flow also uses this dialog
box to export LogicLock regions.

f For more information on using the Export Assignments dialog box to
export LogicLock regions, refer to the LogicLock Design Methodology
chapter in volume 2 of the Quartus II Handbook.

On the File menu, click Export to export all assignments to a Tcl file or
export a set of assignments to a Comma Separated Value file. When you
export assignments to a Tcl file, only user-created assignments are written
to the Tcl script file; default assignments are not exported.

When assignments are exported to a Comma Separated Value file, only
the assignments displayed in the current view of the Assignment Editor
are exported.

Exporting Pin Assignments

To export your pin assignments to a Comma Separated Value file, you can
open the Assignment Editor and select Pin from the Category bar. The
Pin category displays detailed properties about each pin similar to that of
the device pin-out files in addition to the pin name and pin number. On
the File menu, click Export, and select Comma Separated Value File from
the Save as type list.

Altera Corporation 1–17
November 2006 Preliminary

Exporting & Importing Assignments

The first uncommented row of the Comma Separated Value file is a list of
the column headings displayed in the Assignment Editor separated by
commas. Each row below the header row represents the rows in the
spreadsheet of the Assignment Editor (Figure 1–15). On the View menu,
click Customize Columns to add and remove columns that are displayed
in the spreadsheet. You can view and make edits to the Comma Separated
Value file with Excel or other spreadsheet tools. If you intend to import
the Comma Separated Value file back into the Quartus II software, the
column headings must remain unedited and in the same order.

f For more information on exporting pin assignments, refer to the
I/O Management chapter in volume 2 of the Quartus II Handbook.

Figure 1–15. Assignment Editor With Category Set to Pin

1–18 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

The following code is an example of an exported Comma Separated Value
file from the Assignment Editor:

Note: The column header names should not be changed if you wish to import this .csv file
into the Quartus II software.

To,Location,I/O Bank,I/O Standard,General Function,Special Function,Reserved,Enabled
clk,PIN_N20,1,LVTTL,Dedicated Clock,"CLK3p, Input",,Yes
clkx2,PIN_M21,2,LVTTL,Dedicated Clock,"CLK1p, Input",,Yes
d[0],PIN_E9,4,LVTTL,Column I/O,DQSn5T,,Yes
d[1],PIN_D8,4,LVTTL,Column I/O,DQS5T/DQ0T,,Yes
d[2],PIN_G9,4,LVTTL,Column I/O,,,Yes
d[3],PIN_E8,4,LVTTL,Column I/O,DQ5T,,Yes
d[4],PIN_F2,5,LVTTL,Row I/O,DIFFIO_RX22n,,Yes
d[5],PIN_G4,5,LVTTL,Row I/O,DIFFIO_TX22n,,Yes
d[6],PIN_D1,5,LVTTL,Row I/O,DIFFIO_RX20p,,Yes
d[7],PIN_F8,4,LVTTL,Column I/O,,,Yes

Importing Assignments

The Import Assignments dialog box allows you to import Quartus II
assignments from a Quartus II Settings File, a Quartus II Entity Settings
File, a MAX+PLUS II Assignment Configuration File, or a Comma
Separated Value (Figure 1–16).

To import assignments from any of the supported assignment files,
perform the following steps:

1. On the Assignments menu, click Import Assignments. The Import
Assignments dialog box is shown (Figure 1–16).

Figure 1–16. Import Assignments Dialog Box

2. In the File name text-entry box, type the file name, or browse to the
assignment file. The Select File dialog box is shown.

3. In the Select File dialog box, select the file, and click Open.

4. Click OK.

Altera Corporation 1–19
November 2006 Preliminary

Exporting & Importing Assignments

1 When you import a Comma Separated Value file, the first
uncommented row of the file must be in the exact format as
it was when exported.

When using the LogicLock™ flow methodology to import assignments,
perform the following steps:

1. On the Assignments menu, click Import Assignments. The Import
Assignments dialog box appears (Figure 1–16).

2. Turn on Use LogicLock Import File Assignments, and click
LogicLock Import File Assignments.

3. When the LogicLock Import File Assignments dialog box opens,
select the assignments to import and click OK.

f For more information on using the Import Assignments dialog box to
import LogicLock regions, refer to the LogicLock Design Methodology
chapter in volume 2 of the Quartus II Handbook.

You can create a backup copy of your assignments before importing new
assignments by turning on the Copy existing assignments into
<revision name>.qsf.bak before importing option.

When importing assignments from a file, you can choose which
assignment categories to import by following these steps:

1. Click Categories in the Import Assignments dialog box.

2. Turn on the categories you want to import from the Assignment
categories list (Figure 1–17).

To select specific types of assignments to import, click Advanced in the
Import Assignments dialog box. The Advanced Import Settings dialog
box appears. You can choose to import instance, entity, or global
assignments, and select various assignment types to import.

f For more information on these options, refer to the Quartus II Help.

1–20 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Figure 1–17. Assignment Categories Dialog Box

Conclusion As FPGAs continue to increase in density and pin count, it is essential to
be able to quickly create and view design assignments. The Assignment
Editor provides an intuitive and effective way of making assignments.
With the spreadsheet interface and the Category, Node Filter,
Information, and Edit bars, the Assignment Editor provides an efficient
assignment entry solution for FPGA designers.

Document
Revision History

Table 1–3 shows the revision history of this document.

Table 1–3. Document Revision History

Date &
Document

Version
Changes Made Summary of Changes

November 2006
v6.1.0

Added revision history to document.

May 2006
v6.0.0

Minor updates for the Quartus II software version 6.0.0.
● Added Classic Timing Analyzer and TimeQuest Timing

Analyzer information.

October 2005
v5.1.0

Updated for the Quartus II software version 5.1.0.

Altera Corporation 1–21
November 2006 Preliminary

Document Revision History

May 2005
v5.0.0

● Updated for the Quartus II software version 5.0.0.
● General formatting and editing updates.
● Updated 2 graphics and references to reflect changes in

the Quartus II software version 5.0.0

Dec. 2004 v2.1 ● Updated for Quartus II software version 4.2:
● General formatting and editing updates.
● Updated information about refreshing the Assignment

Editor.
● Updated figures.
● Added information about how to make selections to the

Assignment Editor window.
● Added Time Groups reference.
● Reworded description of Customizable Columns.
● Added new section Creating Pin Locations Using the

Assignment Editor.
● Added new description to Exporting & Importing

Assignments.

June 2004 v2.0 ● Updates to tables, figures.
● New functionality in the Quartus II software version 4.1.

Feb. 2004 v1.0 Initial release.

1–22 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Altera Corporation 2–1
November 2006

2. Command-Line Scripting

Introduction FPGA design software that easily integrates into your design flow saves
time and improves productivity. The Altera® Quartus® II software
provides you with a command-line executable for each step of the FPGA
design flow to make the design process customizable and flexible.

The benefits provided by command-line executables include:

■ Command-line control over each step of the design flow
■ Easy integration with scripted design flows including makefiles
■ Reduced memory requirements
■ Improved performance

The command-line executables are also completely compatible with the
Quartus II GUI, allowing you to use the exact combination of tools that
you prefer.

This chapter describes how to take advantage of Quartus II
command-line executables, and provides several examples of scripts that
automate different segments of the FPGA design flow.

The Benefits of
Command-Line
Executables

The Quartus II command-line executables provide command-line control
over each step of the design flow. Each executable includes options to
control commonly used software settings. Each executable also provides
detailed, built-in help describing its function, available options, and
settings.

Command-line executables allow for easy integration with scripted
design flows. It is simple to create scripts in any language with a series of
commands. These scripts can be batch-processed, allowing for
integration with distributed computing in server farms. You can also
integrate the Quartus II command-line executables in makefile-based
design flows. All of these features enhance the ease of integration
between the Quartus II software and other EDA synthesis, simulation,
and verification software.

Command-line executables add integration and scripting flexibility
without sacrificing the ease-of-use of the Quartus II GUI. You can use the
Quartus II GUI and command-line executables at different stages in the
design flow. For example, you might use the Quartus II GUI to edit the

QII52002-6.1.0

2–2 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

floorplan for the design, use the command-line executables to perform
place-and-route, and return to the Quartus II GUI to perform debugging
with the Chip Editor.

Command-line executables reduce the amount of memory required
during each step in the design flow. Because each executable targets only
one step in the design flow, it is relatively compact, both in file size and
the amount of memory used when running. This memory reduction
improves performance, and is particularly beneficial in design
environments where computer networks or workstations are heavily
used with reduced memory.

Introductory
Example

The following introduction to design flow with command-line
executables shows how to create a project, fit the design, perform timing
analysis, and generate programming files.

The tutorial design included with the Quartus II software is used to
demonstrate this functionality. If installed, the tutorial design is found in
the <Quartus II directory>/qdesigns/tutorial directory.

Before making changes, copy the tutorial directory and type the four
commands shown in Example 2–1 at a command prompt in the new
project directory:

1 The <Quartus II directory>/bin directory must be in your PATH
environment variable.

Example 2–1. Introductory Example
quartus_map filtref --source=filtref.bdf --family=CYCLONE r
quartus_fit filtref --part=EP1C12Q240C6 --fmax=80MHz --tsu=8ns r
quartus_asm filtref r
quartus_tan filtref r

The quartus_map filtref --source=filtref.bdf --family=CYCLONE
command creates a new Quartus II project called filtref with the
filtref.bdf file as the top-level file. It targets the Cyclone™ device family
and performs logic synthesis and technology mapping on the design files.

The quartus_fit filtref --part=EP1C12Q240C6 --fmax=80MHz --tsu=8ns
command performs fitting on the filtref project. This command specifies
an EP1C12Q240C6 device and the fitter attempts to meet a global fMAX
requirement of 80 MHz and a global tSU requirement of 8 ns.

The quartus_asm filtref command creates programming files for the
filtref project.

Altera Corporation 2–3
November 2006

Command-Line Executables

The quartus_tan filtref command performs timing analysis on the filtref
project to determine whether the design meets the timing requirements
that were specified to the quartus_fit executable.

You can put the four commands from Example 2–1 into a batch file or
script file, and run them. For example, you can create a simple UNIX shell
script called compile.sh, which includes the code shown in Example 2–2.

Example 2–2. UNIX Shell Script: compile.sh
#!/bin/sh
PROJECT=filtref
TOP_LEVEL_FILE=filtref.bdf
FAMILY=Cyclone
PART=EP1C12Q240C6
FMAX=80MHz
quartus_map $PROJECT --source=$TOP_LEVEL_FILE --family=$FAMILY
quartus_fit $PROJECT --part=$PART --fmax=$FMAX
quartus_asm $PROJECT
quartus_tan $PROJECT

Edit the script as necessary and compile your project.

Command-Line
Executables

Table 2–1 details the command-line executables and their respective
descriptions.

Table 2–1. Quartus II Command-Line Executables & Descriptions (Part 1 of 4)

Executable Description

Analysis & Synthesis
quartus_map

Quartus II Analysis & Synthesis builds a single project database that integrates
all the design files in a design entity or project hierarchy, performs logic
synthesis to minimize the logic of the design, and performs technology mapping
to implement the design logic using device resources such as logic elements.

Fitter
quartus_fit

The Quartus II Fitter performs place-and-route by fitting the logic of a design
into a device. The Fitter selects appropriate interconnection paths, pin
assignments, and logic cell assignments.

Quartus II Analysis & Synthesis must be run successfully before running the
Fitter.

2–4 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Assembler
quartus_asm

The Quartus II Assembler generates a device programming image, in the form
of one or more of the following from a successful fit (that is, place-and-route).
● Programmer Object Files (.pof)
● SRAM Object Files (.sof)
● Hexadecimal (Intel-Format) Output Files (.hexout)
● Tabular Text Files (.ttf)
● Raw Binary Files (.rbf)

The .pof and .sof files are then processed by the Quartus II Programmer and
downloaded to the device with the MasterBlasterTM or the ByteBlasterTM II
download cable, or the Altera Programming Unit (APU). The Hexadecimal
(Intel-Format) Output Files, Tabular Text Files, and Raw Binary Files can be
used by other programming hardware manufacturers that provide support for
Altera devices.

The Quartus II Fitter must be run successfully before running the Assembler.

Classic Timing Analyzer
quartus_tan

The Quartus II Classic Timing Analyzer computes delays for the given design
and device, and annotates them on the netlist. Then, the Classic Timing
Analyzer performs timing analysis, allowing you to analyze the performance of
all logic in your design. The quartus_tan executable includes Tcl support.

Quartus II Analysis & Synthesis or the Fitter must be run successfully before
running the Classic Timing Analyzer.

TimeQuest Timing Analyzer
quartus_sta

The Quartus II TimeQuest Timing Analyzer computes delays for the given
design and device, and annotates them on the netlist. Then, the TimeQuest
Timing Analyzer performs timing analysis, allowing you to analyze the
performance of all logic in your design. The quartus_sta executable includes
Tcl support and SDC support.

Quartus II Analysis & Synthesis or the Fitter must be run successfully before
running the TimeQuest Timing Analyzer.

Design Assistant
quartus_drc

The Quartus II Design Assistant checks the reliability of a design based on a
set of design rules. The Design Assistant is especially useful for checking the
reliability of a design before converting the design for HardCopy® devices. The
Design Assistant supports designs that target any Altera device supported by
the Quartus II software, except MAX® 3000 and MAX 7000 devices.

Quartus II Analysis & Synthesis or the Fitter must be run successfully before
running the Design Assistant.

Compiler Database Interface
quartus_cdb

The Quartus II Compiler Database Interface generates incremental netlists for
use with LogicLockTM back-annotation, or back-annotates device and resource
assignments to preserve the fit for future compilations. The quartus_cdb
executable includes Tcl support.

Analysis & Synthesis must be run successfully before running the Compiler
Database Interface.

Table 2–1. Quartus II Command-Line Executables & Descriptions (Part 2 of 4)

Executable Description

Altera Corporation 2–5
November 2006

Command-Line Executables

EDA Netlist Writer
quartus_eda

The Quartus II EDA Netlist Writer generates netlist and other output files for
use with other EDA tools.

Analysis & Synthesis, the Fitter, or Timing Analyzer must be run successfully
before running the EDA Netlist Writer, depending on the arguments used.

Simulator
quartus_sim

The Quartus II Simulator tests and debugs the logical operation and internal
timing of the design entities in a project. The Simulator can perform two types
of simulation: functional simulation and timing simulation. The quartus_sim
executable includes Tcl support.

Quartus II Analysis & Synthesis must be run successfully before running a
functional simulation.

The Timing Analyzer must be run successfully before running a timing
simulation.

Power Analyzer
quartus_pow

The Quartus II PowerPlay Power Analyzer estimates the thermal dynamic
power and the thermal static power consumed by the design. For newer
families such as Stratix® II and MAX II, the power drawn from each power
supply is also estimated.

Quartus II Analysis & Synthesis or the Fitter must be run successfully before
running the PowerPlay Power Analyzer.

Programmer
quartus_pgm

The Quartus II Programmer programs Altera devices. The Programmer uses
one of the supported file formats:
● Programmer Object Files (.pof)
● SRAM Object Files (.sof)
● Jam File (.jam)
● Jam Byte-Code File (.jbc)

Make sure you specify a valid programming mode, programming cable, and
operation for a specified device.

Convert Programming File
quartus_cpf

The Quartus II Convert Programming File module converts one programing file
format to a different possible format.

Make sure you specify valid options and an input programming file to generate
the new requested programming file format.

Quartus Shell
quartus_sh

The Quartus II Shell acts as a simple Quartus II Tcl interpreter. The Shell has
a smaller memory footprint than the other command-line executables that
support Tcl. The Shell may be started as an interactive Tcl interpreter (shell),
used to run a Tcl script, or used as a quick Tcl command evaluator, evaluating
the remaining command-line arguments as one or more Tcl commands.

Table 2–1. Quartus II Command-Line Executables & Descriptions (Part 3 of 4)

Executable Description

2–6 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Command-Line Scripting Help

Help on command-line executables is available through different
methods. You can access help built in to the executables with
command-line options. You can use the Quartus II Command-Line and
Tcl API Help browser for an easy graphical view of the help information.
Additionally, you can refer to the Scripting Reference Manual on the
Quartus II literature page on Altera’s website, which has the same
information in PDF format.

To use the Quartus II Command-Line and Tcl API Help browser, type the
following:

quartus_sh --qhelp r

This command starts the Quartus II Command-Line and Tcl API Help
browser, a viewer for information about the Quartus II Command-Line
executables and Tcl API (Figure 2–1).

Use the -h option with any of the Quartus II Command-Line executables
to get a description and list of supported options. Use the
--help=<option name> option for detailed information about each
option.

TimeQuest Timing Analyzer
GUI
quartus_staw

This executable opens the TimeQuest Timing Analyzer GUI. This is helpful
because you don’t have to open the entire Quartus II GUI for certain operations.

Programmer GUI
quartus_pgmw

This executable opens up the programmer—a GUI to the quartus_pgm
executable. This is helpful because users don’t have to open the entire
Quartus II GUI for certain operations

Table 2–1. Quartus II Command-Line Executables & Descriptions (Part 4 of 4)

Executable Description

Altera Corporation 2–7
November 2006

Command-Line Executables

Figure 2–1. Quartus II Command-Line & Tcl API Help Browser

Command-Line Option Details

Command-line options are provided for many common global project
settings and performing common tasks. You can use either of two
methods to make assignments to an individual entity. If the project exists,
open the project in the Quartus II GUI, change the assignment, and close
the project. The changed assignment is updated in the Quartus II Settings
File. Any command-line executables that are run after this update use the
updated assignment. Refer to “Option Precedence” on page 2–8 for more

2–8 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

information. You can also make assignments using the Quartus II Tcl
scripting API. If you want to completely script the creation of a Quartus II
project, choose this method.

1 Refer to the Tcl Scripting chapter in volume 2 of the Quartus II
Handbook. Scripting information for all Quartus II project
settings and assignments is located in the QSF Reference Manual.

Option Precedence

If you use command-line executables, you should be aware of the
precedence of various project assignments and how to control the
precedence. Assignments for a particular project exist in the Quartus II
Settings File for the project. Assignments for a project can also be made
with command-line options, as described earlier in this document. Project
assignments are reflected in compiler database files that hold
intermediate compilation results and reflect assignments made in the
previous project compilation.

All command-line options override any conflicting assignments found in
the Quartus II Settings File or the compiler database files. There are two
command-line options to specify whether Quartus II Settings File or
compiler database files take precedence for any assignments not specified
as command-line options.

1 Any assignment not specified as a command-line option or
found in the Quartus II Settings File or compiler database file is
set to its default value.

The file precedence command-line options are
--read_settings_files and --write_settings_files.

By default, the --read_settings_files and
--write_settings_files options are turned on. Turning on the
--read_settings_files option causes a command-line executable to
read assignments from the Quartus II Settings File instead of from the
compiler database files. Turning on the --write_settings_files
option causes a command-line executable to update the Quartus II
Settings File to reflect any specified options, as happens when closing a
project in the Quartus II GUI.

Altera Corporation 2–9
November 2006

Command-Line Executables

Table 2–2 lists the precedence for reading assignments depending on the
value of the --read_settings_files option.

Table 2–3 lists the locations to which assignments are written, depending
on the value of the --write_settings_files command-line option.

Example 2–3 assumes that a project named fir_filter exists, and that the
analysis and synthesis step has been performed (using the quartus_map
executable).

Example 2–3. Write Settings Files
quartus_fit fir_filter --fmax=80MHz r
quartus_tan fir_filter r
quartus_tan fir_filter --fmax=100MHz --tao=timing_result-100.tao

--write_settings_files=off r

The first command, quartus_fit fir_filter --fmax=80MHz, runs the
quartus_fit executable and specifies a global fMAX requirement of
80 MHz.

The second command, quartus_tan fir_filter, runs Quartus II timing
analysis for the results of the previous fit.

Table 2–2. Precedence for Reading Assignments

Option Specified Precedence for Reading Assignments

--read_settings_files = on (default) 1. Command-line options
2. Quartus II Settings File
3. Project database (db directory, if it exists)
4. Quartus II software defaults

--read_settings_files = off 1. Command-line options
2. Project database (db directory, if it exists)
3. Quartus II software defaults

Table 2–3. Location for Writing Assignments

Option Specified Location for Writing Assignments

--write_settings_files = on (Default) Quartus II Settings File and compiler database

--write_settings_files = off Compiler database

2–10 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

The third command reruns Quartus II timing analysis with a global fMAX
requirement of 100 MHz and saves the result in a file called
timing_result-100.tao. By specifying the
--write_settings_files=off option, the command-line executable
does not update the Quartus II Settings File to reflect the changed fMAX
requirement. The compiler database files reflect the changed fMAX
requirement. If the --write_settings_files=off option is not
specified, the command-line executable updates the Quartus II Settings
File to reflect the 100-MHz global fMAX requirement.

Use the options --read_settings_files=off and
--write_settings_files=off (where appropriate) to optimize the
way that the Quartus II software reads and updates settings files.
Example 2–4 shows how to avoid unnecessary reading and writing.

Example 2–4. Avoiding Unnecessary Reading & Writing
quartus_map filtref --source=filtref

--part=ep1s10f780c5 r
quartus_fit filtref --fmax=100MHz

--read_settings_files=off r
quartus_tan filtref --read_settings_files=off

--write_settings_files=off r
quartus_asm filtref --read_settings_files=off

--write_settings_files=off r

The quartus_tan and quartus_asm executables do not read or write
settings files because they do not change any settings in the project.

Altera Corporation 2–11
November 2006

Design Flow

Design Flow Figure 2–2 shows a typical design flow.

Figure 2–2. Typical Design Flow

Compilation with quartus_sh --flow

Use the quartus_sh executable with the --flow option to perform a
complete compilation flow with a single command. (For information
about specialized flows, type quartus_sh --help=flow r at a
command prompt.) The --flow option supports the smart recompile
feature and efficiently sets command-line arguments for each executable
in the flow.

1 If you used the quartus_cmd executable to perform
command-line compilations in earlier versions of the Quartus II
software, you should use the quartus_sh --flow command
beginning with the Quartus II software version 3.0.

Design Entry
(TDF, BDF, VQM, Verilog HDL,

VHDL, EDIF Netlist files)
Quartus II Shell

Synthesis

Fitter Power Analyzer

Timing Analysis

Assembler

Programmer

SimulatorNetlist Writers

VO, VHO Files

2–12 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

The following example runs compilation, timing analysis, and programming
file generation with a single command:

quartus_sh --flow compile filtref r

Text-Based Report Files

Each command-line executable creates a text report file when it is run. These
files report success or failure, and contain information about the processing
performed by the executable.

Report file names contain the revision name and the short-form name of the
executable that generated the report file: <revision>.<executable>.rpt. For
example, using the quartus_fit executable to place and route a project with the
revision name design_top generates a report file named design_top.fit.rpt.
Similarly, using the quartus_tan executable to perform timing analysis on a
project with the revision name fir_filter generates a report file named
fir_filter.tan.rpt.

As an alternative to parsing text-based report files, you can use the Tcl package
called ::quartus::report. For more information about this package, refer to
“Command-Line Scripting Help” on page 2–6.

You can use Quartus II command-line executables in scripts that control a
design flow that uses other software in addition to the Quartus II software. For
example, if your design flow uses other synthesis or simulation software, and
you can run the other software at a system command prompt, you can include
it in a single script. The Quartus II command-line executables include options
for common global project settings and operations, but you must use a Tcl
script or the Quartus II GUI to set up a new project and apply individual
constraints, such as pin location assignments and timing requirements.
Command-line executables are very useful for working with existing projects,
for making common global settings, and for performing common operations.
For more flexibility in a flow, use a Tcl script, which makes it easier to pass data
between different stages of the design flow and have more control during the
flow.

f For more information about Tcl scripts, refer to the Tcl Scripting chapter in
volume 2 of the Quartus II Handbook, or the Quartus II Scripting Reference
Manual.

For example, your script could run other synthesis software, then
place-and-route the design in the Quartus II software, then generate output
netlists for other simulation software. Example 2–5 shows how to do this with
a UNIX shell script for a design that targets a Cyclone II device.

Altera Corporation 2–13
November 2006

Design Flow

Example 2–5. Script for End-to-End Flow
#!/bin/sh
Run synthesis first.
This example assumes you use Synplify software
synplify -batch synthesize.tcl

If your Quartus II project exists already, you can just
recompile the design.
You can also use the script described in a later example to
create a new project from scratch
quartus_sh --flow compile myproject

Use the quartus_tan executable to do best and worst case
timing analysis
quartus_tan myproject --tao=worst_case
quartus_tan myproject --fast_model --tao=best_case

Use the quartus_eda executable to write out a gate-level
Verilog simulation netlist for ModelSim
quartus_eda my_project --simulation --tool=modelsim
 --format=verilog

Perform the simulation with the ModelSim software
vlib cycloneii_ver
vlog -work cycloneii_ver c:/quartusii/eda/sim_lib/cycloneii_atoms.v
vlib work
vlog -work work my_project.vo
vsim -L cycloneii_ver -t 1ps work.my_project

Makefile Implementation

You can also use the Quartus II command-line executables in conjunction
with the make utility to automatically update files when other files they
depend on change. The file dependencies and commands used to update
files are specified in a text file called a makefile.

To facilitate easier development of efficient makefiles, the following
“smart action” scripting command is provided with the Quartus II
software:

quartus_sh --determine_smart_action r
Because assignments for a Quartus II project are stored in the Quartus II
Settings File (.qsf), including it in every rule results in unnecessary
processing steps. For example, updating a setting related to
programming file generation (which requires re-running only
quartus_asm) modifies the Quartus II Settings File, requiring a complete
recompilation if the Quartus II Settings File is included in every rule.

2–14 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

The smart action command determines the earliest command-line
executable in the compilation flow that must be run based on the current
Quartus II Settings File, and generates a change file corresponding to that
executable. For a given command-line executable named
quartus_<executable>, the change file is named with the format
<executable>.chg. For example, if quartus_map must be re-run, the smart
action command creates or updates a file named map.chg. Thus, rather
than including the Quartus II Settings File in each makefile rule, include
only the appropriate change file.

Example 2–6 uses change files and the smart action command. You can
copy and modify it for your own use. A copy of this example is included
in the help for the makefile option, which is available by typing:

quartus_sh --help=makefiles r

Altera Corporation 2–15
November 2006

Design Flow

Example 2–6. Sample Makefile
###
Project Configuration:

Specify the name of the design (project), the Quartus II Settings
File (.qsf), and the list of source files used.
###

PROJECT = chiptrip
SOURCE_FILES = auto_max.v chiptrip.v speed_ch.v tick_cnt.v time_cnt.v
ASSIGNMENT_FILES = chiptrip.qpf chiptrip.qsf

###
Main Targets
#
all: build everything
clean: remove output files and database
###

all: smart.log $(PROJECT).asm.rpt $(PROJECT).tan.rpt

clean:
rm -rf *.rpt *.chg smart.log *.htm *.eqn *.pin *.sof *.pof db

map: smart.log $(PROJECT).map.rpt
fit: smart.log $(PROJECT).fit.rpt
asm: smart.log $(PROJECT).asm.rpt
tan: smart.log $(PROJECT).tan.rpt
smart: smart.log

###
Executable Configuration
###

MAP_ARGS = --family=Stratix
FIT_ARGS = --part=EP1S20F484C6
ASM_ARGS =
TAN_ARGS =

###
Target implementations
###

STAMP = echo done >

$(PROJECT).map.rpt: map.chg $(SOURCE_FILES)
quartus_map $(MAP_ARGS) $(PROJECT)
$(STAMP) fit.chg

$(PROJECT).fit.rpt: fit.chg $(PROJECT).map.rpt
quartus_fit $(FIT_ARGS) $(PROJECT)

2–16 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

$(STAMP) asm.chg
$(STAMP) tan.chg

$(PROJECT).asm.rpt: asm.chg $(PROJECT).fit.rpt
quartus_asm $(ASM_ARGS) $(PROJECT)

$(PROJECT).tan.rpt: tan.chg $(PROJECT).fit.rpt
quartus_tan $(TAN_ARGS) $(PROJECT)

smart.log: $(ASSIGNMENT_FILES)
quartus_sh --determine_smart_action $(PROJECT) > smart.log

###
Project initialization
###

$(ASSIGNMENT_FILES):
quartus_sh --prepare $(PROJECT)

map.chg:
$(STAMP) map.chg

fit.chg:
$(STAMP) fit.chg

tan.chg:
$(STAMP) tan.chg

asm.chg:
$(STAMP) asm.chg

A Tcl script is provided with the Quartus II software to create or modify
files that can be specified as dependencies in the make rules, assisting you
in makefile development. Complete information about this Tcl script and
how to integrate it with makefiles is available by running the following
command:

quartus_sh --help=determine_smart_action r

Command-Line
Scripting
Examples

This section of the chapter presents various examples of command-line
executable use.

Create a Project & Apply Constraints

The command-line executables include options for common global
project settings and commands. To apply constraints such as pin locations
and timing assignments, run a Tcl script with the constraints in it. You can
write a Tcl constraint file from scratch, or generate one for an existing
project. From the Project menu, click Generate Tcl File for Project.

Altera Corporation 2–17
November 2006

Command-Line Scripting Examples

Example 2–7 creates a project with a Tcl script and applies project
constraints using the tutorial design files in the <Quartus II installation
directory>/qdesigns/tutorial/ directory:

Example 2–7. Tcl Script to Create Project & Apply Constraints
project_new filtref -overwrite
Assign family, device, and top-level file
set_global_assignment -name FAMILY Cyclone
set_global_assignment -name DEVICE EP1C12Q240C6
set_global_assignment -name BDF_FILE filtref.bdf
Assign pins
set_location_assignment -to clk Pin_28
set_location_assignment -to clkx2 Pin_29
set_location_assignment -to d[0] Pin_139
set_location_assignment -to d[1] Pin_140
Other pin assignments could follow
Create timing assignments
create_base_clock -fmax "100 MHz" -target clk clocka
create_relative_clock -base_clock clocka -divide 2 \

-offset "500 ps" -target clkx2 clockb
set_multicycle_assignment -from clk -to clkx2 2
Other timing assignments could follow
project_close

Save the script in a file called setup_proj.tcl and type the commands
illustrated in Example 2–8 at a command prompt to create the design,
apply constraints, compile the design, and perform fast-corner and slow-
corner timing analysis. Timing analysis results are saved in two files.

Example 2–8. Script to Create & Compile a Project
quartus_sh -t setup_proj.tcl r
quartus_map filtref r
quartus_fit filtref r
quartus_asm filtref r
quartus_tan filtref --fast_model --tao=min.tao

--export_settings=off r
quartus_tan filtref --tao=max.tao
--export_settings=off r

You can use the following two commands to create the design, apply
constraints, and compile the design:

quartus_sh -t setup_proj.tcl r
quartus_sh --flow compile filtref r

2–18 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

The quartus_sh --flow compile command performs a full compilation,
and is equivalent to clicking the Start Compilation button in the toolbar.

Check Design File Syntax

The UNIX shell script example shown in Example 2–9 assumes that the
Quartus II software fir_filter tutorial project exists in the current
directory. (You can find the fir_filter project in the <Quartus II
directory>/qdesigns/fir_filter directory unless the Quartus II software
tutorial files are not installed.)

The --analyze_file option performs a syntax check on each file. The
script checks the exit code of the quartus_map executable to determine
whether there is an error during the syntax check. Files with syntax errors
are added to the FILES_WITH_ERRORS variable, and when all files are
checked, the script prints a message indicating syntax errors. When
options are not specified, the executable uses the project database values.
If not specified in the project database, the executable uses the Quartus II
software default values. For example, the fir_filter project is set to target
the Cyclone device family, so it is not necessary to specify the --family
option.

Example 2–9. Shell Script to Check Design File Syntax
#!/bin/sh
FILES_WITH_ERRORS=""
Iterate over each file with a .bdf or .v extension
for filename in `ls *.bdf *.v`
do
 # Perform a syntax check on the specified file

quartus_map fir_filter --analyze_file=$filename
If the exit code is non-zero, the file has a syntax error
if [$? -ne 0]
then

FILES_WITH_ERRORS="$FILES_WITH_ERRORS $filename"
fi

done
if [-z "$FILES_WITH_ERRORS"]
then

echo "All files passed the syntax check"
exit 0

else
echo "There were syntax errors in the following file(s)"
echo $FILES_WITH_ERRORS
exit 1

fi

Altera Corporation 2–19
November 2006

Command-Line Scripting Examples

Create a Project & Synthesize a Netlist Using Netlist
Optimizations

This example creates a new Quartus II project with a file top.edf as the
top-level entity. The --enable_register_retiming=on and
--enable_wysiwyg_resynthesis=on options allow the technology
mapper to optimize the design using gate-level register retiming and
technology remapping.

f For more details about register retiming, WYSIWYG primitive
resynthesis, and other netlist optimization options, refer to the
Quartus II Help.

The --part option tells the technology mapper to target an
EP20K600EBC652-1X device. To create the project and synthesize it using
the netlist optimizations described above, type the command shown in
Example 2–10 at a command prompt.

Example 2–10. Creating a Project & Synthesizing a Netlist Using Netlist Optimizations
quartus_map top --source=top.edf --enable_register_retiming=on

--enable_wysiwyg_resynthesis=on --part=EP20K600EBC652-1X r

Archive & Restore Projects

You can archive or restore a Quartus II project with a single command.
This makes it easy to take snapshots of projects when you use batch files
or shell scripts for compilation and project management. Use the
--archive or --restore options for quartus_sh as appropriate. Type
the command shown in Example 2–11 at a system command prompt to
archive your project.

Example 2–11. Archiving a Project
quartus_sh --archive <project name> r

The archive file is automatically named <project name>.qar. If you want to
use a different name, rename the archive after it has been created. This
command overwrites any existing archive with the same name.

To restore a project archive, type the command shown in Example 2–12 at
a system command prompt:

Example 2–12. Restoring a Project Archive
quartus_sh --restore <archive name> r

2–20 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

The command restores the project archive to the current directory and
overwrites existing files.

Perform I/O Assignment Analysis

You can perform I/O assignment analysis with a single command. I/O
assignment analysis checks pin assignments to ensure they do not violate
board layout guidelines. I/O assignment analysis does not require a
complete place and route, so it is a quick way to ensure your pin
assignments are correct. The command shown in Example 2–13 performs
I/O assignment analysis for the specified project and revision.

Example 2–13. Performing I/O Assignment Analysis
quartus_fit --check_ios <project name> --rev=<revision name> r

Update Memory Contents without Recompiling

You can use two simple commands to update the contents of memory
blocks in your design without recompiling. Use the quartus_cdb
executable with the --update_mif option to update memory contents
from Memory Initialization Files or Hexadecimal (Intel-Format) Files.
Then re-run the assembler with the quartus_asm executable to regenerate
the SOF, POF, and any other programming files.

Example 2–14 shows these two commands:

Example 2–14. Commands to Update Memory Contents without Recompiling
quartus_cdb --update_mif <project name> [--rev=<revision name>]r
quartus_asm <project name> [--rev=<revision name>]r

Example 2–15 shows the commands for a DOS batch file for this example.
You can paste the following lines into a DOS batch file called
update_memory.bat.

Example 2–15. Batch file to Update Memory Contents without Recompiling
quartus_cdb --update_mif %1 --rev=%2
quartus_asm %1 --rev=%2

Type the following command at a system command prompt:

update_memory.bat <project name> <revision name> r

Altera Corporation 2–21
November 2006

Command-Line Scripting Examples

Fit a Design as Quickly as Possible

This example assumes that a project called top exists in the current
directory, and that the name of the top-level entity is top. The
--effort=fast option causes the Fitter to use the fast fit algorithm to
increase compilation speed, possibly at the expense of reduced fMAX
performance. The --one_fit_attempt=on option restricts the Fitter to
only one fitting attempt for the design.

To attempt to fit the project called top as quickly as possible, type
command shown in Example 2–16 at a command prompt.

Example 2–16. Fitting a Project Quickly
quartus_fit top --effort=fast --one_fit_attempt=on r

Fit a Design Using Multiple Seeds

This shell script example assumes that the Quartus II software tutorial
project called fir_filter exists in the current directory (defined in the file
fir_filter.qpf). If the tutorial files are installed on your system, this project
exists in the <Quartus II directory>/qdesigns<quartus_version_number>
/fir_filter directory. Because the top-level entity in the project does not
have the same name as the project, you must specify the revision name for
the top-level entity with the --rev option. The --seed option specifies
the seeds to use for fitting.

A seed is a parameter that affects the random initial placement of the
Quartus II Fitter. Varying the seed can result in better performance for
some designs.

After each fitting attempt, the script creates new directories for the results
of each fitting attempt and copies the complete project to the new
directory so that the results are available for viewing and debugging after
the script has completed.

2–22 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Example 2–17 is designed for use on UNIX systems using sh (the shell).

Example 2–17. Shell Script to Fit a Design Using Multiple Seeds
#!/bin/sh
ERROR_SEEDS=""
quartus_map fir_filter --rev=filtref
Iterate over a number of seeds
for seed in 1 2 3 4 5
do
echo "Starting fit with seed=$seed"
Perform a fitting attempt with the specified seed
 quartus_fit fir_filter --seed=$seed --rev=filtref
If the exit-code is non-zero, the fitting attempt was
successful, so copy the project to a new directory
 if [$? -eq 0]
 then

mkdir ../fir_filter-seed_$seed
mkdir ../fir_filter-seed_$seed/db
cp * ../fir_filter-seed_$seed
cp db/* ../fir_filter-seed_$seed/db

 else
ERROR_SEEDS="$ERROR_SEEDS $seed"

 fi
done
if [-z "$ERROR_SEEDS"]
then
 echo "Seed sweeping was successful"
 exit 0
else
 echo "There were errors with the following seed(s)"
 echo $ERROR_SEEDS
 exit 1
fi

1 Use the Design Space Explorer included with the Quartus II
software (DSE) script (by typing quartus_sh --dse r at a
command prompt) to improve design performance by
performing automated seed sweeping.

f For more information about the DSE, type
quartus_sh --help=dse r at the command prompt, or refer to the
Design Space Explorer chapter in volume 2 of the Quartus II Handbook, or
see the Quartus II Help.

Altera Corporation 2–23
November 2006

Command-Line Scripting Examples

The QFlow Script

A Tcl/Tk-based graphical interface called QFlow is included with the
command-line executables. You can use the QFlow interface to open
projects, launch some of the command-line executables, view report files,
and make some global project assignments. The QFlow interface can run
the following command-line executables:

■ quartus_map (Analysis & Synthesis)
■ quartus_fit (Fitter)
■ quartus_tan (Timing Analysis)
■ quartus_asm (Assembler)
■ quartus_eda (EDA Netlist Writer)

To view floorplans or perform other GUI-intensive tasks, launch the
Quartus II software.

Start QFlow by typing the following command at a command prompt:
quartus_sh -g r . Figure 2–3 shows the QFlow interface.

Figure 2–3. QFlow Interface

1 The QFlow script is located in the
<Quartus II directory>/common/tcl/apps/qflow/ directory.

2–24 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Document
Revision History

Table 2–4 shows the revision history for this document.

Table 2–4. Document Revision History

Date &
Document

Version
Changes Made Summary of Changes

November 2006
v6.1.0

Added revision history for this document.

May 2006
v6.0.0

Added the TimeQuest timing analyzer feature.

October 2005
v5.1.0

Updated for the Quartus II software version 5.1.0.

May 2005
v5.0.0

Updated for the Quartus II software version 5.0.0.

Dec. 2004 v2.1 ● Updates to tables and figures.
● New functionality in the Quartus II software version 4.2.

June 2004 v2.0 ● Updates to tables and figures.
● New functionality in the Quartus II software version 4.1.

Feb. 2004 v1.0 Initial release.

Altera Corporation 3–1
November 2006

3. Tcl Scripting

Introduction Developing and running tool command language (Tcl) scripts to control
the Altera® Quartus® II software allows you to perform a wide range of
functions, such as compiling a design or writing procedures to automate
common tasks.

You can use Tcl scripts to manage a Quartus II project, make assignments,
define design constraints, make device assignments, run compilations,
perform timing analysis, import LogicLock™ region assignments, use the
Quartus II Chip Editor, and access reports. You can automate your
Quartus II assignments using Tcl scripts so that you do not have to create
them individually. Tcl scripts also facilitate project or assignment
migration. For example, when using the same prototype or development
board for different projects, you can automate reassignment of pin
locations in each new project. The Quartus II software can also generate a
Tcl script based on all the current assignments in the project, which aids
in switching assignments to another project.

The Quartus II software Tcl commands follow the EDA industry Tcl
application programming interface (API) standards for using
command-line options to specify arguments. This simplifies learning and
using Tcl commands. If you encounter an error using a command
argument, the Tcl interpreter gives help information showing correct
usage.

This chapter includes sample Tcl scripts for automating the Quartus II
software. You can modify these example scripts for use with your own
designs. You can find more Tcl scripts in the Design Examples section of
the Support area of Altera's website.

QII52003-6.1.0

3–2 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

What is Tcl?

Tcl (pronounced tickle) is a popular scripting language that is similar to
many shell scripting and high-level programming languages. It provides
support for control structures, variables, network socket access, and APIs.
Tcl is the EDA industry-standard scripting language used by Synopsys,
Mentor Graphics®, Synplicity, and Altera software. It allows you to create
custom commands and works seamlessly across most development
platforms. For a list of recommended literature on Tcl, refer to
“References” on page 3–50.

You can create your own procedures by writing scripts containing basic
Tcl commands, user-defined procedures, and Quartus II API functions.
You can then automate your design flow, run the Quartus II software in
batch mode, or execute the individual Tcl commands interactively in the
Quartus II Tcl interactive shell.

If you're unfamiliar with Tcl scripting, or are a Tcl beginner, refer to the
“Tcl Scripting Basics” on page 3–42 for an introduction to Tcl scripting.

The Quartus II software, beginning with version 4.1, supports Tcl/Tk
version 8.4, supplied by the Tcl DeveloperXchange at tcl.activestate.com.

Altera Corporation 3–3
November 2006

Quartus II Tcl Packages

Quartus II Tcl
Packages

The Quartus II Tcl commands are grouped in packages by function.
Table 3–1 describes each Tcl package.

Table 3–1. Tcl Packages

Package Name Package Description

advanced_timing Traverse the timing netlist and get information about
timing nodes

backannotate Back annotate assignments

chip_editor Identify and modify resource usage and routing with
the Chip Editor

database_manager Manage version-compatible database files

device Get device and family information from the device
database

flow Compile a project, run command-line executables
and other common flows

insystem_memory_edit Read and edit memory contents in Altera devices

jtag Control the jtag chain

logic_analyzer_interface Query and modify the logic analyzer interface
output pin state

logiclock Create and manage LogicLock regions

misc Perform miscellaneous tasks

project Create and manage projects and revisions, make
any project assignments including timing
assignments

report Get information from report tables, create custom
reports

sdc Specifies constraints and exceptions to the
TimeQuest Analyzer

simulator Configure and perform simulations

sta Contains the set of Tcl functions for obtaining
advanced information from the TimeQuest Timing
Analyzer

stp Run the SignalTap® II logic analyzer

timing Annotate timing netlist with delay information,
compute and report timing paths

timing_assignment Contains the set of Tcl functions for making
project-wide timing assignments, including clock
assignments; all Tcl commands designed to
process Classic Timing Analyzer assignments have
been moved to this package

timing_report List timing paths

3–4 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

By default, only the minimum number of packages is loaded
automatically with each Quartus II executable. This keeps the memory
requirement for each executable as low as possible. Because the minimum
number of packages is automatically loaded, you must load other
packages before you can run commands in those packages.

Table 3–2 lists the Quartus II Tcl packages available with Quartus II
executables and indicates whether a package is loaded by default () or
is available to be loaded as necessary (). A clear circle () means that the
package is not available in that executable.

Table 3–2. Tcl Package Availability by Quartus II Executable (Part 1 of 2)

Packages
Quartus II Executable

Quartus_sh Quartus_tan Quartus_cdb Quartus_sim Quartus_stp Quartus_sta Tcl Console

advanced_timing

backannotate

chip_editor

device

flow

insystem_memory_edit

jtag

logic_analyzer_
interface

logiclock

misc

old_api

project

report

sdc

simulator

sta

stp

Altera Corporation 3–5
November 2006

Quartus II Tcl Packages

Because different packages are available in different executables, you
must run your scripts with executables that include the packages you use
in the scripts. For example, if you use commands in the timing package,
you must use the quartus_tan executable to run the script because the
quartus_tan executable is the only one with support for the timing
package.

Loading Packages

To load a Quartus II Tcl package, use the load_package command as
follows:

load_package [-version <version number>] <package name>

This command is similar to the package require Tcl command (described
in Table 3–3 on page 3–7), but you can easily alternate between different
versions of a Quartus II Tcl package with the load_package command.

f For additional information about these and other Quartus II command-
line executables, refer to the Command-Line Scripting chapter in volume 2
of the Quartus II Handbook.

timing

timing_assignment

timing_report

Notes to Table 3–2:
(1) A dark circle () indicates that the package is loaded automatically.

(2) A half-circle () means that the package is available but not loaded automatically.

(3) A white circle () means that the package is not available for that executable.

Table 3–2. Tcl Package Availability by Quartus II Executable (Part 2 of 2)

Packages
Quartus II Executable

Quartus_sh Quartus_tan Quartus_cdb Quartus_sim Quartus_stp Quartus_sta Tcl Console

3–6 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Quartus II Tcl
API Help

Access the Quartus II Tcl API Help reference by typing the following
command at a system command prompt:

quartus_sh --qhelp r

This command runs the Quartus II Command-Line and Tcl API help
browser, which documents all commands and options in the Quartus II
Tcl API. It includes detailed descriptions and examples for each
command.

In addition, the information in the Tcl API help is available in the
Quartus II Scripting Reference Manual, which is available in PDF on the
Quartus II Literature page on the Altera web site.

Quartus II Tcl help allows easy access to information about the Quartus II
Tcl commands. To access the help information, type help at a Tcl prompt,
as shown in Example 3–1.

Example 3–1. Help Output
tcl> help

Available Quartus II Tcl Packages:

Loaded Not Loaded
---------------------------- -----------------------
::quartus::misc ::quartus::device
::quartus::old_api ::quartus::backannotate
::quartus::project ::quartus::flow
::quartus::timing_assignment ::quartus::logiclock
::quartus::timing_report ::quartus::report

* Type "help -tcl"
 to get an overview on Quartus II Tcl usages.

Using the -tcl option with help displays an introduction to the
Quartus II Tcl API that focuses on how to get help for Tcl commands
(short help and long help) and Tcl packages.

f The Tcl API help is also available in Quartus II online help. Search for the
command or package name to find details about that command or
package.

Altera Corporation 3–7
November 2006

Quartus II Tcl Packages

Table 3–3 summarizes the help options available in the Tcl environment.

Table 3–3. Help Options Available in the Quartus II Tcl Environment (Part 1 of 2)

Help Command Description

help To view a list of available Quartus II Tcl packages, loaded and not loaded.

help -tcl To view a list of commands used to load Tcl packages and access
command-line help.

help -pkg <package_name>
[-version <version number>]

To view help for a specified Quartus II package that includes the list of
available Tcl commands. For convenience, you can omit the
::quartus:: package prefix, and type
help -pkg <package name> r.
If you do not specify the -version option, help for the currently loaded
package is displayed by default. If the package for which you want help is
not loaded, help for the latest version of the package is displayed by
default.

Examples:
help -pkg ::quartus::p r
help -pkg ::quartus::project r
help -pkg project rhelp -pkg project -version 1.0 r

<command_name> -h
or
<command_name> -help

To view short help for a Quartus II Tcl command for which the package is
loaded.

Examples:
project_open -h r
project_open -help r

package require
::quartus::<package name>
[<version>]

To load a Quartus II Tcl package with the specified version. If <version> is
not specified, the latest version of the package is loaded by default.

Example:
package require ::quartus::project 1.0 r
This command is similar to the load_package command.
The advantage of using load_package is that you can alternate freely
between different versions of the same package.
Type <package name> [-version <version number>]r to load a
Quartus II Tcl package with the specified version. If the -version option
is not specified, the latest version of the package is loaded by default.

Example:
load_package ::quartus::project -version 1.0 r

3–8 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

help -cmd <command name>
[-version <version number>]
or
<command name> -long_help

To view long help for a Quartus II Tcl command. Only
<command name> -long_help requires that the associated Tcl
package is loaded.
If you do not specify the -version option, help for the currently loaded
package is displayed by default.
If the package for which you want help is not loaded, help for the latest
version of the package is displayed by default.

Examples:
project_open -long_help r
help -cmd project_open r
help -cmd project_open -version 1.0 r

help -examples To view examples of Quartus II Tcl usage.

help -quartus To view help on the predefined global Tcl array that can be accessed to
view information about the Quartus II executable that is currently running.

quartus_sh --qhelp To launch the Tk viewer for Quartus II command-line help and display help
for the command-line executables and Tcl API packages.

For more information about this utility, refer to the Command-Line
Scripting chapter in volume 2 of the Quartus II Handbook.

Table 3–3. Help Options Available in the Quartus II Tcl Environment (Part 2 of 2)

Help Command Description

Altera Corporation 3–9
November 2006

Executables Supporting Tcl

Executables
Supporting Tcl

Some of the Quartus II command-line executables support Tcl scripting
(refer to Table 3–4). Each executable supports different sets of Tcl
packages. Refer to Table 3–4 to determine the appropriate executable to
run your script.

The quartus_tan and quartus_cdb executables support supersets of the
packages supported by the quartus_sh executable. Use the quartus_sh
executable if you run Tcl scripts with only project management and
assignment commands, or if you need a Quartus II command-line
executable with a small memory footprint.

f For more information about these command-line executables, refer to the
Command-Line Scripting chapter in volume 2 of the Quartus II Handbook.

Table 3–4. Command-line Executables Supporting Tcl Scripting

Executable Name Executable Description

quartus_sh The Quartus II Shell is a simple Tcl scripting shell, useful
for making assignments, general reporting, and compiling.

quartus_tan Use the Quartus II Classic Timing Analyzer to perform
simple timing reporting and advanced timing analysis.

quartus_cdb The Quartus II Compiler Database supports back
annotation, LogicLock region operations, and Chip Editor
functions.

quartus_sim The Quartus II Simulator supports the automation of
design simulation.

quartus_sta The TimeQuest Timing Analyzer supports SDC
terminology for constraint entry and reporting.

quartus_stp The Quartus II SignalTap II executable supports in-system
debugging tools.

3–10 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Command-Line Options: -t, -s & --tcl_eval

Table 3–5 lists three command-line options you can use with executables
that support Tcl.

Run a Tcl Script

Running an executable with the -t option runs the specified Tcl script.
You can also specify arguments to the script. Access the arguments
through the argv variable, or use a package such as cmdline, which
supports arguments of the following form:

-<argument name> <argument value>

The cmdline package is included in the
<Quartus II directory>/common/tcl/packages directory.

For example, to run a script called myscript.tcl with one argument,
Stratix, type the following command at a system command prompt:

quartus_sh -t myscript.tcl Stratix r
1 Beginning with version 4.1, the Quartus II software supports the

argv variable. In previous software versions, script arguments
are accessed in the quartus(args) global variable.

Refer to “Accessing Command-Line Arguments” on page 3–36 for more
information.

Interactive Shell Mode

Running an executable with the -s option starts an interactive Tcl shell
that displays a tcl> prompt. For example, type quartus_tan -s r at
a system command prompt to open the Classic timing analyzer

Table 3–5. Command-Line Options Supporting Tcl Scripting

Command-Line Option Description

-t <script file> [<script args>] Run the specified Tcl script with optional arguments.

-s Open the executable in the interactive Tcl shell mode.

--tcl_eval <tcl command> Evaluate the remaining command-line arguments as Tcl commands. For
example, the following command displays help for the project package:
quartus_sh --tcl_eval help -pkg project

Altera Corporation 3–11
November 2006

Executables Supporting Tcl

executable in interactive shell mode. Commands you type in the Tcl shell
are interpreted when you press Enter. You can run a Tcl script in the
interactive shell with the following command:

source <script name> r
If a command is not recognized by the shell, it is assumed to be an
external command and executed with the exec command.

Evaluate as Tcl

Running an executable with the --tcl_eval option causes the
executable to immediately evaluate the remaining command-line
arguments as Tcl commands. This can be useful if you want to run simple
Tcl commands from other scripting languages.

For example, the following command runs the Tcl command that prints
out the commands available in the project package.

quartus_sh --tcl_eval help -pkg project r

Using the Quartus II Tcl Console Window

You can run Tcl commands directly in the Quartus II Tcl Console window.
On the View menu, click Utility Windows. By default, the Tcl Console
window is docked in the bottom-right corner of the Quartus II GUI.
Everything typed in the Tcl Console is interpreted by the Quartus II Tcl
shell.

1 The Quartus II Tcl Console window supports the Tcl API used
in the Quartus II software version 3.0 and earlier for backward
compatibility with older designs and EDA tools.

Tcl messages appear in the System tab (Messages window). Errors and
messages written to stdout and stderr also are shown in the
Quartus II Tcl Console window.

3–12 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Note that you can do limited timing analysis in the Tcl console in the
Quartus II GUI. With the timing_report package, you can use the
list_path command to get details on paths listed in the timing report.
However, if you want to get information about timing paths that are not
listed in the timing report, you must use the quartus_tan executable in
shell mode or run a script that reports on the paths in which you are
interested.

If your design uses the TimeQuest timing Analyzer, you should perform
scripted timing analysis in the TimeQuest Tcl console.

As Table 3–2 shows, the Tcl console in the Quartus II GUI does not
include support for every package, so you cannot run scripts that use
commands in packages that are not supported.

End-to-End
Design Flows

You can use Tcl scripts to control all aspects of the design flow, including
controlling other software if it includes a scripting interface.

Typically, EDA tools include their own script interpreters that extend core
language functionality with tool-specific commands. For example, the
Quartus II Tcl interpreter supports all core Tcl commands, and adds
numerous commands specific to the Quartus II software. You can include
commands in one Tcl script to run another script, which allows you to
combine or chain together scripts to control different tools. Because
scripts for different tools must be executed with different Tcl interpreters,
it is difficult to pass information between the scripts unless one script
writes information into a file and another script reads it.

Within the Quartus II software, you can perform many different
operations in a design flow (such as synthesis, fitting, and timing
analysis) from a single script, making it easy to maintain global state
information and pass data between the operations. However, there are
some limitations on the operations you can perform in a single script due
to the various packages supported by each executable. For example, you
cannot write a single script that performs simulation with commands in
the simulator package while using commands in the advanced_timing
package; those two packages are not available in the same executable. In
a case where you wanted to include Tcl simulation and advanced timing
analysis commands, you must write two scripts.

There are no limitations on running flows from any executable. Flows
include operations found in the Start section of the Processing menu in
the Quartus II GUI, and are also documented with the execute_flow Tcl
command. If you can make settings in the Quartus II software and run a
flow to get your desired result, you can make the same settings and run
the same flow in any command-line executable.

Altera Corporation 3–13
November 2006

Creating Projects & Making Assignments

To revisit the example with simulation and timing analysis, you could
write one script that includes settings that configure a simulation, with
settings that configure timing analysis. Then, run the simulation and
timing analysis flows with the execute_flow command.

Configuring a simulation includes specifying settings such as name and
location of the stimulus file, the duration of the simulation, whether to
perform glitch detection or not, and more. Configuring timing analysis
includes specifying settings such as the required clock frequency, the
number of paths to report, and which timing model to use. You can make
the settings, then run the flows with the execute_flow command, in any
Quartus II command-line executable.

Creating
Projects &
Making
Assignments

One benefit of the Tcl scripting API is that it is easy to create a script that
makes all the assignments for an existing project. You can use the script at
any time to restore your project settings to a known state. From the Project
menu, click Generate Tcl File for Project to automatically generate a Tcl
file with all of your assignments. You can source this file to recreate your
project, and you can edit the file to add other commands, such as
compiling the design. The file is a good starting point to learn about
project management commands and assignment commands.

1 Refer to “Interactive Shell Mode” on page 3–10 for information
about sourcing a script. Scripting information for all Quartus II
project settings and assignments is located in the QSF Reference
Manual.

Example 3–2 shows how to create a project, make assignments, and
compile the project. It uses the fir_filter tutorial design files.

3–14 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Example 3–2. Create & Compile a Project
load_package flow

Create the project and overwrite any settings
files that exist
project_new fir_filter -revision filtref -overwrite
Set the device, the name of the top-level BDF,
and the name of the top level entity
set_global_assignment -name FAMILY Cyclone
set_global_assignment -name DEVICE EP1C6F256C6
set_global_assignment -name BDF_FILE filtref.bdf
set_global_assignment -name TOP_LEVEL_ENTITY filtref
Add other pin assignments here
set_location_assignment -to clk Pin_G1
Create a base clock and a derived clock
create_base_clock -fmax "100 MHz" -target clk clocka
create_relative_clock -base_clock clocka -divide 2 \

-offset "500 ps" -target clkx2 clockb
Create a multicycle assignment of 2 between
the two clock domains in the design.
set_multicycle_assignment -from clk -to clkx2 2
execute_flow -compile
project_close

1 The assignments created or modified while a project is open are
not committed to the Quartus II settings files unless you
explicitly call export_assignments or project_close (unless
-dont_export_assignments is specified). In some cases,
such as when running execute_flow, the Quartus II software
automatically commits the changes.

HardCopy Device Design

f For information about using a scripted design flow for HardCopy II
designs, refer to the Script-Based Design Flow for HardCopy Devices chapter
of the HardCopy Handbook. It contains sample scripts and
recommendations to make your HardCopy II design flow easy.

A separate chapter in the HardCopy Handbook called Timing Constraints for
HardCopy II also contains information about script-based design for
HardCopy II devices, with an emphasis on timing constraints.

EDA Tool Assignments

You can target EDA tools for a project in the Quartus II software in Tcl
with the set_global_assignment Tcl command. To use the default tool
settings for each EDA tool, you need only specify the EDA tool to be used.
The EDA interfaces available for the Quartus II software cover design

Altera Corporation 3–15
November 2006

Creating Projects & Making Assignments

entry, simulation, timing analysis, and board design tools. More
advanced EDA tools such as those for formal verification and resynthesis
are supported by their own global assignment.

By default, the EDA interface options are set to <none>. Table 3–6 lists
the EDA interface options available in the Quartus II software. Enclose
interface assignment options that contain spaces in quotation marks.

Table 3–6. EDA Interface Options in the Quartus II Software (Part 1 of 2)

Option Acceptable Values

Design Entry
(EDA_DESIGN_ENTRY_SYNTHESIS_TOOL)

● Design Architect
● Design Compiler
● FPGA Compiler
● FPGA Compiler II
● FPGA Compiler II Altera Edition
● FPGA Express
● LeonardoSpectrum™
● LeonardoSpectrum-Altera (Level 1)
● Synplify
● Synplify Pro
● ViewDraw
● Precision Synthesis
● Custom

Simulation
(EDA_SIMULATION_TOOL)

● ModelSim (VHDL output from the Quartus II software)
● ModelSim (Verilog HDL output from the Quartus II

software)
● ModelSim-Altera (VHDL output from the Quartus II

software)
● ModelSim-Altera (Verilog HDL output from the Quartus II

software)
● SpeedWave
● VCS
● Verilog-XL
● VSS
● NC-Verilog (Verilog HDL output from the Quartus II

software)
● NC-VHDL (VHDL output from the Quartus II software)
● Scirocco (VHDL output from the Quartus II software)
● Custom Verilog HDL
● Custom VHDL

Timing Analysis
(EDA_TIMING_ANALYSIS_TOOL)

● PrimeTime (VHDL output from the Quartus II software)
● PrimeTime (Verilog HDL output from the Quartus II

software)
● Stamp (board model)
● Custom Verilog HDL
● Custom VHDL

3–16 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

For example, to generate an NC-Sim Verilog simulation output file,
EDA_SIMULATION_TOOL should be set to target NC-Sim Verilog as the
desired output, as shown in Example 3–3.

Example 3–3.
set_global_assignment -name eda_simulation_tool \
"NcSim (Verilog HDL output from Quartus II)"

f For information about using third-party simulation tools, refer to
volume 3 of the Quartus II Handbook.

Board level tools
(EDA_BOARD_DESIGN_TOOL)

● Signal Integrity (IBIS)
● Symbol Generation (ViewDraw)

Formal Verification
(EDA_FORMAL_VERIFICATION_TOOL)

● Conformal LEC

Resynthesis
(EDA_RESYNTHESIS_TOOL)

● PALACE
● Amplify

Table 3–6. EDA Interface Options in the Quartus II Software (Part 2 of 2)

Option Acceptable Values

Altera Corporation 3–17
November 2006

Creating Projects & Making Assignments

Example 3–4 shows compilation of the fir_filter design files,
generating a VHDL Output (.vho) file output for NC-Sim Verilog
simulation.

Example 3–4. Simple Design with .vho Output
This script works with the quartus_sh executable
Set the project name to filtref
set project_name filtref

Open the Project. If it does not already exist, create it
if [catch {project_open $project_name}] {project_new \ $project_name}

Set Family
set_global_assignment -name family APEX 20KE

Set Device
set_global_assignment -name device ep20k100eqc208-1

Optimize for speed
set_global_assignment -name optimization_technique speed

Turn-on Fastfit fitter option to reduce compile times
set_global_assignment -name fast_fit_compilation on

Generate a NC-Sim Verilog simulation Netlist
set_global_assignment -name eda_simulation_tool "NcSim\
(Verilog HDL output from Quartus II)"

Create an FMAX=50MHz assignment called clk1 to pin clk
create_base_clock -fmax 50MHz -target clk clk1

Create a pin assignment on pin clk
set_location -to clk Pin_134

Compilation option 1
Always write the assignments to the constraint files before
doing a system call. Else, stand-alone files will not pick up
the assignments
#export_assignments
#qexec quartus_map <project_name>
#qexec quartus_fit <project_name>
#qexec quartus_asm <project_name>
#qexec quartus_tan <project_name>
#qexec quartus_eda <project_name>

Compilation option 2 (better)
Using the ::quartus::flow package, and execute_flow command will
export_assignments automatically and be equivalent to the steps
outlined in compilation option 1
load_package flow
execute_flow -compile

3–18 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Close Project
project_close

Custom options are available to target other EDA tools. For custom EDA
configurations, you can change the individual EDA interface options by
making additional assignments.

f For a complete list of each EDA setting line available, refer to the
Quartus II Help.

Using LogicLock Regions

You can use Tcl commands to work with LogicLock™ regions. The
following examples show how to export and import LogicLock regions
for use in other designs. The examples use the files in the LogicLock
tutorial design.

f For additional information about the LogicLock design methodology, see
the LogicLock Design Methodology chapter in volume 2 of the
Quartus II Handbook.

To compile a design and export LogicLock regions, follow these steps:

1. Create a project and add assignments.

2. Assign virtual pins.

3. Create a LogicLock region.

4. Assign a design entity to the region.

5. Compile the project.

6. Back-annotate the region.

7. Export the region.

Altera Corporation 3–19
November 2006

Creating Projects & Making Assignments

Example 3–5 shows a script that creates a project called lockmult, and
makes all the required assignments to compile the project. Next, the script
compiles the project, back-annotates the design, and exports the
LogicLock region. The script uses a procedure called
assign_virtual_pins, which is described after the example. Use the
quartus_cdb executable to run this script.

Example 3–5. LogicLock Export Script
load_package flow
load_package logiclock
load_package backannotate

project_new lockmult -overwrite
set_global_assignment -name BDF_FILE pipemult.bdf
set_global_assignment -name FAMILY Cyclone
set_global_assignment -name DEVICE EP1C6F256C6
set_global_assignment -name TOP_LEVEL_ENTITY pipemult

These two assignments cause the Quartus II software
to generate a VQM file for the logic in the LogicLock
region. The VQM file is imported into the top-level
design.
set_global_assignment -name \

LOGICLOCK_INCREMENTAL_COMPILE_FILE pipemult.vqm
set_global_assignment -name \

LOGICLOCK_INCREMENTAL_COMPILE_ASSIGNMENT ON

create_base_clock -fmax 200MHz -target clk clk_200
assign_virtual_pins { clk }
#Prepare LogicLock data structures before
#LogicLock-related commands.
initialize_logiclock

Create a region named lockmult and assign pipemult
to it.
The region is auto-sized and floating.
set_logiclock -region lockmult -auto_size true \
-floating true
set_logiclock_contents -region lockmult -to pipemult
execute_flow -compile

Back annotate the LogicLock Region and export a QSF
logiclock_back_annotate -region lockmult -lock
logiclock_export -file_name pipemult.qsf

uninitialize_logiclock
project_close

3–20 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

The assign_virtual_pins command is a procedure that makes virtual pin
assignments to all bottom-level design pins, except for signals specified
as arguments to the procedure. The procedure is defined in Example 3–6.

Example 3–6. assign_virtual_pins Procedure
proc assign_virtual_pins { skips } {

Analysis and elaboration must be run first to get the pin names
execute_flow -analysis_and_elaboration

Get all pin names as a collection.

set name_ids [get_names -filter * -node_type pin]
foreach_in_collection name_id $name_ids {

Get the hierarchical path name of the pin.
set hname [get_name_info -info full_path $name_id]
#Skip the virtual pin assignment if the
#pin is in the list of signals to be skipped.
if {[lsearch -exact $skips $hname] == -1} {

post_message "Setting VIRTUAL_PIN on $hname"
set_instance_assignment -to $hname -name VIRTUAL_PIN ON

} else {
post_message "Skipping VIRTUAL_PIN for $hname"

}
}

}

When the script runs, it generates a netlist file named pipemult.vqm, and
a Quartus II Settings File named pipemult.qsf, which contains the
back-annotated assignments. You can then import the LogicLock region
in another design. This example uses the top-level design in the topmult
directory.

To import it four times in the top-level LogicLock tutorial design, follow
these steps:

1. Create the top-level project.

2. Add assignments.

3. Elaborate the design.

4. Import the LogicLock constraints.

5. Compile the project.

Altera Corporation 3–21
November 2006

Compiling Designs

Example 3–7 shows a script that demonstrates the previous steps.

Example 3–7. LogicLock Import Script
load_package flow
load_package logiclock

project_new topmult -overwrite
set_global_assignment -name BDF_FILE topmult.bdf
set_global_assignment -name VQM_FILE pipemult.vqm
set_global_assignment -name FAMILY Cyclone
set_global_assignment -name DEVICE EP1C6F256C6
create_base_clock -fmax 200MHz -target clk clk_200

The LogicLock region will be used four times
in the top-level design. These assignments
specify that the back-annotated assignments in
the QSF will be applied to the four entities
in the top-level design.
set_instance_assignment -name LL_IMPORT_FILE pipemult.qsf \

-to pipemult:inst
set_instance_assignment -name LL_IMPORT_FILE pipemult.qsf \

-to pipemult:inst1
set_instance_assignment -name LL_IMPORT_FILE pipemult.qsf \

-to pipemult:inst2
set_instance_assignment -name LL_IMPORT_FILE pipemult.qsf \

-to pipemult:inst3

execute_flow -analysis_and_elaboration
initialize_logiclock
logiclock_import
uninitialize_logiclock
execute_flow -compile
project_close

f For additional information about the LogicLock design methodology,
refer to the LogicLock Design Methodology chapter in volume 2 of the
Quartus II Handbook.

Compiling
Designs

You can run the Quartus II command-line executables from Tcl scripts.
Use the included flow package to run various Quartus II compilation
flows, or run each executable directly.

The flow Package

The flow package includes two commands for running Quartus II
command-line executables, either individually or together in standard
compilation sequence. The execute_module command allows you to run

3–22 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

an individual Quartus II command-line executable. The execute_flow
command allows you to run some or all of the modules in commonly-
used combinations.

Altera recommends using the flow package instead of using system calls
to run compiler executables.

Another way to run a Quartus II command-line executable from the Tcl
environment is by using the qexec Tcl command, a Quartus II
implementation of the Tcl exec command. For example, to run the
Quartus II technology mapper on a given project, type:

qexec "quartus_map <project_name>" r

When you use the qexec command to compile a design, assignments
made in the Tcl script (or from the Tcl shell) are not exported to the project
database and settings file before compilation. Use the
export_assignments command or compile the project with commands in
the flow package to ensure assignments are exported to the project
database and settings file.

1 You should use the qexec command to make system calls.

You can also run executables directly in a Tcl shell, using the same syntax
as at the system command prompt. For example, to run the Quartus II
technology mapper on a given project, type the following at the Tcl shell
prompt:

quartus_map <project_name> r

Reporting Once compilation finishes, it is sometimes necessary to extract
information from the report to evaluate the results. For example, you may
need to know how many device resources the design uses, or whether it
meets your performance requirements. The Quartus II Tcl API provides
easy access to report data so you don't have to write scripts to parse the
text report files.

Use the commands that access report data one row at a time, or one cell
at a time. If you know the exact cell or cells you want to access, use the
get_report_panel_data command and specify the row and column names
(or x and y coordinates) and the name of the appropriate report panel. You
may often search for data in a report panel. To do this, use a loop that
reads the report one row at a time with the get_report_panel_row
command.

Altera Corporation 3–23
November 2006

Reporting

Column headings in report panels are in row 0. If you use a loop that
reads the report one row at a time, you can start with row 1 to skip the row
with column headings. The get_number_of_rows command returns the
number of rows in the report panel, including the column heading row.
Because the number of rows includes the column heading row, your loop
should continue as long as the loop index is less than the number of rows,
as illustrated in the following example.

Report panels are hierarchically arranged, and each level of hierarchy is
denoted by the string “||“ in the panel name. For example, the name of
the Fitter Settings report panel is Fitter||Fitter Settings because it is in
the Fitter folder. Panels at the highest hierarchy level do not use the “||”
string. For example, the Flow Settings report panel is named Flow
Settings.

Example 3–8 shows code that prints a list of all report panel names in
your project:.

Example 3–8. Print All Report Panel Names
set panel_names [get_report_panel_names]
foreach panel_name $panel_names {
 post_message "$panel_name"
}

The following example prints the number of failing paths in each clock
domain in your design. It uses a loop to access each row of the Timing
Analyzer Summary report panel. Clock domains are listed in the column
named Type with the format Clock Setup:'<clock name>'. Other
summary information is listed in the Type column as well. If the Type
column matches the pattern “Clock Setup*”, the script prints the
number of failing paths listed in the column named Failed Paths.

3–24 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Example 3–9. Print Number of Failing Paths per Clock
load_package report
project_open my-project
load_report
set report_panel_name "Timing Analyzer||Timing Analyzer Summary"
set num_rows [get_number_of_rows -name $report_panel_name]

Get the column indices for the Type and Failed Paths columns
set type_column [get_report_panel_column_index -name \

$report_panel_name "Type"]
set failed_paths_column [get_report_panel_column_index -name \

$report_panel_name "Failed Paths"]

Go through each line in the report panel
for {set i 1} {$i < $num_rows} {incr i} {

Get the row of data, then the type of summary
information in the row, and the number of failed paths
set report_row [get_report_panel_row -name \
$report_panel_name -row $i]
set row_type [lindex $report_row $type_column]
set failed_paths [lindex $report_row $failed_paths_column]
if { [string match "Clock Setup*" $row_type] } {

puts "$row_type has $failed_paths failing paths"
}

}
unload_report

Creating CSV Files for Excel

The Microsoft Excel software is sometimes used to view or manipulate
timing analysis results. You can create a CSV file to import into Excel with
data from any Quartus II report. This example shows a simple way to
create a CSV file with data from a timing analysis panel in the report. You
could modify the script to use command-line arguments to pass in the
name of the project, report panel, and output file to use.

Altera Corporation 3–25
November 2006

Timing Analysis

Example 3–10. Create CSV Files from Reports
load_package report
project_open my-project

load_report

This is the name of the report panel to save as a CSV file
set panel_name "Timing Analyzer||Clock Setup: 'clk'"
set csv_file "output.csv"

set fh [open $csv_file w]
set num_rows [get_number_of_rows -name $panel_name]

Go through all the rows in the report file, including the
row with headings, and write out the comma-separated data
for { set i 0 } { $i < $num_rows } { incr i } {

set row_data [get_report_panel_row -name $panel_name \
-row $i]

puts $fh [join $row_data ","]
}

close $fh
unload_report

Short Option Names

Beginning with version 6.0 of the Quartus II software, you can use short
versions of command options, as long as they distinguish between the
command's options. For example, the project_open command supports
two options: -current_revision and -revision. You can use any of
the following shortened versions of the -revision option: -r, -re,
-rev, -revi, -revis, and -revisio. You can use an option as short as
-r because no other option starts with the same letters as revision.
However, the report_timing command includes the options -recovery
and -removal. You cannot use -r or -re to shorten either of those
options, because they do not uniquely distinguish between either option.
You could use -rec or -rem.

Timing Analysis The Quartus II software includes comprehensive Tcl APIs for both the
Classic and TimeQuest analyzers. This section includes simple and
advanced script examples for the Classic analyzer and introductory
scripting information about the TimeQuest Tcl API.

3–26 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Classic Timing Analysis

The following example script uses the quartus_tan executable to perform
a timing analysis on the fir_filter tutorial design.

The fir_filter design is a two-clock design that requires a base clock and
a relative clock relationship for timing analysis. This script first does an
analysis of the two-clock relationship and checks for tSU slack between
clk and clkx2. The first pass of timing analysis discovers a negative
slack for one of the clocks. The second part of the script adds a multicycle
assignment from clk to clkx2 and re-analyzes the design as a
multi-clock, multicycle design.

The script does not recompile the design with the new timing
assignments, and timing-driven compilation is not used in the synthesis
and placement of this design. New timing assignments are added only for
the timing analyzer to analyze the design with the create_timing_netlist
and report_timing Tcl commands.

1 You must compile the project before running the script example
shown in Example 3–11.

Example 3–11. Classic Timing Analysis
This Tcl file is to be used with quartus_tan.exe
This Tcl file will do the Quartus II tutorial fir_filter design
timing analysis portion by making a global timing assignment and
creating multi-clock assignments and run timing analysis
for a multi-clock, multi-cycle design
set the project_name to fir_filter
set the revision_name to filtref
set project_name fir_filter
set revision_name filtref

open the project
project_name is the project name
project_open -revision $revision_name $project_name;

Doing TAN tutorial steps this section re-runs the timing
analysis module with multi-clock and multi-cycle settings
#------ Make timing assignments ------#

#Specifying a global FMAX requirement (tan tutorial)
set_global_assignment -name FMAX_REQUIREMENT 45.0MHz
set_global_assignment -name CUT_OFF_IO_PIN_FEEDBACK ON

create a base reference clock "clocka" and specifies the
following:
BASED_ON_CLOCK_SETTINGS = clocka;
INCLUDE_EXTERNAL_PIN_DELAYS_IN_FMAX_CALCULATIONS = OFF;
FMAX_REQUIREMENT = 50MHZ;
DUTY_CYCLE = 50;
Assigns the reference clocka to the pin "clk"
create_base_clock -fmax 50MHZ -duty_cycle 50 clocka -target clk

Altera Corporation 3–27
November 2006

Timing Analysis

creates a relative clock "clockb" based on reference clock
"clocka" with the following settings:
BASED_ON_CLOCK_SETTINGS = clocka;
MULTIPLY_BASE_CLOCK_PERIOD_BY = 1;
DIVIDE_BASE_CLOCK_PERIOD_BY = 2;clock period is half the base clk
DUTY_CYCLE = 50;
OFFSET_FROM_BASE_CLOCK = 500ps;The offset is .5 ns (or 500 ps)
INVERT_BASE_CLOCK = OFF;
Assigns the reference clock to pin "clkx2"
create_relative_clock -base_clock clocka -duty_cycle 50\
-divide 2 -offset 500ps -target clkx2 clockb

create new timing netlist based on new timing settings
create_timing_netlist

does an analysis for clkx2
Limits path listing to 1 path
Does clock setup analysis for clkx2
report_timing -npaths 1 -clock_setup -file setup_multiclock.tao

The output file will show a negative slack for clkx2 when only
specifying a multi-clock design. The negative slack was created
by the 500 ps offset from the base clock

removes old timing netlist to allow for creation of a new timing
netlist for analysis by report_timing
delete_timing_netlist

adding a multi-cycle setting corrects the negative slack by adding a
multicycle assignment to clkx2 to allow for more set-up time
set_multicycle_assignment 2 -from clk -to clkx2

create a new timing netlist based on additional timing
assignments create_timing_netlist

outputs the result to a file for clkx2 only
report_timing -npaths 1 -clock_setup -clock_filter clkx2 \
 -file clkx2_setup_multicycle.tao
The new output file will show a positive slack for the clkx2
project_close

Advanced Classic Timing Analysis

There may be times when the commands available for timing analysis
reporting do not provide access to specific data you need. The
advanced_timing package provides commands to access the data
structures representing the timing netlist for your design. These
commands provide low-level details about timing delays, node fan-in
and fan-out, and timing data. Writing procedures to traverse the timing
netlist and extract information gives you the most control to get exactly
the data you need.

3–28 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

The timing netlist is represented with a graph, which is a collection of
nodes and edges. Nodes represent elements in your design such as
registers, combinational nodes, pins, and clocks. Edges connect the nodes
and represent the connections between the logic in your design. Edges
and nodes have unique positive integer IDs that identify them in the
timing netlist. All the commands for getting information about the timing
netlist use node and edge IDs instead of text-based names.

As an example of how to use the advanced_timing package,
Example 3–12 shows one way to show the register-to-pin delays from all
registers that drive the pins of an output bus. Specify the name of an
output bus (for example, address), and the script prints out the names
of all registers driving the pins of the bus and the delays from registers to
pins.

Example 3–12. Report Register to Pin Delays
load_package advanced_timing
package require cmdline

This procedure returns a list of IDs for pins with names
that match the bus name passed in
proc find { bus_name } {

set to_return [list]

foreach_in_collection node_id [get_timing_nodes -type pin] {
set node_name [get_timing_node_info -info name $node_id]
if { [string match $bus_name* $node_name] } {

lappend to_return $node_id
}

}
return $to_return

}

Required arguments for the script are the name of the project and
revision, as well as the name of the bus to analyze
set options {\

{ "project.arg" "" "Project name" } \
{ "revision.arg" "" "Revision name" } \
{ "bus_name.arg" "" "Name of the bus to get timing data for" } \

}
array set opts [::cmdline::getoptions quartus(args) $options]

project_open $opts(project) -revision $opts(revision)

The timing netlist must be created before accessing it.
create_timing_netlist

This creates a data structure with additional timing data
create_p2p_delays

Walk through each pin in the specified bus
foreach pin_id [find $opts(bus_name)] {

set pin_name [get_timing_node_info -info name $pin_id]

Altera Corporation 3–29
November 2006

Timing Analysis

puts "$pin_name source registers and delays"
The get_delays_from_keepers command returns a list of all the
non-combinational nodes in the design that fan in to the
specified timing node, with the associated delays.
foreach data [get_delays_from_keepers $pin_id] {

set source_node [lindex $data 0]
set max_delay [lindex $data 1]
set source_node_name \

[get_timing_node_info -info name $source_node]
puts " $source_node_name $max_delay"

}
}
project_close

Type the command shown in Example 3–13 at a system command prompt
to run this script.

Example 3–13.
quartus_tan -t script.tcl -project fir_filter

-revision filtref -bus_name yn_out r

TimeQuest Timing Analysis

The TimeQuest timing analyzer includes support for SDC commands in
the ::quartus::sdc package.

f Refer to the TimeQuest Timing Analysis chapter of the Quartus II Handbook
for detailed information about how to perform timing analysis with the
TimeQuest timing analyzer.

TimeQuest Scripting

In versions of the Quartus II software before 6.0, the ::quartus::project Tcl
package contained the following SDC-like commands for making timing
assignments:

■ create_base_clock
■ create_relative_clock
■ get_clocks
■ set_clock_latency
■ set_clock_uncertainty
■ set_input_delay
■ set_multicycle_assignment
■ set_output_delay
■ set_timing_cut_assignment

3–30 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

These commands are not SDC-compliant. Beginning with version 6.0,
these commands are in a new package named
::quartus::timing_assignment. To ensure backwards compatibility with
existing Tcl scripts, the ::quartus::timing_assignment package is loaded
by default in the following executables:

■ quartus
■ quartus_sh
■ quartus_cdb
■ quartus_sim
■ quartus_stp
■ quartus_tan

The ::quartus::timing_assignment package is not loaded by default in the
quartus_sta executable. The ::quartus::sdc Tcl package includes
SDC-compliant versions of the commands listed above. The package is
available only in the quartus_sta executable, and it is loaded by default.

Automating
Script Execution

Beginning with version 4.0 of the Quartus II software, you can configure
scripts to run automatically at various points during compilation. Use
this capability to automatically run scripts that perform custom
reporting, make specific assignments, and perform many other tasks.

The following three global assignments control when a script is run
automatically:

■ PRE_FLOW_SCRIPT_FILE —before a flow starts
■ POST_MODULE_SCRIPT_FILE —after a module finishes
■ POST_FLOW_SCRIPT_FILE —after a flow finishes

The POST_FLOW_SCRIPT_FILE and POST_MODULE_SCRIPT_FILE
assignments are supported beginning in version 4.0, and the
PRE_FLOW_SCRIPT_FILE assignment is supported beginning in
version 4.1.

A module is a Quartus II executable that performs one step in a flow. For
example, two modules are Analysis & Synthesis (quartus_map) and
timing analysis (quartus_tan).

A flow is a series of modules that the Quartus II software runs with
predefined options. For example, compiling a design is a flow that
typically consists of the following steps (performed by the indicated
module):

1. Analysis and synthesis (quartus_map)

2. Fitter (quartus_fit)

Altera Corporation 3–31
November 2006

Automating Script Execution

3. Assembler (quartus_asm)

4. Timing Analyzer (quartus_tan)

Other flows are described in the help for the execute_flow Tcl command.
In addition, many commands in the Processing menu of the Quartus II
GUI correspond to this design flow.

Making the Assignment

To make an assignment to automatically run a script, add an assignment
with the following form to your project's Quartus II Settings File:

set_global_assignment -name <assignment name> \
<executable>:<script name>

The assignment name is one of the following:

■ PRE_FLOW_SCRIPT_FILE
■ POST_MODULE_SCRIPT_FILE
■ POST_FLOW_SCRIPT_FILE

The executable is the name of a Quartus II command-line executable that
includes a Tcl interpreter.

■ quartus_cdb
■ quartus_sh
■ quartus_sim
■ quartus_sta
■ quartus_stp
■ quartus_tan

The script name is the name of your Tcl script.

Script Execution

The Quartus II software runs the scripts as shown Example 3–14.

Example 3–14.
<executable> -t <script name> <flow or module name> <project name> <revision name>

The first argument passed in the argv variable (or quartus(args)
variable) is the name of the flow or module being executed, depending on
the assignment you use. The second argument is the name of the project,
and the third argument is the name of the revision.

3–32 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

When you use the POST_MODULE_SCRIPT_FILE assignment, the
specified script is automatically run after every executable in a flow. You
can use a string comparison with the module name (the first argument
passed in to the script) to isolate script processing to certain modules.

Execution Example

Example 3–15 illustrates how automatic script execution works in a
complete flow, assuming you have a project called top with a current
revision called rev_1, and you have the following assignments in the
Quartus II Settings File for your project.

Example 3–15.
set_global_assignment -name PRE_FLOW_SCRIPT_FILE quartus_sh:first.tcl
set_global_assignment -name POST_MODULE_SCRIPT_FILE quartus_sh:next.tcl
set_global_assignment -name POST_FLOW_SCRIPT_FILE quartus_sh:last.tcl

When you compile your project, the PRE_FLOW_SCRIPT_FILE
assignment causes the following command to be run before compilation
begins:

quartus_sh -t first.tcl compile top rev_1

Next, the Quartus II software starts compilation with analysis and
synthesis, performed by the quartus_map executable. After the analysis
and synthesis finishes, the POST_MODULE_SCRIPT_FILE assignment
causes the following command to be run:

quartus_sh -t next.tcl quartus_map top rev_1

Then, the Quartus II software continues compilation with the Fitter,
performed by the quartus_fit executable. After the Fitter finishes, the
POST_MODULE_SCRIPT_FILE assignment runs the following
command:

quartus_sh -t next.tcl quartus_fit top rev_1

Corresponding commands are run after the other stages of the
compilation. Finally, after the compilation is over, the
POST_FLOW_SCRIPT_FILE assignment runs the following command:

quartus_sh -t last.tcl compile top rev_1

Altera Corporation 3–33
November 2006

Other Scripting Features

Controlling Processing

The POST_MODULE_SCRIPT_FILE assignment causes a script to run
after every module. Because the same script is run after every module,
you may need to include some conditional statements that restrict
processing in your script to certain modules.

For example, if you want a script to run only after timing analysis, you
should include a conditional test like the one shown in Example 3–16. It
checks the flow or module name passed as the first argument to the script
and executes code when the module is quartus_tan.

Example 3–16. Restrict Processing to a Single Module
set module [lindex $quartus(args) 0]

if [string match "quartus_tan" $module] {

Include commands here that are run
after timing analysis
Use the post-message command to display
messages
post_message "Running after timing analysis"

}

Displaying Messages

Because of the way the Quartus II software runs the scripts automatically,
you must use the post_message command to display messages, instead
of the puts command. This requirement applies only to scripts that are
run by the three assignments listed in “Automating Script Execution” on
page 3–30.

1 Refer to “Using the post_message Command” on page 3–35 for
more information about this command.

Other Scripting
Features

The Quartus II Tcl API includes other general-purpose commands and
features described in this section.

Natural Bus Naming

Beginning with version 4.2, the Quartus II software supports natural bus
naming. Natural bus naming means that square brackets used to specify
bus indexes in hardware description languages do not have to be escaped
to prevent Tcl from interpreting them as commands. For example, one

3–34 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

signal in a bus named address can be identified as address[0] instead
of address\[0\]. You can take advantage of natural bus naming when
making assignments, as in Example 3–17.

Example 3–17. Natural Bus Naming
set_location_assignment -to address[10] Pin_M20

The Quartus II software defaults to natural bus naming. You can turn off
natural bus naming with the disable_natural_bus_naming command.
For more information about natural bus naming, type
enable_natural_bus_naming -h r at a Quartus II Tcl prompt.

Using Collection Commands

Some Quartus II Tcl functions return very large sets of data that would be
inefficient as Tcl lists. These data structures are referred to as collections
and the Quartus II Tcl API uses a collection ID to access the collection.
There are two Quartus II Tcl commands for working with collections,
foreach_in_collection and get_collection_size. Use the set command to
assign a collection ID to a variable.

f For information about which Quartus II Tcl commands return collection
IDs, see the Quartus II Help and search for the foreach_in_collection
command.

The foreach_in_collection Command

The foreach_in_collection command is similar to the foreach Tcl
command. Use it to iterate through all elements in a collection.
Example 3–18 prints all instance assignments in an open project.

Example 3–18. Using Collection Commands
set all_instance_assignments [get_all_instance_assignments -name *]
foreach_in_collection asgn $all_instance_assignments {

Information about each assignment is
returned in a list. For information
about the list elements, refer to Help
for the get-all-instance-assignments command.
set to [lindex $asgn 2]
set name [lindex $asgn 3]
set value [lindex $asgn 4]
puts "Assignment to $to: $name = $value"

}

Altera Corporation 3–35
November 2006

Other Scripting Features

The get_collection_size Command

Use the get_collection_size command to get the number of elements in a
collection. Example 3–19 prints the number of global assignments in an
open project:

Example 3–19. get_collection_size Command
set all_global_assignments [get_all_global_assignments -name *]
set num_global_assignments [get_collection_size $all_global_assignments]
puts "There are $num_global_assignments global assignments in your project"

Using the post_message Command

To print messages that are formatted like Quartus II software messages,
use the post_message command. Messages printed by the post_message
command appear in the System tab of the Messages window in the
Quartus II GUI, and are written to standard at when scripts are run.
Arguments for the post_message command include an optional message
type and a required message string.

The message type can be one of the following:

■ info (default)
■ extra_info
■ warning
■ critical_warning
■ error

If you do not specify a type, Quartus II software defaults to info.

When you are using the Quartus II software in Windows, you can color
code messages displayed at the system command prompt with the
post_message command. Add the following line to your quartus2.ini
file:

DISPLAY_COMMAND_LINE_MESSAGES_IN_COLOR = on

Example 3–20 shows how to use the post_message command.

Example 3–20. post_message command
post_message -type warning "Design has gated clocks"

3–36 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Accessing Command-Line Arguments

Many Tcl scripts are designed to accept command-line arguments, such
as the name of a project or revision. The global variable quartus(args)
is a list of the arguments typed on the command-line following the name
of the Tcl script. Example 3–21 shows code that prints all of the arguments
in the quartus(args) variable.

Example 3–21. Simple Command-Line Argument Access
set i 0
foreach arg $quartus(args) {

puts "The value at index $i is $arg"
incr i

}

If you copy the script in the previous example to a file named
print_args.tcl, it displays the following output when you type the
command shown in Example 3–22 at a command prompt.

Example 3–22. Passing Command-Line Arguments to Scripts
quartus_sh -t print_args.tcl my_project 100MHz r
The value at index 0 is <my_project>
The value at index 1 is 100MHz

Beginning with version 4.1, the Quartus II software supports the Tcl
variables argv, argc, and argv0 for command-line argument access.
Table 3–7 shows equivalent information for earlier versions of the
software.

Table 3–7. Quartus II Support for Tcl Variables

Beginning with Version 4.1 Equivalent Support in Previous Software
Versions

argc llength $quartus(args)

argv quartus(args)

argv0 info nameofexecutable

Altera Corporation 3–37
November 2006

Other Scripting Features

Using the cmdline Package

You can use the cmdline package included with the Quartus II software
for more robust and self-documenting command-line argument passing.
The cmdline package supports command-line arguments with the form
-<option> <value>.

Example 3–23 uses the cmdline package:

Example 3–23. cmdline Package
package require cmdline
variable ::argv0 $::quartus(args)
set options {\

{ "project.arg" "" "Project name" } \
{ "frequency.arg" "" "Frequency" } \

}
set usage "You need to specify options and values"

array set optshash [::cmdline::getoptions ::argv $options $usage]
puts "The project name is $optshash(project)"
puts "The frequency is $optshash(frequency)"

If you save those commands in a Tcl script called print_cmd_args.tcl you
see the following output when you type the command shown in
Example 3–24 at a command prompt:

Example 3–24. Passing Command-Line Arguments for Scripts
quartus_sh -t print_cmd_args.tcl -project my_project -frequency 100MHz r
The project name is <my_project>
The frequency is 100MHz

3–38 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Virtually all Quartus II Tcl scripts must open a project. Example 3–25
opens a project, and you can optionally specify a revision name. The
example checks whether the specified project exists. If it does, the
example opens the current revision, or the revision you specify.

Example 3–25. Full-Featured Method to Open Projects
package require cmdline
variable ::argv0 $::quartus(args)
set options { \
{ "project.arg" "" "Project Name" } \
{ "revision.arg" "" "Revision Name" } \
}
array set optshash [::cmdline::getoptions ::argv0 $options]

Ensure the project exists before trying to open it
if {[project_exists $optshash(project)]} {

if {[string equal "" $optshash(revision)]} {

There is no revision name specified, so default
to the current revision
project_open $optshash(project) -current_revision

} else {

There is a revision name specified, so open the
project with that revision
project_open $optshash(project) -revision \

$optshash(revision)
}

} else {
puts "Project $optshash(project) does not exist"
exit 1

}
The rest of your script goes here

If you do not require this flexibility or error checking, you can use just the
project_open command, as shown in Example 3–26.

Example 3–26. Simple Method to Open Projects
set proj_name [lindex $argv 0]
project_open $proj_name

f For more information about the cmdline package, refer to the
documentation for the package at <Quartus II installation directory>
/common/tcl/packages.

Altera Corporation 3–39
November 2006

Using the Quartus II Tcl Shell in Interactive Mode

Using the
Quartus II Tcl
Shell in
Interactive Mode

This section presents an example of using the quartus_sh interactive shell
to make some project assignments and compile the finite impulse
response (FIR) filter tutorial project. This example assumes that you
already have the FIR filter tutorial design files in a project directory.

To begin, run the interactive Tcl shell. The command and initial output are
shown in Example 3–27.

Example 3–27. Interactive Tcl Shell
tcl> quartus_sh -s
tcl> Info: ***
Info: Running Quartus II Shell
 Info: Version 6.0 Internal Build 170 10/29/2006 SJ Full Version
 Info: Copyright (C) 1991-2006 Altera Corporation. All rights reserved.
 Info: Your use of Altera Corporation's design tools, logic functions
 Info: and other software and tools, and its AMPP partner logic
 Info: functions, and any output files any of the foregoing
 Info: (including device programming or simulation files), and any
 Info: associated documentation or information are expressly subject
 Info: to the terms and conditions of the Altera Program License
 Info: Subscription Agreement, Altera MegaCore Function License
 Info: Agreement, or other applicable license agreement, including,
 Info: without limitation, that your use is for the sole purpose of
 Info: programming logic devices manufactured by Altera and sold by
 Info: Altera or its authorized distributors. Please refer to the
 Info: applicable agreement for further details.
 Info: Processing started: Tue Apr 04 12:24:13 2006
Info: ***
Info: The Quartus II Shell supports all TCL commands in addition
Info: to Quartus II Tcl commands. All unrecognized commands are
Info: assumed to be external and are run using Tcl's "exec"
Info: command.
Info: - Type "exit" to exit.
Info: - Type "help" to view a list of Quartus II Tcl packages.
Info: - Type "help <package name>" to view a list of Tcl commands
Info: available for the specified Quartus II Tcl package.
Info: - Type "help -tcl" to get an overview on Quartus II Tcl usages.
Info: ***

tcl>

Create a new project called fir_filter, with a revision called filtref by
typing the following command at a Tcl prompt:

project_new -revision filtref fir_filter r
1 If the project file and project name are the same, the Quartus II

software gives the revision the same name as the project.

Because the revision named filtref matches the top-level file, all design
files are automatically picked up from the hierarchy tree.

3–40 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Next, set a global assignment for the device with the following command:

set_global_assignment -name family Cyclone r
f To learn more about assignment names that you can use with the -name

option, refer to the Quartus II Help.

1 For assignment values that contain spaces, the value should be
enclosed in quotation marks.

To quickly compile a design, use the ::quartus::flow package, which
properly exports the new project assignments and compiles the design
using the proper sequence of the command-line executables. First, load
the package:

load_package flow r
It returns the following:

1.0

For additional help on the ::quartus::flow package, view the
command-line help at the Tcl prompt by typing:

help -pkg ::quartus::flow r
Example 3–28 shows an alternative command and the resulting output:

Example 3–28. Help Output
tcl> help -pkg flow
--

Tcl Package and Version:

::quartus::flow 1.0

Description:

 This package contains the set of Tcl functions
 for running flows or command-line executables.

Tcl Commands:

 execute_flow
 execute_module
--

Altera Corporation 3–41
November 2006

Using the Quartus II Tcl Shell in Interactive Mode

This help display gives information about the flow package and the
commands that are available with the package.To learn about the options
available for the execute_flow Tcl command, type the following
command at a Tcl prompt:

execute_flow -h r
To view additional information and example usage type the following
command at a Tcl prompt:

execute_flow -long_help r
or

help -cmd execute_flow r
To perform a full compilation of the FIR filter design, use the
execute_flow command with the -compile option, as shown in
Example 3–29:

Example 3–29.
tcl> execute_flow -compile r
Info:***
Info: Running Quartus II Analysis & Synthesis
Info: Version 6.0 SJ Full Version
Info: Processing started: Tues Apr 04 09:30:47 2006
Info: Command: quartus_map --import_settings_files=on --
export_settings_files=of fir_filter -c filtref
.
.
.
Info: Writing report file filtref.tan.rpt
tcl>

This script compiles the FIR filter tutorial project, exporting the project
assignments and running quartus_map, quartus_fit, quartus_asm, and
quartus_tan. This sequence of events is the same as selecting Start
Compilation from the Processing menu in the Quartus II GUI.

When you are finished with a project, close it using the project_close
command as shown in Example 3–30.

Example 3–30.
project_close r

Then, to exit the interactive Tcl shell, type exit r at a Tcl prompt.

3–42 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Quartus II
Legacy Tcl
Support

Beginning with the Quartus II software version 3.0, command-line
executables do not support the Tcl commands used in previous versions
of the Quartus II software. These commands are supported in the GUI
with the Quartus II Tcl console or by using the quartus_cmd executable
at the system command prompt. If you source Tcl scripts developed for
an earlier version of the Quartus II software using either of these
methods, the project assignments are ported to the project database and
settings file. You can then use the command-line executables to process
the resulting project. This may be necessary if you create a Tcl file using
EDA tools that do not generate Tcl scripts for the most recent version of
the Quartus II software.

1 You should create all new projects and Tcl scripts with the latest
version of the Quartus II Tcl API.

Tcl Scripting
Basics

The core Tcl commands support variables, control structures, and
procedures. Additionally, there are commands for accessing the file
system and network sockets, and running other programs. You can create
platform-independent graphical interfaces with the Tk widget set.

Tcl commands are executed immediately as they are typed in an
interactive Tcl shell. You can also create scripts (including this chapter’s
examples) as files and run them with a Tcl interpreter. A Tcl script does
not need any special headers.

To start an interactive Tcl interpreter, type quartus_sh -s r at a
command prompt. The commands you type are executed immediately at
the interpreter prompt. If you save a series of Tcl commands in a file, you
can run it with a Tcl interpreter. To run a script named myscript.tcl, type
quartus_sh -t myscript.tcl r at a command prompt.

Hello World Example

The following shows the basic “Hello world” example in Tcl:

puts "Hello world"

Use double quotation marks to group the words hello and world as one
argument. Double quotation marks allow substitutions to occur in the
group. Substitutions can be simple variable substitutions, or the result of
running a nested command, described in “Substitutions” on page 3–43.
Use curly braces {} for grouping when you want to prevent
substitutions.

Altera Corporation 3–43
November 2006

Tcl Scripting Basics

Variables

Use the set command to assign a value to a variable. You do not have to
declare a variable before using it. Tcl variable names are case-sensitive.
Example 3–31 assigns the value 1 to the variable named a.

Example 3–31. Assigning Variables
set a 1

To access the contents of a variable, use a dollar sign before the variable
name. Example 3–32 prints "Hello world" in a different way.

Example 3–32. Accessing Variables
set a Hello
set b world
puts "$a $b"

Substitutions

Tcl performs three types of substitution:

■ Variable value substitution
■ Nested command substitution
■ Backslash substitution

Variable Value Substitution

Variable value substitution, as shown in Example 3–32, refers to accessing
the value stored in a variable by using a dollar sign (“$”) before the
variable name.

Nested Command Substitution

Nested command substitution refers to how the Tcl interpreter evaluates
Tcl code in square brackets. The Tcl interpreter evaluates nested
commands, starting with the innermost nested command, and
commands nested at the same level from left to right. Each nested
command result is substituted in the outer command. Example 3–33 sets
a to the length of the string foo:

Example 3–33. Command Substitution
set a [string length foo]

3–44 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Backlash Substitution

Backslash substitution allows you to quote reserved characters in Tcl,
such as dollar signs (“$”) and braces (“[]”). You can also specify other
special ASCII characters like tabs and new lines with backslash
substitutions. The backslash character is the Tcl line continuation
character, used when a Tcl command wraps to more than one line.
Example 3–34 shows how to use the backslash character for line
continuation:

Example 3–34. Backslash Substitution
set this_is_a_long_variable_name [string length "Hello \

world."]

Arithmetic

Use the expr command to perform arithmetic calculations. Using curly
braces (“{ }”) to group the arguments of this command makes
arithmetic calculations more efficient and preserves numeric precision.
Example 3–35 sets b to the sum of the value in the variable a and the
square root of 2:

Example 3–35. Arithmetic with the expr Command
set a 5
set b [expr { $a + sqrt(2) }]

Tcl also supports boolean operators such as && (AND), || (OR), ! (NOT),
and comparison operators such as < (less than), > (greater than), and ==
(equal to).

Lists

A Tcl list is a series of values. Supported list operations include creating
lists, appending lists, extracting list elements, computing the length of a
list, sorting a list, and more. Example 3–36 sets a to a list with three
numbers in it:

Example 3–36. Creating Simple Lists
set a { 1 2 3 }

Altera Corporation 3–45
November 2006

Tcl Scripting Basics

You can use the lindex command to extract information at a specific index
in a list. Indexes are zero-based. You can use the index end to specify the
last element in the list, or the index end-<n> to count from the end of the
list. Example 3–37 prints the second element (at index 1) in the list stored
in a.

Example 3–37. Accessing List Elements
puts [lindex $a 1]

The llength command returns the length of a list. Example 3–38 prints the
length of the list stored in a.

Example 3–38. List Length
puts [llength $a]

The lappend command appends elements to a list. If a list does not
already exist, the list you specify is created. The list variable name is not
specified with a dollar sign. Example 3–39 appends some elements to the
list stored in a.

Example 3–39. Appending to a List
lappend a 4 5 6

Arrays

Arrays are similar to lists except that they use a string-based index. Tcl
arrays are implemented as hash tables. You can create arrays by setting
each element individually or by using the array set command. To set an
element with an index of Mon to a value of Monday in an array called
days, use the following command:

set days(Mon) Monday

The array set command requires a list of index/value pairs. This
example sets the array called days:

array set days { Sun Sunday Mon Monday Tue Tuesday \
Wed Wednesday Thu Thursday Fri Friday Sat Saturday }

3–46 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Example 3–40 shows how to access the value for a particular index.

Example 3–40. Accessing Array Elements
set day_abbreviation Mon
puts $days($day_abbreviation)

Use the array names command to get a list of all the indexes in a
particular array. The index values are not returned in any specified order.
Example 3–41 shows one way to iterate over all the values in an array.

Example 3–41. Iterating Over Arrays
foreach day [array names days] {

puts "The abbreviation $day corresponds to the day \
name $days($day)"
}

Arrays are a very flexible way of storing information in a Tcl script and
are a good way to build complex data structures.

Control Structures

Tcl supports common control structures, including if-then-else
conditions and for, foreach, and while loops. The position of the curly
braces as shown in the following examples ensures the control structure
commands are executed efficiently and correctly. Example 3–42 prints
whether the value of variable a positive, negative, or zero.

Example 3–42. If-Then_Else Structure
if { $a > 0 } {

puts "The value is positive"
} elseif { $a < 0 } {

puts "The value is negative"
} else {

puts "The value is zero"
}

Example 3–43 uses a for loop to print each element in a list.

Example 3–43. For Loop
set a { 1 2 3 }
for { set i 0 } { $i < [llength $a] } { incr i } {

puts "The list element at index $i is [lindex $a $i]"
}

Altera Corporation 3–47
November 2006

Tcl Scripting Basics

Example 3–44 uses a foreach loop to print each element in a list.

Example 3–44. foreach Loop
set a { 1 2 3 }
foreach element $a {

puts "The list element is $element"
}

Example 3–45 uses a while loop to print each element in a list.

Example 3–45. while Loop
set a { 1 2 3 }
set i 0
while { $i < [llength $a] } {

puts "The list element at index $i is [lindex $a $i]"
incr i

}

You do not need to use the expr command in boolean expressions in
control structure commands because they invoke the expr command
automatically.

Procedures

Use the proc command to define a Tcl procedure (known as a subroutine
or function in other scripting and programming languages). The scope of
variables in a procedure is local to the procedure. If the procedure returns
a value, use the return command to return the value from the procedure.
Example 3–46 defines a procedure that multiplies two numbers and
returns the result.

Example 3–46. Simple Procedure
proc multiply { x y } {

set product [expr { $x * $y }]
return $product

}

3–48 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Example 3–47 shows how to use the multiply procedure in your code.
You must define a procedure before your script calls it, as shown below.

Example 3–47. Using a Procedure
proc multiply { x y } {

set product [expr { $x * $y }]
return $product

}
set a 1
set b 2
puts [multiply $a $b]

You should define procedures near the beginning of a script. If you want
to access global variables in a procedure, use the global command in each
procedure that uses a global variable. Example 3–48 defines a procedure
that prints an element in a global list of numbers, then calls the procedure.

Example 3–48. Accessing Global Variables
proc print_global_list_element { i } {

global my_data
puts "The list element at index $i is [lindex $my_data $i]"

}
set my_data { 1 2 3}
print_global_list_element 0

File I/O

Tcl includes commands to read from and write to files. You must open a
file before you can read from or write to it, and close it when the read and
write operations are done. To open a file, use the open command; to close
a file, use the close command. When you open a file, specify its name and
the mode in which to open it. If you do not specify a mode, Tcl defaults to
read mode. To write to a file, specify w for write mode as shown in
Example 3–49.

Example 3–49. Open a File for Writing
set output [open myfile.txt w]

Tcl supports other modes, including appending to existing files and
reading from and writing to the same file.

The open command returns a file handle to use for read or write access.
You can use the puts command to write to a file by specifying a filehandle,
as shown in Example 3–50.

Altera Corporation 3–49
November 2006

Tcl Scripting Basics

Example 3–50. Write to a File
set output [open myfile.txt w]
puts $output "This text is written to the file."
close $output

You can read a file one line at a time with the gets command.
Example 3–51 uses the gets command that prints out each line of the file,
with its line number.

Example 3–51. Read from a File
set input [open myfile.txt]
set line_num 1
while { [gets $input line] >= 0 } {

Process the line of text here
puts "$line_num: $line"
incr line_num

}
close $input

Syntax & Comments

Arguments to Tcl commands are separated by white space, and Tcl
commands are terminated by a newline character or a semicolon. As
shown in “Substitutions” on page 3–43, you must use backslashes when
a Tcl command extends more than one line.

Tcl uses the hash or pound character (#) to begin comments. The
character must begin a command. If you prefer to include comments on
the same line as a command, be sure to terminate the command with a
semicolon before the # character. Example 3–52 is a valid line of code that
includes a set command and a comment:

Example 3–52. Comments
set a 1;# Initializes a

Without the semicolon, it will be an invalid command because the set
command will not terminate until the new line after the comment.

3–50 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

The Tcl interpreter counts curly braces inside comments, which can lead
to errors that are difficult to track down. Example 3–53 causes an error
because of unbalanced curly braces:

Example 3–53. Unbalanced Braces in Comments
if { $x > 0 } {
if { $y > 0 } {

code here
}

References

f For more information about using Tcl, refer to the following sources:

■ Practical Programming in Tcl and Tk, Brent B. Welch
■ Tcl and the TK Toolkit, John Ousterhout
■ Effective Tcl/TK Programming, Michael McLennan and Mark Harrison
■ Quartus II Tcl example scripts at www.altera.com/support/

examples/tcl/tcl.html
■ Tcl Developer Xchange at tcl.activestate.com

Altera Corporation 3–51
November 2006

Tcl Scripting Basics

Document
Revision History

Table 3–8 shows the revision history for this document.

Table 3–8. Document Revision History

Date &
Document

Version
Changes Made Summary of Changes

November 2006
v6.1.0

Added revision history to the document.

May 2006 v6.0.0 Updated for the Quartus II software version 6.0.0.
● Reorganized content.
● Added the TimeQuest timing analyzer feature.

October 2005
v5.1.0

Updated for the Quartus II software version 5.1.0.

August 2005
v5.0.1

Minor text changes.

May 2005 v5.0.0 Updated for the Quartus II software version 5.0.0.

Dec. 2004 v2.1 ● Updates to tables and figures.
● New functionality in the Quartus II software version 4.2.

Aug. 2004 v2.1 ● Minor typographical corrections
● Enhancements to example scripts.

June 2004 v2.0 ● Updates to tables, figures.
● New functionality in the Quartus II software version 4.1.

Feb. 2004 v1.0 Initial release.

3–52 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Altera Corporation 4–1
November 2006

4. Managing Quartus II
Projects

Introduction FPGA designs once required just one or two engineers, but today’s larger
and more sophisticated FPGA designs are often developed by several
engineers and are constantly changing throughout the project. To ensure
efficient design coordination, designers must track their project changes.

To help designers manage their FPGA designs, the Quartus® II software
provides the following capabilities:

■ Creating revisions
■ Copying and archiving projects
■ Making a version-compatible database
■ Controlling message suppression

In the Quartus II software, a revision is one set of assignments and
settings. A project typically has multiple revisions, with each revision
having its own set of assignments and settings. Creating multiple
revisions allows you to change assignments and settings while
preserving the previous results.

A version is a Quartus II project that includes one set of design files and
one or more revisions (assignments and settings for your project).
Creating multiple versions with the Copy Project feature allows you to
edit a copy of your design files while preserving the original functionality
of your design.

The Quartus II Version-Compatible Database feature allows Quartus II
databases to be compatible across different versions of the Quartus II
software, which saves valuable design time by avoiding unnecessary
compilations (Figure 4–1). This chapter also discusses how to migrate
your projects from one computing platform to another as well as message
suppression.

QII52012-6.1.0

4–2 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Figure 4–1. Quartus II Version-Compatible Database Structure

Creating a New
Project

A Quartus II project contains all of the design files, the settings files and
other files necessary for the successful compilation of your design. These
files include two Quartus II settings files:

■ Quartus II Project File (.qpf) containing the name of your project and
all revisions of your project, described in “Using Revisions With Your
Design” on page 4–3.

■ Quartus II Settings File (.qsf) containing all assignments applied to
your design including assignments to help fit your design and meet
performance requirements. For more information on the Quartus II
Settings File, refer to “Quartus II Settings File” on page 4–25.

To start a new Quartus II project, use the New Project Wizard. From the
File menu, click the New Project Wizard, and add the following project
information:

■ Project name and directory
■ Name of the top-level design entity
■ Project files and user libraries
■ Target device family and device
■ EDA tool settings

1 For more information on user libraries, refer to “Specifying
Libraries” on page 4–13 and “Specifying Libraries Using
Scripts” on page 4–29.

Version 1

Revision A

Revision B

Version 2

Revision A

Revision B

Quartus II Project

Altera Corporation 4–3
November 2006

Using Revisions With Your Design

Using Revisions
With Your
Design

The Revisions feature allows you to create a new set of assignments and
settings for your design without losing your previous assignments and
settings. This feature allows you to explore different assignments and
settings for your design and then compare the results. You can use the
Revisions feature in the following ways:

■ Create a unique revision which is not based on a previous revision.
Creating a unique revision lets you optimize a design for different
fundamental reasons such as to optimize by area in one revision,
then optimize for fMAX in another revision. When you create a unique
revision (a revision that is not based on an existing revision), all
default settings are turned on.

■ Create a revision based on an existing revision, but try new settings
and assignments in the new revision. A new revision already
includes all the assignments and settings applied in the previous
revision. If you are not satisfied with the results in the new revision,
you can revert to the original revision. You can compare revisions
manually or with the Compare feature.

Creating & Deleting Revisions

All Quartus II assignments and settings are stored in the Quartus II
Settings File. Each time you create a new revision of a project, the
Quartus II software creates a new Quartus II Settings File and adds the
name of the new revision to the list of revisions in the Quartus II Settings
File.

1 The name of a new Quartus II Settings File matches the revision
name.

You can manage revisions with the Revisions dialog box, which allows
you to set the current revision, as well as create, delete, and compare
revisions in a project.

Creating a Revision

To create a revision, follow these steps:

1. If you have not already done so, create a new project or open an
existing project. On the File menu, click New Project Wizard or
Open Project.

2. On the Project menu, click Revisions.

3. To base the new revision on an existing revision for the current
design, select the existing revision in the Revisions list.

4–4 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

4. Click Create (Figure 4–2).

Figure 4–2. Revisions Dialog Box

5. In the Create Revision dialog box (Figure 4–3), type the name of the
new revision in the Revisions name box.

6. To base the new revision on an existing revision for the current
design, if you did not select the correct revision in Step 3, select the
revision in the Based on revision list (Figure 4–3).

or

To create a unique revision that is not based on an existing revision
of the current design, select the “blank entry” in the Based on
revision list.

Altera Corporation 4–5
November 2006

Using Revisions With Your Design

Figure 4–3. Create Revisions Dialog Box

7. Optionally, edit the description of the revision in the Description
box (Figure 4–3).

8. Turn off the Copy database option if you do not want the new
revision to contain the database information from the existing
revision. The Copy database option is on by default.

1 Copying the database allows you to view the results from
the previous compilation while you are making changes to
the settings of the new revision.

9. If you do not want to use the new revision immediately, turn off Set
as current revision. The Set as current revision option is on by
default.

10. In the Create Revision dialog box (Figure 4–3), click OK.

Delete a Revision

To delete a revision, follow these steps:

1. If you have not already done so, open an existing project by clicking
Open Project on the File menu and selecting a Quartus II Project
File.

2. On the Project menu, click Revisions.

4–6 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

3. In the Revisions list, select the revision you want to delete and click
Delete.

1 You cannot delete the current revision when it is active; you
must first open another revision. For example, if revision A
is currently active, you need to create (if the revision does
not exist) and open revision B before you delete revision A.

Comparing Revisions

You can compare the results of multiple revisions side by side with the
Compare Revisions dialog box.

1. On the Project menu, click Revisions.

2. In the Revisions dialog box, click Compare to compare all revisions
in a single window.

The Compare Revisions dialog box (Figure 4–4) compares the results of
each revision in three assignment categories: Analysis & Synthesis, Fitter,
and Timing Analyzer.

Figure 4–4. Compare Revisions Dialog Box

Altera Corporation 4–7
November 2006

Creating Different Versions of Your Design

In addition to viewing the results of each revision, you also can show the
assignments for each revision. Click the Assignments tab in the Compare
Revisions dialog box to view all assignments applied to each revision
(Figure 4–4). To export both Results and Assignments for your revisions,
click on Export. When the dialog box appears, enter the name of the
Comma-Separated Value (.csv) file into which the software will export the
data when you click OK. Gain better understanding of how different
optimization options affect your design by viewing the results of each
revision and their assignments.

Creating
Different
Versions of Your
Design

Managing different versions of design files in a large project can become
difficult. To assist in this task, the Quartus II software provides utilities to
copy and save different versions of your project. Creating a version of
your project includes copying all your design files, your Quartus II
settings file, and all your associated revisions (all assignments and
settings).

To create a new version of your project with the Quartus II software,
create a copy of your project and edit your design files. An example is if
you have a design that is compatible with a 32-bit data bus and you
require a new version of the design to interface with a 64-bit data bus. To
solve this problem, create a new version of your project and edit the new
version of the design files by performing the following steps:

1. On the Project menu, click Copy Project. The Copy Project dialog
box appears (Figure 4–5).

Figure 4–5. Copy Project Dialog Box

2. Specify the path to your new project in the Destination directory
box.

3. Type the new project name in the New project name box.

4. To open the new project immediately, turn on
Open new project. This option closes the current project option.

5. Click OK.

4–8 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

When creating a new version of your project with an Electronic Data
Interchange Format (EDIF) or Verilog Quartus Mapping (.vqm)
netlist from a third-party EDA synthesis tool, create a copy of your
project and then replace the previous netlist file with the newly
generated netlist file. On the Project menu, click Copy Project to
create a copy of your design. On the Project menu, click the
Add/Remove Files command to add and remove design files, if
necessary.

Archiving Projects with the Quartus II Archive Project Feature

A single project can contain hundreds of files in many directories, which
can make transferring a project between engineers difficult. You can use
the Quartus II Archive Project feature to create a single compressed
Quartus II Archive File (.qar) of your project containing all your design,
project, and settings files. The Quartus II Archive File contains all the files,
including the Quartus II Default Settings File (.qdf), required to perform
a full compilation to restore the original results. The Quartus II Default
Settings File contains all the project and assignment default settings from
the current version of the Quartus II software. It is necessary to archive
the Default Settings File to preserve your results when you restore the
archive in a different version of the Quartus II software. For more
information on the Quartus II Default Settings File, refer to “Quartus II
Default Settings File” on page 4–26.

With the archive file generated by the Archive Project feature
(Figure 4–6), you can easily share projects between engineers.

Figure 4–6. Archive Project Dialog Box

Altera Corporation 4–9
November 2006

Creating Different Versions of Your Design

Archive a Project

To archive a project, perform these steps:

1. If you have not already done so, create a new project or open an
existing project. On the File menu, click New Project Wizard or
Open Project.

2. On the Processing menu, point to Start and click Start Analysis &
Elaboration.

1 Altera® recommends that you perform analysis and elaboration
before archiving a project to ensure that all design files are
located and archived.

3. On the Project menu, click Archive Project.

4. In the Archive file name box, type the file name of the Quartus II
Archive File you want to archive, or click Browse to select a
Quartus II Archive File name.

5. Turn on Archive current active revision only to archive the
currently active revision. If you do not turn on this option, all
revisions within the project are included in the project archive.

6. Select one of the following items under Include the following
optional database files in the Archive Project dialog box
(Figure 4–6).

a. Select No database files included to exclude both compilation
and simulation database files and version-compatible database
files from the archive.

b. Select Compilation and simulation database files to include
the compilation and simulation database files in the archive.

c. Select Version-compatible database files to include the
version-compatible database files in the archive.

d. Select Include both kinds of database files to include both
compilation and simulation database files and
version-compatible database files in the archive.

7. Turn on Include functions from system libraries to include
functions from system libraries in the archive.

8. Click Add/Remove Files to add or remove files from the archive.

4–10 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

9. Click OK.

Restore an Archived Project

To restore an archived project, perform the following steps:

1. On the Project menu, click Restore Archived Project.

2. In the Archive file name box, type the file name of the Quartus II
Archive File you wish to restore, or click Browse to select a
Quartus II Archive File.

3. In the Destination folder box, specify the directory path into which
you will restore the contents of the Quartus II Archive File, or
browse to a directory.

4. Click Show log to view the Quartus II Archive Log File (.qarlog) for
the project you are restoring from the Quartus II Archive File.

5. Click OK.

6. If you did not include the compilation and simulation database files
in the project archive (Figure 4–6), you must recompile the project.

Version-
Compatible
Databases

Prior to the Quartus II software version 4.1, compilation databases were
locked to the current version of the Quartus II software. With the
introduction of the Version-Compatible Database feature in the
Quartus II software version 4.1, you can export a version-compatible
database and import it into a later version. For example, using one set of
design files, you can export a database generated from the Quartus II
software version 4.1 and import it into the Quartus II software version 5.1
and later without recompiling your design. Using this feature eliminates
unnecessary compilation time.

Migrate to a New Version

To migrate a design from one Quartus II software version to a newer
version, perform the following steps:

1. On the File menu, open the older version of the Quartus II software
project by clicking Open Project.

2. On the Project menu, click Copy Project to make a new copy of the
project. The copied project will open in the older version.

Altera Corporation 4–11
November 2006

Quartus II Project Platform Migration

3. On the Project menu, click Export Database. By default, the
database is exported to the export_db directory of the copied
project. If desired, a new directory can be created.

4. Open the copied project from the new version of the Quartus II
software. The Quartus II software deletes the existing database but
not the exported database.

5. On the Project menu, click Import Database. By default, the
directory of the database you just exported is selected.

Save the Database in a Version-Compatible Format

To save the database in a version-compatible format during every
compilation, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box
displays.

2. In the Category list, select the Compilation Process page. The
Compilation Process page displays.

3. Turn on the Export version-compatible database option.

4. Browse to the directory where you want to save the database.

5. Click OK.

Quartus II
Project Platform
Migration

When moving your project from one computing platform to another, you
must think about the following cross-platform issues:

■ Filenames and Hierarchy
■ Specifying Libraries
■ Quartus II Search Path Precedence Rules
■ Quartus II-Generated Files for Third-Party EDA Tools
■ Migrating Database Files

Filenames & Hierarchy

To ensure migration across platforms, you must consider a few basic
differences between operating systems when naming source files,
especially when interacting with these from the system-command
prompt or a Tcl script:

4–12 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

■ Some operating system file systems are case-sensitive. When writing
scripts, ensure you specify paths exactly, even if the current
operating system is not case-sensitive. For best results, use lowercase
letters when naming files.

■ Use a character set common to all the used platforms.
■ You do not have to convert the forward-slash / and back-slash \ path

separators in the Quartus Settings File because the Quartus II
software changes all back-slash \ path separators to forward-slashes
/.

■ Observe the shortest file name length limit of the different operating
systems you are using.

You can specify files and directories inside a Quartus II project as paths
relative to the project directory. For instance, for a project titled
foo_design with a directory structure shown in Figure 4–7, specify the
source files as: top.v, foo_folder/foo1.v, foo_folder/foo2.v, and
foo_folder/bar_folder/bar1.vhdl.

Figure 4–7. All-Inclusive Project Directory Structure

If the Quartus II Settings File is in a directory that is separate from the
source files, you can specify paths using the following options:

■ Relative paths
■ Absolute paths
■ Libraries

foo_design

foo1.v

bar_folder

bar1.vhdl

foo_design.qsf

top.v

foo_folder

foo2.v

Altera Corporation 4–13
November 2006

Quartus II Project Platform Migration

Relative Paths

If the source files are very near the Quartus II project directory, you can
express relative paths using the .. notation. For example, given the
directory structure shown in Figure 4–8, you can specify top.v as
../source/top.v and foo1.v as ../source/foo_folder/foo1.v.

Figure 4–8. Quartus II Project Directory Separate from Design Files

1 When you copy a directory structure to a different platform,
ensure that any subdirectories are in the same hierarchical
structure and relative path as in the original platform.

Specifying Libraries

You also can specify the directory (or directories) containing source files
as a library that the Quartus II software searches when you compile your
project. A Quartus II library is a directory containing design files used by
your Quartus II project. You can specify the following two kinds of
libraries in the Quartus II software:

■ User libraries, which apply to a specific project
■ Global libraries, which all projects use

Use the procedures in this section to specify user or global libraries.

foo_design

foo_design.qsf

top.v

foo1.v

bar_folder

bar1.vhdl

quartus

source

foo_folder

foo2.v

4–14 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

All files in the directories specified as libraries are relative to the libraries.
For example, if you want to include the file /user_lib1/foo1.v and the
user_lib1 directory is specified as a user library in the project, the foo1.v
file can be specified in the Quartus II Settings File as foo1.v. The
Quartus II software searches directories that are specified as libraries and
finds the file.

Specifying User Libraries

To specify user libraries from the GUI: from the Assignments menu, click
Settings, and select User Libraries (Current Project). Type the name of
the directory in the Library name box, or browse to it. User libraries are
stored in the Quartus II Settings File of the current revision.

Specifying Global Libraries

Specify global libraries from the GUI: On the Tools menu, click Options,
and select Global User Libraries (All Project). Type the name of the
directory in the Library name box, or browse to it. Global libraries are
stored in the quartus2.ini file. The Quartus II software searches for the
quartus2.ini file in the following order:

■ USERPROFILE, for example,
C:\Documents and Settings\<user name>

■ Directory specified by the TMP environmental variable
■ Directory specified by TEMP environmental variable
■ Root directory, for example, C:

For UNIX and Linux users, the file is created in the altera.quartus
directory under the <home> directory, if the altera.quartus directory
exists. If the altera.quartus directory does not exist, the file is created in
the <home> directory.

1 Whenever you specify a directory name in the GUI or in Tcl, the
name you use is maintained verbatim in the Quartus II Settings
File rather than resolved to an absolute path.

If the directory is outside of the project directory, the path returned in the
dialog box is an absolute path, and you can use the Browse button in
either the Settings dialog box or the Options dialog box to select a
directory. However, you can change this absolute path to a relative path
by editing the absolute path displayed in the Library name field to create
a relative path before you click Add to put the directory in the Libraries
list.

Altera Corporation 4–15
November 2006

Quartus II Project Platform Migration

When copying projects that specify user libraries, you must either copy
your user library files along with the project directory or ensure that your
user library files exist in the target platform.

Search Path Precedence Rules

If two files have the same file name, the file found is determined by the
Quartus II software’s search path precedence rules. The Quartus II
software resolves relative paths by searching for the file in the following
directories and order:

1. The project directory, which is the directory containing the Quartus
II Settings File.

2. The project’s database (db) directory.

3. User libraries are searched in the order specified by the
USER_LIBRARIES setting of the Quartus II Settings File for the
current revision.

4. Global user libraries are searched in the order specified by the
USER_LIBRARIES setting on the Global User Libraries page in the
Options dialog box.

5. The Quartus II software libraries directory.

1 For more information on libraries, refer to “Specifying
Libraries Using Scripts” on page 4–29.

Quartus II-Generated Files for Third-Party EDA Tools

When you copy your project to another platform, regenerate any
Quartus II software-generated files for use by other EDA tools, using the
GUI or the quartus_eda executable.

Migrating Database Files

There is nothing inherent in the file format and syntax of exported
version-compatible database files that might cause problems for
migrating the files to other platforms. However, the contents of the
database can cause problems for platform migration. For example, use of
absolute paths in version-compatible database files generated by the
Quartus II software can cause problems for migration. Altera
recommends that you change absolute paths to relative paths before
migrating files whenever possible.

4–16 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Working with
Messages

The Quartus II software generates various types of messages, including
Information, Warning, and Error messages. Some messages include
information on software status during a compilation and alert you to
possible problems with your design. Messages are displayed in the
Messages window in the Quartus II GUI (Figure 4–9), and written to
standard out and when you use command-line executables. In both cases,
messages are written to Quartus II report files.

Figure 4–9. Viewing Quartus II Messages

You can right-click on a message in the Message window and get help on
the message, locate the source of the message of your design, and manage
messages.

Messages provide useful information if you take time to review them
after each compilation. However, it can be tedious if there are thousands
of them. Beginning with version 5.1 and later, the Quartus II software
includes new features to help you manage messages.

Altera Corporation 4–17
November 2006

Working with Messages

Messages Window

By default, the Messages window displays eight message tabs
(Table 4–1), which makes it easy to review all messages of a certain type.

The Info, Extra Info, Warning, Critical Warning, and Error tabs display
messages grouped by type. Warning messages are shown with all other
types of messages in the Processing message window; all warning
messages also appear in the Warning message tab.

You can control which tabs are displayed by right-clicking in the
Messages window and choosing options from the right button pop-up
menu, and with the options in the Display Message tabs section of the
Messages page in the Options dialog box of the Tools menu (Figure 4–10).

Table 4–1. Quartus II Message Tabs

Message Tab Description

System Displays messages that are unrelated to processing your design. For example, messages
generated during programming are displayed in the System tab.

Processing Displays messages that are generated when the Quartus II software processes your most
recent compilation, simulation, or software build; timing analysis messages appear as part
of the compilation messages.

Info Displays general informational messages during a compilation, simulation, or software
build. For example: legal and compilation-success messages.

Extra Info Displays detailed informational messages about the operations for designers. For
example: extra fitting information messages.

Warning Displays strong warning messages generated during a compilation, simulation, or
software build. For example: detection of signal promotion to global and high fan-out nets.

Critical Warning Displays critical warning messages generated during a compilation, simulation, or
software build. For example: detection of combinational feedback loops, gated clocks, or
register duplication.

Error Displays processing and compilation error messages generated during a compilation,
simulation, or software build. Error messages can sometimes stop processing and cannot
be disabled.

Suppressed Displays suppressed messages during the last processing operation.

4–18 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Figure 4–10. Message Tab Options

The Suppressed tab shows messages suppressed during the last
processing operation. You can also prevent the Suppressed tab from
being displayed with an option in the Display Message tabs section of
the Messages pane in the Options dialog box of the Tools menu.

Hiding Messages

In the Messages window, you can hide all messages of a particular type.
For example, to hide Info messages, follow these steps:

1. On the Processing tab, right-click in the Processing message
window, and click the Hide option (Figure 4–11).

2. Select the Info message type.

Altera Corporation 4–19
November 2006

Message Suppression

Figure 4–11. Hiding Messages from the Processing Tab

All messages of the specified types are removed from the list of messages
in the Processing tab, although they are still included in the separate tabs
corresponding to the message type. For example, if you hide Info
messages, no Info messages are shown in the Processing message
window, but all the Info messages are shown in the Info messages
window.

Message
Suppression

Message suppression is a new feature in version 5.1 or later of the
Quartus II software. You can use message suppression to reduce the
number of messages to be reviewed after a compilation by preventing
individual messages and entire categories of messages from being
displayed. For example, if you review a particular message and
determine that it is not caused by something in your design that should
be changed or fixed, you can suppress the message so it is not displayed
during subsequent compilations. This saves time because you see only
new messages during subsequent compilations.

Every time you add a message to be suppressed, a suppression rule is
created. Suppressing exact selected messages adds patterns that are exact
strings to the suppression rules. Suppressing all similar messages adds
patterns with wildcards to the suppression rules.

Furthermore, you can suppress all messages of a particular type in a
particular stage of the compilation flow. On the Tools menu, click
Options, and click Suppression from under the Messages section
(Figure 4–12).

4–20 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Figure 4–12. Controlling Suppression Messages

Suppressing individual messages is controlled in two locations in the
Quartus II GUI. You can right-click on a message in the Messages window
and choose commands in the Suppress sub-menu entry. To open the
Message Suppression Manager, right-click in the Messages window.
From the Suppress sub-menu item, click Message Suppression Manager
(Figure 4–13).

Figure 4–13. Message Suppression Manager

Refer to “Message Suppression Manager” on page 4–22 for further
information.

Altera Corporation 4–21
November 2006

Message Suppression

Message Suppression Methods

There are two methods you can use to create suppression rules: Suppress
Exact Selected Messages and Suppress All Similar Messages. If you
suppress a message with the exact selected messages option, only
messages matching the exact text will be suppressed during subsequent
compilations. The All Similar Messages option behaves like a wildcard
pattern on variable fields in messages.

For an example of suppressing all similar messages, consider the
following message:

Info: Found 1 design units, including 1 entities, in source file mult.v.

This type of message is common during synthesis and is displayed for
each source file that is processed, with varying information about the
number of design units, entities, and source file name.

Help for this message shows it is in the form Found <number> design
units, including <number> entities, in source file <name>. Choosing to
suppress all similar messages effectively replaces the variable parts of
that message (<number>, <number>, and <name>) with wildcards,
resulting in the following suppression rule:

Info: Found * design units, including * entities, in source file *.

As a result, all similar messages (ones that match the pattern) are
suppressed.

Details & Limitations

The following limitations apply to which messages can be suppressed
and how they can be suppressed:

■ You cannot suppress error messages or messages with information
about Altera legal agreements.

■ Suppressing a message also suppresses all its submessages, if there
are any.

■ Suppressing a submessage causes matching submessages to be
suppressed only if the parent messages are the same.

■ You cannot create your own custom wildcards to suppress messages.
■ You must use the Quartus II GUI to manage message suppression,

including choosing messages to suppress. These messages are
suppressed during compilation in the GUI and when using
command-line executables.

4–22 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

■ Messages are suppressed on a per-revision basis, not for an entire
project. Information about which messages to suppress is stored in a
file called <revision>.srf. If you create a revision based on a revision
for which messages are suppressed, the suppression rules file is
copied to the new revision. You cannot make all revisions in one
project use the same suppression rules file.

■ You cannot remove messages or modify message suppression rules
while a compilation is running.

Message Suppression Manager

You can use the Message Suppression Manager to view and suppress
messages, view and delete suppression rules, and view suppressed
messages.

Open the Message Suppression Manager by clicking the Processing tab.
Right-click anywhere in the Messages window and click Message
Suppression Manager from the Suppression sub-menu. The Message
Suppression Manager has three tabs labeled Suppressible Messages,
Suppression Rules, and Suppressed Messages (Figure 4–14).

Figure 4–14. Message Suppression Manager Window

Altera Corporation 4–23
November 2006

Message Suppression

Suppressible Messages

Messages that are listed in the Suppressible Messages tab are messages
that were not suppressed during the last compilation. These messages can
be suppressed. The Select All Similar Messages option in the right click
menu selects messages according to the example described in the
“Message Suppression Methods” on page 4–21. You can select all similar
messages to see which messages are suppressed if you choose to suppress
all similar messages.

Suppression Rules

Items listed in the Suppression Rules tab are the patterns that the
Quartus II software uses to determine whether to suppress a message.
Messages matching any of the items listed in the Suppression Rules tab
are suppressed during compilations (Figure 4–15).

Figure 4–15. Message Suppression Manager

An entry in the Suppression Rules tab that includes a message with
submessages indicates the submessage is suppressed only when all its
parent messages match.

You can stop suppressing messages by deleting the suppression rules that
match them (causing them to be suppressed). Merely deleting
suppression rules does not cause the formerly suppressed messages to be
added to the messages generated during the previous compilation; you
must recompile the design for the changed suppression rules to take
effect.

4–24 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Suppressed Messages

Messages listed in the Suppressed Messages tab are divided in two
sub-tabs:

■ Messages Suppressed During Previous Compilation
■ Messages to Suppress During Next Compilation

The messages listed in the Messages Suppressed During Previous
Compilation sub-tab are all the suppressed messages from the previous
compilation (Figure 4–16).

Figure 4–16. Messages Suppressed During Previous Compilation

‘

These messages are also listed in the Suppressed tab in the Messages
window. Messages listed in the Messages to Suppress During Next
Compilation are messages that will be suppressed during the next
compilation that match suppression rules created after the last
compilation finished.

In addition to appearing in the Suppressed tab in the Messages window,
suppressed messages are included in a Suppressed Messages entry in the
Quartus II compilation report, viewable in the GUI. Suppressed messages
are not included in the <revision>.<module>.rpt text files; they are written
to a separate text report file called <revision name>.<module>.smsg.

Altera Corporation 4–25
November 2006

Quartus II Settings File

Quartus II
Settings File

All assignments made in the Quartus II software are stored as Tcl
commands in the Quartus II Settings File. The Quartus II Settings File is a
text based file containing Tcl commands and comments. The Quartus II
Settings File is not a Tcl script and does not support the full Tcl scripting
language.

As you make assignments in the Quartus II software, the assignments are
either stored temporarily in memory or written out to the Quartus II
Settings File. This is determined by the Update assignments to disk
during design processing only option, which is located in the Tools
menu under Options on the Processing page. If the option is turned on,
then all assignments are stored in memory and are written to the Quartus
II Settings File when a compilation has started or when you save or close
the project. By saving assignments to memory, the performance of the
software is improved because it avoids unnecessary reading and writing
to the Quartus II Settings File on the disk. This performance improvement
is seen more dramatically when the project files are stored on a remote
data disk.

Beginning with the Quartus II software version 5.1, you can add lines of
comments into the Quartus II Settings File, such as are shown in the
following example:

Assignments for input pin clk
Clk is being driven by FPGA 1
set_location_assignment PIN_6 -to clk
set_instance_assignment -name IO_STANDARD "2.5 V" -to clk

Sourcing other Quartus II Settings Files is supported using the following
Tcl command:

source <filename>.qsf

Format Preservation

Beginning with the Quartus II software version 5.1, the Quartus II
software maintains the order of assignments within the Quartus II
Settings File. When you make new assignments, they are appended to the
end of the Quartus II Settings File. If you modify an assignment, the
corresponding line in the Quartus II Settings File is modified and the
order of assignments in the Quartus II Settings File is maintained except
when you add and remove project source files, or when you add, remove,
and exclude members from an assignment group. In these cases, all
assignments are moved to the end of the Quartus II Settings File. For
example, if you add a new design file into the project, the list of all your
design files is removed from its current location in the file and moved to
the end of the Quartus II Settings File.

4–26 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

1 The header that is located at the beginning of the Quartus II
Settings File is written only if the Quartus II Settings File is
newly created.

The Quartus II software preserves all spaces and tabs for all unmodified
assignments and comments. When you make a new assignment or
modify an existing assignment, the assignment is written using the
default formatting.

Quartus II
Default Settings
File

The Quartus II Default Settings File contains all the project and
assignment default settings from the current version of the Quartus II
software. The Quartus II Default Settings File, located in the win directory
of the Quartus II installation path, is used to ensure consistent results
when defaults are changed between versions of the Quartus II software.

The Quartus II software reads assignments from various files and stores
the assignments in memory. The Quartus II software reads settings files
in the following order shown below, so that assignments in subsequent
files take precedence over earlier ones:

1. assignment_defaults.qdf from <Quartus II Installation
directory>/win

2. assignment_defaults.qdf from project directory

3. <revision name>_assignment_defaults.qdf from project directory

4. <revision name>.qsf from project directory

As each new file is read, if an existing assignment from a previous file
matches (following rules of case sensitivity, multi-value fields as well as
other rules), then the old value is removed and replaced by the new. For
example, if the first file has a non multi-valued assignment A=1, and the
second file has A=2, then the assignment A=1, stored in memory, is
replaced by A=2.

Scripting
Support

You can run procedures and make settings described in this chapter in a
Tcl script. You can also run some procedures at a command prompt. For
detailed information about scripting command options, refer to the
Quartus II Command-Line and Tcl API Help browser. To run the Help
browser, type the following command at the command prompt:

quartus_sh --qhelp

Altera Corporation 4–27
November 2006

Scripting Support

The Scripting Reference Manual includes the same information in PDF
form.

f For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook. Refer to the Quartus II
Settings File Reference Manual for information about all settings and
constraints in the Quartus II software. For more information about
command-line scripting, refer to the Command-Line Scripting chapter in
volume 2 of the Quartus II Handbook.

Managing Revisions

You can use the following commands to create and manage revisions. For
more information about managing revisions, including creating and
deleting revisions, setting the current revision, and getting a list of
revisions, refer to “Creating & Deleting Revisions” on page 4–3.

Creating Revisions

The following Tcl command creates a new revision called speed_ch,
based on a revision called chiptrip and sets the new revision as the
current revision. The –based_on and –set_current options are optional.

create_revision speed_ch -based_on chiptrip -set_current

Setting the Current Revision

Use the following Tcl command to specify the current revision:

set_current_revision <revision name>

Getting a List of Revisions

Use the following Tcl command to get a list of revisions in the opened
project:

get_project_revisions

Deleting Revisions

Use the following Tcl command to delete a revision:

delete_revision <revision name>

4–28 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Archiving Projects with a Tcl Command or at the Command
Prompt

You can archive projects with a Tcl command or with a command run at
the system command prompt. For more information about archiving
projects, refer to “Archiving Projects with a Tcl Command or at the
Command Prompt” on page 4–28.

The following Tcl command creates a project archive with the default
settings and overwrites the specified archived file if it already exists:

project_archive archive.qar -overwrite

Type the following command at a command prompt to create a project
archive called top:

quartus_sh --archive top r

Restoring Archived Projects

You can restore archived projects with a Tcl command or with a command
run at a command prompt. For more information about restoring
archived projects, refer to “Restore an Archived Project” on page 4–10.

The following Tcl command restores the project archive named
archive.qar in the restored subdirectory and overwrites existing files:

project_restore archive.qar -destination restored -overwrite

Type the following command at a command prompt to restore a project
archive:

quartus_sh --restore archive.qar r

Importing & Exporting Version-Compatible Databases

You can import and export version-compatible databases with either a Tcl
command or a command run at a command prompt. For more
information about importing and exporting version-compatible
databases, refer to “Version-Compatible Databases” on page 4–10.

1 The flow and database_manager packages contain
commands to manage version-compatible databases.

Altera Corporation 4–29
November 2006

Scripting Support

Use the following Tcl commands from the database_manager package
to import or export version-compatible databases.

export_database <directory>
import_database <directory>

Use the following Tcl commands from the flow package to import or
export version-compatible databases. If you use the flow package, you
must specify the database directory variable name.

set_global_assignment \
-name VER_COMPATIBLE_DB_DIR <directory>
execute_flow –flow export_database
execute_flow –flow import_database

Add the following Tcl commands to automatically generate
version-compatible databases after every compilation:

set_global_assignment \
-name AUTO_EXPORT_VER_COMPATIBLE_DB ON
set_global_assignment \
-name VER_COMPATIBLE_DB_DIR <directory>

The quartus_cdb and the quartus_sh executables provide commands to
manage version-compatible databases:

quartus_cdb <project> -c <revision> \
--export_database=<directory> r
quartus_cdb <project> -c <revision> \
--import_database=<directory>r
quartus_sh –flow export_database <project> -c \
<revision> r
quartus_sh –flow import_database <project> -c \
<revision> r

Specifying Libraries Using Scripts

In Tcl, use commands in the ::quartus::project package to specify
user libraries. To specify user libraries, use the set_global_assignment
command. To specify global libraries use the set_user_option command.
The following examples show typical usage of the
set_global_assignment and set_user_option commands:

set_global_assignment -name USER_LIBRARIES \
"../other_dir/library1"
set_user_option -name USER_LIBRARIES \
"../an_other_dir/library2"

4–30 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

To report any user libraries specified for a project and any global libraries
specified for the current installation of the Quartus II software, use the
get_global_assignment and get_user_option Tcl commands. The
following Tcl script outputs the user paths and global libraries for an open
Quartus II project:

get_global_assignment -name USER_LIBRARIES
get_user_option -name USER_LIBRARIES

Conclusion Designers often try different settings and versions of their designs
throughout the development process. Quartus II project revisions
facilitate the creation and management of different assignments and
settings.

In addition, understanding how to smoothly migrate your projects from
one computing platform to another, controlling messages, and reducing
compilation time is important as well. The Quartus II software facilitates
efficient management of your design to accommodate today’s more
sophisticated FPGA designs.

Altera Corporation 4–31
November 2006

Conclusion

Document
Revision History

Table 4–2 shows the revision history for this document.

Table 4–2. Document Revision History

Date &
Document

Version
Changes Made Summary of Changes

November 2006
v6.1.0

May 2006 v6.0.0 Minor updates for the Quartus II software version 6.0.0.

October 2005
v5.1.0

Updated for the Quartus II software version 5.1.0.

May 2005 v5.0.0 Updated for the Quartus II software version 5.0.0.

Dec. 2004 v1.1 Updated for Quartus II software version 4.2:
● General formatting and editing updates.
● Added new figures.
● Added new introduction to To Delete a Revision

That is a Design’s Current Revision.
● Added new section To Delete a Revision That is not

a Design’s Current Revision.
● Updated figures.
● Added new information about displaying

assignments for multiple revisions.
● Updated Archive a Project.
● Updated Restore an Archived Project.
● Version-Compatible Databases describes

migration to Quartus II software version 4.2.
● Corrected Tcl commands.

June 2004 v1.0 Initial release.

4–32 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Altera Corporation Section II–1
Preliminary

Section II. I/O & PCB
Tools

This section provides an overview of the I/O planning process, Altera’s
FPGA pin terminology, as well as the various methods for importing,
exporting, creating, and validating pin-related assignments using
Quartus® II software, and describes the design flow that includes making
and analyzing pin assignments using the Start I/O Assignment Analysis
command in the Quartus II software, during and after the development
of your HDL design.

This section includes the following chapters:

■ Chapter 5, I/O Management
■ Chapter 6, Mentor Graphics PCB Design Tools Support
■ Chapter 7, Cadence PCB Design Tools Support

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section II–2 Altera Corporation
Preliminary

I/O & PCB Tools Quartus II Handbook, Volume 2

Altera Corporation 5–1
November 2006

5. I/O Management

Introduction The process of managing I/Os for today’s leading FPGA devices involves
more than just fitting design pins into a package. The increasing
complexity of today’s I/O standards and pin placement guidelines are
just some of the factors that influence pin-related assignments. The I/O
capabilities of the FPGA device and board layout guidelines influence pin
location and other types of assignments for each of your design pins.
Therefore, it is necessary to begin I/O planning and printed circuit board
(PCB) development even before starting the FPGA design.

This chapter provides an overview of the I/O planning process, FPGA
pin terminology and the various methods for importing, exporting,
creating, and validating pin-related assignments.

I/O Planning
Overview

I/O planning includes creating pin-related assignments and validating
them against pin placement guidelines. This process ensures a successful
fit in your Altera® FPGA device. The Quartus® II software includes the
Pin Planner and the I/O Assignment Analyzer to assist you in
I/O planning.

The method you use to create your pin assignments depends on your
requirements. If your PCB is partially designed, create your FPGA
assignments in your PCB tool and import them into the Quartus II
software for validation (Figure 5–1).

1 Currently, only the Mentor Graphics I/O Designer PCB tool
supports in this reverse I/O planning flow.

QII52013-6.1.0

5–2 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

Figure 5–1. I/O Planning Flow Using an FPGA Xchange File from a PCB Tool

f For more information about board layout and I/O pin assignment
import and export, refer to the Cadence PCB Design Tools Support and the
Mentor Graphics PCB Design Tools Support chapters in volume 2 of the
Quartus II Handbook.

If you have not designed the PCB yet, create and validate your I/O
assignments in the Quartus II software, then export them to the PCB tool
(Figure 5–2). This is the typical design flow for creating I/O assignments
for an FPGA design.

Create &
Modify Pin

Assignments

PCB Tool

I/O Assignment Analysis

Validate?

Altera
Quartus II Software

Import Pin Assignments Design Files
(if available)

Yes

No

Analysis & Synthesis

Pins have been Validated

FPGA Xchange
File

.fx

Altera Corporation 5–3
November 2006

I/O Planning Overview

Figure 5–2. Quartus II Software I/O Planning Flow

When creating pin assignments, the preferred method for validating
those assignments is to perform a full compilation first. If design files are
not available, this may not be possible. You can create a top-level netlist
wrapper file while making pin assignments and creating custom
megafunctions without requiring any design files (Figure 5–3). With this
wrapper file, you can use the I/O Assignment Analyzer to validate your
I/O assignments early in the FPGA design process.

For more details about this early I/O planning design flow, refer to “Early
I/O Planning Using the Pin Planner” on page 5–52.

Pin-Out File

.pin

I/O Assignment Analysis

Import Pin
Assignment

Analysis & Synthesis

Quartus II
Settings File

Create and Modify Pin-Related Assignments

Validate
Assignments

FPGA Xchange
File

Yes

No

PCB ToolAltera Quartus II Software

Assignment
Editor

Pin
Planner

Tcl
Timing
Closure

Floorplan
Editor

Synthesis
Attributes

Design Files (if Available)

Export Pin Assignments .fx

.qsf

Pins have been
Validated

5–4 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

Figure 5–3. Early I/O Planning Using the Pin Planner

Understanding
Altera FPGA Pin
Terminology

Altera FPGA devices are available in a variety of packages to meet all of
your complex design needs. To describe Altera FPGA pin terminology,
this chapter uses a wirebond ball grid array (BGA) package in its
examples. On the top surface of the silicon die, there is a ring of bond pads
that connect to the I/O pins of the silicon. In a wirebond BGA package,
the device is placed in the package and copper wires connect the bond
pads to the solder balls of the package. Figure 5–4 shows a cross section
of a wirebond BGA package.

Make Changes as Needed

In Pin Planner, Create, Import, or
Edit Megafunctions or

IP MegaCores

Start I/O Assignment Analysis

Create a Quartus II Project

Continue Design

Yes

NoAssignments
Correct?

Assign Megafunction or IP
MegaCores Ports to New or

Existing Nodes

Assign External Nodes to Device Pins

Create Top-Level Design File

Use Assignments in Existing
Project or Create the Rest of a New
Project Based on the Assignments

Altera Corporation 5–5
November 2006

Understanding Altera FPGA Pin Terminology

f For a list of all BGA packages available for each Altera FPGA device,
refer to the Altera Device Package Information Datasheet.

Figure 5–4. Wire Bond BGA

Package Pins

The pins of a BGA package are small solder balls arranged in a grid
pattern on the bottom of the package. In the Quartus II software, the
package pins are represented as pin numbers. The pin numbers are
determined by their locations using a coordinate system with the letters
and numbers identifying the row and column of the pins, respectively.

The upper-most row of pins is labeled “A” and continues alphabetically
as you move downward (Figure 5–5). The left-most column of pins is
labeled “1” and continues with increments of 1 as you move to the right.
For example, pin number “A1” represents row “A” and column “1.”

Figure 5–5. Row & Column Labeling

The letters I, O, Q, S, X, and Z are never used in pin numbers. If there are
more rows than letters of the alphabet, then the alphabet is repeated,
prefixed with the letter “A.”

f For more information about the pin numbers for your Altera device,
refer to the device pin-outs available on the Altera web site,
www.altera.com.

Solder Ball Layer

Package

Wire Silicon Die Bond Pad

1 2 3 4 5 6 7 ...

...

A
B
C
D
E
F
G

Altera
Device Package

(Top View)

Column

Row

5–6 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

Pads

Package pins are connected to pads located on the perimeter of the top
metal layer of the silicon die (Figure 5–4). Each pad is identified by a
pad ID, which is numbered starting at 0, incrementing by 1 in a counter
clockwise direction (Figure 5–6).

Figure 5–6. Pad Number Ordering

To prevent signal integrity issues, the Quartus II software uses pin
placement rules to validate your pin placements and pin-related
assignments. It is important that you understand to which pad locations
your pins were assigned, because some pin placement rules describe pad
placement restrictions. For example, in certain devices, there is a
restriction on the number of I/O pins supported by a VREF pad to ensure
signal integrity. There are also restrictions on the number of pads between
single-ended input or output pins and a differential pin. The Quartus II
software performs pin placement analysis, and if pins are not placed
according to pin placement rules, the design compilation fails and the
Quartus II software reports an error.

f For more information about pin placement guidelines, refer to the Design
Consideration section of the Selectable I/O Standards chapter in volume 1 of
the appropriate device handbook.

I/O Banks

I/O pins are organized into I/O banks designed to facilitate the various
supported I/O standards. Each I/O bank is numbered and has its own
voltage source pins, called VCCIO, to offer the highest I/O performance.
Depending on the device and I/O standards for the pins within the I/O
bank, the specified voltage of the VCCIO pin is between 1.5 V and 3.3 V.
Each I/O bank can support multiple pins with different I/O standards
that share the same VCCIO.

It is important to refer to the appropriate device handbook to determine
the capabilities of each I/O bank. For example, the pins in the I/O banks
on the left and right side of a Stratix® II device support high-speed I/O

29 28 27 ...

...

0

1

2

3

Altera
Silicon Die

Altera Corporation 5–7
November 2006

Understanding Altera FPGA Pin Terminology

standards such as LVDS, whereas the pins on the top and bottom I/O
banks support all single-ended I/O standards, including DQS signaling
(Figure 5–7). Pins belonging to the same I/O bank must use the same
VCCIO signal.

Figure 5–7. Stratix II I/O Banks Notes (1), (2), (3), (4)

Notes to Figure 5–7:
(1) Figure 5–7 is a top view of the silicon die which corresponds to a reverse view for flip chip packages. It is a graphical

representation only.
(2) Depending on size of the device, different device members have different number of VREF groups. Refer to the pin

list and the Quartus II software for exact locations.
(3) Banks 9 through 12 are enhanced PLL external clock output banks.
(4) Horizontal I/O banks feature SERDES and DPA circuitry for high speed differential I/O standards. For more

information about differential I/O standards, refer to the High-Speed Differential I/O Interfaces in Stratix II Devices
chapter in volume 2 of the Stratix II Device Handbook.

Bank 3 Bank 4Bank 11 Bank 9

PLL11 PLL5

PLL7

PLL1

PLL2

PLL4

PLL3

PLL10

I/O banks 3, 4, 9 & 11 support all
single-ended I/O standards for both

input and output operations. All
differential I/O standards are

supported for both input and output
operations at I/O banks 9 & 11.

I/O banks 7, 8, 10 & 12 support all
single-ended I/O standards for both

input and output operations. All
differential I/O standards are

supported for both input and output
operations at I/O banks 10 & 12.

I/O banks 1, 2, 5 & 6 support LVTTL, LVCMOS,
2.5-V, 1.8-V, 1.5-V, SSTL-2, SSTL-18 Class I, LVDS,

HyperTransport, differential SSTL-2 and differential
SSTL-18 Class I standards for both input and output

operations. HSTL, SSTL-18 Class II, differential

HSTL and differential SSTL-18 Class II standards are
only supported for input operations.

VREF0B3 VREF1B3 VREF2B3 VREF3B3 VREF4B3 VREF0B4 VREF1B4 VREF2B4 VREF3B4 VREF4B4

Bank 8 Bank 7Bank 12 Bank 10

PLL12 PLL6

PLL8 PLL9
VREF4B8 VREF3B8 VREF2B8 VREF1B8 VREF0B8 VREF4B7 VREF3B7 VREF2B7 VREF1B7 VREF0B7

V
R

E
F

3
B

2
V

R
E

F
2

B
2

V
R

E
F

1
B

2
V

R
E

F
0

B
2

B
a

nk
 2

V
R

E
F

3
B

1
V

R
E

F
2

B
1

V
R

E
F

1
B

1
V

R
E

F
0

B
1

B
an

k
1

V
R

E
F

1
B

5
V

R
E

F
2

B
5

V
R

E
F

3
B

5
V

R
E

F
4

B
5

B
a

nk
 5

V
R

E
F

1
B

6
V

R
E

F
2

B
6

V
R

E
F

3
B

6
V

R
E

F
4

B
6

B
an

k
6

V
R

E
F

4
B

2

V
R

E
F

0
B

5

V
R

E
F

4
B

1

V
R

E
F

0
B

6

DQS4T DQS3T DQS2T DQS1T DQS0T

DQS4B DQS3B DQS2B DQS1B DQS0BDQS8B DQS7B DQS6B DQS5B

DQS8T DQS7T DQS6T DQS5T

This I/O bank supports
LVDS, HyperTransport and

LVPECL standards for input
clock operations.
Differential HSTL and

differential SSTL standards
are supported for both input

and output operations.

This I/O bank supports
LVDS, HyperTransport and

LVPECL standards for input
clock operations.

Differential HSTL and

differential SSTL standards
are supported for both input

and output operations.

This I/O bank supports

LVDS, HyperTransport and
LVPECL standards for input

clock operations.
Differential HSTL and
differential SSTL standards

are supported for both input
and output operations.

This I/O bank supports
LVDS, HyperTransport and
LVPECL standards for input

clock operations.
Differential HSTL and

differential SSTL standards
are supported for both input

and output operations.

5–8 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

VREF Groups

A VREF group is a group of pins that includes one dedicated VREF pin as
required by voltage-referenced I/O standards. A VREF group is made up
of a small number of pins, compared to the I/O bank, in order to maintain
the signal integrity of the VREF pin. One or more VREF groups exist in an
I/O bank. Each pin in a VREF group shares the same VCCIO and VREF

voltages.

f For more information about I/O banks, VREF groups, and supported
I/O standards, refer to the Architecture and Selectable I/O Standards
chapters in volume 1 of the appropriate device handbook.

Importing &
Exporting Pin
Assignments

You can transfer pin-related assignments between the Quartus II software
and other tools by importing and exporting these assignments in the
following file formats: Comma Separated Value (.csv) file, Quartus II
Settings File (.qsf), Tool command language (Tcl), FPGA Xchange (.fx)
file, and Pin-Out (.pin) file (export only).

Comma Separated Value File

You can transfer pin-related assignments as a Comma Separated Value
file. This file consists of a row of column headings followed by rows of
comma-separated data. The row of column headings in the exported file
is in the same order and format as the columns displayed in the Pin
category in the Assignment Editor or in the All Pins list in the Pin Planner
when the export is performed. Do not modify the row of column
headings if you plan to import the Comma Separated Value file later.

To import a Comma Separated Value file into your project, on the
Assignment menu, click Import Assignments and browse to the file.

You can export pin-related assignments from the Quartus II Pin Planner
or the Assignment Editor. To export your pin-related assignments to a
Comma Separated Value file, on the Assignment menu, click Pin Planner
or Assignment Editor. For the Pin Planner, make sure the All Pins list is
visible. If the list is not visible, on the View menu, click All Pins List. For
the Assignment Editor, select the Pin category from the Category list.
Then, to create the Comma Separated Value (.csv) file, on the File menu,
click Export.

1 The All Pins list in the Pin Planner and the Pin category in the
Assignment Editor display detailed properties about each pin of
the device, similar to the device pin-out files (available on the
Altera web site at www.altera.com) in addition to the pin name
and pin number.

Altera Corporation 5–9
November 2006

Importing & Exporting Pin Assignments

f For more information about importing and exporting Comma Separated
Value files and the Assignment Editor, refer to the Assignment Editor
chapter in volume 2 of the Quartus II Handbook.

Quartus II Settings Files

You can transfer pin-related assignments as a Quartus II Settings File. The
pin-related assignments are stored as Tcl commands in the Quartus II
Settings File.

To import a Quartus II Settings File, on the Assignments menu, click
Import Assignments and browse to the file. You can also import a
Quartus II Settings File by sourcing the file in the Tcl console. To export a
Quartus II Settings File, on the Assignments menu, click Export
Assignments, type in a file name, and click OK.

f For more information about Quartus II Settings Files, refer to the
Quartus II Project Management chapter in volume 2 of the Quartus II
Handbook.

Tcl Script

To import the pin-related assignments from a Tcl script, source the Tcl
script in the Tcl console or run the Tcl script with the quartus_sh
executable. For example, type the following command at a system
command prompt:

quartus_sh -t my_pins.tcl r

You can export pin-related assignments from the Quartus II Pin Planner
or the Assignment Editor. To export pin-related assignments as a Tcl
script, on the Assignments menu, click Pin Planner or Assignment
Editor. For the Pin Planner, make sure the All Pins list is visible. If the list
is not visible, on the View menu, click All pins List. For the Assignment
Editor, select the Pin category from the Category list. Then, to create the
.tcl file, on the File menu, click Export. In the Export dialog box, type in a
file name, select Tcl Script File (*.tcl), and click OK. All pin-related
assignments displayed in the All Pins list of the Pin Planner and the
spreadsheet of the Assignment Editor are saved as Tcl commands in the
Tcl script.

f For more information about Quartus II scripting support including
examples, refer to the Tcl Scripting and Command-Line Scripting chapters
in volume 2 of the Quartus II Handbook.

5–10 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

FPGA Xchange File

An FPGA Xchange file contains device and pin-related information that
allows you to transfer information between the Quartus II software and
your PCB schematic or design tool. For example, you can use an FPGA
Xchange file to transfer pin information from the Mentor Graphics
I/O Designer software to the Quartus II software to validate pin
assignment changes using the I/O Assignment Analyzer.

To import an FPGA Xchange file into the Quartus II software, perform the
following steps:

1. On the Assignments menu, click Import Assignments.

2. In the File name box, click Browse and click FPGA Xchange Files
(*.fx) from the Files of type list.

3. Browse to and select the FPGA Xchange file and click Open.

4. Click OK.

To generate an FPGA Xchange file in the Quartus II software, perform the
following steps:

1. Perform an I/O Assignment Analysis or a full compilation.

2. On the Assignments menu, click Settings. The Settings dialog box
appears.

3. In the Category list in the EDA Tool Settings, select Board-Level. In
the Board Level Symbol Format list, select FPGA Xchange.

4. Set the Output directory to the location where you want to save the
file. The default output file path is
<project directory>/symbols/fpgaxchange.

5. Click OK.

6. On the Processing menu, point to Start and click Start EDA Netlist
Writer. The output directory you selected is created when you
generate the FPGA Xchange file.

Altera Corporation 5–11
November 2006

Importing & Exporting Pin Assignments

Pin-Out File

A Pin-Out file is an ASCII text file containing pin location results and
other pin information. To generate a Pin-Out file for your project, you
must successfully perform an I/O Assignment Analysis or full
compilation.

Use the Pin-Out file to understand which signals should be connected to
which pins. You can also use the Pin-Out file to transfer the pin
information of your project into third-party PCB tools for board
development. Table 5–1 describes each header of the Pin-Out file, and
Figure 5–8 is an example of a Pin-Out file.

Figure 5–8. Example of a Pin-Out File

1 For more information about the Pin Name/Usage, refer to the
Device Pin-Out for the targeted device, available on the Altera
web site at www.altera.com.

f For more information about using Cadence PCB tools with the
Quartus II software, refer to the Cadence PCB Design Tools Support chapter
in volume 2 of the Quartus II Handbook. For more information about
using the Mentor Graphics PCB tools with the Quartus II software, refer
to the Mentor Graphics PCB Design Tools Support chapter in volume 2 of
the Quartus II Handbook.

Pin Name/Usage Location Dir. I/O Standard Voltage I/O Bank User Assignment

VCCA_PLL1 9 power 1.5V
clk 10 input LVTTL 1 N

Table 5–1. Pin-Out File Header Description

Column Name Description

Pin Name/Usage The name of a design pin, ground or power

Location The pin number of the location on the device package

Dir The direction of the pin

I/O Standard The name of the I/O standard to which the pin is configured

Voltage The voltage level that is required to be connected to this pin

I/O Bank The I/O bank number that the pin belongs to

User Assignment Y or N indicating if the location assignment for the design pin was user assigned (Y) or
assigned by the Fitter (N)

5–12 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

Creating
Pin-Related
Assignments

A pin-related assignment is any assignment applied to a pin. An example
of a pin-related assignment is a pin location assignment that assigns a
design pin to a pin number/location on the targeted device. Other
pin-related assignments include assigning an I/O standard or current
drive strength to a pin.

You can make pin-related assignments at any time during the design
cycle, even before any design files have been developed. The accuracy
and completeness of the pin-related assignments determines the accuracy
of the I/O assignment analysis. If you do not have design files, create
reserved pins to temporarily represent your top-level design I/O pins
until the I/O pins are defined in your design files. If you do not have
design files in your project, create an empty Verilog HDL or VHDL file
with all the ports of the design defined.

Reserved pins are pins that you reserve for future use but that do not
currently perform a function in your design. Reserved pins require a
unique pin name and a pin location. Using reserved pins as place holders
for future design pins increases the accuracy of the I/O assignment
analysis.

The Quartus II software offers many tools and features for creating
reserved pins and other pin-related assignments (Table 5–2). Each tool
and feature is described in more detail in the following sections.

Table 5–2. Overview of Quartus II Tools & Features Used to Create Pin-Related Assignments (Part 1 of 2)

Feature Overview

Pin Planner ● Make pin location assignments to one or more node names by dragging and dropping
unassigned pins into the package view

● Edit pin location assignments for one or more node names by dragging and dropping groups of
pins within the package view

● Visually analyze pin resources in the package view
● Display I/O banks and VREF groups
● View the function of package pins using the pin legend
● Make correct pin location decisions by referring to the Pads view
● Create, import, and edit megafunctions and IP MegaCores for early I/O planning
● Generate a top-level wrapper file without design files based on early I/O assignments
● Configure board trace models of selected pins for use in “board-aware” signal integrity reports

generated with the Enable Advanced I/O Timing option

Assignment
Editor

● Create and edit all types of pin-related assignments
● Create and edit multiple assignments simultaneously with the Edit bar
● Create pin assignments efficiently by viewing the different font styles used to display assigned

and unassigned node names, as well as occupied and available pin locations
● Provides user-selectable information about each pin, including the pad number, the tCO

requirement, and the tH requirement

Altera Corporation 5–13
November 2006

Creating Pin-Related Assignments

The Pin Planner is the main interface for creating and editing pin-related
assignments. Use the Pin Planner package view to make pin location and
other assignments using a device package view instead of pin numbers.
With the Pin Planner, you can identify I/O banks, VREF groups, and
differential pin pairings to help you through the I/O planning process.

f For more information about using the Pin Planner, refer to “Using the
Pin Planner” on page 5–21.

While the Pin Planner is the recommended tool for creating and editing
pin-related assignments, you may find some of the other tools for
working with pin-related assignments useful.

Assignment Editor

The Assignment Editor provides a spreadsheet-like interface that allows
you to create and change all pin-related assignments.

Assigning Pin Locations Using the Assignment Editor

You can use either of two methods for making pin assignments with the
Assignment Editor. The first involves selecting from all assignable pin
numbers of the device and assigning a pin name from your design to this
location.

The second involves selecting from all pin names in your design and
assigning a device pin number to the design pin name. In either method,
you can take advantage of row background coloring (pin numbers within
the same I/O bank have a common background color), auto fill node
names, and pin numbers to assist in making your assignments.

Tcl ● Create any pin-related assignments for multiple pins
● Store and reapply all pin-related assignments with Tcl scripts
● Make assignments from the command line

Timing
closure
Floorplan

● Create and change pin locations by dragging and dropping pins into the floorplan
● Make correct pin location decisions by referring to the pad ID number and spacing
● Display I/O banks, VREF groups, and differential pin pairing information

Synthesis
Attributes

● Embed pin-related assignments using attributes in the design files to pass assignments to the
Quartus II software

Table 5–2. Overview of Quartus II Tools & Features Used to Create Pin-Related Assignments (Part 2 of 2)

Feature Overview

5–14 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

Setting Pin Locations From the Device Pin Number List
It is important to understand the properties of a pin location before
assigning that location to a pin in your design. For example, you must
know which I/O bank or VREF group the pin belongs to when following
pin placement guidelines.

f For more information about pin placement guidelines, refer to the
appropriate device handbook.

Before creating pin-related assignments, perform analysis and
elaboration or analysis and synthesis on your design to create a database
of your design pin names. Then perform the following steps:

1. To open the Assignment Editor, on the Assignments menu, click
Assignment Editor.

2. From the Category list, select Pin.

Creating pin assignments can be difficult when you need to check
which I/O bank the pin belongs to or which VREF pad the pin uses.
By selecting the Pin category, more pin-related information is visible
in the spreadsheet to help you create pin location assignments.

1 The Assignment Editor does not show assignments to
individual nodes made with wildcards or assignment
groups.

3. On the View menu, click Show All Assignable Pin Numbers.

1 You can also view all assignable pins in the All Pins list in the Pin
Planner. Right-click anywhere in the Groups or All Pins lists,
and click Show Assignable Pins. When the All Pins list filter is
set to Pins: unassigned or Pins: all, all unassigned pin15

A list of all assignable pin numbers for the targeted device is shown in the
Location column (Figure 5–9).

Altera Corporation 5–15
November 2006

Creating Pin-Related Assignments

Figure 5–9. Assignment Editor with Show All Assignable Pin Numbers

4. Find a pin number in the spreadsheet. In the same row, double-click
the cell in the To column. Type the pin name or select a pin from the
drop-down arrow. If analysis and elaboration has been performed,
your design pins are listed in the drop-down arrow.

1 As you type in a pin name, the Assignment Editor
automatically completes the field by looking up the pin
names stored in the database created from the initial
analysis and elaboration. Pin names already assigned to a
pin location are shown in italics.

Setting Pin Locations from the Design Signal Name List
It is important to understand the properties of a pin location before
assigning that location to a pin in your design. For example, you must
know which I/O bank or VREF group the pin belongs to when following
pin placement guidelines.

f For more information about pin placement guidelines, refer to the
appropriate device handbook.

5–16 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

To set the pin locations from the design pin name list, perform the
following steps:

1. To open the Assignment Editor, on the Assignments menu of the
Quartus II software, click Assignment Editor.

2. From the Category list, select Pin.

Creating pin assignments can be difficult when you have to check
which I/O bank the pin belongs to, or which VREF pad the pin uses.
By selecting the Pin category, more pin-related information is visible
in the spreadsheet to help you create pin location assignments.

1 The Assignment Editor does not show assignments to
nodes made with wildcards or assignment groups.

3. On the View menu, click Show All Known Pin Names.

A list of all pin names in your design is shown in the To column
(Figure 5–10).

Figure 5–10. Assignment Editor with Show All Known Pin Names

Altera Corporation 5–17
November 2006

Creating Pin-Related Assignments

1 To list a selection of pin names from your design into the
spreadsheet of the Assignment Editor, type the pin names with
or without wild cards into the Node Filter bar. This is effective
when you want to assign common pin-related assignments to a
selection of pins in your design.

f For more information about using the Node Filter bar, refer to the
Assignment Editor chapter in volume 2 of the Quartus II Handbook.

4. Find a pin name in the spreadsheet, and double-click the Location
cell in the same row. Select a pin number from the drop-down arrow
which contains all assignable pin numbers in the selected device.
You can also start typing the pin number and let the Assignment
Editor automatically complete it for you. Instead of typing
PIN_AA3, you can type AA3 and let the Assignment Editor auto
complete the pin number to PIN_AA3.

1 Pin locations that already have a pin name assignment appear in
the Assignment Editor in italics.

f For more information about using the Assignment Editor, refer to the
Assignment Editor chapter in volume 2 of the Quartus II Handbook.

Tcl Scripts

Tcl scripting allows you to write scripts to create pin-related assignments.
To run a Tcl script with your project, type the following command at a
system prompt:

quartus_sh -t my_tcl_script.tcl r
You can also type individual Tcl commands into the Tcl console window.
To use the Tcl console, on the View menu, point to Utility Windows and
click Tcl Console. In the Tcl Console window, type your Tcl commands.
The following example shows a list of Tcl commands that creates pin-
related assignments to the input pin address[10].

set_location_assignment PIN M20 -to address[10] -comment"Address pin to Second FPGA"
set_instance_assignment -name IO_STANDARD "2.5 V" -to address[10]
set_instance_assignment -name CURRENT_STRENGTH_NEW "MAXIMUM CURRENT" -to address[10]

f For more information about using Tcl scripts to create pin-related
assignments, refer to the Tcl Scripting chapter in volume 2 of the
Quartus II Handbook.

5–18 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

Timing Closure Floorplan

The Timing Closure Floorplan shows the pins in the same order as the
pads of the device. Understanding the relative distance between a pad
and related logic can help you meet your timing requirements. You can
also use the Timing Closure Floorplan to find the distances between user
I/O pads and VCC, GND, and VREF pads to avoid signal integrity issues
(Figure 5–11).

f For more information about pin placement guidelines, refer to the
Selectable I/O Standards chapter of the appropriate device handbook.

Figure 5–11. Timing Closure Floorplan of EP1C6F256I7

You can create a pin location assignment with the Timing Closure
Floorplan by selecting a pin and selecting a desired location. To do this,
perform the following steps:

1. On the Assignments menu, click Timing Closure Floorplan. The
Timing Closure Floorplan opens, displaying the pin and pad layout
of your selected device.

2. On the View menu, point to Utility windows, and click Node
Finder. The Node Finder dialog box appears.

Altera Corporation 5–19
November 2006

Creating Pin-Related Assignments

3. In the Filter list, select Pins: all and click List to see all the nodes in
the design.

4. Select a node from the Nodes Found list and drag the selection into
a pin location in the floorplan.

f For more information about using the Timing Closure Floorplan, refer to
the Timing Closure Floorplan chapter in volume 2 of the Quartus II
Handbook.

Synthesis Attributes

Synthesis attributes allow you to embed assignments in your HDL code.
The Quartus II software reads these synthesis attributes and translates
them into assignments. The Quartus II integrated synthesis supports the
chip_pin, useioff, and altera_attribute synthesis attributes.

f For more information about integrated synthesis, refer to the Quartus II
Integrated Synthesis chapter in volume 1 of the Quartus II Handbook.

For synthesis attribute support by third-party synthesis tools, contact
your vendor.

chip_pin & useioff

You can use the chip_pin and useioff synthesis attributes to embed
pin location and fast output/input register assignments, respectively. For
all other assignments, including pin-related assignments, use the
altera_attribute synthesis attribute as discussed in
“altera_attribute” on page 5–20.

Synthesis attributes translated into assignments are stored in the database
and take precedence over other assignments in the Quartus II Settings
File. Example 5–1 and 5–2 embed a location and fast input assignment
into both a Verilog HDL and VHDL design file using the chip_pin and
useioff synthesis attributes.

Example 5–1. Verilog HDL Example
input my_pin1 /* synthesis chip_pin = "C1" useioff = 1 */;

5–20 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

Example 5–2. VHDL Example
entity my_entity is

port(
my_pin1: in std_logic

;
end my_entity;
attribute useioff : boolean;
attribute useioff of my_pin1 : signal is true;
attribute chip_pin : string;
attribute chip_pin of my_pin1 : signal is "C1";

altera_attribute

To create other pin-related assignments, use the altera_attribute
attribute. The altera_attribute attribute is understood only by the
Quartus II integrated synthesis and supports all types of instance
assignments. Example 5–3 and 5–4 use altera_attribute to embed
the fast input register and I/O standard assignments into both a Verilog
HDL and a VHDL design file.

Example 5–3. Verilog HDL Example
input my_pin1 /* synthesis altera_attribute = "-name FAST_INPUT_REGISTER
ON;
-name IO_STANDARD \"2.5 V\" " */ ;

Example 5–4. VHDL Example
entity my_entity is

port)
my_pin1: in std_logic

);
end my_entity;

attribute altera_attribute : string;
attribute altera_attribute of my_pin1: signal is "-name FAST_INPUT_REGISTER
ON; -name IO_STANDARD \"2.5 V\"" ;

f For detailed information about using synthesis attributes and their usage
syntax, refer to the Quartus II Integrated Synthesis chapter in volume 1 of
the Quartus II Handbook.

Altera Corporation 5–21
November 2006

Creating Pin-Related Assignments

Using the Pin Planner

When planning your I/Os, it can be cumbersome to try to correlate pin
numbers with their relative location on the package and their pin
properties. The Pin Planner provides an intuitive graphical
representation of the targeted device, also known as the package view,
that makes it easy to plan your I/Os, create reserved pins, and make pin
location assignments. When deciding on a pin location, you can use the
Pin Planner to gather information about available resources, as well as the
functionality of each individual pin, I/O bank, and VREF group. You can
assign locations to design pins by dragging and dropping each pin into
the Package view.

1 Maintaining good signal integrity (SI) requires that you follow
pad distance and pin placement rules. Complementing the Pin
Planner is the Pad View, which displays the pads in order
around the silicon die.

The Pin Planner includes the following sections (refer to Figures 5–12
through 5–17):

■ Package view
■ All Pins list
■ Groups list
■ Info bar
■ Floating Pad View window

5–22 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

Figure 5–12. Pin Planner

The Pin Planner feature supports cross-probing that allows you to select
a pin in one view while simultaneously highlighting the pin in all of the
different views. For example, if you select a pin in the package view of the
Pin Planner, the corresponding pad in the Pad View window is
highlighted. If the pin has an assigned node name, the node name in the
All Pins list and the Groups list is highlighted.

Groups List

The Groups list displays all of the buses from the top-level ports of your
design and all the assignment groups in your project (Figure 5–13). You
can also filter the group names displayed by typing in a wild card filter
into the Named list. The Groups list allows you to create your own
custom groups of pins and make location assignments to groups by
dragging them into the package view of the Pin Planner.

1 In the Groups list, all members of an assignment group are
displayed, regardless of whether the member is a pin or an
internal node.

The background color of pin locations in the Groups list easily identifies
which pins belong to which I/O banks. The colors match the I/O bank
colors in the Package View when Show I/O Banks is enabled. You can

All Pins List

Groups List
Package View

Information Bar

Altera Corporation 5–23
November 2006

Creating Pin-Related Assignments

disable the colors in both the Groups list and the All Pins list. From the
Tools menu, click Options. In the Category list, select Pin Planner, and
turn off Show I/O bank color in node lists.

You can create and organize custom groups and group members in the
Assignment Groups dialog box or directly in the Groups list in the Pin
Planner. To open the Assignment Groups dialog box, on the Assignments
menu, click Assignment (Time) Groups.

Figure 5–13. Groups List

To add a new group to the Groups list without opening the Assignment
Groups dialog box, perform the following steps:

1. In the Node Name column, double-click new in the Groups list.

2. Type the group name.

3. Press Enter. The Add Members dialog box appears.

4. Type node names, wild cards, and assignment groups in the
Members box, or browse to and select the node names from the
Node Finder dialog box.

5. Click OK.

f For more information about using Assignment Groups, refer to the
Assignment Editor chapter in volume 2 of the Quartus II Handbook.

5–24 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

You can also create a new group by selecting one or more node names
within the Groups list or All Pins list. Right-click one of the selected node
names, and click Add to Group on the shortcut (right-click) menu.

As you plan your I/O placement, you may decide to add and remove
members from a group.

To add a member to a custom group in the Groups list without opening
the Assignment Groups dialog box, perform the following steps:

1. Right-click a group name in the Groups list and click Add
Members.

2. Type in the name of the member or click browse to select one or
more nodes from the Node Finder dialog box.

To remove a member from a group in the Groups list, perform the
following steps:

1. Expand the group from which you want to remove a member.

2. Select one or more members that you want to remove.

3. Right-click the selected members, point to Edit and click Delete.

The Groups list provides many columns, some for information purposes
and others to make assignments. The only cells you can edit in addition
to those in the Node Name column are Location, I/O Standard, Reserved
cells, and Enable. You can make changes to any of the cells in these
columns to adjust pin-related assignments. The other columns provide
useful information during I/O planning, including the I/O Bank
number, VREF group, and the direction. To show or hide a column,
right-click the column and click Customize Columns. You can also
reorder and sort the columns from this menu.

1 If an assignment group contains pins with different directions,
the direction of the assignment group is a bidir group.

You can edit the columns in the Groups list in the same manner as a
spreadsheet. You can copy and paste the Location, I/O Standard, and
Reserved assignments to other rows in the list within the same column.
You can also use Auto Fill to copy these assignments to other rows
quickly. To automatically fill a block of rows, set the desired assignment
in one row and select the assignment’s cell. Place the cursor over the
lower right-hand corner of the cell until it changes to a cross with the
word FILL (Figure 5–14). Click and drag up or down the column to select

Altera Corporation 5–25
November 2006

Creating Pin-Related Assignments

which cells to fill. When all the desired cells are selected, release the
mouse button. The selected assignment is copied to all of the selected
cells.

Figure 5–14. Auto Fill the Groups List

All Pins List

The All Pins list displays all of the pins in your design, including
user-created pins (Figure 5–15). The All Pins list does not display buses;
instead, it displays each individual pin of the bus. The background color
of pin locations in the All Pins list easily identifies which pins belong to
which I/O banks. The colors match the I/O bank colors in the Package
View when Show I/O Banks is turned on. You can turn off the colors in
the All Pins list and the Groups list. On the Tools menu, click Options. In
the Category list, select Pin Planner, and turn off Show I/O bank color in
node lists.

You must perform Analysis and Elaboration successfully to display pins
in your design in the All Pins list. Individual user-reserved pins and
nodes with pin-related assignments are always shown in the All Pins list.

5–26 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

Figure 5–15. All Pins List

You can filter the list of pins in the All Pins list based on their node names
by typing in a portion of the pin name in combination with wild card
characters in the Named list. You can also filter the list of pins in the All
Pins list based on the pins’ attributes by selecting from the Filter list.

You can also create your own custom filter in the Filter list, where you can
specify a set of conditions from the following list:

■ Assigned or unassigned
■ Current strength
■ Direction
■ Edge location
■ I/O Bank location
■ I/O Standard
■ VREF Group

To create a new filter in the All Pins list, select <<new filter>> from the
Filter list in the All Pins list. The Customize Filter dialog box appears
(Figure 5–16).

Altera Corporation 5–27
November 2006

Creating Pin-Related Assignments

Figure 5–16. Customized Filter Dialog Box

To create a custom filter for the All Pins list, perform the following steps:

1. In the Customize Filter dialog box, click New. The New Filter
dialog box appears.

2. Enter the name of your custom filter in the Filter name text box.

3. You can base your new custom filter on existing filters by selecting
from the Based on Filter list. If you do not want to base your custom
filter on any other filter, select Pins: all from the Based on Filter list.

4. Click OK.

5. Add as many conditions as you require to the Query list. To add a
condition, double-click new condition and select a condition from
the Condition list. Select a value for the condition by
double-clicking the cell next to your selected condition under the
Value column.

1 To remove a condition from your filter, right-click the condition
in the Query list and select Delete.

After specifying your conditions, the pins meeting the specified
conditions are the only pins shown in the All Pins list. If the set of
conditions contains a condition with more than one value, then the pins
displayed must meet at least one of the values for that multiple-value
condition.

5–28 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

To edit an existing custom filter, select <<new filter>> from the Filter list
in the All Pins list. In the Customize Filter dialog box, select the custom
filter you want to edit from the Filter list and add and remove conditions
to the Query list.

Pins generated from a compilation or from a bus group are not editable.
All other user-created pins are editable.

The All Pins list provides many columns, some for information purposes
and others to make assignments. To show or hide a column, right-click
the column heading and select Customize Columns. In addition, you can
reorder and sort the columns from this menu.

You can edit the columns in the Groups list in the same manner as a
spreadsheet. You can copy and paste assignments to other rows in the list
within the same column. You can also use Auto Fill to quickly copy these
assignments to other rows. To automatically fill a block of rows, set the
desired assignment in one row and select the assignment’s cell. Place the
cursor over the lower right-hand corner of the cell until it changes to a
cross with the word FILL as shown with the Groups list in Figure 5–14 on
page 5–25. Click and drag up or down the column to select which cells to
fill. When all the desired cells are selected, release the mouse button. The
selected assignment is copied to all the selected cells.

Pad View

To maintain good signal integrity in designs, use the Pad View to guide
your pin placement decisions. Each device family is accompanied with
pin placement rules, including pad spacing between various pin types.

f For more information about pin placement rules, refer to the appropriate
device handbook.

You can edit or make pin assignments in the Pad View by dragging and
dropping a design pin into an available pad location.

When you drag and drop a design pin into an available pad location, the
corresponding pin number of the pad is assigned to the design pin. To
assign a pad number to the design pin, perform the following steps:

1. On the Tools menu, click Options. The Options dialog box appears.

2. Click Pin Planner and turn on Create pad assignment in the Pad
View window.

Altera Corporation 5–29
November 2006

Creating Pin-Related Assignments

The column and row numbering around the Pad View helps identify
which pad row or pad column each pad is located. This is useful when the
pin placement guidelines for your targeted device refer to pad rows and
columns.

Since the pad view is a view of the I/O ring of the silicon within the
package, flip-chip packages appear inverted. Notice the reversed
ALTERA logo in Figure 5–17. To understand the correlation between the
package pins and the pads on the silicon die, the Pad View window and
Package View are closely integrated together. When a pad is selected, the
corresponding pin in the package view is highlighted. This is also true
when a pin is selected in the package view, the corresponding pad is
highlighted in the Pad View window.

Figure 5–17. Pad View of a Stratix II Flip-Chip Device

Package View

The package view in the Pin Planner uses annotated pin symbols in
different shapes and colors as visual representations of pins of the actual
package (Figure 5–12 on page 5–22). The package view eliminates the
need to cross-reference each pin number with its physical location on the
package described in the device package datasheet. When making pin
location assignments in the Package view, switch between the different
views to help you decide on a pin location. The different views in the
Package view include I/O banks, VREF groups, Edges, DQ/DQS pins,

5–30 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

and differential pin pairs. For more information about the different views
in the Package view, refer to the section in this chapter about the specific
view you want to use.

The Pin Legend window provides a quick reference to the meanings of
the pin symbol shapes, notations, and colors in the Package view. To view
the Pin Legend window, on the View menu, click Pin Legend
(Figure 5–18). You can also open the Pin Legend from the Pin Planner
toolbar or from the right-click menu in the Package view.

Figure 5–18. Pin Legend Window

Planning your FPGA I/O assignments with your board design is
necessary in today’s market. If your FPGA device is oriented differently
than how it appears in the package and pad view of the pin planner,
rotate the package view. To rotate the package view, on the View menu,
point to Show and click Rotate Left 90° or Rotate Right 90° until your
FPGA is shown in the desired orientation in the Package view. The red

Altera Corporation 5–31
November 2006

Creating Pin-Related Assignments

dot in the package view indicates the location of the first pin. For
example, the red circle identifies where Pin A1 is located on a BGA
package and where Pin 1 is located on a TQFP package.

You can also print the package view with the pin names and pin types
visible (Figure 5–19). To show the pin name (if available) or pin type for
each pin in the package view, on the View menu, click Show Node Names
and Show Pin Types.

Figure 5–19. Package View with Show Node Names & Show Pin Types

To view pin resource usage, on the View menu, click Resources Window.
The Resources dialog box appears (Figure 5–20).

1 For more detailed information about resources, view the
Resource section of the Compilation Report.

5–32 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

Figure 5–20. Resources Window

If a HardCopy® II companion device is selected, the Pin Planner shows
the package view for the Stratix II device. To ensure correct pin migration
between the Stratix II and HardCopy II devices, run the I/O Assignment
Analysis command or the Fitter.

If a migration device is selected, the Pin Planner shows only pins that are
available for migration. Selecting a migration device allows you to either
vertically migrate to a different density while using the same package, or
migrate between packages with different densities and ball counts.

f For more information about migration, refer to the Altera application
note, AN90: SameFrame Pin-Out Design for FineLine BGA Packages. For
more information about designing for HardCopy II devices, refer to the
Quartus II Support of HardCopy Series Devices chapter in volume 1 of the
Quartus II Handbook.

Using the Pin Finder to Find Compatible Pin Locations

As FPGA pin-counts and I/O capabilities continue to increase, it becomes
more difficult to understand the capabilities of each I/O and to correctly
assign your design I/Os. To help you address this problem, the Pin
Planner highlights all pins that match the list of conditions that you enter.
To enter your conditions, perform the following steps with the Pin
Planner open:

1. On the View menu, click Pin Finder. The Pin Finder window
appears (Figure 5–21).

Altera Corporation 5–33
November 2006

Creating Pin-Related Assignments

Figure 5–21. Pin Finder Window

2. In the Pin Finder window, create a list of conditions in the Query
list.

To add a condition to the Query list, double-click <<new condition>>,
and select a condition from the list. Double-click the cell next to the
new condition and select a desired value. For example, if you want
to highlight all available pins that support the SSTL-2 Class II I/O
standard, create an assignment condition and an I/O standard
condition as shown in Figure 5–21.

If you add the same condition type more than once, the Pin Finder
searches for results that match any of the specified values. If you add
more than one condition type, the Pin Finder searches for results that
match all of the specified conditions.

3. In the Pin Finder window, click Find/Highlight. All of the pins that
meet the specified conditions are highlighted in the Package view
and in the Pad View window.

At the same time, the Results list in the Pin Finder window displays
a summary of the number of pins in each I/O Bank that meet the
specified conditions.

5–34 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

Creating Reserved Pin Assignments

You can make reserved pin assignments to act as place holders for future
design pins in the Package view or in the All Pins list. To create a reserved
pin in the Pin Planner Package view, perform the following steps:

1. In the Package View, right-click an available pin.

2. On the shortcut (right-click) menu, point to Reserve, and click one of
the available configurations.

When you reserve a pin from the Package view, the name of the reserved
pin is set to user_reserve_<number> by default, and the pin symbol is
filled with a dark purple color. The number increments by 1 for each
additional reserved pin.

Alternately, you can reserve a pin in the All Pins list by performing the
following steps:

1. Type the pin name into an empty cell in the Node Name column.
The pin name must not already exist in your design.

2. Select a pin configuration from the Reserved list (Figure 5–22).

The following configurations are available as:

● bidirectional
● input tri-stated
● output driving an unspecified signal
● output driving ground
● output driving VCC
● SignalProbe output

Figure 5–22. Reserving a Pin in the All Pins List

Altera Corporation 5–35
November 2006

Creating Pin-Related Assignments

Release reserved pins by selecting the blank entry from the Reserved
list.

1 The Direction column is a read-only column and changes
direction depending on the reserved selection.

Creating Pin Location Assignments

You can create pin locations assignments for one or more pins with the
following methods:

■ Assigning a location for unassigned pins
■ Assigning a location for differential pins
■ Assigning an unassigned pin to a pin location

You can disable or prevent any of these assignments using the Enable
column in either the Groups list or the All Pins list. The Enable column is
a special column you can use to disable only the location assignment for
a selected pin. You can change the value of the Enable cell for a selected
pin from Yes to No by double-clicking the cell and selecting No from the
list. A disabled pin only prevents location assignments when signals are
assigned using drag and drop as described below. You can still make
assignments directly in the Location columns in both the Groups and All
Pins lists. To enable the location assignment again, change the Enable cell
back to Yes.

Assigning Locations for Unassigned Pins
To assign locations for all of your design pins, perform the following
steps:

1. On the Edit menu, select an assignment direction.

You can assign several pins simultaneously by choosing an
assignment direction (Table 5–3). When assigning an entire bus,
assignments are made in order from the most significant bit to the
least significant bit.

Table 5–3. Multiple Pins (Part 1 of 2)

Assignment Pin Group

Assign Down From the selected group of unassigned pins, assign each pin downwards starting from the
selected pin.

Assign Up From the selected group of unassigned pins, assign each pin upwards starting from the
selected pin.

Assign Right From the selected group of unassigned pins, assign each pin to the right of each other
starting from the selected pin.

5–36 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

1 If there is an unassignable location in the path of the selected
assignment direction, pins are assigned as far in the assignment
direction as possible. Assign the rest of the pins in a separate
location.

2. In the Filter list, select Pins: unassigned.

3. In the All Pins list, select one or more unassigned node names, or in
the Groups list, select one or more buses.

You can click on multiple node names using the control and shift
keys. When you click on a pin or bus in the All Pins or Groups list,
the node name is highlighted, and a crossing arrow displays above
the cursor. Drag the selected cells into the package view
(Figure 5–23).

Figure 5–23. Drag Node Name in the Groups List

4. Drag and drop the selected pins or buses from the All Pins or
Groups list to a location in the package view.

Assign Left From the selected group of unassigned pins, assign each pin to the left of each other
starting from the selected pin.

Assign One by One Select a pin location for each of the pins selected from the Unassigned Pins list.

Table 5–3. Multiple Pins (Part 2 of 2)

Assignment Pin Group

Altera Corporation 5–37
November 2006

Creating Pin-Related Assignments

Before you drag and drop your pins, you can optionally use the Pin
Finder to locate pin locations that support your selected pins. When
creating a query in the Pin Finder, add an Assignment condition and
set it to Unassigned.

If you don’t use the Pin Finder, you can drop pins directly into any of
the following locations in the Pin Planner package view: an available
user I/O pin, I/O Bank, VREF Group, or Edge. On the View menu,
you can display either I/O banks, VREF groups, or edges by going to
the Show submenu and toggling between Show I/O Banks, Show
VREF Groups, and Show Edges. You can also toggle between these
views from the Pin Planner toolbar or from the right-click menu in
the Package View.

Available single-ended user I/O pins are represented by empty
circles in the package view. The letter inside the circle provides
information about the user I/O pin. Negative and positive
differential pins are shaped like hexagons and contain the letters “n”
and “p”, respectively. For a complete listing of I/O pin shapes,
notations, and colors, open the Pin Legend window from the View
menu, toolbar, or Package View right-click menu.

In the Pin Planner Package View, I/O banks are displayed as
rectangles labeled IOBANK_<number> (Figure 5–27). In each I/O
bank, there are one or more VREF groups. VREF groups are
displayed as rectangles labeled VREFGROUP_B<I/O Bank
number>_N<index> (Figure 5–29).

Edge locations are displayed as rectangles labeled
EDGE_<direction>. To make an edge assignment, drag and drop pins
into one of the four edges, EDGE_TOP, EDGE_BOTTOM, EDGE_LEFT,
or EDGE_RIGHT.

1 You can also drag and drop pins from the Node Finder dialog
box or from the Block Diagram/Schematic File into the package
view.

Assigning a Location for Differential Pins
To identify and assign differential pins using the Pin Planner, perform the
following steps:

1. On the View menu, click Show Differential Pin Pair Connections.

When you select Show Differential Pin Pair Connections, a red line
connects the positive and negative pins of the differential pin
pairing. The positive and negative pins are labeled in the package
view with the letters “p” and “n”, respectively (Figure 5–24).

5–38 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

2. Use the tool tips to identify LVDS-compatible pin locations by
holding the mouse pointer over a differential pin in the package
view (Figure 5–24).

Figure 5–24. Tool Tip of the Positive Differential Pin

The tool tip shows the design pin name and pin number, as well as
its general and special functions.

The tool tip for differential receiver and transmitter channel pins that
are also available as user I/O is shown in the following format:

<design pin name> @ PIN_<Package Pin Number> (<Row|Column> I/O,
DIFFIO_<RX/TX><differential pin pair number><p|n>)

The tool tip for dual-purpose LVDS I/O channel pins is shown in the
following format:

<design pin name> @ PIN_<Package Pin Number> (<Row|Column> I/O, LVDS<differential pin
pair number><p|n>)

3. Click on the differential pin from the All Pins or Groups list.

4. Drag and drop the selected pin from the All Pins or Groups list to a
differential positive pin location in the package view.

1 Optionally, before you drag and drop your pins, you can
use the Pin Finder to locate pin locations that support your
selected pins. When creating a query in the Pin Finder, add
an assignment condition set to Unassigned and an I/O
standard condition set to your differential I/O standard.

Altera Corporation 5–39
November 2006

Creating Pin-Related Assignments

The unassigned differential pin that you drag to the package view
represents the positive pin of the differential pair. The Fitter
automatically recognizes the negative pin of the differential pair and
creates it in the Pin-Out file.

1 If you assign a differential pin to a pin location, the negative
pin becomes unassignable. The Quartus II software
recognizes the negative pin as part of the differential pin
pair assignment. However, the assignment is not entered in
the QSF.

If you have a single-ended clock that feeds a PLL, assign the
pin only to the positive clock pin in the targeted device.
Single-ended pins, that feed a PLL and are assigned to the
negative clock pin in the targeted device cause the design to
fail to fit.

f For more information about the general and special functions displayed
by the tool tip, refer to the Device Pin-Outs available at www.altera.com.

Assigning an Unassigned Pin to a Pin Location
Use the following steps to select a pin location and assign a design pin to
that location:

1. In the package view, select an available pin location.

2. On the View menu, click Pin Properties. The Pin Properties dialog
box appears (Figure 5–25).

Figure 5–25. Pin Properties Dialog Box

5–40 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

You can use the Pin Properties dialog box to create pin location and
I/O standard assignments. The Pin Properties dialog box also
displays the properties of the pin location, including the pad ID
(Table 5–4). The pad ID is important information when following pin
spacing guidelines. Adjacent pin numbers do not always represent
adjacent pads on the die. Use the Pads view to help correlate pad
location and distance between your user I/O pins and VREF pins.

3. Select a pin from the Node Name list.

4. To assign or change the I/O standard, select an I/O standard from
the I/O standard list.

5. Click OK.

f For more information about pin placement, refer to the appropriate
device handbook.

Table 5–4 provides a description of each field in the Pin Properties dialog
box.

1 You can also open the Pin Properties dialog box by
double-clicking on a pin in the package view of the Pin Planner,
or by right-clicking the pin in the package view of the Pin
Planner, and clicking Pin Properties.

Table 5–4. Pin Properties

Pin Property Description

Pin Number Pin number used in package (1)

Node Name Node name assigned to the pin location

I/O Standard I/O standard assigned to the pin name and location

Reserved If reserved, determines how to reserve this pin

I/O Bank I/O bank number of the pin

General Function General function of the pin (row/column I/O, dedicated clock pin VCC, GND)

Special Function Special function of the pin (LVDS, PLL)

Pad ID Pad number connected to pin

VREF Pad ID The pad ID for the VREF pin used for voltage referenced I/O standards

Note to Table 5–4:
(1) For more information about how pin numbers are derived, refer to the device pin-out on the Altera web site,

www.altera.com.

Altera Corporation 5–41
November 2006

Creating Pin-Related Assignments

Error Checking Capability
The Pin Planner has basic pin placement checking capability, preventing
pin placements that violate the fitting rules. The following checks are
performed by the Pin Planner as you make pin-related assignments:

■ An I/O Bank or VREF Group is an unassignable location if there are
no available pins in the I/O bank or VREF group.

■ The negative pin of a differential pair is unassignable if the positive
pin of the differential pair has been assigned with a node name with
a differential I/O standard.

■ Dedicated input pins (for example, dedicated clock pins) are an
unassignable location if you attempt to assign an output or
bidirectional node name.

■ Pin locations that do not support the I/O standard assigned to the
selected node name become unassignable.

■ All nodes in the same VREF group must have the same VREF
voltage. Apply this only to HSTL- and SSTL-type I/O standards.

1 To perform a more comprehensive check on your pin
placements, perform I/O assignment analysis.

f For more information about assignment analysis, refer to “Using I/O
Assignment Analysis to Validate Pin Assignments” on page 5–58.

After creating a pin location, the Location, I/O Bank, and VREF Group
fields are populated in both the All Pins list and the Groups list. In the
package view, the occupied pins are filled with a dark brown color.

Changing Pin Locations

The Pin Planner allows you to change the location of multiple pins
simultaneously. To change pin locations, select one or more pins in the
package view or pad view, and drag the pins to a new location.

It is quick and easy to change pin locations if you understand which user
I/O pins are available and where they are, physically, on the device. For
example, in the package view, you can move a column of pins closer to
the edge of the device for easier PCB routing (Figure 5–26). In this
example, you are moving multiple I/O pins to the area closest to the edge
of the I/O bank. To change pin locations, perform the following steps:

1. In the Package view, select multiple pins by holding down the left
mouse button and dragging over the pins you want to move
(Figure 5–26, step A).

2. Drag the group of pins to the area of placement (Figure 5–26,
step B).

5–42 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

3. Drop the pins into the area closest to the edge of the I/O bank
(Figure 5–26, step C).

Figure 5–26. Changing the Locations for a Group of Pins

Show I/O Banks

When Show I/O Banks is turned on in the View menu, in the Show
submenu, or in the shortcut (right-click) menu in the Package view, the
Package view groups I/O pins that share the same VCCIO pin using
different colors (Figure 5–27). When planning your I/O pins, it is
important to guide your pin placement decisions by placing pins with
compatible I/O standards into the same I/O bank. For example, you
cannot place an LVTTL pin with an I/O standard of LVTTL in the same
bank as another pin with an I/O standard of 1.5 V HSTL Class I.

f For more information about compatible I/O standards, refer to the
appropriate device handbook.

Step A Step B Step C

Altera Corporation 5–43
November 2006

Creating Pin-Related Assignments

Figure 5–27. Package View with I/O Banks

When Show I/O Banks is turned on, the package view allows you to view
the properties of each I/O bank. Select an I/O Bank in the package view.
On the View menu, click I/O Bank Properties. The I/O Bank Properties
dialog box appears (Figure 5–28). The I/O Bank Properties dialog box
lists all node names assigned to that I/O Bank. To view all node names
that are assigned within the I/O Bank, click Show Details in the I/O Bank
Properties dialog box. You can also assign the VCCIO for the I/O Bank
by selecting a voltage from the I/O bank VCCIO list.

5–44 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

Figure 5–28. I/O Bank Properties

The Resource Usage section of the dialog box shows the total number of
pins in the I/O Banks including assignable and unassignable pins, as well
as the total number of available assignable pins.

Show VREF Groups

When Show VREF Groups is turned on in the View menu, in the Show
submenu, or in the Package view shortcut (right-click) menu, the Package
view uses different colors to indicate different groups of I/O pins sharing
the same VCCIO and VREF pins (Figure 5–29). When planning your I/O
pins, it is important to place pins with compatible voltage-referenced I/O
standards in the same I/O bank. To guide your pin placement decisions
by placing compatible I/O standards requiring VREF pins into the same
VREF group, on the View menu, in the Show submenu, click Show VREF
Groups. For example, pins with I/O standards SSTL-18 Class II and
1.8V-HSTL Class II are compatible and can be placed into the same VREF
group. It is also important to be aware of the number and direction of pins
within a VREF group for simultaneous switching noise (SSN) analysis.

f For more information about compatible I/O standards, refer to the
appropriate device handbook.

Altera Corporation 5–45
November 2006

Creating Pin-Related Assignments

Figure 5–29. Package View with VREF Groups

When Show VREF Groups is turned on, the package view allows you to
show the properties of each VREF group. Select a VREF group in the
package view, and on the View menu, click VREF Group Properties. The
VREF Group Properties dialog box appears (Figure 5–30). In the VREF
Group Properties dialog box, all node names assigned to the VREF group
are listed. Click Show Details to view node names that are assigned to
pin numbers within the VREF group. Any design pins that are assigned
to the VREF group and not to a pin number are listed in the Assignments
list. The Resource usage section describes the total number of pins in the
VREF group and the total number of available assignable pins. It also
keeps a running tally on the input, output, and bidirectional pins.

5–46 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

Figure 5–30. VREF Group Properties

Show Edges

When Show Edges is turned on in the View menu, in the Show submenu,
or in the shortcut (right-click) menu of the Package view, the Package
view uses different colors to indicate the four edges of the package
(Figure 5–31). If the exact location of a pin is not a priority when planning
your I/O pins, use an Edge assignment.

Altera Corporation 5–47
November 2006

Creating Pin-Related Assignments

Figure 5–31. Package View with Edges

When Show Edges is turned on, the package view allows you to show the
properties of each Edge. Select an Edge in the package view and on the
View menu, click Edge Properties. The Edge Properties dialog box
appears. In the Edge Properties dialog box, all node names assigned to
the Edge are listed (Figure 5–32). To view all node names assigned to a pin
number within an Edge, in the Edge Properties dialog box, click Show
Details.

5–48 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

Figure 5–32. Edge Properties

Show DQ/DQS Pins

When Show DQ/DQS Pins is turned on in the View menu in the Show
submenu or in the shortcut (right-click) menu in the Package view, the
package view uses different colors to highlight groups of DQ and DQS
pins (Figure 5–33). Highlighting these DQ/DQS groups easily identifies
which DQ pins are associated with a specific DQS strobe pin. You can
select between the following DQ/DQS modes:

■ In ×4 Mode
■ In ×8/×9 Mode
■ In ×16/×18 Mode
■ In ×32/×36 Mode

Altera Corporation 5–49
November 2006

Creating Pin-Related Assignments

Figure 5–33. DQ/DQS Pins (1)

Note to Figure 5–33:
(1) This DQ/DQS view shows an ×8 mode.

For example, when implementing DDR II in a Stratix II device, there are
dedicated pins designed specifically to be used as DQ and DQS pins.

f For more information about using the altdq and altdqs
megafunction, refer to the altdq & altdqs Megafunction User Guide.

Displaying & Accepting Fitter Placements

In addition to the Show I/O Banks, the Show VREF Groups, and the
Show Edge views, you can also show pins placed by the Fitter by
selecting Show Fitter Placements on the View menu in the Show
submenu, in the Pin Planner toolbar, or in the shortcut (right-click) menu
in the Package view.

5–50 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

The Fitter provides optimal placement to unassigned pins based on
design constraints when you perform a compilation or an I/O
Assignment Analysis. When you select Show Fitter Placements on the
View menu, in the Show submenu, the Fitter-placed pins are shown as
green-filled pins in the package view of the Pin Planner. You can create a
copy of the fitter placements in your project Quartus II Settings File using
the Back-Annote Assignments command.

To create assignments for all Fitter-placed pins into your project
Quartus II Settings File, perform the following steps in the Quartus II
software:

1. On the Processing menu, click Start Compilation, or on the
Processing menu, point to Start and click I/O Assignment Analysis.

2. On the Assignments menu, click Pin Planner. The Pin Planner
appears.

3. On the View menu, point to Show and click Show Fitter
Placements. You can also access this command from the Pin Planner
toolbar or the shortcut (right-click) menu in the Package view.
Review the Fitter placements.

4. To create location assignments for these fitter placements, perform
the following steps:

a. On the Assignments menu, click Back-Annotate Assignments.
The Back-Annotate Assignments dialog box appears.

b. Select Pin & device assignments (Figure 5–34).

c. Click OK.

Altera Corporation 5–51
November 2006

Creating Pin-Related Assignments

Figure 5–34. Back-Annotate Assignments Dialog Box

To create assignments for a selection of the Fitter-placed pins, perform the
following steps:

1. On the Processing menu, click Start Compilation, or on the
Processing menu, point to Start, and click I/O Assignment
Analysis.

2. On the Assignments menu, click Pin Planner.

3. On the View menu, point to Show and click Show Fitter
Placements, and review the placements.

4. In the Pin Planner, select one or more fitter-placed pins for which
you want to create assignments.

5. Right-click one of the selected pins, and click Back Annotate.

6. On the File menu, click Save Project. The Assignments are written
to the Quartus II Settings File.

f For more information about how the Quartus II software writes and
updates the Quartus II Settings File, refer to the Quartus II Project
Management chapter in volume 2 of the Quartus II Handbook.

5–52 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

Early I/O
Planning Using
the Pin Planner

It may be difficult to plan your I/Os early in the design cycle because
design files, including the top-level design, may not be available yet.
However, the interfaces between your FPGA and other devices are
typically determined and documented in the design specifications. By
adding the bus or memory interfaces needed to connect your FPGA with
these other devices into the Pin Planner, you can efficiently plan your
FPGA I/Os without design files.

The Pin Planner can interface with the MegaWizard® Plug-in Manager
and gives you the ability to create or import custom megafunctions and
IP cores. You can add many types of interfaces, including Megafunctions
such as altpll and altddio as well as IP MegaCores such as PCI
Compiler, QDR II, and Rapid IO. The advantage of adding the interface
information while planning your I/Os is that it eliminates the possibility
of not assigning a required pin while removing the need to manually
create each pin individually in the Pin Planner.

After you add the interfaces used in your design, the Groups list is
automatically populated with new groups named after the
megafunctions or IP MegaCores you created. The members of the new
groups include all the external pins of your megafunctions and IP
MegaCores.

You can then make I/O pin assignments for all the external pins of your
interfaces, create the required top-level wrapper file, and validate the
assignments. Figure 5–3 on page 5–4 shows a flow diagram for this type
of early I/O planning flow with megafunctions and IP cores created in the
Pin Planner.

Once you complete and validate the I/O assignments, you can proceed
with your design in a number of ways:

■ You can transfer the assignments to an existing project that includes
design files, making sure the pin names match the design.

■ You can continue working with this early I/O project, adding design
files to work with the planned I/O assignments.

■ You can make a revision of your existing design that uses the
wrapper file and verified I/O assignments and decide later whether
to integrate them with your project.

f For information about revisions in the Quartus II software, refer to
Quartus II Help.

Altera Corporation 5–53
November 2006

Early I/O Planning Using the Pin Planner

Create a Megafunction or IP MegaCore Variation from the Pin
Planner

To create a megafunction or IP MegaCore variation from the Pin Planner,
perform the following steps:

1. In the Pin Planner, right-click anywhere in the Groups or All Pins
lists.

2. On the shortcut (right-click) menu, click Create/Import
Megafunction. The Create/Import Megafunction dialog box is
displayed as shown in Figure 5–35. You can also open this dialog
box from the Edit menu.

Figure 5–35. Create/Import Megafunction Dialog Box

3. To create a new megafunction, select Create a new megafunction
and click OK. The MegaWizard Plug-In Manager dialog box
appears.

4. Under the Installed Plug-Ins, a list of all of the supported
Megafunctions and IP MegaCores are shown. Select the
Megafunction or IP MegaCore you want to create, and complete the
wizard.

5. After you complete the wizard, a new group, based on the file name
you provided, is created and all the I/O names, directions, and I/O
standards are listed as members of the group in the Groups list.
Make pin location assignments for the group or to each individual
pin.

f More more information about a particular megafunction, refer to the
appropriate megafunction user guide.

5–54 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

Import a Megafunction or IP MegaCore Variation from the Pin
Planner

To import a Variation from the Pin Planner, perform the following steps:

1. In the Pin Planner, right-click anywhere in the Groups or All Pins
lists.

2. On the shortcut (right-click) menu, click Create/Import
Megafunction. The Create/Import Megafunction dialog box is
displayed, as shown in Figure 5–35. You can also open this dialog
box from the Edit menu.

3. Select Import an existing custom megafunction, and click browse.
Select the Pin Planner File (.ppf) that was generated along with your
megafunction variation or your IP MegaCore files.

4. In the Instance name box, type in an instance name and click OK.

1 To avoid pin name conflicts when there are more than one
instances of a megafunction or IP MegaCore, the instance
name is appended to the beginning of each pin name.

After you finish running the wizard, a new group based on the file name
you provided is created and all of the I/Os that are used externally are
listed as members of the group. Make pin location assignments for the
group or to each individual pin.

Create a Top-Level Netlist for I/O Analysis

You can create a top-level design file after you add megafunctions or IP
MegaCores to your project with the Pin Planner and make I/O
assignments for their external nodes. Though no internal logic may exist
yet, the top-level design file lets you validate your I/O assignments and
provides a base on which to build the rest of your design. The creation of
a top-level design file is a two-step process. First, you must configure the
megafunctions and IP MegaCores created in the Pin Planner for
integration with each other and the rest of the design. Then you create the
actual top-level design file.

Configure Megafunctions for Creating a Top-Level Design File

After creating or importing custom Megafunctions or IP MegaCores in
the Pin Planner, you must configure how they will be connected to each
other. You do this by specifying matching node names for selected ports
of the megafunctions or IP MegaCores.

Altera Corporation 5–55
November 2006

Early I/O Planning Using the Pin Planner

1 In this section, ports and port names refer to the generic port
names of megafunctions and IP MegaCores in the MegaWizard®
Plug-In Manager. Node names refer to the unique names
assigned to ports when the megafunction or IP MegaCore is
created based on the instance name given when the
MegaWizard Plug-In Manager is started. By default, node
names are the original port names appended with <instance
name>_.

To configure your custom megafunctions and IP MegaCores for creating
a top-level design file, on the Edit menu or in the shortcut (right-click)
menu of the Package view, click Set Up Top-Level Design File. The Set
Up Top-Level Design File dialog box appears (Figure 5–36).

Figure 5–36. Set Up Top-Level Design File Dialog Box

Click the name of a megafunction or IP MegaCore in the list on the left.
Only megafunctions created in the Pin Planner appear in the list. The list
on the right contains all of the ports for the selected megafunction.

The columns in the Set Up Top-Level Design File dialog box provide
information about megafunctions created in the Pin Planner and allow
you to make adjustments to connect megafunctions together. The
Direction column indicates the direction of the port or port group as
defined by the megafunction. The direction of a port cannot be changed.

The Type column indicates whether a port is available externally to the
device. By default, all ports on all megafunctions created through the Pin
Planner are of the External type, meaning they appear in the Pin Planner
Groups and All Pins lists and can be assigned to I/O pins. You can
change the port type by double-clicking the Type cell for a port and
selecting Internal or External from the list. Any ports on any

5–56 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

megafunction connected to a port that has its type changed have their
type changed to match automatically. This prevents internal and external
megafunction ports from being connected to each other accidentally.
Internal ports do not appear in the Groups or All Pins lists. If all the ports
of a megafunction are Internal, the megafunction does not appear in the
Groups list.

The Node Name column is used to assign node names or device pins to
ports. You can double-click a cell in the Node Name column and select an
existing node or device pin to connect the port to an existing location.
Enter a new node name in the Node Name column to rename the selected
port. This only changes the name as it appears as a group member in the
Pin Planner Groups list. Enter a node name that matches the node name
of the ports of other megafunctions or between a megafunction and an
existing node to connect the ports to each other.

Figure 5–37 shows an example of the port names of the megafunction
named “output” as shown in Figure 5–36. When the port types and node
names for both the input and output megafunctions are configured as in
the two figures, they create a circuit similar to the one shown in
Figure 5–38. In this way, you can connect megafunctions to each other
and to other nodes in the design, improving the thoroughness of an I/O
assignment analysis. This is especially useful for clock networks that are
typically attached to multiple megafunctions or IP MegaCores.

Figure 5–37. Port Names of the Megafunction Named “Output”

Altera Corporation 5–57
November 2006

Early I/O Planning Using the Pin Planner

Figure 5–38. Schematic Representing Connections between Input & Output Megafunctions

Note to Figure 5–38:
(1) Gray pins indicate internal nodes.

You can edit a megafunction or IP MegaCore you have created in the Pin
Planner. Select it in the Groups list. On the selected megafunction’s
shortcut (right-click) menu or on the Edit menu, click Edit Megafunction
to reopen the MegaWizard Plug-In Manager and make changes as
necessary. If you make changes to a megafunction, you must import it
again and reconfigure its node connections in the Set Up Top-Level
Design File dialog box.

1 Always use the Edit Megafunction command to make changes
to megafunctions and IP MegaCores created with the Pin
Planner. If the generated megafunction code files are edited
manually or the MegaWizard Plug-In Manager is used outside
of the Pin Planner, you will not be able to configure the
megafunction ports as described, or create a top-level design file
based on the edited megafunctions.

Create a Top-Level Design File

Once you have configured the megafunctions or IP MegaCores created in
the Pin Planner, you can create a top-level design file. You can use this as
the basis for the rest of your project, or just to validate the I/O
assignments you have made.

To generate a top-level design file, right-click in the Package view and
click Create Top-Level Design File. You can also generate a top-level file
on the File menu by pointing to Create/Update and clicking Create Top-
Level Design File From Pin Planner. The Create Top-Level Design File
dialog box appears (Figure 5–39).

5–58 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

Figure 5–39. The Create Top-Level Design File Dialog Box

Enter a name and select a file type. If the file already exists, you can select
to create a backup of the original file.

The newly created file is set as the top-level design file in the Project
Navigator. You can now use this file as the basis for the rest of your project
and perform I/O Assignment Analysis, described in the next section, to
validate these early I/O assignments. The Pin Planner gives virtual pin
assignments to internal nodes, so internal nodes are not assigned to
device pins during compilation. If you use this top-level file as the basis
for your project, internal megafunction ports must be connected to
internal logic.

1 The top-level design file must be updated whenever changes are
made to the design. This includes any node changes made in the
Set Up Top-Level Design File dialog box. You do not have to
update the top-level design file if you make pin assignment
changes to the megafunctions because these changes are stored
in the Quartus II Default Settings File (.qdf).

Using I/O
Assignment
Analysis to
Validate Pin
Assignments

This section describes a design flow that includes making and analyzing
pin assignments with the Start I/O Assignment Analysis command in
the Quartus II software during and after the development of your HDL
design.

The Start I/O Assignment Analysis command allows you to check your
I/O assignments early in the design process. Use this command to check
the legality of pin assignments before, during, or after you compile your
design. If design files are available, you can use this command to perform
more thorough legality checks on your design’s I/O pins and
surrounding logic. These checks include proper reference voltage pin
usage, valid pin location assignments, and acceptable mixed I/O
standards.

Altera Corporation 5–59
November 2006

Using I/O Assignment Analysis to Validate Pin Assignments

1 The Start I/O Assignment Analysis command can be used for
designs that target Stratix series, Cyclone® series, and MAX® II
device families.

I/O Assignment Analysis Design Flows

The I/O assignment analysis design flows depend on whether your
project contains design files. The following examples show two different
circumstances in which I/O assignment analysis can be used:

■ When the board layout must be complete before starting the FPGA
design, use the flow shown in Figure 5–40 on page 5–60. This flow
does not require design files and checks the legality of your pin
assignments.

■ With a complete design, use the flow shown in Figure 5–42 on
page 5–63. This flow thoroughly checks the legality of your pin
assignments against any design files provided. For more information
about creating assignments, refer to the Assignment Editor chapter in
volume 2 of the Quartus II Handbook.

Each flow involves creating pin assignments, running the analysis, and
reviewing the report file.

You should run the analysis each time you add or modify a pin-related
assignment. You can use the Start I/O Assignment Analysis command
frequently because it completes in a short time.

The analysis checks pin assignments and surrounding logic for illegal
assignments and violations of board layout rules. For example, the
analysis checks whether your pin location supports the I/O standard
assigned, current strength, supported VREF voltages, and whether a PCI
diode is permitted.

Along with the pin-related assignments, the Start I/O Assignment
Analysis command also checks blocks that directly feed or are fed by
resources such as a phase-locked loops (PLLs), low-voltage differential
signals (LVDS), or gigabit transceiver blocks.

Design Flow without Design Files

During the early stages of developing an FPGA device, board layout
engineers may request preliminary or final pin-outs. It is time consuming
to manually check whether the pin-outs violate any design rules. Instead,
you can use the Start I/O Assignment Analysis command to quickly
perform basic checks on the legality of your pin assignments.

5–60 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

1 Without a complete design, the analysis performs limited checks
and cannot guarantee that your assignments do not violate
design rules.

The I/O Assignment Analysis command can perform limited checks on
pin assignments made in a Quartus II project that has a device specified,
but may not yet include any HDL design files. For example, you can
create a Quartus II project with only a target device specified and create
pin-related assignments based on circuit board layout considerations that
are already determined. Even though the Quartus II project does not yet
contain any design files, you can reserve input and output pins and make
pin-related assignments for each pin using the Pin Planner or Assignment
Editor. After you assign an I/O standard to each reserved pin, run the I/O
Assignment Analysis to ensure that there are no I/O standard conflicts in
each I/O bank.

Figure 5–40. Assigning & Analyzing Pin-Outs without Design Files

Modify and Correct Illegal
Assignments Found in Report File

Create Pin-Related Assignments
(Stored in the Quartus II

Settings File)

Start I/O Assignment Analysis

Create a Quartus II Project

Pin-Related Assignments Complete

Yes

NoAssignments
Correct?

Altera Corporation 5–61
November 2006

Using I/O Assignment Analysis to Validate Pin Assignments

To assign and analyze pin-outs using the Start I/O Assignment Analysis
command without design files, perform the following steps:

1. In the Quartus II software, create a project.

2. Use the Pin Planner, Assignment Editor, or a Tcl script to create pin
locations and related assignments. For the I/O assignment analysis
to determine the type of pin, you must reserve your I/O pins. For
information about reserving pins in the Pin Planner, refer to
“Creating Reserved Pin Assignments” on page 5–34. For
information about reserving pins in the Assignment Editor, refer to
“Reserving Pins” on page 5–66.

1 If you make pin-related assignments in the Mentor
Graphics I/O Designer software, you can import an FPGA
Xchange file into the Quartus II software.

3. To start the analysis, on the Processing menu, point to Start, and
click Start I/O Assignment Analysis.

1 For information about using a Tcl script or command
prompt to start the analysis, refer to “Scripting Support” on
page 5–76.

4. View the messages in the Compilation Report window, Fitter report
file (<project name>.fit.rpt), or in the Messages window.

5. Correct any errors and violations reported by the I/O assignment
analysis.

Repeat the above steps 1 through 5 until all of the errors are corrected.

Design Flow with Design Files

During a full compilation, the Quartus II software does not report illegal
pin assignments until the fitter stage. To validate pin assignments sooner,
you can run the Start I/O Assignment Analysis command after
performing analysis and synthesis and before performing a full
compilation. Typically, the analysis takes a short time. Figure 5–41 shows
the benefits of using the Start I/O Assignment Analysis command.

5–62 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

Figure 5–41. Saving Compilation Time with the Start I/O Assignment Analysis Command

The rules that are checked by the I/O assignment analysis depend on the
completeness of the design. With a complete design, the Start I/O
Assignment Analysis command thoroughly checks the legality of all
pin-related assignments. With a partial design, which can be just the
top-level wrapper file, the Start I/O Assignment Analysis command
checks the legality of those pin-related assignments for which it has
enough information.

For example, you might assign a clock to a user I/O pin instead of
assigning it to a dedicated clock pin, or you design the clock to drive a
PLL that has not yet been instantiated in the design. Because the
Start I/O Assignment Analysis command does not account for the logic
that the pin drives, it is not able to check that only a dedicated clock input
pin can drive the clock port of a PLL.

Analyze as much of the design as possible, especially logic that connects
to pins, to obtain better coverage. For example, if your design includes
PLLs or LVDS blocks, you should include these MegaWizard Plug-In
Manager-generated files in your project for analysis (Figure 5–42).

Errors
Reported
and Fixed

I/O
Assignment
Analysis

First Full Compilation

First Full Compilation

Second Full Compilation

Errors Reported and Fixed

Without
Start I/O Assignment Analysis

Command

With
Start I/O Assignment Analysis

Command

Time

Altera Corporation 5–63
November 2006

Using I/O Assignment Analysis to Validate Pin Assignments

Figure 5–42. Assigning & Analyzing Pin-Outs with Design Files

Modify & Correct Illegal
Assignments Found in Report File

Create Pin-Related Assignments
(Stored in the Quartus II Settings File)

Start I/O Assignment Analysis

Back-Annotate I/O Assignment
Analysis Pin Placements

Perform Analysis & Synthesis
to Create a Mapped Netlist

Open a Quartus II Project or Design File

Pin-Related Assignments Complete

Yes

NoAssignments
Correct?

Quartus II Project & Design Files

QPF EDF VQM V VHD BDF TDF

5–64 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

To assign and analyze pin-outs using the Start I/O Assignment Analysis
command with design files, perform the following steps:

1. In the Quartus II software, create a project including your design
files.

2. Create pin-related assignments with the Pin Planner or Assignment
Editor.

1 You can also create pin-related assignments by importing
them from a CSV or FPGA Xchange file, executing Tcl
commands, or editing the Quartus II Settings File directly.
On the Processing menu, point to Start and click Start
Analysis & Synthesis to generate an internal mapped
netlist.

For information about using a Tcl script or the command
prompt to start the analysis, refer to “Scripting Support” on
page 5–76.

3. On the Processing menu, point to Start, and click Start I/O
Assignment Analysis to start the analysis.

4. View the messages in the Compilation Report or in the Messages
window.

5. Use the Pin Planner or Assignment Editor to correct any errors and
violations reported.

6. Use the Start I/O Assignment Analysis command until all errors
are corrected.

Using Output Enable Group Logic Option Assignments with I/O
Assignment Analysis

Each device has a certain number of VREF pins, and each VREF pin
supports a certain number of I/O pins. Check the device pin-outs to
locate the VREF pins and its associated I/O pins. The VREF pin, including
its supported I/O pins, is called a VREF bank. The VREF pins are only
used for VREF I/O standards; for example, SSTL and HSTL input pins.
VREF outputs do not require the VREF pin. When a voltage-referenced
input is present in a VREF bank, there can be only a certain number of
outputs that are allowed to be present in that VREF bank. For the Stratix II
flip chip package, only 20 outputs can be present in a VREF bank when a
VREF I/O standard input is present in that bank.

Altera Corporation 5–65
November 2006

Using I/O Assignment Analysis to Validate Pin Assignments

For interfaces that use bidirectional VREF I/O pins, the VREF restriction
must be met when the pins are driving in either direction. If a set of
bidirectional signals are controlled by different output enables, the I/O
Assignment Analysis command treats these as independent output
enables. Use the output enable group logic option assignment to treat the
set of bidirectional signals as a single output enable. This is important in
the case of external memory interfaces.

For example, in the case of a DDR2 interface in a Stratix II device, a
Stratix II device can have 30 pins in a VREF group. Each byte lane for a ×8
DDR2 interfaces has 1 DQS pin and 8 DQ pins, for a total of 9 pins per
byte lane. DDR2 uses SSTL18 as its I/O standard, which is a VREF I/O
standard. In typical interfaces, each byte lane has its own output enable.
In this example, the DDR2 interface has 4 byte lanes. Using 30 I/O pins in
a VREF group, there are 3 byte lanes, and an extra byte lane that supports
the 3 remaining pins. If you do not use the output enable group logic
option assignment, the I/O Assignment Analysis command analyzes
each byte lane as an independent group driven by a unique output
enable. With this arrangement, the worst-case scenario is when the 3 pins
are inputs, and the other 27 pins are outputs. In this case, the 27 output
pins violate the 20-output pin limit.

In a DDR2 interface, all DQS and DQ pins are always driven in the same
direction. Therefore, the I/O Assignment Analysis reports an error that is
not applicable to your design. Assigning an output enable group logic
option assignment to the DQS and DQ pins forces the I/O Assignment
Analyzer to check these pins as a group driven by a common output
enable. When using the output enable group logic option assignment, the
DQS and DQ pins are checked as all input pins or all output pins. This
does not violate the rules described in Tables 5–5 and 5–6.

The value for the output enable group logic option assignment should be
an integer value. All sets of signals that are driving in the same direction
should be given the same integer value. The output enable group logic
option assignment can also be used with pins that are driven only at
certain times. For example, the data mask signal in DDR2 interfaces are
only outputs, but are driven only when the DDR2 is writing (bidirectional
signals are outputs). Therefore, an output enable group logic option
assignment should be assigned to the data mask with the same value of
the DQ and DQS signals.

Output enable groups can also be used on VREF input pins. If the VREF
input pins are not active during the time the outputs are driving, you can
add the VREF input pins to the output enable group. This removes the
VREF input pins from the VREF analysis. For example, the QVLD signal
for RLDRAM II is only active during a read. During a write, the QVLD is

5–66 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

not active and so it does not count as an active VREF input pin within the
VREF group. The QVLD pins can be placed in the same output enable
group as the RLDRAM II data pins.

Inputs for I/O Assignment Analysis

The Start I/O Assignment Analysis command reads the following
inputs:

■ Internal mapped netlist
■ Quartus II Settings File

The internal mapped netlist is used when you have a partial or complete
design. The Quartus II Settings File is always used to read all pin-related
assignments for analysis.

Generating a Mapped Netlist

The Start I/O Assignment Analysis command uses a mapped netlist, if
available, to identify the pin type and the surrounding logic. The mapped
netlist is stored internally in the Quartus II software database.

To generate a mapped netlist, on the Processing menu, point to Start, and
click Start Analysis & Synthesis.

To use the quartus_map executable to run analysis and synthesis, type
the following command at a system command prompt:

quartus_map <project name> r

Creating Pin-Related Assignments

The I/O Assignment Analysis command reads a Quartus II Settings File
containing all of your pin-related assignments. These pin-related
assignments include pin settings such as I/O standards, drive strength,
and location assignments. The following sections highlight some of the
location assignments you can make.

Reserving Pins

If you do not have any design files, you can still reserve pin locations and
create pin-related assignments. Reserving pins is necessary so that the
Start I/O Assignment Analysis command has information about the pin
and the pin type (input, output, or bidirectional) to correctly analyze the
pins. To reserve a pin, on the Assignments menu, click Assignment
Editor. In the Category list, click Pin to open the Pin assignment category.

Altera Corporation 5–67
November 2006

Using I/O Assignment Analysis to Validate Pin Assignments

Double-click the cell in the Reserved column that corresponds to the pin
that you want to reserve. Use the drop-down arrow to select from the
reserve pin options (Figure 5–43).

Figure 5–43. Reserving an Input Pin with the Assignment Editor

f For more information about using the Assignment Editor, refer to the
Assignment Editor chapter in volume 2 of the Quartus II Handbook.

You can also reserve pins using the Pin Planner. For more information
about the Pin Planner, refer to “Creating Reserved Pin Assignments” on
page 5–34.

Location Assignments

You can create the following types of location assignments for your
design and its reserved pins:

■ Pin number
■ I/O bank
■ VREF group
■ Edge

1 I/O bank, VREF group, and Edge location assignments are
supported only for Stratix and Cyclone series device families.

You can assign a location to your pins using the Pin Planner or the
Assignment Editor. To make a pin location assignment using the
Assignment Editor, on the Assignments menu, click Assignment Editor
and select the Pin category from the Category list. Type the pin name and
select a location from the Location list.

It is common to place a group of pins (or bus) with compatible I/O
standards in the same I/O bank or VREF group. For example, two buses
with two compatible I/O standards, such as 2.5 V and SSTL-II, can be
placed in the same I/O bank.

5–68 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

An easy way to place large buses that exceed the pins available in a
particular I/O bank is to use edge location assignments. You can also use
edge location assignments to improve the circuit board routing ability of
large buses, because they are close together near an edge. Figure 5–44
shows the Altera device package edges.

Figure 5–44. Die View & Package View of the Four Edges on an Altera Device

Suggested & Partial Placement

The Start I/O Assignment Analysis command automatically assigns
suggested pin locations to unassigned pins in your design so it can
perform pin legality checks. For example, if you assign an edge location
to a group of LVDS pins, the I/O Assignment Analysis command assigns
pin locations for each LVDS pin in the specified edge location and then
performs legality checks.

To accept these suggested pin locations, on the Assignments menu, click
Back-Annotate Assignments, select Pin & device assignments, and click
OK. Back-annotation saves your pin and device assignments in the
Quartus II Settings File.

Understanding the I/O Assignment Analysis Report & Messages

The Start I/O Assignment Analysis command generates detailed
analysis reports and a Pin-Out file. The detailed messages in the reports
help you quickly understand and resolve pin assignment errors. Each
message includes a related node name and a description of the problem.

Top Edge

Silicon Die View

Bottom Edge

Left Edge Right Edge Right Edge

Top Edge

Package View (Top)

Bottom Edge

Left Edge

Altera Corporation 5–69
November 2006

Using I/O Assignment Analysis to Validate Pin Assignments

To view the report file, on the Project menu, click Compilation Report.
The Fitter section of the Compilation Report contains the following
sections:

■ Summary
■ Settings
■ Resource Section
■ I/O Rules Section
■ Device Options
■ Advanced Fitter Data
■ Pin-Out File
■ Fitter Messages

The Resource Section categorizes the pins as Input Pins, Output Pins,
and Bidir Pins. You can view the utilization of each I/O bank in your
device in the I/O Bank Usage section (Figure 5–45).

5–70 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

Figure 5–45. Summary of the I/O Bank Usage in the I/O Assignment Analysis
Report

The I/O Rules Section includes detailed information about the I/O rules
tested during I/O Assignment Analysis. Three sub-reports are generated.
The I/O Rules Summary report provides a quick summary of the number
of I/O rules tested and how many applicable rules passed, how many
failed, and how many were unchecked because of other failing rules
(Figure 5–46).

Altera Corporation 5–71
November 2006

Using I/O Assignment Analysis to Validate Pin Assignments

Figure 5–46. I/O Rules Summary Report

The I/O Rules Details report provides detailed information on all I/O
rules. Applicable rules indicate whether they passed, failed, or could not
be checked (Figure 5–47). All rules are given a level of severity from Low
to Critical to indicate their level of importance for an effective analysis.

5–72 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

Figure 5–47. I/O Rules Details Report

Altera Corporation 5–73
November 2006

Using I/O Assignment Analysis to Validate Pin Assignments

The I/O Rules Matrix shows how each I/O rule was tested on each pin in
the design (Figure 5–48). Applicable rules that could be checked either
pass or fail for each pin. You can quickly find and make pin assignment
adjustments on any pin that fails. Right-click a pin name that failed an
I/O rule. Point to Locate, and select a location where the pin exists, such
as the Pin Planner. Make appropriate changes to fix the pin assignments
and rerun I/O Assignment Analysis. Check the resulting I/O Rules
Matrix to see that your changes fixed the problem and allowed the failing
pin assignment to pass.

Figure 5–48. I/O Rules Matrix

The Fitter Messages page stores all messages including errors, warnings,
and information messages.

You can view the detailed messages in the Fitter Messages page in the
compilation report and in the Processing tab in the Messages window. To
open the Messages window, on the View menu, point to Utility
windows, and click Messages.

5–74 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

Use the Location box to help resolve the error messages. Select from the
Location list, and click Locate.

Figure 5–49 shows an example of error messages reported by I/O
assignment analysis.

Figure 5–49. Error Message Report by I/O Assignment Analysis

The effectiveness of the I/O Assignment Analysis is relative to the
completeness of your pin-related assignments and design. To ensure your
design functions correctly, include all pin-related assignments and as
many design files as possible in your Quartus II project.

Tables 5–5 and 5–6 list a subset of the I/O rule checks performed when
you run an I/O Assignment Analysis with and without design files.

f For more detailed information about each I/O rule, refer to the
appropriate device handbook.

Table 5–5. Examples of I/O Rules Checks (Part 1 of 2) Note (1)

Rule Description Device
Families

HDL
Required?

I/O bank capacity Checks the number of pins assigned to an I/O bank
against the number of pins allowed in the I/O bank.

All No

I/O bank VCCIO voltage
compatibility

Checks that no more than one VCCIO is required from the
pins assigned to the I/O bank.

All No

I/O bank VREF voltage
compatibility

Checks that no more than one VREF is required from the
pins assigned to the I/O bank.

All No

I/O standard and location
conflicts

Checks whether the pin location supports the assigned
I/O standard.

All No

I/O standard and signal
direction conflicts

Checks if the pin location supports the assigned I/O
standard and direction. For example, certain I/O
standards on a particular pin location can only support
output pins.

All No

Altera Corporation 5–75
November 2006

Using I/O Assignment Analysis to Validate Pin Assignments

Differential I/O standards
cannot have open drain
turned on

Checks that open drain is turned off for all pins with a
differential I/O standard.

All No

I/O standard and drive
strength conflicts

Checks whether the drive strength assignments are within
the specifications of the I/O standard.

All No

Drive strength and location
conflicts

Checks whether the pin location supports the assigned
drive strength.

All No

BUSHOLD and location
conflicts

Checks whether the pin location supports BUSHOLD. For
example, dedicated clock pins do not support BUSHOLD.

All No

WEAK_PULLUP and
location conflicts

Checks whether the pin location supports
WEAK_PULLUP (for example, dedicated clock pins do not
support WEAK_PULLUP)

All No

Electromigration check Checks whether combined drive strength of consecutive
pads exceeds a certain limit. For example, the total
current drive for 10 consecutive pads on a Stratix II device
cannot exceed 200 mA.

All No

PCI_IO clamp diode,
location, and I/O standard
conflicts

Checks whether the pin location along with the I/O
standard assigned supports PCI_IO clamp diode.

All No

SERDES and I/O pin
location compatibility check

Checks that all pins connected to a SERDES in your
design are assigned to dedicated SERDES pin locations.

All Yes

PLL and I/O pin location
compatibility check

Checks whether pins connected to a PLL are assigned to
the dedicated PLL pin locations.

All Yes

Note to Table 5–40:
(1) “All” includes the following device families: Stratix III, Stratix II, Stratix II GX, Stratix, Stratix GX, Cyclone II,

Cyclone, MAX II, and HardCopy devices.

Table 5–6. SSN-Related Rules (Part 1 of 2)

Rule Description Device(1)
Families

HDL
Required?

I/O bank can not have single-ended I/O
when DPA exists

Checks that no single-ended I/O pin exists in
the same I/O bank as a DPA.

Stratix II
Stratix GX

No

A PLL I/O bank does not support both
a single-ended I/O and a differential
signal simultaneously

Checks that there are no single-ended I/O
pins present in the PLL I/O Bank when a
differential signal exists.

Stratix II No

Single-ended output is required to be a
certain distance away from a
differential I/O pin

Checks if single-ended output pins are a
certain distance away from a differential I/O
pin.

All No

Table 5–5. Examples of I/O Rules Checks (Part 2 of 2) Note (1)

Rule Description Device
Families

HDL
Required?

5–76 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

Scripting Support

A Tcl script allows you to run procedures and make settings described in
this chapter. You can also run some of these procedures at a command
prompt.

For detailed information about specific scripting command options and
Tcl API packages, type the following command at a system command
prompt to run the Quartus II command-Line and Tcl API Help browser:

quartus_sh --qhelp r

f For more information about Quartus II scripting support, including
examples, refer to the Tcl Scripting and Command-Line Scripting chapters
in volume 2 of the Quartus II Handbook.

Running the I/O Assignment Analysis

You can run the I/O Assignment Analysis with a Tcl command or with a
command run at a command prompt. For more information about
running the I/O Assignment Analysis, refer to “Understanding the I/O
Assignment Analysis Report & Messages” on page 5–68.

Tcl Command
Enter the following in a Tcl console or script:

execute_flow -check_ios

Single-ended output has to be a certain
distance away from a VREF pad

Checks if single-ended output pins are a
certain distance away from a VREF pad.

Cyclone II
Cyclone

No

Single-ended input is required to be a
certain distance away from a
differential I/O pin

Checks if single-ended input pins are a certain
distance away from a differential I/O pin.

Cyclone II
Cyclone

No

Too many outputs or bidirectional pins
in a VREFGROUP when a VREF is used

Checks that there are no more than a certain
number of outputs or bidirectional pins in a
VREFGROUP when a VREF is used.

All No

Too many outputs in a VREFGROUP Checks if too many outputs are in a
VREFGROUP.

All No

Note to Table 5–6:
(1) “All” includes the following device families: Stratix II, Stratix II GX, Stratix, Stratix GX, Cyclone II, Cyclone,

MAX II, and HardCopy devices.

Table 5–6. SSN-Related Rules (Part 2 of 2)

Rule Description Device(1)
Families

HDL
Required?

Altera Corporation 5–77
November 2006

Using I/O Assignment Analysis to Validate Pin Assignments

Command Prompt
Type the following at a (non-Tcl) system command prompt:

quartus_fit <project-name> --check_ios r

Generating a Mapped Netlist

You can generate a mapped netlist with a Tcl command or with a
command-line command. For more information about generating a
mapped netlist, refer to “Generating a Mapped Netlist” on page 5–66.

Tcl Command
Enter the following in the Tcl console or in a script:

execute_module -tool map

The execute_module command is in the flow package.

Command Prompt
Type the following at a system command prompt:

quartus_map <project name>r

Reserving Pins

Use the following Tcl command to reserve a pin. For more information
about reserving pins, refer to “Reserving Pins” on page 5–66.

set_instance_assignment -name RESERVE_PIN <value> -to <signal name>

Valid values are: "AS BIDIRECTIONAL",
"AS INPUT TRI-STATED","AS OUTPUT DRIVING AN UNSPECIFIED
SIGNAL", "AS OUTPUT DRIVING GROUND" and "AS SIGNALPROBE
OUTPUT". Include the quotes when specifying the value.

Location Assignments

Use the following Tcl command to assign a signal to a pin or device
location. For more information about location assignments, refer to
“Location Assignments” on page 5–67.

set_location_assignment <location> -to <signal name>

5–78 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

Valid locations are pin location names, such as PIN_A3. The Stratix series
and Cyclone device families also support edge and I/O bank locations.
Edge locations are EDGE_BOTTOM, EDGE_LEFT, EDGE_TOP, and
EDGE_RIGHT. I/O bank locations include IOBANK_1 up to IOBANK_n, in
which n is the number of I/O banks in a particular device.

1 With Stratix III devices only, I/O banks are in the form of
IOBANK_nx where n is a number and x is the letter A, B, or C.
Though I/O banks may share the same number with different
letters, such as 1A and 1C, they are separate banks and not
related to each other. For more information, refer to the Stratix III
Device Handbook.

Incorporating
PCB Design
Tools

Signal and pin assignments are initially made by the FPGA or ASIC
designer, and it is up to the board designer to correctly transfer these
assignments to the symbols used in their system circuit schematics and
board layout. As the board design progresses, pin reassignments may be
requested or required to optimize the layout. These reassignments must
in turn be relayed to the FPGA designer, so that the new assignments can
be validated with the I/O Assignment Analyzer and processed through
an updated place-and-route of the FPGA.

The Quartus II software interacts with board layout tools by importing
and exporting pin information files, including the Quartus II Settings
File, Pin-Out file, and the FPGA Xchange file.

f For more information about incorporating PCB design tools, refer to the
Cadence PCB Design Tools Support and the Mentor Graphics PCB Design
Tools Support chapters in volume 2 of the Quartus II Handbook.

Advanced I/O
Timing

As part of I/O planning, especially with high-speed designs, you should
take board-level signal integrity and timing into account. When adding
an FPGA device with high-speed interfaces to a board design, the quality
of the signal at the far end of the board route, as well as the propagation
delay in getting there, is vital for proper system operation.

The Quartus II software provides features to take these factors into
consideration, making the software “board-aware.” The Quartus II
software can take into account board routing and external devices to
generate advanced timing reports and board simulation modeling files.
Three different methods of analysis are possible:

■ I/O timing using a default or user-specified capacitive load with no
signal integrity analysis (default)

Altera Corporation 5–79
November 2006

Advanced I/O Timing

■ The Quartus II Enable Advanced I/O Timing option utilizing a
user-defined board trace model to produce enhanced timing reports
from accurate, “board-aware” simulation models

■ Full board routing simulation in third-party tools using
Altera-provided or generated IBIS or HSPICE I/O models

If no changes are made to device settings, the first method of timing
analysis is used. Timing reports created by the TimeQuest Timing
Analyzer and the Classic Timing Analyzer measure tco to an I/O pin
using a default or user-specified value for a capacitive load.

The second method, the Quartus II Enable Advanced I/O Timing option,
lets you configure a complete board trace model for each I/O standard or
pin used in your design. With Enable Advanced I/O Timing turned on,
the TimeQuest Timing Analyzer uses the results of simulations of the I/O
buffer, package, and board trace model to generate more accurate I/O
delays and extra reports to give insight into signal behavior at the system
level. You can use these advanced timing reports as a guide to make
changes to your I/O assignments and board design to improve timing
and signal integrity.

This section details the first and second methods. The third method of
analysis, the creation of simulation model files for use by third-party
board simulation tools, is achieved with the IBIS and HSPICE Writers.
The IBIS and HSPICE Writers in the Quartus II software can export
accurate simulation models for use in applications such as Mentor
Graphics HyperLynx and Synopsys HSPICE.

f For information about creating IBIS and HSPICE models with the
Quartus II software and integrating those models into HyperLynx and
HSPICE simulations, refer to the Signal Integrity Analysis with Third-Party
Tools chapter in volume 3 of the Quartus II Handbook.

Default I/O Timing & Power with Capacitive Loading

When calculating tco and power for output and bidirectional pins, the
TimeQuest Timing Analyzer, the Classic Timing Analyzer, and power
analysis use a bulk capacitive load. This is the default method for these
pins. You can adjust the value of the capacitive load per I/O standard to
get tco and power measurements that more accurately reflect the behavior
of the output or bidirectional net on your PCB. Input pins ignore this
setting. To do this, on the Assignments menu, click Device. Click Device
& Pin Options, and click the Capacitive Loading tab (Figure 5–50).

5–80 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

Figure 5–50. Capacitive Tab of the Device & Pin Options Dialog Box

All of the available I/O standards for your selected device are listed with
their default loading values in picofarads (pF). Adjust the loading values
as desired for the I/O standards used in your design. Power and tco
measurements in the Compilation Report are adjusted based on the
settings.

1 You can also adjust the load on any individual pin in the Groups
or All Pins lists in the Pin Planner by adding the Output Pin
Load column. Right-click anywhere in either list and select
Customize Columns. Select Output Pin Load from the list of
available custom columns, and add it to the list of visible
columns. You can customize the load for individual pins or
multiple pins with different I/O standards.

f For more information about capacitive loading, the devices that support
it, and how tco and power are adjusted based on the setting, see
Quartus II Help.

Altera Corporation 5–81
November 2006

Advanced I/O Timing

Enabling & Configuring Advanced I/O Timing

With the Quartus II Enable Advanced I/O Timing turned on, you can
expand upon the basic timing and power measurements made with the
Capacitive Loading settings. Advanced I/O Timing gives you the ability
to fully define not only the capacitive load, but also any termination
components and trace impedances in the board routing for any output
pin or bidirectional pin in output mode. You can configure an overall
board trace model for each I/O standard as well as customize the model
for specific pins using a graphical interface.

When the Enable Advanced I/O Timing option is turned on, the board
trace model replaces the Capacitive Loading tab settings because the load
is included in the model. For timing measurements, the entire board trace
model is taken into account when calculating I/O delays. For power
measurements, an effective capacitive load is used based on the sum of
the capacitive elements in the model. This includes the Near capacitance,
Far capacitance, and Transmission line distributed capacitance
elements of the model.

1 Advanced I/O Timing is currently supported only for Stratix II
devices. All other devices use Capacitive Loading only for I/O
tco and power measurements. Check the Altera web site at
www.altera.com to determine which devices are supported in
newer versions of the Quartus II software.

Before you can configure a board trace model for Advanced I/O Timing,
you must select a device from a supported device family for your design
and you must turn on the Advanced I/O Timing option. To select a device
that supports Advanced I/O Timing, on the Assignments menu, click
Device to open the Settings dialog box with the Device page selected
(Figure 5–51). From the Family list, select Stratix II. You can set the other
controls under Show in ‘Available devices list’ to filter the Available
devices list and to select any migration devices. Under the Available
devices list, select a device. All devices in a supported family work with
Advanced I/O Timing.

5–82 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

Figure 5–51. Device Page of the Settings Dialog Box

Now you must turn on Enable Advanced I/O Timing. If the Settings
dialog box is not currently open, on the Assignments menu, click
Settings. In the Category list, click the icon to expand Timing Analysis
Settings. Select TimeQuest Timing Analyzer. The TimeQuest Timing
Analysis page appears (Figure 5–52). Turn on Enable Advanced I/O
Timing.

Altera Corporation 5–83
November 2006

Advanced I/O Timing

Figure 5–52. TimeQuest Timing Analyzer Settings

Define Overall Board Trace Models

You can now define an overall board trace model for each I/O standard
in your design. This is the default model for all pins that use a particular
I/O standard. After configuring the overall board trace model, you can
customize the model for specific pins using the Board Trace Model view
in the Pin Planner.

With the Settings dialog box open, in the Category list, click Device.
Click Device & Pin Options and click the Board Trace Model tab.

5–84 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

Figure 5–53. Board Trace Model Tab of the Device & Pin Options Dialog Box

1 You can still click the Capacitive Loading tab. However, because
you can configure all capacitive loading settings as part of the
board trace model, the tab indicates that you must use the
settings in the Board Trace Model tab.

All of the I/O standards available to the device are listed. Select any I/O
standard from the list. The Board trace model list displays the names and
values of all configurable components of the board trace for the selected
I/O standard. Components of the model are initially set to short, open, or
a numeric value depending on the component. The default settings for
components in the model for each I/O standard are device-specific and
match the default test model used for calculating delay when the Enable
Advanced I/O Timing option is turned off. In this way, default delay
measurements are the same whether or not the Enable Advanced I/O
Timing option is used.

f For information about the default models used for measuring I/O delay,
refer to the DC & Switching Characteristics chapter of the Stratix II Device
Handbook.

Altera Corporation 5–85
November 2006

Advanced I/O Timing

All of the component values listed in Figure 5–53 are adjustable. For
differential I/O standards, the component values you set are used for
both the positive and negative signals of a differential pair. An additional
component, Far differential resistance, is also included. To reset
individual settings to their defaults, leave the setting blank. If you want
all the settings for an I/O standard to revert to their original settings, click
Reset. Click OK to close the Device & Pin Options dialog box. Click OK
again to close the Settings dialog box.

1 Any component value changes made in the Board Trace Model
tab for a particular I/O standard are reflected in the Board Trace
Model view in the Pin Planner of all pins assigned with the same
I/O standard (described in “Customize the Board Trace Model
in the Pin Planner”). However, custom component value
changes made to selected pins in the Board Trace Model view in
the Pin Planner take priority and are not affected by changes
made to an I/O standard in the Board Trace Model tab.

Customize the Board Trace Model in the Pin Planner

Along with the other views available in the Package view in the Pin
Planner, you can also view a graphical representation of the board trace
model you have configured using the Board Trace Model view. To open
the Board Trace Model view, right-click an output or bidirectional pin in
the Groups list, the All Pins list, or the Package view and click Board
Trace Model. The Board Trace Model view opens in a floating window
(Figure 5–54).

5–86 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

Figure 5–54. Board Trace Model View

For differential signals, the Board Trace Model view displays the routing
and components for both the positive and negative signals of the
differential pair (Figure 5–55).

Altera Corporation 5–87
November 2006

Advanced I/O Timing

Figure 5–55. Differential Board Trace Model View

1 Any changes made to the Board Trace Model view for a
differential signal pair must be performed on the positive signal
of the pair. The settings must match between the positive and
negative signals of a differential pair, so the changes are
automatically reflected in the settings for the negative signal.

Double-click a component value to edit it. For numerical values, use
standard unit prefixes such as p, n, and k to represent pico, nano, and kilo,
respectively. To short across a series component or have an open circuit
for a parallel component, double-click the component value and select
short or open from the list.

f For more details about configuring component values for a board trace
model, including a complete list of the supported unit prefixes, refer to
Quartus II Help.

To view a display of a model for a particular pin, click on the pin in the
Package view, Groups list, or All Pins list. This changes the Board Trace
Model view to display the model of the pin. You can select multiple pins
that share the same I/O standard, open the Board Trace Model view, and
edit the model for all of the selected pins. If an input pin or multiple pins

5–88 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

with different I/O standards are selected, the Board Trace Model view
window indicates that it cannot display the model for the selected pin or
pins.

The components in the Board Trace Model view correspond to the
components listed in the Board Trace Model tab directly, and the settings
match initially. You can click and edit any value in the Board Trace Model
view to customize the model for the selected pin or pins. Changes made
in the Board Trace Model view do not affect the settings in the Board
Trace Model tab.

To configure board trace models for the pins in your design efficiently
with these two methods of entry, define the model for each I/O standard
in the Board Trace Model tab. With the overall model defined, use the
Board Trace Model view in the Pin Planner to customize individual pins
as needed. These customizations take priority over the settings in the
Board Trace Model tab on a per pin and per model component basis, so
they will not affect the settings on any other pin.

Create Signal Integrity Result Reports

Once you have turned on Enable Advanced I/O Timing and configured
board trace models for the pins you want to analyze, compile your project
or run the TimeQuest Timing Analyzer after a full compilation. The
Enable Advanced I/O Timing option creates signal integrity sub-reports
under TimeQuest Timing Analyzer in the Compilation Report window.

The Board Trace Model Assignments report (Figure 5–56) summarizes
the board trace model component settings for each output and
bidirectional signal.

Figure 5–56. Board Trace Model Assignments Report

Altera Corporation 5–89
November 2006

Advanced I/O Timing

The Signal Integrity Metrics subfolder contains detailed reports listing all
of the metrics calculated by the Enable Advanced I/O Timing option
(Figure 5–57).

Figure 5–57. Example of Slow-Corner Signal Integrity Metrics Report

The Slow- and Fast-Corner Signal Integrity Metrics reports are generated
by the Enable Advanced I/O Timing option. They list, in tabular format,
all of the signal integrity metrics calculated by the Enable Advanced I/O
Timing option, based on the board trace model settings for each output
or bidirectional pin. The reports contain many metrics, including
measurements at both the FPGA and at the far-end load of board delay,
steady state voltages, and rise and fall times.

The slow- or fast-corner reports are generated depending on the Timing
Netlist option in the TimeQuest Timing Analyzer. To select whether to
create a slow- or a fast-corner report, in the TimeQuest Timing Analyzer
on the Netlist menu, click Create Timing Netlist. Under Delay model,
select Slow corner or Fast corner to create reports of that type.

f For complete descriptions about all of the metrics calculated when the
Enable Advanced I/O Timing option is turned on and diagrams
illustrating the metrics on output waveforms, refer to Quartus II Help.
For more information about board level signal integrity and tips on how
to improve signal integrity in your high-speed designs, refer to the
Altera Signal Integrity Center. For information about the configuration
and use of the TimeQuest Timing Analyzer, refer to Quartus II Help or
Section II. Timing Analysis in volume 3 of the Quartus II Handbook.

5–90 Altera Corporation
November 2006

Quartus II Handbook, Volume 1

Conclusion The Quartus II software provides many tools and features to help you
with the I/O planning process. The I/O assignment analysis process
offers the ability to validate pin assignments in all design stages, even
before the development of the design. The ability to import and export
assignments between the Quartus II software and other PCB tools also
enables you to make iterative changes efficiently. Finally, the ability to
enter a board trace model and create advanced timing reports based on
how I/O signals are routed on a board truly makes the Quartus II
software “board-aware.”

Document
Revision History

Table 5–7 shows the revision history for this document.

Table 5–7. Document Revision History

Date / Version Changes Made Summary of Changes

November 2006
v6.1.0

● Updated text and graphics to reflect GUI changes.
● Added information about setting up and creating a

top-level design file from megafunctions and IP
MegaCores created in the Pin Planner.

● Added spreadsheet functionality information to lists in
the Pin Planner.

● Added descriptions of new reports generated by I/O
Assignment Analysis.

● Added information the Advanced I/O Timing option,
including the configuration of board trace models.

May 2006
v6.0.0

Updated for the Quartus II software version 6.0.0.
● Updated text and graphics to reflect the GUI changes.
● Added pin filtering information.
● Added pin assignments and Pad View information.
● Added Package view information.

October 2005
v5.1.0

● Updated for the Quartus II software version 5.1.0.
● I/O Assignment Analysis material incorporated into

chapter.

May 2005
v5.0.0

Initial release.

Altera Corporation 6–1
November 2006

6. Mentor Graphics PCB
Design Tools Support

Introduction With today’s large, high-pin-count and high-speed FPGA devices, good
and correct printed circuit board (PCB) design practices are more
essential than ever for ensuring correct system operation. Typically, the
PCB design takes place concurrently with the design and programming
of the FPGA. Signal and pin assignments are initially made by the FPGA
or ASIC designer, and the board designer must correctly transfer these
assignments to the symbols used in their system circuit schematics and
board layout. As the board design progresses, pin reassignments may be
needed to optimize the PCB layout. These reassignments must in turn be
relayed back to the FPGA designer so that the new assignments can be
processed through an updated placement and routing of the FPGA
design.

Mentor Graphics® provides tools to support this type of design flow. This
chapter discusses how the Quartus® II software interacts with the Mentor
Graphics I/O Designer software and the DxDesigner software to provide
a completely cyclical FPGA-to-board integration design workflow. This
chapter covers the following topics:

■ General design flow between the Quartus II software, the Mentor
Graphics I/O Designer software, and the DxDesigner software

■ Setting up the Quartus II software to create the design flow files
■ Creating an I/O Designer database project to incorporate the

Quartus II software signal and pin assignment data
■ Updating signal and pin assignment changes between the

I/O Designer software and the Quartus II software
■ Generating symbols in the I/O Designer software
■ Creating symbols in the DxDesigner software from the Quartus II

software output files without the use of the I/O Designer software

This chapter is intended primarily for board design and layout engineers
who want to start the FPGA board integration while the FPGA is still in
the design phase. Optionally, the board designer can plan the FPGA
pinout and routing requirements in the Mentor Graphics tools and pass
the information back to the Quartus II software for place-and-route. In
addition, part librarians benefit from learning how to take output from
the Quartus II software and use it to create new library parts and
symbols.

QII52015-6.1.0

6–2 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

The procedures in this chapter require the following software:

■ The Quartus II software version 5.1 or higher
■ DxDesigner software version 2004 or higher

Mentor Graphics I/O Designer software is optional.

f To obtain and license the Mentor Graphics tools and obtain product
information, support, and training, go to the Mentor Graphics website at
www.mentor.com.

FPGA-to-PCB
Design Flow

In the examples in this section, you create a design flow integrating an
Altera® FPGA design from the Quartus II software, and a circuit
schematic in the DxDesigner software. Figure 6–1 shows the design flow
with and without the I/O Designer software.

Altera Corporation 6–3
November 2006

FPGA-to-PCB Design Flow

Figure 6–1. Design Flow with & without the I/O Designer Software

Note to Figure 6–1:
(1) The Quartus II software generates the FPGA Xchange file in the output directory you specify in the Board-Level

Assignment Settings. However, the Quartus II software and the I/O Designer software can import pin assignments
from an FPGA Xchange file located in any directory. Altera recommends that you work with a backup of the FPGA
Xchange file to prevent overwriting existing assignments or importing invalid assignments.

No

I/O Designer

Regenerate FPGA
Xchange File

Create or Change
Pin Assignments

Create or Update
I/O Designer

Database (.fpc)

Generate Symbol

Create or Change
Pin Assignments

Run I/O Assignment
Analysis

Set Up to Generate
FPGA Xchange File

Compile and Run
EDA Netlist Writer

Start FPGA Design Start PCB Design

End

Quartus II Software

Using I/O
Designer?

Import Pin
Assignments

DxDesigner

Instantiate Symbol
in Schematic

Generate Symbol

Create New or Open
Existing Project

Forward to Board
Layout Tool

Board Layout Tool

Back-Annotate
Changes

.fx

.pin

Yes

(1)

Layout & Route
FPGA

Changes?

Yes

No

6–4 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

The following tasks, which are described in this chapter, describe how to
proceed through the design flow shown in Figure 6–1:

■ Set up the board-level assignment settings to generate an FPGA
Xchange file (.fx) for symbol generation in the Quartus II software

■ Compile the design and generate the FPGA Xchange file and the
Pin-Out file (.pin), which are located in the Quartus II project
directory

■ Create a board design using the DxDesigner software together with
the I/O Designer software, which involves the following steps:
● Create a new I/O Designer database based on the FPGA

Xchange file and the Pin-Out file
● Make adjustments to signal and pin assignments in the

I/O Designer software
● Regenerate the FPGA Xchange file in the I/O Designer software

to reflect the I/O Designer software changes in the Quartus II
software

● Generate a single or fractured symbol for use in the DxDesigner
software

● Add the symbol to the sym directory of a DxDesigner project, or
specify a new DxDesigner project with the new symbol

● Instantiate the symbol in your DxDesigner schematic and export
the design to the board layout tool

● Back-annotate pin changes created in the board layout tool to
the DxDesigner software and back to the I/O Designer software
and the Quartus II software

■ Create a board design using the DxDesigner software without the
I/O Designer software, which involves the following steps:
● Create a new DxBoardLink symbol using the Symbol Wizard

and reference the Pin-Out file output from the Quartus II
software in an existing DxDesigner project

● Instantiate the symbol in your DxDesigner schematic and pass
the design to a board layout tool

The I/O Designer software allows you to take advantage of the full FPGA
symbol design, creation, editing, and back-annotation flow supported by
Mentor Graphics tools.

1 Symbols can be updated with design changes at any point with
or without the I/O Designer software. However, if symbols are
changed in the DxDesigner software, the I/O Designer software
does not see the changes. If you change symbols using the
DxDesigner software, you must reimport the symbols into
I/O Designer to avoid overwriting your symbol changes.

Altera Corporation 6–5
November 2006

Setting Up the Quartus II Software

Setting Up the
Quartus II
Software

You can transfer pin and signal assignments from the Quartus II software
to the Mentor Graphics tools by generating two output files, a Pin-Out file
(.pin) and an FPGA Xchange file (.fx) (Figure 6–2).

Figure 6–2. Pin-Out Files & FPGA Xchange Files Note (1)

Note to Figure 6–2:
(1) Refer to Figure 6–1 for the full design flow, which includes the I/O Designer

software, the DxDesigner software, and the board layout tool flowchart details.

Create or Change
Pin Assignments

Run I/O Assignment
Analysis

Set Up to Generate
FPGA Xchange File

Compile and Run
EDA Netlist Writer

Start FPGA Design
Quartus II Software

Import Pin
Assignments

.fx

.pin

6–6 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

The two output files, the Pin-Out file and the FPGA Xchange file, are
described in Table 6–1.

Table 6–1. Pin Assignment Output File Format Comparison

File Format Description

Pin-Out file
(.pin) (1)

An output file generated by the Quartus II Fitter. The file cannot be imported into the Quartus II
software to change pin assignments. The file contains a complete list of the device pins including
any unused I/O pins, and provides the following basic information fields for each assigned pin on a
device:
● Pin signal name/usage
● Pin number
● Signal direction
● I/O standard
● Voltage
● I/O Bank
● User or fitter assigned

FPGA
Xchange
file (.fx)
(1),(2)

An input/output file generated by the Quartus II software and the I/O Designer software that can be
imported and exported from both programs. Industry standard with room for future changes and
additions. The FPGA Xchange file generated by the Quartus II software lists only assigned pins.
The file provides the following advanced information fields for each pin on a device:
● Pin number
● I/O Bank
● Signal name
● Signal direction
● I/O standard
● Drive strength (mA)
● Termination enabling
● Slew rate
● IOB Delay
● Swap group
● Differential pair type

When generated by the I/O Designer software, all pins, including unused pins, are listed and the
following fields are added:
● Swap group
● Differential pair type
● Device pin name
● Pin set
● Pin set position
● Pin set group
● Super pin set group
● Super pin set position

Notes to Table 6–1:
(1) For additional information about these file formats, refer to the Quartus II Help.
(2) For additional information about the information fields added by the Mentor Graphics software, refer to the

Mentor Graphics website at www.mentor.com.

Altera Corporation 6–7
November 2006

Setting Up the Quartus II Software

The I/O Designer software can also read from or update a Quartus II
Settings File (.qsf). The Quartus II Settings File is used in the design flow
in a similar manner to the FPGA Xchange file, but does not transfer pin
swap group information between the I/O Designer software and the
Quartus II software.

1 The Quartus II Settings File also contains additional important
information about your project that is not used by the I/O
Designer software. Because of this, Altera recommends that you
use the FPGA Xchange file instead of the Quartus II Settings File
for this design flow

f For more information about the Quartus II Settings File, refer to the
Quartus II Settings File Reference Manual.

Generating Pin-Out Files

The Quartus II Fitter generates the Pin-Out file whenever you perform a
full compilation or I/O Assignment Analysis on your design. The file is
generated and placed in your design directory and your file is named
<project name>.pin. The Mentor Graphics tools do not alter this file. The
Quartus II software cannot import assignments from an existing Pin-Out
file.

Generating FPGA Xchange Files

The FPGA Xchange file is not created automatically. To set up the
Quartus II software to create the FPGA Xchange file, follow these steps:

1. Start the Quartus II software. On the Assignments menu, click
Settings. The Settings dialog box appears.

2. Under EDA Tool Settings, click Board-Level. In the Board-Level
Symbol Format list, choose FPGA Xchange.

3. Set the Output directory to the location where you want to save the
file. The default output file path is
<project directory>/symbols/fpgaxchange. Click OK.

4. On the Processing menu, point to Start and click Start EDA Netlist
Writer.

The output directory you selected is created when you generate the FPGA
Xchange file.

6–8 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

c Both the Quartus II software and the I/O Designer software can
export and import an FPGA Xchange file. It is therefore possible
to overwrite the FPGA Xchange file and import incorrect
assignments into one or both programs. To prevent this
occurrence from happening, make a backup copy of the file
before importing, and import the copy instead of the file
generated by the Quartus II software. In addition, assignments
in the Quartus II software can be protected by following the
steps in “Protecting Assignments in the Quartus II Software” on
page 6–23.

Creating a Backup Quartus II Settings File

To create a backup Quartus II Settings File, perform the following steps:

1. On the Assignments menu, click Import Assignments. The Import
Assignments dialog box appears.

2. In the Import Assignments dialog box, browse to your project and
turn on Copy existing assignments into <project name>.qsf.bak.

3. Click OK.

Following these steps automatically creates a backup Quartus II Settings
File of your current pin assignments.

f For more information about pin and signal assignment transfer, and files
the Quartus II software can import and export, refer to the
I/O Management chapter in volume 2 of the Quartus II Handbook.

FPGA-to-Board
Integration with
the I/O Designer
Software

The Mentor Graphics I/O Designer software allows you to integrate your
FPGA and PCB designs. Pin and signal assignment changes can be made
anywhere in the design flow, typically using either the Quartus II Pin
Planner or the I/O Designer software. The I/O Designer software
facilitates moving these changes, as well as synthesis, placement, and
routing changes, between the Quartus II software, an external synthesis
tool (if used), and a schematic capture tool such as the DxDesigner
software.

This section describes how to use the I/O Designer software to transfer
pin and signal assignment information to and from the Quartus II
software with the FPGA Xchange file, and how to create symbols for the
DxDesigner software.

Figure 6–3 shows the design flow using the I/O Designer software.

Altera Corporation 6–9
November 2006

FPGA-to-Board Integration with the I/O Designer Software

Figure 6–3. Design Flow Using the I/O Designer Software Note (1)

Notes to Figure 6–3:
(1) Refer to Figure 6–1 for the full design flow including the Quartus II software

flowchart details.
(2) These are DxDesigner software-specific steps in the design flow and are not part of

the I/O Designer flow.

I/O Designer

Regenerate FPGA
Xchange File

Create or Change
Pin Assignments

Create or Update
I/O Designer

Database (.fpc)

Generate Symbol

DxDesigner

Instantiate Symbol
in Schematic

Generate Symbol

Create New or Open
Existing Project

Forward to Board
Layout Tool

.fx

.pin

(2)

(2)

End

Board Layout Tool

Back-Annotate
Changes

Layout and Route
FPGA

Changes?

Yes

No

6–10 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

f For more information about the I/O Designer software, and to obtain
usage, support, and product updates, use the Help menu in the
I/O Designer software or refer to the Mentor Graphics website at
www.mentor.com.

I/O Designer Database Wizard

All I/O Designer project information is stored in an I/O Designer
Database (.fpc) file. You can create a new database that incorporates the
FPGA Xchange file and Pin-Out file information generated by the
Quartus II software by using the I/O Designer Database Wizard. You can
also create a new, empty database and manually add the assignment
information. If there is no signal or pin assignment information currently
available, you can create an empty database that contains only a selection
of the target device. This is useful if you know the signals in your design
and the pins you want to assign. You can transfer this information at a
later time to the Quartus II software for place-and-route.

It is possible to create an I/O Designer database with only one type of file
or the other. However, if only a Pin-Out file is used, any I/O assignment
changes made in the I/O Designer software cannot be imported back into
the Quartus II software without first generating an FPGA Xchange file. If
only an FPGA Xchange file is used to create the I/O Designer database,
the database may not contain a complete picture of all of the I/O
assignment information available. The FPGA Xchange file generated by
the Quartus II software only lists pins with assigned signals. Since the
Pin-Out file lists all device pins—whether signals are assigned to them or
not—its use, along with the FPGA Xchange file, produces the most
complete set of information for creating the I/O Designer Database.

To create a new I/O Designer database using the Database Wizard,
perform the following steps:

1 If you skip a step in this process, you can complete the skipped
step later, filling in the appropriate information. To return to a
skipped step, on the Properties menu, click File.

1. Start the I/O Designer software. The Welcome to I/O Designer
dialog box appears (Figure 6–4). Select Wizard to create new
database and click OK.

1 If the Welcome to I/O Designer dialog box is not shown
because it was disabled, you can access the Wizard through
the menus. To access the Wizard on the File menu, click
Database Wizard.

Altera Corporation 6–11
November 2006

FPGA-to-Board Integration with the I/O Designer Software

Figure 6–4. I/O Designer Welcome Dialog

2. Click Next. The Define HDL source file page opens (Figure 6–5).

Figure 6–5. Database Wizard HDL File Page

6–12 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

f For more information about creating and using HDL files in the
Quartus II software, refer to the Recommended HDL Coding Styles chapter
in volume 1 of the Quartus II Handbook, or refer to the I/O Designer
Help.

1 If no HDL files are available, or if your signal and pin
assignments are already contained in the FPGA Xchange
file, you do not have to complete step 3 and can proceed to
step 4.

3. If you have created a Verilog HDL or VHDL file in your Quartus II
software design, you can enter a top-level Verilog HDL or VHDL
file. Adding a file allows you to create functional blocks or get signal
names from your design. All physical pin assignments must be
created in I/O Designer if no FPGA Xchange file or Pin-Out file is
used. Click Next. The Database Name page is shown.

4. In the Database Name window, enter your database file name. Click
Next. The Database Location window is shown.

5. Enter a path to the new database or an existing one in the Location
field, or browse to a database location. Click Next. The FPGA flow
page is shown (Figure 6–6).

Figure 6–6. Database Wizard Vendor & Device Page

6. In the Vendor menu, click Altera.

7. In the Tool/Library menu, click Quartus II 5.0, or a later version of
the Quartus II software.

Altera Corporation 6–13
November 2006

FPGA-to-Board Integration with the I/O Designer Software

8. Select the appropriate device family, device, package, and speed
(if applicable), from the corresponding menus. Click Next. The
Place and route page is shown (Figure 6–7).

1 The Quartus II software version selections in the
Tool/Library menu may not reflect the version of the
Quartus II software currently installed on your system even
if you are using the most current version of the
I/O Designer software. The version number selection in
this window is used in the I/O Designer software to
identify the devices that were available or obsolete in that
particular version of the Quartus II software. If you are
unsure of the version to select, use the most recent version
listed in the menu. If the device you are targeting does not
appear in the device menu after making this selection, the
device may be new and not yet added to the I/O Designer
software. A list of unsupported devices for recent versions
of the I/O Designer software can be found in Table 6–2. For
I/O Designer software updates, contact Mentor Graphics
or refer to their website at www.mentor.com.

Table 6–2. I/O Designer Unsupported Devices

Version of I/O Designer Unsupported Devices

2005 (current release) Stratix II GX

2004.2 Hardcopy II
Stratix II GX

6–14 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

Figure 6–7. Database Wizard Place and Route Page

9. In the FPGAX file name field, type or browse to the backup copy of
the FPGA Xchange file generated by the Quartus II software.

10. In the Pin report file name field, type or browse to the Pin-Out file
generated by the Quartus II software. Click Next.

In addition, you can select a Quartus II Settings File for update. The
I/O Designer software can update the pin assignment information in
the Quartus II Settings File without affecting any other information
contained in the file.

1 You can select a Pin-Out file without selecting an FPGA
Xchange file for import. The I/O Designer software does
not generate a Pin-Out file. To transfer assignment
information to the Quartus II software, select an additional
file and file type. Altera recommends selecting an FPGA
Xchange file in addition to a Pin-Out file for transferring all
of the assignment information contained within both types
of files.

Altera Corporation 6–15
November 2006

FPGA-to-Board Integration with the I/O Designer Software

1 In some versions of the I/O Designer software, the
standard file picker may incorrectly look for a Pin-Out file
instead of an FPGA Xchange file. In this case, select All
Files (*.*) from the Save as type list and select the file from
the list.

11. The Synthesis page displays. On the Synthesis page, you can
specify an external synthesis tool and a synthesis constraints file for
use with the tool. If you do not use an external synthesis tool, click
Next.

f For more information about third-party synthesis tools, refer to volume 3
of the Quartus II Handbook.

12. The PCB Flow page is shown (Figure 6–8). On the PCB Flow page,
you can select an existing schematic project or create a new project
as a destination for symbol information.

● To select an existing project, select Choose existing project and
click Browse after the Project Path field. The Select project
dialog box appears. Select the project.

● To create a new project, in the Select project dialog box, select
Create new empty project. Enter the project file name in the
Name field and browse to the location where you want to save
the file (Figure 6–9). Click OK.

6–16 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

Figure 6–8. PCB Flow Page

Figure 6–9. Select Project Dialog Box

Altera Corporation 6–17
November 2006

FPGA-to-Board Integration with the I/O Designer Software

If you have not specified a design tool for sending symbol
information to in I/O Designer, click Advanced in the PCB Flow
page and select your design tool. If the DxDesigner software is
selected, you have the option of specifying a Hierarchical Occurrence
Attributes (.oat) file to import into the I/O Designer software
(Figure 6–8). Click Next, then click Finish to create the database.

1 In I/O Designer version 2005 or later, the Update Wizard (refer
to Figure 6–13 on page 6–21) is shown when you finish creating
the database using the database wizard. Use the Update Wizard
to confirm creation of the I/O Designer database using the
selected FPGA Xchange and Pin-Out files.

Use the I/O Designer software and your newly created database to make
pin assignment changes, create pin swap groups, or adjust signal and pin
properties in the I/O Designer GUI (Figure 6–10).

Figure 6–10. I/O Designer Main Window

6–18 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

f For more information about using the I/O Designer software and the
DxDesigner software, refer to the Mentor Graphics website at
www.mentor.com or refer to the I/O Designer software or the
DxDesigner Help.

Updating Pin Assignments from the Quartus II Software

As the design process continues, the FPGA designer may need to make
changes to the logic design in the Quartus II software that place signals
on different pins after the design is recompiled, or manually by using the
Quartus II Pin Planner. These types of changes must be carried forward
to the circuit schematic and board layout tools to ensure that signals are
connected to the correct pins on the FPGA. Updating the FPGA Xchange
file and the Pin-Out file in the Quartus II software facilitates this flow
(Figure 6–11).

Figure 6–11. Updating the I/O Designer Pin Assignments in the Design Flow
Note (1)

Note to Figure 6–11:
(1) Refer to Figure 6–1 for the full design flow, which includes the Quartus II software,

the DxDesigner software, and the board layout tool flowchart details.

To update the FPGA Xchange file and the Pin-Out file in the Quartus II
software after making changes to the design, run a full compilation, or on
the Start menu, point to Processing and click Start EDA Netlist Writer.
The FPGA Xchange file in your selected output directory and the Pin-Out
file in your project directory are updated. You must rerun the
I/O Assignment Analyzer whenever you make I/O changes in the
Quartus II software. To rerun the I/O Assignment Analyzer, on the
Processing menu, click Start Compilation, or to run a full compilation, on
the Processing menu, point to Start and click Start I/O Assignment
Analysis.

I/O Designer

Regenerate FPGA
Xchange File

Create or Change
Pin Assignments

Create or Update
I/O Designer

Database (.fpc)

Generate Symbol

.fx

.pin

Altera Corporation 6–19
November 2006

FPGA-to-Board Integration with the I/O Designer Software

f Refer to the I/O Management chapter in volume 2 of the Quartus II
Handbook for more information about setting up the FPGA Xchange file
and running the I/O Assignment Analyzer.

c If your I/O Designer database points to the FPGA Xchange file
generated by the Quartus II software instead of a backup copy
of the file, updating the file in the Quartus II software overwrites
any changes made to the file by the I/O Designer software. If
there are I/O Designer assignments in the FPGA Xchange file
that you want to preserve, create a backup copy of the file before
updating it in the Quartus II software, and verify that your
I/O Designer database points to the backup copy. To point to
the backup copy, perform the steps in the following section.

Whenever the FPGA Xchange file or the Pin-Out file is updated in the
Quartus II software, the changes can be imported into the I/O Designer
database. You must set up the locations for the files in the I/O Designer
software.

6–20 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

1. To set up the file locations if they are not already set, on the File
menu, click Properties. The Project Properties dialog box appears
(Figure 6–12).

Figure 6–12. Project Properties Dialog Box

2. Under FPGA Xchange, click Browse to select the FPGA Xchange file
name and file location.

3. To specify a Pin report file, under Place and Route, click Browse to
select the Pin-Out file name and file location.

Once you have set up these file locations, the I/O Designer software
monitors these files for changes. If the FPGA Xchange file or Pin-Out file
changes during the design flow, three indicators flash red in the lower
right-hand corner of the I/O Designer main window (see Figure 6–10 on
page 6–17). You can continue working or click on the indicators to open
the I/O Designer Update Wizard. If you have made changes to your
design in the Quartus II software that result in an updated FPGA
Xchange file or Pin-Out file and the update indicators do not flash or you
have previously canceled an indicated update, manually open the
Update Wizard. To open the Wizard, on the File menu, click Update.

Altera Corporation 6–21
November 2006

FPGA-to-Board Integration with the I/O Designer Software

1 In versions of the I/O Designer software before version 2005,
instead of using flashing indicators, the I/O Designer software
displays a dialog box asking if you want to open the Update
Wizard.

The I/O Designer Update Wizard lists the updated files associated with
the database (Figure 6–13).

Figure 6–13. Update Wizard Dialog Box

The paths to the updated files have yellow exclamation points and the
Status column shows Not updated, indicating that the database has not
yet been updated with the newer information contained in the files. A
checkmark to the left of any updated file indicates that the file will update
the database. Turn on any files you want to use to update the
I/O Designer database, and click Next. If you are not satisfied with the
database update, on the Edit menu, click Undo.

1 You can update the I/O Designer database using both the FPGA
Xchange file and the Pin-Out file at the same time. Turning on
both the FPGA Xchange file and the Pin-Out file for update
causes the Update Wizard to provide options for using
assignments from one file or the other exclusively or merging
the assignments contained in both files into the I/O Designer
database. Versions of the I/O Designer software older than
version 2005 simply merge assignments contained in multiple
files.

Sending Pin Assignment Changes to the Quartus II Software

In the same way that the FPGA designer can make adjustments that affect
the PCB design, the board designer can make changes to optimize signal
routing and layout that must be applied to the FPGA. The FPGA designer
can take these required changes back into the Quartus II software to refit
the logic to match the adjustments to the pinout. The I/O Designer
software can accommodate this reverse flow as shown in Figure 6–14.

6–22 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

Figure 6–14. Updating the Quartus II Pin Assignments in the Reverse Design
Flow

Notes to Figure 6–14:
(1) These are software-specific steps in the design flow and are not necessary for the

reverse flow steps of the design.
(2) Refer to Figure 6–1 for the full design flow, which includes the complete

I/O Designer software, the DxDesigner software, and the board layout tool
flowchart details.

Pin assignment changes are made directly in the I/O Designer software,
or the software automatically updates changes made in a board layout
tool that are back-annotated to a schematic entry program such as the
DxDesigner software. You must update the FPGA Xchange file to reflect
these updates in the Quartus II software. To perform this update in the
I/O Designer software, on the Generate menu, click FPGA Xchange File.

c If your I/O Designer database points to the FPGA Xchange file
generated by the Quartus II software instead of a backup copy,
updating the file from the I/O Designer software overwrites
any changes that may have been made to the file by the
Quartus II software. If there are assignments from the Quartus II
software in the file that you want to preserve, make a backup
copy of the file before updating it in the I/O Designer software,
and verify that your I/O Designer database points to the backup
copy. To point to the backup copy, perform the steps in
“Updating Pin Assignments from the Quartus II Software” on
page 6–18.

(2)

I/O Designer

Regenerate FPGA
Xchange File

Create or Change
Pin Assignments

Create or Update
I/O Designer

Database (.fpc)

Generate Symbol

Create or Change
Pin Assignments

Run I/O Assignment
Analysis

Set Up to Generate
FPGA Xchange File

Compile and Run
EDA Netlist Writer

Start FPGA Design
Quartus II Software

Import Pin
Assignments

.fx

(1) (1)

Altera Corporation 6–23
November 2006

FPGA-to-Board Integration with the I/O Designer Software

After the FPGA Xchange file is updated, you must import it into the
Quartus II software. To import the file, perform the following steps:

1. Start the Quartus II software and open your project.

2. On the Assignments menu, click Import Assignments.

3. In the File name box, click Browse and from the Files of type list,
select FPGA Xchange Files (*.fx).

3. Select the FPGA Xchange file and click Open.

4. Click OK.

c Both the Quartus II software and the I/O Designer software can
export and import an FPGA Xchange file. It is therefore possible
to overwrite the FPGA Xchange file and import incorrect
assignments into one or both programs. To prevent this
occurrence from happening, make a backup copy of the file
before importing, and import the copy instead of the file
generated by the Quartus II software. In addition, assignments
in the Quartus II software can be protected by following the
steps in “Protecting Assignments in the Quartus II Software” on
page 6–23.

Protecting Assignments in the Quartus II Software

To protect assignments in the Quartus II software, use the following
steps:

1. Start the Quartus II software.

2. On the Assignments menu, click Import Assignments. The Import
Assignments dialog box appears.

3. Turn on Copy existing assignments into <project name>.qsf.bak
before importing before importing the FPGA Xchange file. This
action automatically creates a backup Quartus II constraints file that
contain all of your current pin assignments.

Generating Symbols for the DxDesigner Software

Along with circuit simulation, circuit board schematic creation is one of
the first tasks required in the design of a new PCB. Schematics are
required to understand how the PCB will work, and to generate a netlist

6–24 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

that is passed to a board layout tool for board design and routing. The
I/O Designer software provides the ability to create schematic symbols
based on the FPGA design exported from the Quartus II software.

Most FPGA devices contain hundreds of pins, requiring large schematic
symbols that may not fit on a single schematic page. Symbol designs in
the I/O Designer software can be split or fractured into a number of
functional blocks, allowing multiple part fractures on the same schematic
page or across multiple pages. In the DxDesigner software, these part
fractures are joined together with the use of the HETERO attribute.

The I/O Designer software can generate symbols for use in a number of
Mentor Graphics schematic entry tools, and can import changes
back-annotated by board layout tools to update the database and feed
updates back to the Quartus II software using the FPGA Xchange file.
This section discusses symbol creation specifically for the DxDesigner
software.

Schematic symbols are created in the I/O Designer software in the
following ways:

■ Manually
■ Using the I/O Symbol Wizard
■ Importing previously created symbols from the DxDesigner

software

The I/O Designer Symbol Wizard can be used as a design base that
allows you to quickly create a symbol for manual editing at a later time.
If you have already created symbols in a DxDesigner project and want to
apply a different FPGA design to them, you can manually import these
symbols from the DxDesigner project. To import the symbols, open the
I/O Designer software, and on the File menu, click Import Symbol.

f For more information about importing symbols from the DxDesigner
software into an I/O Designer database, refer to the I/O Designer Help.

Symbols created in the I/O Designer software are either functional,
physical (PCB), or a combination of functional and physical. A functional
symbol is based on signals imported into the database, usually from
Verilog HDL or VHDL files. No physical device pins must be associated
with the signals to generate a functional symbol. This section focuses on
board-level PCB symbols with signals directly mapped to physical device
pins through assignments in either the Quartus II Pin Planner or in the
I/O Designer database.

Altera Corporation 6–25
November 2006

FPGA-to-Board Integration with the I/O Designer Software

f For information about manually creating symbols, importing symbols,
and editing symbols in the I/O Designer software, as well as the
different types of symbols the software can generate, refer to the
I/O Designer Help.

Setting Up the I/O Designer Software to Work with the DxDesigner
Software

If you created your I/O Designer database using the Database Wizard,
you may already be set up to export symbols to a DxDesigner project. To
verify this, or to manually set up the I/O Designer software to work with
the DxDesigner software, you must set the path to the DxDesigner
executable, set the export type to DxDesigner, and set the path to a
DxDesigner project directory.

To set these options, perform the following steps:

1. Start the I/O Designer software.

2. On the Tools menu, click Preferences. The Preferences dialog box
appears.

3. Click Paths, double-click on the DxDesigner executable file path
field, and click Browse to select the location of the DxDesigner
application (Figure 6–15). Click Apply.

Figure 6–15. Path Preferences Dialog Box

6–26 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

4. Click Symbol Editor and click Export. In the Export type menu,
under General, select DxDesigner/PADS-Designer (Figure 6–16).

5. Click Apply and click OK.

Figure 6–16. Symbol Editor Export Preferences

6. On the File menu, click Properties. The project Properties dialog box
appears.

7. Click the PCB Flow tab and click Path to a DxDesigner project
directory.

8. Click OK.

If you did not create a new DxDesigner project in the Database Wizard
and you do not already have a DxDesigner project, you must create a new
database using the DxDesigner software, and point the I/O Designer
software to this new project.

f For information about creating and working with DxDesigner projects,
refer to the DxDesigner Help.

Altera Corporation 6–27
November 2006

FPGA-to-Board Integration with the I/O Designer Software

Create Symbols with the Symbol Wizard

FPGA symbols based on Altera devices can be created, fractured, and
edited using the I/O Designer Symbol Wizard. To create a symbol based
on a selected Altera FPGA device:

1. Start the I/O Designer software.

2. Click Symbol Wizard in the toolbar, or on the Symbol menu, click
Symbol Wizard. The Symbol Wizard (1 of 6) page is shown
(Figure 6–17).

Figure 6–17. Symbol Wizard

3. On the first Symbol Wizard page, in the Symbol name field, enter
the symbol name. The DEVICE and PKG_TYPE fields are
populated with the device and package information automatically.
Under Symbol type, click PCB. Under Use signals, click All.

4. Click Next. The Symbol Wizard (2 of 6) page is shown.

6–28 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

1 If the DEVICE and PKG_TYPE fields are blank or incorrect,
cancel the Symbol Wizard and select the correct device
information. On the File menu, click Properties. In the
Properties window, click the FPGA Flow tab and enter the
correct device information.

5. On page 2 of the Symbol Wizard, select fracturing options for your
symbol. If you are using the Symbol Wizard to edit a previously
created fractured symbol, you must turn on Reuse existing
fractures so that your current fractures are not altered. Select other
options on this page as appropriate for your symbol.

6. Click Next. The Symbol Wizard (3 of 6) page is shown.

7. Additional fracturing options are available on page 3 of the Symbol
Wizard. After selecting the desired options, click Next. The Symbol
Wizard (4 of 6) page is shown.

8. On page 4 of the Symbol Wizard, select the options for how the
symbols will look. Select the desired options and click Next. The
Symbol Wizard (5 of 6) page is shown.

9. On page 5 of the Symbol Wizard, define what information will be
labeled for the entire symbol and for individual pins. Select the
desired options and click Next. The Symbol Wizard (6 of 6) page is
shown.

10. On the final page of the Symbol Wizard, add additional signals and
pins that have not already been placed in the symbol. Click Finish
when you complete your selections.

Your symbol is complete. You can view your symbol and any fractures
you created using the Symbol Editor (Figure 6–18). You can edit parts of
the symbol, delete fractures, or rerun the Symbol Wizard.

Altera Corporation 6–29
November 2006

FPGA-to-Board Integration with the I/O Designer Software

Figure 6–18. The I/O Designer Symbol Editor

If assignments in the I/O Designer database are updated, the symbols
created in the I/O Designer software automatically reflect these changes.
Assignment changes can be made within the I/O Designer software, with
an updated FPGA Xchange file from the Quartus II software, or from a
back-annotated change in your board layout tool.

Export Symbols to the DxDesigner Software

After you have completed your symbols, export the symbols to your
DxDesigner project. To generate all the fractures of a symbol, on the
Generate menu, click All Symbols. To generate a symbol for the currently
displayed symbol in Symbol Editor, click Current Symbol Only. Each
symbol in the database is saved as a separate file in the /sym directory in
your DxDesigner project. The symbols can be instantiated in your
DxDesigner schematics.

f For more information about working with DxDesigner projects, refer to
the DxDesigner Help.

Scripting Support

The I/O Designer software features a command line Tcl interpreter. All
commands issued through the GUI in the I/O Designer software are
translated into Tcl commands that are run by the tool. You can view the
generated Tcl commands and run scripts, or enter individual commands
in the I/O Designer Console window.

6–30 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

The following section includes commands that perform some of the
operations described in this chapter.

If you want to change the FPGA Xchange file from which the
I/O Designer software updates assignments, type the following
command at an I/O Designer Tcl prompt:

set_fpga_xchange_file <file name>

After the FPGA Xchange file is specified, use the following command to
update the I/O Designer database with assignment updates made in the
Quartus II software:

update_from_fpga_xchange_file

Use the following command to update the FPGA Xchange file with
changes made to the assignments in the I/O Designer software for
transfer back into the Quartus II software:

generate_fpga_xchange_file

If you want to import assignment data from a Pin-Out file created by the
Quartus II software, use the following command:

set_pin_report_file -quartus_pin <file name>

Run the I/O Designer Symbol Wizard with the following command:

symbolwizard

Set the DxDesigner project directory path where symbols are saved with
the following command:

set_dx_designer_project -path <path>

f For more information about Tcl scripting and Tcl scripting with the
Quartus II software, refer to the Tcl Scripting chapter in volume 2 of the
Quartus II Handbook. For more information about the Tcl scripting
capabilities of the I/O Designer software as well as a list of all the
commands available, refer to the I/O Designer Help.

Altera Corporation 6–31
November 2006

FPGA-to-Board Integration with the DxDesigner Software

FPGA-to-Board
Integration with
the DxDesigner
Software

The Mentor Graphics DxDesigner software is a design entry tool for
schematic capture. You can use it to create flat circuit schematics for all
types of PCB design. You can also use the DxDesigner software to create
hierarchical schematics that facilitate design reuse and a team-based
design. You can use the DxDesigner software in the design flow alone or
in conjunction with the I/O Designer software. However, if you use the
DxDesigner software without the I/O Designer software, the design flow
is one-way, using only the Pin-Out file generated by the Quartus II
software.

Signal and pin assignment changes can be made only in the Quartus II
software and are reflected in updated symbols in a DxDesigner
schematic. You cannot back-annotate changes made in a board layout tool
or in a DxDesigner symbol to the Quartus II software. Figure 6–19 shows
the design flow when the I/O Designer software is not used.

Figure 6–19. Design Flow Without the I/O Designer Software Note (1)

Note to Figure 6–19:
(1) Refer to Figure 6–1 for the full design flow, which includes the Quartus II software,

the I/O Designer software, and the board layout tool flowchart details.

f For more information about the DxDesigner software, including usage,
support, training, and product updates, refer to the Mentor Graphics
web page at www.mentor.com, or choose Schematic Design Help Topics
in the DxDesigner Help.

DxDesigner Project Settings

New projects in the DxDesigner software are already set up to create
FPGA symbols by default. However, for complete support and
compatibility with the I/O Designer software, if it is used with the
DxDesigner software, you should enable the DxBoardLink Flow options.

DxDesigner

Instantiate in
Schematic

Generate Symbol

Create New or Open
Existing Project

Forward to Board
Layout Tool

.pin

6–32 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

You can enable the DxBoardLink flow design configuration while
creating a new DxDesigner project or after a project is created.

To enable the DxBoardLink flow design configuration when creating a
new DxDesigner project, perform the following steps:

1. Start the DxDesigner software.

2. On the File menu, click New and click the Project tab. The New
Project dialog box appears.

Figure 6–20. New Project Dialog Box

3. Click More. Turn on DxBoardLink. (Figure 6–20)

Altera Corporation 6–33
November 2006

FPGA-to-Board Integration with the DxDesigner Software

1 To enable the DxBoardLink Flow design configuration in an
existing project, click Design Configurations in the Design
Configuration toolbar and turn on DxBoardLink
(Figure 6–21).

Figure 6–21. DxBoardLink Design Configuration

DxDesigner Symbol Wizard

In addition to circuit simulation, circuit board schematic creation is one of
the first tasks required in the design of a new PCB. Schematics are
required to understand how the PCB will work, and to generate a netlist
that is passed on to a board layout tool for board stackup design and
routing.

You can create schematic symbols using the DxDesigner software based
on FPGA designs exported from the Quartus II software through the
Pin-Out file for instantiation in DxDesigner schematic design files. Most
FPGA devices are physically large with hundreds of pins, requiring large
schematic symbols that may not fit on a single schematic page. You can
split or fracture symbols created in the DxDesigner software into a
number of functional blocks, allowing multiple part fractures on the same
schematic page or across multiple pages. In the DxDesigner software,
these part fractures are joined together with the use of the HETERO
attribute.

You can create schematic symbols in the DxDesigner software manually
or with the Symbol Wizard. The DxDesigner Symbol Wizard is similar to
the I/O Designer Symbol Wizard, but with fewer fracturing options.

6–34 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

FPGA symbols based on Altera devices can be created, fractured, and
edited using the DxDesigner Symbol Wizard. To start the Symbol Wizard,
perform the following steps:

1. Start the DxDesigner software.

2. Click Symbol Wizard in the toolbar, or on the File menu, click New.
The New window is shown. Click the File tab and create a new file
of type Symbol Wizard.

3. Enter the new symbol name in the name field and click OK. The
Symbol Wizard page is shown (Figure 6–22).

Figure 6–22. Wizard Task Selection

4. On the Wizard Task Selection page, choose to create a new symbol
or modify an existing symbol. If you are modifying an existing
symbol, specify the library path or alias, and select the existing
symbol. If you are creating a new symbol, select DxBoardLink for
the symbol source. The DxDesigner block type defaults to Module

Altera Corporation 6–35
November 2006

FPGA-to-Board Integration with the DxDesigner Software

because the FPGA design does not have an underlying DxDesigner
schematic. Define whether or not to fracture the symbol. After
making your selections, click Next. The New Symbol and Library
Name page is shown.

5. On the New Symbol and Library Name page, enter a name for the
symbol, an overall part name for all of the symbol fractures, and a
library name for the new library created for this symbol. By default,
the part and library names are the same as the symbol name. Click
Next. The Symbol Parameters page is shown.

6. On the Symbol Parameters page, decide how the generated symbol
will look and how it will match up with the grid you have set in
your DxDesigner project schematic. After making your selections,
click Next. The DxBoardLink Pin List Import page is shown
(Figure 6–23).

Figure 6–23. DxBoardLink Pin List Import

6–36 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

7. On the DxBoardLink Pin List Import page, in the FPGA vendor
list, select Altera Quartus. In the Pin-Out file to import field, browse
to and select the Pin-Out file from your Quartus II design project
directory. Additionally, select choices from the Fracturing Scheme
options, Bus pin options, and Power pin options. After you make
your selections, click Next. The Symbol Attributes page is shown.

8. On the Symbol Attributes page, select to create or modify symbol
attributes for use in the DxDesigner software. After you make your
selections, click Next. The Pin Settings page is shown.

9. On the Pin Settings page, make any final adjustments to pin and
label location and information. Each tabbed spreadsheet represents
a fracture of your symbol. After you make your selections, click
Save Symbol.

After you save the symbol, you can examine and place any fracture of the
symbol in your schematic. When you are finished with the Symbol
Wizard, all the fractures you created are saved as separate files in the
library you specified or created in the /sym directory in your DxDesigner
project. You can add the symbols to your schematics or you can edit the
symbols manually or with the Symbol Wizard.

1 Symbols created in the DxDesigner software can be edited and
updated with newer versions of the Pin-Out file generated by
the Quartus II software. However, symbol fracturing is fixed,
and the symbol cannot be fractured again. To create new
fractures for your design, create a new symbol in the Symbol
Wizard, and follow the steps in “DxDesigner Symbol Wizard”
on page 6–33.

f For more information about creating, editing, and instantiating
component symbols in DxDesigner, choose Schematic Design Help
Topics from the Help menu in the DxDesigner software.

Conclusion Transferring a complex, high-pin-count FPGA design to a PCB for
prototyping or manufacturing is a daunting process that can lead to
errors in the PCB netlist or design, especially when multiple engineers are
working on different parts of the project. The design workflow available
when the Quartus II software is used in conjunction with the Mentor
Graphics toolset assists the FPGA designer and the board designer in
preventing errors and focusing their attention on the design.

Altera Corporation 6–37
November 2006

Conclusion

Document
Revision History

Table 6–3 shows the revision history for this document.

Table 6–3. Document Revision History

Date &
Document

Version
Changes Made Summary of Changes

November 2006
v6.1.0

Added revision history to the document.

May 2006,
v6.0.0

Was chapter 7 in v5.1.
Minor updates for the Quartus II software version 6.0.0.

November 2005,
v5.1.1

Corrected text in steps 3 and 4 on page 11.

October 2005,
v5.1.0

Initial release.

6–38 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

Altera Corporation 7–1
November 2006 Preliminary

7. Cadence PCB Design
Tools Support

Introduction With today’s large, high-pin-count and high-speed FPGA devices, good
printed circuit board (PCB) design practices are more essential than ever
to ensure the correct operation of your system. Typically, the PCB design
takes place concurrently with the design and programming of the FPGA.
Signal and pin assignments are initially made by the FPGA or ASIC
designer, and it is up to the board designer to correctly transfer these
assignments to the symbols used in their system circuit schematics and
board layout. As the board design progresses, pin reassignments may be
requested or required to optimize the layout. These reassignments must
in turn be relayed to the FPGA designer so that the new assignments can
be processed through the FPGA using updated place-and-route.

Cadence provides tools to support this type of design flow. This chapter
addresses how the Quartus II software interacts with the Cadence
Allegro Design Entry HDL software and the Allegro Design Entry CIS
(Component Information System) software (also known as OrCAD
Capture CIS) to provide a complete FPGA-to-board integration design
workflow. This chapter provides information about the following topics:

■ Cadence tool description, history, and comparison
■ The general design flow between the Quartus II software and the

Cadence Allegro Design Entry HDL software and the Cadence
Allegro Design Entry CIS software

■ Generating schematic symbols from your FPGA design for use in the
Cadence Allegro Design Entry HDL software

■ Updating Design Entry HDL symbols when signal and pin
assignment changes are made in the Quartus II software

■ Creating schematic symbols in the Cadence Allegro Design Entry
CIS software from your FPGA design

■ Updating symbols in the Cadence Allegro Design Entry CIS software
when signal and pin assignment changes are made in the Quartus II
software

■ Using Altera®-provided device libraries in the Cadence Allegro
Design Entry CIS software

This chapter is intended primarily for board design and layout engineers
who want to begin the FPGA board integration process while the FPGA
is still in the design phase. In addition, part librarians benefit from
learning how to take output from the Quartus II software and use it to
create new library parts and symbols.

QII52014-6.1.0

7–2 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

The instructions in this chapter require the following software:

■ The Quartus II software version 5.1 or later
■ The Cadence Allegro Design Entry HDL or the Cadence Allegro

Design Entry CIS software version 15.2 or later
■ If you are using the OrCAD Capture software, you must have

version 10.3 or later (CIS is optional)

1 Because the Cadence Allegro Design Entry CIS software is based
on OrCAD Capture, these programs are very similar. For this
reason, this chapter refers to the Allegro Design Entry CIS
software in directions; however, these directions also apply to
OrCAD Capture unless otherwise noted.

f To obtain and license the Cadence tools described in this chapter, and for
product information, support, and training, refer to the Cadence website,
www.cadence.com. For information about OrCAD Capture and the CIS
option, refer to the OrCAD website, www.orcad.com. For Cadence and
OrCAD support and training, refer to the EMA Design Automation
website, www.ema-eda.com.

Product
Comparison

The design tools described in this chapter have similar functionality, but
there are differences in their use as well as where to access product
information. Table 7–1 lists the products described in this chapter and
provides information about changes, product information, and support.

Table 7–1. Cadence & OrCAD Product Comparison

Cadence Allegro Design
Entry HDL

Cadence Allegro Design Entry
CIS OrCAD Capture CIS

Former Name Concept HDL Expert Capture CIS Studio N/A

History

More commonly known by its
former name, Cadence
renamed all board design
tools in 2004 under the
Allegro name.

Based directly on OrCAD
Capture CIS, this tool is still
developed by OrCAD but sold
and marketed by Cadence.
EMA provides support and
training.

The basis for Design Entry CIS
is still developed by OrCAD for
continued use by existing
OrCAD customers. EMA now
provides support and training
for all OrCAD products.

Vendor
Design Flow

Cadence Allegro 600 series,
formerly known as Expert
Series, for high-end,
high-speed design.

Cadence Allegro 200 series,
formerly known as Studio
Series, for small- to
medium-level design.

N/A

Information
& Support

www.cadence.com
www.ema-eda.com

www.cadence.com
www.ema-eda.com
www.orcad.com

www.ema-eda.com
www.orcad.com

Altera Corporation 7–3
November 2006 Preliminary

FPGA-to-PCB Design Flow

FPGA-to-PCB
Design Flow

In the examples in this section, you create a design flow integrating an
Altera FPGA design from the Quartus II software through a circuit
schematic in the Allegro Design Entry HDL software (Figure 7–1) or the
Allegro Design Entry CIS software (Figure 7–2).

Figure 7–1. Design Flow with the Allegro Design Entry HDL Software

Project Manager

Create or Open a Project

Run Full
Compilation

Run I/O Assignment
Analysis

Create or Change
Pin Assignments

Part Developer

Start FPGA Design
Start PCB Design

(Allegro Design Entry HDL)

End

Quartus II Software

.pin

Import or Update Pin
Assignments

Create or Update FPGA Symbol

Edit or Fracture Symbol

Design Entry HDL

Instantiate Symbol in Schematic

Forward to Board Layout Tool

Board Layout Tool

Layout & Route FPGA

7–4 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Figure 7–2. Design Flow with the Allegro Design Entry CIS Software

The basic steps in a complete design flow to integrate an Altera FPGA
design starting in the Quartus II software through to a circuit schematic
in Design Entry HDL or Design Entry CIS are as follows:

■ Start the Quartus II software.
■ In the Quartus II software, compile your design to generate a

Pin-Out (.pin) file to transfer assignments to the Cadence tool.
■ If you are using the Cadence Allegro Design Entry HDL software for

your schematic design:
● Open an existing project or create a new project in the Allegro

Project Manager.
● Construct a new symbol or update an existing symbol using the

Allegro PCB Librarian Part Developer.
● With the Part Developer, edit your symbol or fracture it into

smaller parts, if desired.
● Instantiate the symbol in your Design Entry HDL software

schematic and transfer the design to your board layout tool.

Run Full
Compilation

Run I/O Assignment
Analysis

Create or Change
Pin Assignments

Design Entry CISQuartus II Software

End

.pin

Instantiate Symbol in Schematic

Generate or Update Part

Create or Open Project

Forward to Board Layout Tool

Edit or Fracture Symbol

Board Layout Tool

Layout & Route FPGA

Start FPGA Design
Start PCB Design

(Allegro Design Entry CIS)

Altera Corporation 7–5
November 2006 Preliminary

Setting Up the Quartus II Software

■ If you are using the Cadence Allegro Design Entry CIS software for
your schematic design, perform the following steps:
● Generate a new part within an existing or new Allegro Design

Entry CIS project, referencing the Pin-Out file output from the
Quartus II software. You can update an existing symbol with a
new Pin-Out file.

● Split the symbol into smaller parts as desired.
● Instantiate the symbol in your Design Entry CIS schematic and

transfer the design to your board layout tool.

Figures 7–1 and 7–2 show the possible design flows, depending on your
tool choice. The Cadence PCB Librarian Expert license is required to use
the PCB Librarian Part Developer to create FPGA symbols. You can
update symbols with changes made to the FPGA design at any point
using any of these tools.

Setting Up the
Quartus II
Software

You can transfer pin and signal assignments from the Quartus II software
to the Cadence design tools by generating the Quartus II project Pin-Out
file. The Pin-Out file is an output file generated by the Quartus II Fitter
that contains pin assignment information. Use the Quartus II Pin Planner
or Assignment Editor to set and change the assignments contained in the
Pin-Out file. This file cannot be used to import pin assignment changes
into the Quartus II software. Use it only to transfer assignments for use
with the Cadence design tools.

The Pin-Out file lists all used and unused pins on your selected Altera
device. It also provides the following basic information fields for each
assigned pin on a device:

■ Pin signal name and usage
■ Pin number
■ Signal direction
■ I/O standard
■ Voltage
■ I/O bank
■ User or Fitter-assigned

f For information about using the Quartus II Pin Planner to create or
change pin assignment details, refer to the I/O Management chapter in
volume 2 of the Quartus II Handbook.

7–6 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Generating Pin-Out Files

The Quartus II software automatically generates the Pin-Out file when
your FPGA design is fully compiled or when you start I/O Assignment
Analysis. To start I/O Assignment Analysis, on the Processing menu,
point to Start and click Start I/O Assignment Analysis. The file is output
by the Quartus II Fitter. The file is generated and placed in your
Quartus II design directory with the name <project name>.pin. The
Cadence design tools do not generate or change this file.

f For more information about pin and signal assignment transfer and the
files that the Quartus II software can import and export, refer to the I/O
Management chapter in volume 2 of the Quartus II Handbook.

FPGA-to-Board
Integration with
the Cadence
Allegro Design
Entry HDL
Software

The Cadence Allegro Design Entry HDL software is Cadence’s high-end
schematic capture tool (part of the Cadence 600 series design flow). Use
this software to create flat circuit schematics for all types of PCB design.
The Cadence Allegro Design Entry HDL software can also create
hierarchical schematics to facilitate design reuse and team-based design.
With the Cadence Allegro Design Entry HDL software, the design flow
from FPGA-to-board is one-way, using only the Pin-Out file generated by
the Quartus II software. Signal and pin assignment changes can only be
made in the Quartus II software and are reflected in updated symbols in
a Design Entry HDL project.

1 Routing or pin assignment changes made in a board layout tool
or a Design Entry HDL symbol cannot be back-annotated to the
Quartus II software.

Figure 7–1 shows the design flow with the Cadence Allegro Design Entry
HDL software.

f For more information about the Cadence Allegro Design Entry HDL
software and the Part Developer, including licensing, support, usage,
training, and product updates, refer to the Help in the software or refer
to the Cadence web page at www.cadence.com.

Symbol Creation

In addition to circuit simulation, circuit board schematic creation is one of
the first tasks required in the design of a new PCB. Schematics are
required to understand how the PCB works, and to generate a netlist that
is passed on to a board layout tool for board design and routing. The
Allegro PCB Librarian Part Developer provides the ability to create
schematic symbols based on FPGA designs exported from the Quartus II
software.

Altera Corporation 7–7
November 2006 Preliminary

FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software

Create symbols for Design Entry HDL with the Allegro PCB Librarian
Part Developer available in the Allegro Project Manager. The Part
Developer is the recommended method for importing FPGA designs into
the Cadence Allegro Design Entry HDL software.

You must have a PCB Librarian Expert license from Cadence to run the
Part Developer. The Part Developer provides a graphical interface with
many options for creating, editing, fracturing, and updating symbols. If
you do not use the Part Developer, you must create and edit symbols
manually in the Symbol Schematic View in the Cadence Allegro Design
Entry HDL software.

1 If you do not have a PCB Librarian Expert license, you can still
automatically create FPGA symbols using the programmable IC
(PIC) design flow found in the Allegro Project Manager. For
more information about using the PIC design flow, refer to the
Help in the Cadence design tools, or go to the Cadence website
at www.cadence.com.

Before you create a symbol from an FPGA design, you must open or
create a Design Entry HDL design project. You can do this with the
Allegro Project Manager, the main interface to all of the Cadence tools.

To open an existing design in the Allegro Project Manager, on the File
menu, click Open and select the main design file for your project (found
in your Allegro Design Entry HDL project directory and called
<project directory>.cpm).

To create a new project, on the File menu, point to New and click New
Design. The New Project Wizard appears. Use the wizard to name your
new project, set the file location, and define associated part libraries.

Allegro PCB Librarian Part Developer

Create, fracture, and edit schematic symbols for your FPGA designs in
Altera devices using the Part Developer. Most FPGA devices are
physically large with hundreds of pins, requiring large schematic
symbols that may not fit on a single schematic page. Symbols designed in
the Part Developer can be split or fractured into a number of functional
blocks called slots, allowing multiple smaller part fractures to exist on the
same schematic page or across multiple pages. Figure 7–3 highlights how
the Part Developer fits into the design flow.

7–8 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Figure 7–3. Part Developer in the Design Flow

Notes to Figure 7–3:
(1) Refer to Figure 7–1 for the full design flow flowchart details.
(2) Grayed out steps are not part of the FPGA Symbol creation or update process.

Run the Part Developer from the Project Manager (Figure 7–4). To start
the Part Developer in the Project Manager, on the Flows menu, click
Library Management. Click Part Developer to start the tool.

Part Developer

End

.pin
Import or Update Pin

Assignments

Create or Update FPGA Symbol

Edit or Fracture Symbol

Design Entry HDL

Instantiate Synbol in Schematic

Forward to Board Layout Tool

Board Layout Tool

Layout & Route FPGA

(1)

(2)

Altera Corporation 7–9
November 2006 Preliminary

FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software

Figure 7–4. Invoking the Part Developer from the Project Manager

Import and Export Wizard
Once you are in the Part Developer, you can use the Import and Export
Wizard to import your pin assignments from the Quartus II software. To
access the Wizard, perform the following steps:

1. On the File menu, click Import and Export. The Import and Export
Wizard appears (Figure 7–5).

7–10 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Figure 7–5. Import and Export Wizard

2. Select Import FPGA. Click Next. The Select Source page appears
(Figure 7–6).

Figure 7–6. Select Source Page

Altera Corporation 7–11
November 2006 Preliminary

FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software

3. In the Vendor list, select Altera. In the PnR Tool list, select
quartusII. To specify the Pin-Out file in the PR File field, select the
Pin-Out file in your Quartus II project directory. Click Simulation
Options if you want to select simulation input files. Click Next. The
Select Destination page is shown (Figure 7–7).

Figure 7–7. Select Destination Page

4. To create a new component in a library, click Generate Custom
Component. To base your symbol on an existing component, click
Use standard component.

1 You may want to do this if you previously created generic
symbols for an FPGA device. You can place your pin and
signal assignments from the Quartus II software on this
symbol and reuse the symbol as a base any time you have a
new FPGA design.

In the Library list, select an existing library. You can now select from
the cells contained in the selected library. Each cell represents all of
the symbol versions and part fractures for that particular part. In the
Cell list, select the existing cell to use as a base for your part. In the
Destination Library list, select a destination library for the
component. Click Next. A preview of your import data is shown
(Figure 7–8).

7–12 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Figure 7–8. Preview of Import Data Window

5. Review the assignments you are importing into the Part Developer
based on the data in the Pin-Out file. The location of each pin is not
included in the information in this window, but inputs are placed on
the left side of the created symbol, outputs on the right, power pins
on the top, and ground pins on the bottom. Make any desired
changes. When you have completed your changes, click Finish to
create the symbol. The Part Developer main screen is shown.

1 If the Part Developer is not set up to point to your PCB Librarian
Expert license file, an error message displays in red at the
bottom of the message text window of the Part Developer when
you select the Import and Export command. To point to your
PCB Librarian Expert license, on the File menu, click Change
Product and select the correct product license.

f For more information about licensing and obtaining licensing support,
contact Cadence or refer to their website at www.cadence.com.

Edit & Fracture Symbol
After you save your new symbol in the Part Developer software, you can
edit the symbol graphics, fracture the symbol into multiple slots, and add
or change package or symbol properties. These actions are available from
the Part Developer main window.

Altera Corporation 7–13
November 2006 Preliminary

FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software

The Part Developer Symbol Editor contains many graphical tools to edit
the graphics of a particular symbol. Select the symbol in the cell hierarchy
to edit the symbol graphics. The Symbol Pins tab is shown. Edit the
preview graphic of the symbol in the Symbol Pins tab.

Fracturing a Part Developer package into separate symbol slots is
especially useful for FPGA designs. A single symbol for most FPGA
packages may be too large for a single schematic page. Splitting the part
into separate slots allows you to organize parts of the symbol by function,
creating cleaner circuit schematics. For example, you could create one slot
for an I/O symbol, a second slot for a JTAG symbol, and a third slot for a
power/ground symbol.

Figure 7–9 shows a part fractured into separate slots.

Figure 7–9. Splitting a Symbol into Multiple Slots Notes (1), (2)

Notes to Figure 7–9:
(1) Figure 7–9 represents a Cyclone device with JTAG or passive serial (PS) mode configuration option settings.

Symbols created for other devices or other configuration modes may have different sets of configuration pins, but
can be fractured in a similar manner.

(2) Symbol fractures are referred to in different ways in each of the tools described in this chapter. Refer to Table 7–2 for
the specific tool naming conventions.

(3) The power/ground slot shows only a representation of power and ground pins. In actuality, the device contains a
high number of power and ground pins.

newt

reset

d[7..0] yn_out[7..0]

Version 1

filtref

filtref

filtref

Version 2 Version 3

clk

clkx2

yvalid

follow
V

C
C

IN
T

VCCA_PLL1
VCCA_PLL2

GNDA_PLL1
GNDA_PLL2
GNDG_PLL1
GNDG_PLL2

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

TDI
TMS

TDO

NCEO

TCK

MSEL0
MSEL1

NCONFIG
NCE

DCLK
DATA0

NCSO

NSTATUS
ASDO

CONF_DONE

V
C

C
IO

1

V
C

C
IO

2

V
C

C
IO

3

V
C

C
IO

4

7–14 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

1 While the Part Developer software refers to symbol fractures as
slots, the other tools described in this chapter use different
names to refer to symbol fractures. Table 7–2 lists the symbol
fracture naming conventions for each of the tools addressed in
this chapter.

To fracture a part into separate slots, or modify the slot locations of pins
on parts that are already fractured in the Part Developer, perform the
following steps:

1. Start the Cadence Allegro Design Project Manager.

2. On the Flows menu, click Library Management. The Library
Management design flow is shown. Click Part Developer. The Part
Developer launches.

3. Click on the name of the package you want to change in the cell
hierarchy. The Package Pin tab appears.

4. Click Functions/Slots. If you are not creating new slots but want to
change the slot location of some pins, proceed to step 5. If you are
creating new slots, click Add. A dialog box appears, allowing you to
add extra symbol slots. Set the number of extra slots you want to
add to the existing symbol, not the total number of desired slots for
the part. Click OK.

5. Click Distribute Pins. Set the slot where each pin should reside. Use
the checkboxes in each column to move pins from one slot to
another. You can use the standard cut, copy, and paste keyboard
commands on selected groups of checkboxes to move multiple pins
from one slot to another. Click OK.

6. After distributing the pins, click the Package Pin tab and click
Generate Symbol(s). the Generate Symbols dialog box appears.

7. Select whether to create a new symbol or modify an existing symbol
in each slot. Click OK.

Table 7–2. Symbol Fracture Naming

Allegro PCB Librarian
Part Developer Software

Allegro Design Entry
HDL Software

Allegro Design Entry
CIS Software

During symbol generation Slots N/A Sections

During symbol schematic
instantiation

N/A Versions Parts

Altera Corporation 7–15
November 2006 Preliminary

FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software

The newly generated or modified slot symbols display as separate
symbols in the cell hierarchy. Each of these symbols can be edited
individually.

c The Part Developer lets you remap pin assignments in the
Package Pin tab of the main Part Developer window. If signals
are remapped to different pins in the Part Developer, the
changes are reflected only in regenerated symbols for use in
your schematics. You cannot transfer pin assignment changes to
the Quartus II software from the Part Developer, which creates
a potential mismatch of the schematic symbols and assignments
in the FPGA design. If pin assignment changes are necessary,
make the changes in the Quartus II Pin Planner instead of the
Part Developer, and update the symbol as described in the
following sections.

f For more information about creating, editing, and organizing component
symbols with the Allegro PCB Librarian Part Developer, refer to the Part
Developer Help.

Update FPGA Symbol
As the design process continues, you may need to make changes to the
logic design in the Quartus II software, placing signals on different pins
after the design is recompiled, or use the Quartus II Pin Planner to make
changes manually. The board designer may request such changes to
improve the board routing and layout. These types of changes must be
carried forward to the circuit schematic and board layout tools to ensure
signals are connected to the correct pins on the FPGA. Updating the
Pin-Out file in the Quartus II software facilitates this flow. Figure 7–10
shows this part of the design flow.

7–16 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Figure 7–10. Updating the FPGA Symbol in the Design Flow

Notes to Figure 7–10:
(1) Refer to Figure 7–1 for the full design flow flowchart details.
(2) Grayed out steps are not part of the FPGA Symbol update process.

Once the Pin-Out file has been updated, perform the following steps to
update the symbol using the Allegro PCB Librarian Part Developer:

1. On the File menu, click Import and Export. The Import and Export
Wizard appears.

2. In the list of actions to perform, select Import ECO - FPGA. Click
Next. The Select Source Page is shown.

3. Select the updated source of the FPGA assignment information. In
the Vendor list, select Altera. In the PnR Tool list, select quartusII.
In the PR File field, click browse to specify the updated Pin-Out file
in your Quartus II project directory. Click Next. The Select
Destination window is shown.

4. Select the source component and a destination cell for the updated
symbol. To create a new component based on the updated pin
assignment data, select Generate Custom Component. This
replaces the cell listed under the Specify Library and Cell name
header with a new, non-fractured cell. Any symbol edits or fractures

Part Developer

End

.pin
Import or Update Pin

Assignments

Create or Update FPGA Symbol

Edit or Fracture Symbol

Design Entry HDL

Instantiate Symbol in Schematic

Forward to Board Layout Tool

Board Layout Tool

Layout & Route FPGA

(1)

(2)

Altera Corporation 7–17
November 2006 Preliminary

FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software

are lost. You can preserve these edits by selecting Use standard
component and select the existing library and cell. Select the
destination library for the component and click Next. The Preview
of Import Data page is shown.

5. Make any additional changes to your symbol. Click Next. A list of
ECO messages displays summarizing what changes will be made to
the cell. To accept the changes and update the cell, click Finish.

6. The main Part Developer window is shown. You can edit, fracture,
and generate the updated symbols as usual from this window.

1 If the Part Developer is not set up to point to your PCB Librarian
Expert license file, an error message displays in red at the
bottom of the message text window of the Part Developer when
you select the Import and Export command. To point to your
PCB Librarian Expert license, on the File menu, click Change
Product, and select the correct product license. For more
information about licensing and obtaining licensing support,
contact Cadence or refer to their website at www.cadence.com.

Instantiating the Symbol in the Cadence Allegro Design Entry
HDL Software

Once the new symbol is saved in the Part Developer, instantiate the
symbol in your Design Entry HDL schematic.

1. In the Allegro Project Manager, switch to the board design flow.

2. On the Flows menu, click Board Design.

3. Click Design Entry to start the Design Entry HDL software.

4. To add the newly created symbol to your schematic, right-click in
the main schematic window and choose Add Component, or on the
Component menu, click Add. The Add Component dialog box
appears.

5. Select the new symbol library location, and select the name of the
cell you created from the list of cells.

The symbol is now “attached” to your cursor for placement in the
schematic. If you fractured the symbol into slots, right-click the symbol
and choose Version to select one of the slots for placement in the
schematic.

7–18 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

f For more information about the Cadence Allegro Design Entry HDL
software, including licensing, support, usage, training, and product
updates, refer to the Help in the software or go to the Cadence website at
www.cadence.com.

FPGA-to-Board
Integration with
Allegro Design
Entry CIS

The Cadence Allegro Design Entry CIS software is Cadence’s mid-level
schematic capture tool (part of the Cadence 200 series design flow based
on OrCAD Capture CIS). Use this software to create flat circuit schematics
for all types of PCB design. You can also create hierarchical schematics to
facilitate design reuse and team-based design using this software. With
the Cadence Allegro Design Entry CIS software, the design flow from
FPGA-to-board is unidirectional using only the Pin-Out file generated by
the Quartus II software. Signal and pin assignment changes can only be
made in the Quartus II software and are reflected in updated symbols in
a Design Entry CIS schematic project.

1 Routing or pin assignment changes made in a board layout tool
or a Design Entry CIS symbol cannot be back-annotated to the
Quartus II software. Figure 7–11 shows the design flow with the
Cadence Allegro Design Entry CIS software.

Figure 7–11. Design Flow with the Cadence Allegro Design Entry CIS Software

Run Full
Compilation

Run I/O Assignment
Analysis

Create or Change
Pin Assignments

Design Entry CISQuartus II Software

End

.pin

Instantiate Symbol in Schematic

Generate or Update Part

Create or Open Project

Forward to Board Layout Tool

Edit or Fracture Symbol

Board Layout Tool

Layout & Route FPGA

Start FPGA Design
Start PCB Design

(Allegro Design Entry CIS)

Altera Corporation 7–19
November 2006 Preliminary

FPGA-to-Board Integration with Allegro Design Entry CIS

f For more information about the Cadence Allegro Design Entry CIS
software, including licensing, support, usage, training, and product
updates, refer to the Help in the software, go to the Cadence website at
www.cadence.com, or go to the EMA Design Automation website at
www.ema-eda.com.

Allegro Design Entry CIS Project Creation

The Cadence Allegro Design Entry CIS software has built-in support for
creating schematic symbols using pin assignment information imported
from the Quartus II software.

If you have not already created a new project in the Cadence Allegro
Design Entry CIS software, perform the following steps to create a new
project:

1. On the File menu, point to New and click Project. The New Project
Wizard starts.

When you create a new project, you can select the PC Board Wizard,
the Programmable Logic Wizard, or a blank schematic.

2. Select the PC Board Wizard to create a project where you can select
which part libraries to use, or select a blank schematic.

The Programmable Logic Wizard is used only to build an FPGA logic
design in the Cadence Allegro Design Entry CIS software, which is
unnecessary when using the Quartus II software.

No other special configuration for your project is required. Your new
project is created in the specified location and initially consists of two
files: the OrCAD Capture Project (.opj) file and the Schematic Design
(.dsn) file.

Generate Part

After you create a new project or open an existing project in the Allegro
Design Entry CIS software, you can generate a new schematic symbol
based on your Quartus II FPGA design. You can also update an existing
symbol if your Pin-Out file has been updated in the Quartus II software.
The Cadence Allegro Design Entry CIS software stores component
symbols in OrCAD Library (.olb) files. When a symbol is placed in a
library attached to a project, it is immediately available for instantiation
in the project schematic.

7–20 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

You can add symbols to an existing library or you can create a new library
specifically for the symbols generated from your FPGA designs. To create
a new library, perform the following steps:

1. On the File menu, point to New and click Library in the Cadence
Allegro Design Entry CIS software to create a default library named
library1.olb. This library appears in the Library folder in the Project
Manager window of the Cadence Allegro Design Entry CIS
software.

2. Right-click the new library and choose Save As to specify a desired
name and location for the library. The library file is not created until
you save the new library.

You can now create a new symbol to represent your FPGA design in your
schematic. To generate a schematic symbol, perform the following steps:

1. Start the Cadence Allegro Design Entry CIS software.

2. On the Tools menu, click Generate Part. The Generate Part dialog
box appears (Figure 7–12).

Figure 7–12. Generate Part Dialog Box

Altera Corporation 7–21
November 2006 Preliminary

FPGA-to-Board Integration with Allegro Design Entry CIS

3. In the Netlist/source file type field, click Browse to specify the
Pin-Out file from your Quartus II design.

4. In the Netlist/source file type list, select Altera Pin File.

5. Enter the new part name.

6. Specify the Destination part library for the symbol. If you do not
select an existing library for the part, a new library is created with a
default name that matches the name of your Design Entry CIS
project.

7. Select Create new part if you are creating a brand new symbol for
this design. Select Update pins on existing part in library if you
updated your Pin-Out file in the Quartus II software and want to
transfer any assignment changes to an existing symbol.

8. Select any other desired options and set Implementation type to
<none>. The symbol is for a primitive library part based only on the
Pin-Out file and does not need a special implementation. Click OK.

9. Review the Undo warning and click Yes to complete the symbol
generation.

The symbol is generated and placed in the selected library or in a new
library found in the Outputs folder of the design in the Project Manager
window. Double-click the name of the new symbol to see its graphical
representation and edit it manually using the tools available in the
Cadence Allegro Design Entry CIS software.

Figure 7–13. Project Manager Window

7–22 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

f For more information about creating and editing symbols in the Allegro
Design Entry CIS software, refer to the Help in the software.

Split Part

Once a new symbol is saved in a project’s library, you can fracture the
symbol into multiple parts called sections. Fracturing a part into separate
sections is especially useful for FPGA designs. A single symbol for most
FPGA packages may be too large for a single schematic page. Splitting the
part into separate sections allows you to organize parts of the symbol by
function, creating cleaner circuit schematics. For example, you could
create one slot for an I/O symbol, a second slot for a JTAG symbol, and a
third slot for a power/ground symbol.

Figure 7–14 shows a part fractured into separate sections.

Figure 7–14. Splitting a Symbol into Multiple Sections Notes (1), (2)

Notes to Figure 7–14:
(1) Figure 7–14 represents a Cyclone device with JTAG or passive serial (PS) mode configuration option settings.

Symbols created for other devices or other configuration modes may have different sets of configuration pins, but
can be fractured in a similar manner.

(2) Symbol fractures are referred to in different ways in each of the tools described in this chapter. Refer to Table 7–2 for
the specific tool naming conventions.

(3) The power/ground section shows only a representation of power and ground pins. In actuality, the device contains
a high number of power and ground pins.

newt

reset

d[7..0] yn_out[7..0]

Version 1

filtref

filtref

filtref

Version 2 Version 3

clk

clkx2

yvalid

follow

V
C

C
IN

T
VCCA_PLL1
VCCA_PLL2

GNDA_PLL1
GNDA_PLL2
GNDG_PLL1
GNDG_PLL2

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

TDI
TMS

TDO

NCEO

TCK

MSEL0
MSEL1

NCONFIG
NCE

DCLK
DATA0

NCSO

NSTATUS
ASDO

CONF_DONE

V
C

C
IO

1

V
C

C
IO

2

V
C

C
IO

3

V
C

C
IO

4

Altera Corporation 7–23
November 2006 Preliminary

FPGA-to-Board Integration with Allegro Design Entry CIS

1 While symbol generation in the Design Entry CIS software refers
to symbol fractures as sections, the other tools described in this
chapter use different names to refer to symbol fractures. Refer to
Table 7–2 on page 7–14 for the symbol fracture naming
conventions for each of the tools addressed in this chapter.

To split a part into sections, select the part in its library in the Project
Manager window of Design Entry CIS. On the Tools menu, click Split
Part or right-click the part and choose Split Part. The Split Part Section
Input Spreadsheet is shown (Figure 7–15).

Figure 7–15. Split Part Section Input Spreadsheet

Each row in the spreadsheet represents a pin in the symbol. The
spreadsheet column labeled Section indicates the section of the symbol to
which each pin is assigned. By default, all pins in a new symbol are
located in section 1. Change the values in this column to assign pins to
different, new sections of the symbol. You can also specify the side of a
section on which the pin will reside by changing the values in the
Location column. When you are finished, click Split. A new symbol
appears in the same library as the original with the name
<original part name>_Split1.

7–24 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

View and edit each section individually. To view the new sections of the
part, double-click the part. The Part Symbol Editor window is shown.
The first section of the part is displayed for editing. On the View menu,
click Package to view thumbnails of all the part sections. Double-click a
thumbnail to edit that section of the symbol.

f For more information about splitting parts into sections and editing
symbol sections in the Cadence Allegro Design Entry CIS software, refer
to the Help in the software.

Instantiate Symbol in Design Entry CIS Schematic

After a new symbol is saved in a library in your Design Entry CIS project,
you can instantiate it on a page in your schematic. Open a schematic page
in the Project Manager window of the Cadence Allegro Design Entry CIS
software. On the schematic page, to add the newly created symbol to your
schematic, on the Place menu, click Part. The Place Part dialog box
appears (Figure 7–16).

Figure 7–16. Place Part Dialog Box

Altera Corporation 7–25
November 2006 Preliminary

FPGA-to-Board Integration with Allegro Design Entry CIS

Select the new symbol library location and the newly created part name.
If you select a part that is split into sections, you can select the section to
place from the Part pop-up menu. Click OK. The symbol is now attached
to your cursor for placement in the schematic. Click on the schematic
page to place the symbol.

f For more information about using the Cadence Allegro Design Entry CIS
software, refer to the Help in the software.

Altera Libraries for Design Entry CIS

Altera provides downloadable OrCAD Library Files for many of its
device packages. You can add these libraries to your Design Entry CIS
project and update the symbols with the pin assignments contained in the
Pin-Out file generated by the Quartus II software. This allows you to use
the downloaded library symbols as a base for creating custom schematic
symbols with your pin assignments that you can edit or fracture as
desired. This can increase productivity by reducing the amount of time it
takes to create and edit a new symbol.

To use the Altera-provided libraries with your Design Entry CIS project,
perform the following steps:

1. Download the library of your target device from the Download
Center page found through the Support page on the Altera website
at www.altera.com.

2. Make a copy of the appropriate OrCAD Library file so that the
original symbols are not altered. Place the copy in a convenient
location such as your Design Entry CIS project directory.

3. In the Project Manager window of the Cadence Allegro Design
Entry CIS software, click once on the Library folder to select it. On
the Edit menu, click Project or right-click the Library folder and
choose Add File to select the copy of the downloaded OrCAD
Library file and add it to your project. The new library is added to
the list of part libraries for your project.

4. On the Tools menu, click Generate Part. The Generate Part dialog
box appears (Figure 7–17).

7–26 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Figure 7–17. Generate Part Dialog Box

5. In the Netlist/source file type field, click Browse to specify the
Pin-Out file in your Quartus II design.

6. From the Netlist/source file type list, select Altera Pin File.

7. For the part name, enter the name of the target device the same as it
appears in the downloaded library file. For example, if you are
using a device from the CYCLONE06.OLB library, set the part name
to match one of the devices in this library such as ep1c6f256. You can
rename the symbol later in the Project Manager window after the
part is updated.

8. Set the Destination part library to the copy of the downloaded
library you added to the project.

9. Select Update pins on existing part in library. Click OK, then click
Yes.

The symbol is updated with your pin assignments. Double-click the
symbol in the Project Manager window to view and edit the symbol. On
the View menu, click Package if you want to view and edit other sections

Altera Corporation 7–27
November 2006 Preliminary

Conclusion

of the symbol. If the symbol in the downloaded library is already
fractured into sections, as some of the larger packages are, you can edit
each section but you cannot further fracture the part. Generate a new part
without using the downloaded part library if you require additional
sections.

f For more information about creating, editing, and fracturing symbols in
the Cadence Allegro Design Entry CIS software, refer to the Help in the
software.

Conclusion Transferring a complex, high-pin-count FPGA design to a PCB for
prototyping or manufacturing is a daunting process that can lead to
errors in the PCB netlist or design, especially when different engineers are
working on different parts of the project. The design workflow available
when the Quartus II software is used with tools from Cadence assists the
FPGA designer and the board designer in preventing such errors and
focusing all attention on the design.

7–28 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Document
Revision History

Table 7–3 shows the revision history for this document.

Table 7–3. Document Revision History

Date &
Document

Version
Changes Made Summary of Changes

November 2006
v6.1.0

Added revision history to the document.

May 2006,
v6.0.0

Was chapter 6 in v5.1.
Minor updates for the Quartus II software version 6.0.0.

November 2005,
v5.1.1

Realigned figures 6-9 and 6-14.

October 2005,
v5.1.0

Initial release.

Altera Corporation Section III–1

Section III. Area, Timing &
Power Optimization

Techniques for achieving the highest design performance are important
when designing for programmable logic devices (PLDs), especially
higher density FPGAs. The Altera® Quartus® II software offers many
advanced design analysis tools that allow for detailed timing analysis of
your design, including a fully integrated Timing Closure Floorplan
Editor. With these tools and options, critical paths can be easily
determined and located in the targeted device floorplan. This section
explains how to use these tools and options to enhance your FPGA design
analysis flow.

This section includes the following chapters:

■ Chapter 8, Area & Timing Optimization
■ Chapter 9, Power Optimization
■ Chapter 10, Timing Closure Floorplan
■ Chapter 11, Netlist Optimizations & Physical Synthesis
■ Chapter 12, Design Space Explorer
■ Chapter 13, LogicLock Design Methodology
■ Chapter 14, Synplicity Amplify Physical Synthesis Support

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section III–2 Altera Corporation

Area, Timing & Power Optimization Quartus II Handbook, Volume 2

Altera Corporation 8–1
November 2006
Altera Corporation 8–1
November 2006

8. Area & Timing
Optimization

Introduction Techniques for achieving the highest quality of results are important
when designing for programmable logic devices (PLDs). The tools that
facilitate these techniques must provide the highest level of flexibility
without compromising ease-of-use. The optimization features available
in the Quartus® II software allow you to meet design requirements by
facilitating optimization at multiple points in the design process.

This chapter explains techniques to reduce resource usage, improve
timing performance, and reduce compilation times when designing for
Altera® devices. It also explains how and when to use some of the features
described in other chapters of the Quartus II Handbook. The first section,
“Optimization Process Stages”, describes the various stages in a design
optimization process, and points you to the appropriate sections in the
chapter for area, timing, or compilation time optimization.

f For more information about power optimization, refer to the Power
Optimization chapter in volume 2 of the Quartus II Handbook.

The effects of these techniques vary from design to design. Applying each
technique does not always improve design results. Settings and options
in the Quartus II software have default values that generally provide the
best trade-off between compilation time, resource utilization, and timing
performance. You can adjust these settings to determine whether other
settings provide better results for your design. When using advanced
optimization settings and tools, it is important to benchmark their effect
on your quality of results and to use them only if they improve results for
your design.

Use the optimization flow described in this chapter to explore various
compiler settings and determine the techniques that provide the best
results.

Optimization Process Stages

The first stage in the optimization process is to perform an initial
compilation to view the quality of results for your design. “Initial
Compilation” on page 8–5 provides guidelines on some of the settings
and assignments that are recommended for your initial compilation.
“Design Analysis” on page 8–14 explains how to analyze the compilation
results.

QII52005-6.1.0

8–2 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–2 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

After you have analyzed the compilation results, perform the
optimization stages in the recommended order, as described in this
chapter.

For LUT-based devices (FPGAs and MAX® II CPLDs), perform
optimizations in the following order:

1. If your design does not fit, refer to “Resource Utilization
Optimization Techniques (LUT-Based Devices)” on page 8–23
before trying to optimize I/O timing or fMAX timing.

2. If the I/O timing performance requirements are not met, refer to
“I/O Timing Optimization Techniques (LUT-Based Devices)” on
page 8–40 before trying to optimize fMAX timing.

3. If fMAX performance requirements are not met, refer to “fMAX Timing
Optimization Techniques (LUT-Based Devices)” on page 8–47.

For macrocell-based devices (MAX 7000 and MAX 3000 CPLDs), perform
optimizations in the following order:

1. If your design does not fit, refer to “Resource Utilization
Optimization Techniques (Macrocell-Based CPLDs)” on page 8–65
before trying to optimize I/O timing or fMAX timing.

2. If the timing performance requirements are not met, refer to
“Timing Optimization Techniques (Macrocell-Based CPLDs)” on
page 8–73.

For techniques to reduce compilation time, which are
device-independent, refer to “Compilation-Time Optimization
Techniques” on page 8–80.

You can use all these techniques in the GUI or with Tcl commands. For
more information about scripting techniques, refer to “Scripting
Support” on page 8–86.

Design Space
Explorer

The Design Space Explorer (DSE) automates the process of running
multiple compilations with different settings. You can use DSE to try the
techniques described in this chapter. The DSE utility automates the
process of finding the best set of options for your design. DSE explores the
design space by applying various optimization techniques and analyzing
the results.

f For more information, refer to the Design Space Explorer chapter in
volume 2 of the Quartus II Handbook.

Altera Corporation 8–3
November 2006

Optimization Advisors

Altera Corporation 8–3
November 2006

Optimization Advisors

Optimization
Advisors

The optimization advisors provide guidance in making settings that
optimize your design. On the Tools menu, point to Advisors, and click
Resource Optimization Advisor or Timing Optimization Advisor. The
advisors describe many of the suggestions listed in this chapter. The
Power Optimization Advisor is also available, to provide guidance for
reducing power consumption. In addition, the Incremental Compilation
Advisor provides suggestions to improve your quality of results when
partitioning your design for a hierarchical or team-based design flow
using the Quartus II incremental compilation feature.

f For more information about using the Power Optimization Advisor,
refer to the Power Optimization chapter in volume 2 of the Quartus II
Handbook. For more information about using the Incremental
Compilation Advisor, refer to the Quartus II Incremental Compilation for
Hierarchical & Team-Based Design chapter in volume 1 of the Quartus II
Handbook.

If you open the advisors after compilation, the Resource and Timing
Optimization Advisors display icons indicating which resources or
timing constraints were not met. The example in Figure 8–1 shows the
Timing Optimization Advisor after compiling a design that meets its
frequency requirements, but recommends changes be made to the
settings to improve the timing.

Figure 8–1. Timing Optimization Advisor

These options open the Settings dialog box or Assignment
Editor so you can manually change the settings.

This button makes the recommended
changes automatically.

8–4 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–4 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

When you expand one of the categories in the Advisor, such as Maximum
Frequency (fmax) or I/O Timing (tsu, tco, tpd), the recommendations are
divided into stages. The stages show the order in which you should apply
the recommended settings. The first stage contains the options that are
easiest to change, make the least drastic changes to your design
optimization, and have the least effect on compilation time. Icons indicate
whether each recommended setting has been made in the current project.
In Figure 8–1, the check mark icons in the list of recommendations for
Stage 1 indicate recommendations that are already implemented. The
warning icons indicate recommendations that are not followed for this
compilation. The information icon indicates general suggestions. For
these entries, the advisor does not report whether these
recommendations were followed, but instead explains how you can
achieve better performance. Refer to the “How to use” page in the
Advisor for a legend that provides more information for each icon.

There is a link from each recommendation to the appropriate location in
the Quartus II user interface where you can change the settings. For
example, the Synthesis Netlist Optimizations page of the Settings
dialog box or the Global Signals category in the Assignment Editor. This
approach provides the most control over which settings are made, and
helps you learn about the settings in the software. In some cases, you can
also use the Correct the Settings button, shown in the advisor in
Figure 8–1, to automatically make the suggested change to global
settings.

For some entries in the advisor, a button appears that allows you to
further analyze your design and gives you more information. For
example, Figure 8–2 shows the guidelines for the Use Global Clocks
entry, after the user has clicked List all clocks. The advisor provides a
table with the clocks in the design, and indicates whether they have been
assigned a timing constraint.

Altera Corporation 8–5
November 2006

Initial Compilation

Altera Corporation 8–5
November 2006

Initial Compilation

Figure 8–2. Timing Optimization Advisor

Initial
Compilation

This section describes the basic assignments and settings to make for your
initial compilation. Ensure that you check all the following suggested
compilation assignments before compiling the design in the Quartus II
software. Significantly different compilation results can occur depending
on assignments made.

Device Setting

Assigning a specific device determines the timing model that the
Quartus II software uses during compilation. Choose the correct speed
grade to obtain accurate results and the best optimization. The device size
and the package determine the device pin-out and how many resources
are available in the device.

To choose the target device, on the Assignments menu, click Device.

Smart Compilation Setting

Smart compilation can reduce compilation time by skipping compiler
stages that are not needed to recompile the design. This is especially
useful when you perform multiple compilation iterations during the
optimization phase of the design process. However, smart compilation
uses more disk space. To turn on smart compilation, on the Assignments
menu, click Settings. In the Category list, select Compilation Process
Settings and turn on Use Smart compilation.

8–6 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–6 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

1 This feature skips entire compiler stages (such as Analysis &
Synthesis) when they are not needed. This feature is different
from incremental compilation, which you can use to compile
parts of your design while preserving results for unchanged
parts. For information about using the incremental compilation
feature to reduce your compilation time, refer to “Incremental
Compilation” on page 8–80.

Partitions & Floorplan Assignments for Incremental Compilation

The Quartus II incremental compilation feature enables hierarchical and
team-based design flows where you can compile parts of your design
while other parts of the design remain unchanged, or import parts of your
design from separate Quartus II projects. For information about using the
incremental compilation feature to reduce your compilation time, refer to
“Incremental Compilation” on page 8–80.

If you want to take advantage of this feature for a team-based design flow,
to reduce your compilation times, or to improve the timing performance
of your design during iterative compilation runs, it becomes important
that you make meaningful design partitions as well as create a floorplan
for your design partitions. These assignments can negatively affect a
design's quality of results if you do not follow Altera's recommendations.
Good assignments can improve your quality of results.

f For guidelines about how to create partition and floorplan assignments
for your design, refer to the Quartus II Incremental Compilation for
Hierarchical & Team-Based Design chapter in volume 1 of the Quartus II
Handbook.

Timing Requirement Settings

An important step in the optimal quality of results, especially for
high-performance FPGA designs, is to make comprehensive timing
requirement settings. It is important to apply these settings for the
following reasons:

■ The Quartus II PowerFit Fitter attempts to meet or exceed specified
timing requirements depending on the selected options as described
in “Fitter Effort Setting” on page 8–11.

■ The Quartus II software performs physical synthesis optimizations
based on timing requirements (refer to “Synthesis Netlist
Optimizations & Physical Synthesis Optimizations” on page 8–48 for
more information).

Altera Corporation 8–7
November 2006

Initial Compilation

Altera Corporation 8–7
November 2006

Initial Compilation

■ Correct timing assignments allow the software to work hardest to
optimize the performance of the timing-critical parts of the design,
and make trade-offs for performance. This optimization can also
save area or power utilization in non-critical parts of the design.

1 As a general rule, do not over-constrain the software by
applying timing requirements that are higher than your
design requirements. Use your real design requirements to
get the best results. Power utilization may also be larger in
an over-constrained design, when the software balances
power and performance during compilation.

In some designs with multiple clocks, it may be possible to
improve the timing performance on one clock domain
while reducing the performance on other clock domains by
over-constraining the most important clock. If you use this
technique, ensure that any performance improvements that
you see are real gains by performing a sweep over multiple
seeds. For more information, refer to “Fitter Seed” on
page 8–56.

■ The Timing Analyzer (Classic or TimeQuest) checks your design
against the timing assignments. The Compilation Report and timing
analysis reporting commands show whether timing requirements
are met, and provide detailed timing information about paths that
violate timing requirements.

To make clock assignments for the classic timing analyzer, on the
Assignments menu, click Timing Analysis Settings. Select the Classic
Timing Analyzer Settings page. Use the Delay requirements, Minimum
delay requirements, and Clock Settings boxes to make global settings, or
to apply settings to individual clocks, click Individual Clocks
(recommended for multiple-clock designs). Create the clock setting, and
apply it to the appropriate clock node in the design. The Timing Wizard
can also step you through the process of making individual clock
constraints for the classic timing analyzer. To run the Timing Wizard, on
the Assignments menu, click Timing Wizard.

To make clock and timing assignments for the TimeQuest timing
analyzer, create a Synopsys Design Constraint (.sdc) file that contains all
of your constraints. You can also create constraints in the TimeQuest GUI.
Use the write_sdc command, or, in the TimeQuest analyzer, on the
Constraints menu, click Write SDC File to write your constraints to an
SDC file. You can add an SDC file to your project on the TimeQuest
Timing Analyzer page under Timing Analysis Settings.

8–8 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–8 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Ensure that every clock signal has an accurate clock setting assignment. If
clocks come from a common oscillator, they may be considered related.
Ensure that all related or derived clocks are set up correctly in the
assignments. All I/O pins that require I/O timing optimization must
have settings. You should also specify minimum timing constraints as
applicable. If there is more than one clock or there are different I/O
requirements for different pins, make multiple clock settings and
individual I/O assignments instead of using the global settings.

Make any complex timing assignments required in the design, including
any cut-timing and multicycle path assignments. Common situations for
these types of assignments include reset or static control signals, cases
where it is not important how long it takes a signal to reach a destination,
and paths that can operate in more than one clock cycle. These
assignments allow the Quartus II software to make appropriate trade-offs
between timing paths, and can enable the Compiler to improve timing
performance in other parts of the design. Specify these settings in the
Assignment Editor.

f For more information about timing assignments and timing analysis,
refer to the Classic Timing Analyzer and the TimeQuest Timing Analyzer
chapters in volume 3 of the Quartus II Handbook.

Timing Constraint Check—Report Unconstrained Paths

To ensure that all constraints or assignments have been applied to design
nodes, you can report all unconstrained paths in your design.

Use the following steps to report unconstrained paths in your design
using the classic timing analyzer:

1. On the Assignments menu, click Timing Analysis Settings. The
Settings dialog box appears.

2. Under the Category list, click Timing Analysis Settings.

3. Click Classic Timing Analyzer Settings, and click More Settings.

4. In the More Timing Settings dialog box, from the Existing option
settings list, select Report Unconstrained Paths.

5. From the Setting drop-down list, select On.

When using the TimeQuest timing analyzer, create the report with the
Report Unconstrained Paths command in the Task pane, or the
report_ucp command.

Altera Corporation 8–9
November 2006

Initial Compilation

Altera Corporation 8–9
November 2006

Initial Compilation

Optimize Hold Timing

The Optimize hold timing option directs the Quartus II software to
optimize minimum delay timing constraints. This option is available only
for the Stratix® series of devices, Cyclone® series of devices, and MAX II
devices. When you turn on this option, the Quartus II software adds
delay to connections to guarantee that the minimum delay requirements
are satisfied.

When using the Classic Timing Analyzer, if you choose I/O Paths and
Minimum TPD Paths (the default choice if you turn on Optimize hold
timing), the Fitter works to meet the following criteria:

■ Hold times (tH) from device input pins to registers
■ Minimum delays from I/O pins to I/O registers or from I/O

registers to I/O pins
■ Minimum clock-to-out time (tCO) from registers to output pins

If you select All paths (or if you are using the TimeQuest Timing
Analyzer), the Fitter also works to meet hold requirements from registers
to registers, as in Figure 8–3, where a derived clock generated with logic
causes a hold time problem on another register. However, if your design
has internal hold time violations between registers, Altera recommends
that you correct the problems by making changes to your design, such as
using a clock enable signal instead of a derived or gated clock.

Figure 8–3. Optimize Hold Timing Option Fixing an Internal Hold Time
Violation

f For design practices that can help eliminate internal hold time violations,
refer to the Design Recommendations for Altera Devices chapter in volume 1
of the Quartus II Handbook.

8–10 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–10 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Optimize Fast Corner Timing

By default, the Fitter optimizes constraints using the worst-case timing
model, which uses the worst-case or slowest timing delay numbers. You
can instruct the Fitter to also optimize and analyze the fast delay corner,
which uses the best-case or fastest timing numbers.

On the Assignments menu, click Settings. In the Category list, select
Fitter Settings and turn on Optimize Fast Corner Timing. Using the two
different timing models can be important to account for process, voltage,
and temperature variations for each device. Turning this option on
increases compilation time by approximately 10%.

Asynchronous Control Signal Recovery/Removal Analysis

Determine whether you require the software to analyze the results of
recovery and removal checks for paths that end at an asynchronous clear,
preset, or load signal of a register. Recovery time is the minimum length
of time an asynchronous control signal, for example, clear and preset,
must be stable before the active clock edge. Removal time is the minimum
length of time an asynchronous control signal must be stable after the
active clock edge.

When using the Quartus II Classic Timing Analyzer for timing analysis,
Recovery/Removal analysis is turned off by default. Turning on the
option adds additional constraints during placement and routing which
can increase compilation time and reduce performance. If this analysis is
required, on the Assignments menu, click Settings. In the Category list,
select Timing Requirements & Options, then click More Settings. Turn
on Enable Recovery/Removal analysis.

When using TimeQuest for timing analysis, Recovery/Removal analysis
and optimization are always performed during placement and routing.
You can use the create_timing_summary Tcl command to report the
recovery and removal analysis. The slack for Removal/Recovery is
determined in a very similar way to Setup and Hold checks.

f For more details about Recovery/Removal analysis with TimeQuest,
refer to the TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus II Handbook.

For designs containing FIFOs, Altera recommends turning
Recovery/Removal analysis on. Recovery/Removal analysis helps to
analyze corner-case conditions to achieve better functional coverage.

Altera Corporation 8–11
November 2006

Initial Compilation

Altera Corporation 8–11
November 2006

Initial Compilation

Fitter Effort Setting

On the Assignments menu, click Settings. In the Category list, select
Fitter Settings. The default setting depends on the device family
specified.

Use the Standard Fit option to exceed specified timing requirements and
achieve the best possible timing results for your design. However, this
setting usually increases compilation time.

The Fast Fit option reduces the amount of optimization effort for each
algorithm employed during fitting. This reduces the compilation time by
about 50%, resulting in a fit that has, on average, 10% lower fMAX than that
achieved using the Standard Fit setting. For a small fraction of hard-to-fit
circuits, the reduced optimization that results from using the Fast Fit
option can cause the first fitting attempt to fail due to routing problems,
resulting in multiple fitting attempts and increased compilation time.

The Auto Fit option (available only for the Stratix and Cyclone series of
devices, and MAX II devices) decreases compilation time by directing the
Fitter to reduce Fitter effort after meeting the design’s timing
requirements and internal routability requirements. The internal
routability requirements reduce the possibility of routing congestion and
help ensure quick, successful routing. If you want the Fitter to try to
exceed the timing requirements by a certain margin before reducing Fitter
effort, specify a minimum slack before reducing Fitter effort in the
Desired worst case slack box.

The Auto Fit option also causes the Quartus II Fitter to optimize for
shorter compilation times instead of maximum performance when there
are no timing assignments. For designs with no timing assignments, the
resulting fMAX is, on average, 10% lower than using the Standard Fit
option. If your design has aggressive timing requirements or is hard to
route, the placement does not stop early, and the compilation time is the
same as using the Standard Fit option. For designs with no timing
requirements, or easily achieved timing requirements, you can achieve an
average compilation time reduction of 40% by using the Auto Fit option.

1 Selecting this option does not guarantee that the Fitter meets the
design’s timing requirements, and specifying a minimum slack
does not guarantee that the Fitter achieves the slack
requirement.

8–12 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–12 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

I/O Assignments

The I/O standards and drive strengths specified for a design affect I/O
timing. Specify I/O assignments so that the Quartus II software uses
accurate I/O timing delays in timing analysis and Fitter optimizations.

The Quartus II software can choose pin locations automatically for best
quality of results. If your pin locations are not fixed due to printed circuit
board (PCB) layout requirements, leave pin locations unconstrained to
achieve the best results. If your pin locations are already fixed, make pin
assignments to constrain the compilation appropriately. “Resource
Utilization Optimization Techniques (Macrocell-Based CPLDs)” on
page 8–65 includes recommendations for making pin assignments that
can have a larger affect on your quality of results in smaller
macrocell-based architectures.

Use the Assignment Editor and Pin Planner to assign I/O standards and
pin locations.

f For more information about I/O standards and pin constraints, refer to
the appropriate handbook. For information about planning and checking
I/O assignments, refer to the I/O Management chapter in volume 2 of the
Quartus II Handbook. For information about using the Assignment Editor,
refer to the Assignment Editor chapter in volume 2 of the Quartus II
Handbook.

Early Timing Estimation

The Quartus II software provides an Early Timing Estimation feature that
estimates your design’s timing results before the software performs full
placement and routing. On the Processing menu, point to Start, and click
Start Early Timing Estimate to generate initial compilation results after
you have run analysis and synthesis. When you want a quick estimate of
a design’s performance before proceeding with further design or
synthesis tasks, this command can save significant compilation time.
Using this feature provides a timing estimate up to 45× faster than
running a full compilation, and the fit is not fully optimized or routed.
Therefore, the timing report is only an estimate. On average, the
estimated delays are within 11% of those achieved by a full compilation
compared to the final timing results.

Altera Corporation 8–13
November 2006

Initial Compilation

Altera Corporation 8–13
November 2006

Initial Compilation

You can specify what type of delay estimates to use with this feature. On
the Assignments menu, click Settings. In the Category list, select
Compilation Process Settings, and select Early Timing Estimate. On the
Early Timing Estimate page, the following options are available:

■ The Realistic option, which is the default, generates delay estimates
that will likely be close to the results of a full compilation.

■ The Optimistic option uses delay estimates that are lower than those
likely to be achieved by a full compilation, which results in an
optimistic performance estimate.

■ The Pessimistic option uses delay estimates that are higher than
those likely to be achieved by a full compilation, which results in a
pessimistic performance estimate.

All three options offer the same reduction in compilation time.

You can use the Timing Closure Floorplan or Chip Planner (for supported
devices) to view the placement estimate created by this feature to identify
critical paths in the design. Then, if necessary, you can add or modify
floorplan constraints such as LogicLock™ regions, or make other changes
to the design. You can then rerun the Early Timing Estimator to quickly
assess the impact of any floorplan assignments or logic changes, enabling
you to try different design variations and find the best solution.

Design Assistant

You can run the Design Assistant to analyze the post-fitting results of
your design during a full compilation. The Design Assistant checks rules
related to areas such as gated clocks, reset signals, asynchronous design
practices, and signal race conditions. This is especially useful during the
early stages of your design, so that you can work on any areas of concern
in your design before proceeding with design optimization.

On the Assignments menu, click Settings. In the Category list, select
Design Assistant and turn on Run Design Assistant during
compilation.

You can also specify which rules you want the Design Assistant to apply
when analyzing and generating messages for a design.

f For more information about the rules in the design assistant, refer to the
Design Recommendations for Altera Devices chapter in volume 1 of the
Quartus II Handbook.

8–14 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–14 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Design Analysis The initial compilation establishes whether the design achieves a
successful fit and meets the specified performance. This section describes
how to analyze your design results in the Quartus II software. After
design analysis, proceed to optimization as described in “Optimization
Process Stages” on page 8–1.

Error & Warning Messages

After your initial compilation, it is important to evaluate all error and
warning messages to see if any design or setting changes are required. If
needed, make these changes and recompile the design before proceeding
with design optimization.

To suppress messages that you have evaluated and that can be ignored,
right-click on the message in the Messages window and click Suppress.

f For more information about message suppression, refer to the Message
Suppression section in the Quartus II Project Management chapter in
volume 2 of the Quartus II Handbook.

Ignored Timing Assignments

You can use the Ignored Timings Assignments page in the Compilation
Report to view any assignments that were ignored by the Classic Timing
Analyzer during the previous compilation. The Classic Timing Analyzer
ignores assignments that are invalid, conflict with other assignments, or
that become obsolete through the use of other assignments. If any
assignments have been ignored, analyze why they have been ignored. If
needed, correct the assignments and recompile the design before
proceeding with design optimization.

If you are using TimeQuest for timing analysis, you can use the following
command to get a listing of ignored timing constraints:

report_sdc -ignored -panel_name "Ignored Constraints"

f For more information about the report_sdc command and its options,
refer the TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook.

Resource Utilization

Determining device utilization is important regardless of whether a
successful fit is achieved. If your compilation results in a no-fit error,
resource utilization information is important so you can analyze the

Altera Corporation 8–15
November 2006

Design Analysis

Altera Corporation 8–15
November 2006

Design Analysis

fitting problems in your design. If your fitting is successful, review the
resource utilization information to determine whether the future addition
of extra logic or other design changes will introduce fitting difficulties.

To determine resource usage, refer to the Flow Summary section of the
Compilation Report. This section reports how many pins are used, as well
as other device resources such as memory bits, digital signal processing
(DSP) block 9-bit elements (for Stratix and Stratix II devices) or 18-bit
elements (for Stratix III devices), and phase-locked loops (PLLs). The
Flow Summary indicates whether the design exceeds the available device
resources. More detailed information is available by viewing the reports
under Resource Section in the Fitter section of the Compilation Report.

1 For the Stratix II and Stratix III devices, a device with low
utilization does not have the lowest adaptive logic module
(ALM) utilization possible. For these devices, the Fitter uses
adaptive look-up tables (ALUTs) in different ALMs, even when
the logic can be placed within one ALM, so that it can achieve
the best timing and routability results. In achieving these results,
logic might be spread throughout the device. As the device fills
up, the Fitter automatically searches for logic functions with
common inputs to place in one ALM. The number of partnered
ALUTs and packed registers also increases. Therefore, a design
that is reported as close to 100% full might still have space for
extra logic if logic and registers can be packed together more
aggressively.

If resource usage is reported as less than 100% and a successful fit cannot
be achieved, either there are not enough routing resources or some
assignments are illegal. In either case, a message appears in the
Processing tab of the Messages window describing the problem.

If the Fitter finishes very quickly compared to fitter runs on similar
designs, then a resource might be over-utilized or there might be an
illegal assignment. If the Quartus II software seems to run for an
excessively long time compared to runs on similar designs, then a legal
placement or route probably cannot be found. Look for errors and
warnings that indicate these types of problems.

You can use the Timing Closure Floorplan or Chip Planner (for supported
devices) to find areas of the device that have routing congestion.

f For details about using the Timing Closure Floorplan, refer to the Timing
Closure Floorplan chapter in volume 2 of the Quartus II Handbook. For
details about using the Chip Planner, refer to the Design Analysis &
Engineering Change Management with Chip Planner chapter in volume 3 of
the Quartus II Handbook.

8–16 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–16 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

I/O Timing (Including tPD)

The TimeQuest Timing Analyzer supports Synopsys Design Constraints
(SDC) format for constraining your design. While using TimeQuest for
timing analysis, use the set_input_delay constraint to specify the
data arrival time at an input port with respect to a given clock. For output
ports, use the set_output_delay command with respect to a given
clock. You can use the report_timing Tcl command to generate the
required I/O timing reports.

f The rest of this section refers to timing settings and analysis in the
Quartus II classic timing analyzer. For more details about equivalent
settings and analysis in the TimeQuest Timing Analyzer, refer to the
TimeQuest Timing Analyzer and Switching to the TimeQuest Timing
Analyzer chapters in volume 3 of the Quartus II Handbook.

When using the classic timing analyzer, from the Compilation Report, use
the Timing Analyzer to determine whether or not I/O timing has been
met. The tSU, tH, and tCO reports list the I/O paths, together with the
required timing number if you have made a timing requirement, the
actual timing number for the timing as reported by the Quartus II
software, and the slack, or difference between your requirement and the
actual number. If you have any point-to-point propagation delay (tPD)
assignments, the tPD report lists the corresponding paths.

Altera Corporation 8–17
November 2006

Design Analysis

Altera Corporation 8–17
November 2006

Design Analysis

The I/O paths that do not meet the required timing performance are
reported as having negative slack and are displayed in red (Figure 8–4).
In cases when you do not make an explicit I/O timing assignment to an
I/O pin, the Quartus II timing analysis software still reports the Actual
number, which is the timing number that must be met for that timing
parameter when the device runs in your system.

Figure 8–4. I/O Timing Analyzer Report

To analyze the reasons why your timing requirements are not met,
right-click an entry in the report and click List Paths (Figure 8–4). A
message listing the paths appears in the System tab of the Messages

window. To expand a selection, click the icon at the beginning of the
line (Figure 8–5). This is a good method to determine where the greatest
delay is located along the path.

The List Paths report lists the slack time and how that slack time was
calculated. By expanding the various entries, you can see the incremental
delay through each node in the path as well as the total delay. The
incremental delay is the sum of the interconnect delay (IC) and the cell
delay (CELL) through the logic.

8–18 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–18 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Figure 8–5. I/O Slack Report

To analyze I/O timing, right-click on an I/O entry in the report, point to
Locate, and click Locate in Timing Closure Floorplan or Chip Planner
(for supported devices) to highlight the I/O path on the floorplan.
Negative slack indicates paths that failed to meet their timing
requirements. There are also options that allow you to see all the
intermediate nodes (combinational logic cells) on a path and the delay for
each level of logic. You also can look at the fan-in and fan-out of a selected
node.

f For more information about how timing numbers are calculated, refer to
the Classic Timing Analyzer or TimeQuest Timing Analyzer chapter in
volume 3 of the Quartus II Handbook.

fMAX Timing

When you are using TimeQuest for timing analysis, you can use
constraints such as set_input_delay and set_output_delay to
analyze the path between any two registers. Use the report_timing
command to generate the required timing reports for any
register-to-register path.

f The remainder of this section refers to timing settings and analysis in the
Quartus II classic timing analyzer. For more information about
equivalent settings and analysis in the TimeQuest Timing Analyzer, refer
to the TimeQuest Timing Analyzer or the Switching to the TimeQuest Timing
Analyzer chapters in volume 3 of the Quartus II Handbook.

When using the classic timing analyzer, in the Compilation Report
window, use the Timing Analyzer section to determine whether fMAX
timing requirements are met. The Clock Setup folder gives you figures
for the actual register-to-register fMAX for each clock as reported by the
Quartus II software, and the slack, or difference between the timing

Altera Corporation 8–19
November 2006

Design Analysis

Altera Corporation 8–19
November 2006

Design Analysis

requirement you specified and the actual compilation results. The paths
that do not meet timing requirements are shown with a negative slack
and appear in red (Figure 8–6).

Figure 8–6. fMAX Timing Analysis Report

To analyze why your timing requirements were not met, right-click on an
entry in the report and click List Paths (Figure 8–6). A message listing the
paths appears in the System tab of the Messages window. To expand a
selection, as shown in Figure 8–7, click the icon at the beginning of the
line. This is a good way to determine where the greatest delay is located
along the path.

The List Paths report shows the slack time and how that slack time was
calculated. By expanding the various entries, you can see the incremental
delay through each node in the path as well as the total delay. The
incremental delay is the sum of the interconnect delay (IC) and the cell
delay (CELL) through the logic.

8–20 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–20 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Figure 8–7. fMAX Slack Report

To visually analyze fMAX paths, right-click on a path, point to Locate, and
click Locate in Timing Closure Floorplan. For Stratix III devices, click on
Locate in Chip Planner for performing this analysis. The Timing Closure
Floorplan or the Chip Planner is shown and the path is highlighted. Use
the Critical Path Settings to select which failing paths to show. To turn
critical paths on or off, use the Show Critical Paths command.

f For more information about how timing analysis results are calculated,
refer to the Classic Timing Analyzer or the TimeQuest Timing Analyzer
chapter in volume 3 of the Quartus II Handbook.

You also can see the logic in a particular path by cross-probing to the RTL
Viewer or Technology Map Viewer. These viewers allow you to see a
gate-level or technology-mapped representation of your design netlist. To
locate a timing path in one of the viewers, right-click on a path in the
report, point to Locate, and click Locate in RTL Viewer or Locate in
Technology Map Viewer. When you locate a timing path in the
Technology Map Viewer, the annotated schematic displays the same
delay information that is shown when you use the List Paths command.

Altera Corporation 8–21
November 2006

Design Analysis

Altera Corporation 8–21
November 2006

Design Analysis

f For more information about the netlist viewers, refer to the Analyzing
Designs with Quartus II Netlist Viewers chapter in volume 1 of the
Quartus II Handbook.

Tips for Analyzing Failing Paths

When you are analyzing clock path failures, focus on improving the paths
that show the worst slack. The Fitter works hardest on paths with the least
slack. If you fix these paths, the Fitter may be able to improve the other
failing timing paths in the design.

Check for particular nodes that appear in many failing paths. Look for
paths that have common source registers, destination registers, or
common intermediate combinational nodes. In some cases, the registers
may not be identical, but are part of the same bus. In the timing analyzer
report panels, clicking on the From or To column headers can be helpful
to sort the paths by the source or destination registers. Clicking first on
From, then on To, uses the To register as the primary sort and From as the
secondary sort. If you see common nodes, these nodes indicate areas of
your design that could possibly be improved through source code
changes or Quartus II optimization settings. Constraining the placement
for just one of the paths could decrease the timing performance for other
paths by moving the common node further away in the device.

Tips for Analyzing Failing Clock Paths that Cross Clock Domains

When analyzing clock path failures, check whether these paths cross
between two clock domains. This is the case if the From Clock and
To Clock in the timing analysis report are different. There could also be
paths that involve a different clock in the middle of the path, even if the
source and destination register clock are the same. To analyze these paths
in more detail, right-click on the entry in the report and click List Paths.

Expand the List Paths entry in the Messages window and analyze the
largest register-to-register requirement. Evaluate the setup relationship
between the source and destination (launch edge and latch edge) to
determine if that is reducing the available setup time. For example, the
path may go from a rising edge to a falling edge, which reduces the setup
relationship by one half clock cycle.

Check if the PLL phase shift is reducing the setup requirement. You may
be able to adjust this using PLL parameters and settings.

8–22 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–22 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Check if the PLL compensation delay is reducing the setup relationship.
If you are using the classic timing analyzer, you can direct the software to
analyze this delay as clock skew by enabling Clock Latency. On the
Assignments menu, click Settings and choose Timing Requirements &
Options. Click More Settings and turn on Enable Clock Latency. You
should typically enable this option if your design results in timing
violations for paths that pass between PLL clock domains. The
TimeQuest Timing Analyzer performs this analysis by default.

Paths that cross clock domains are generally protected with
synchronization logic (for example, FIFOs or double data-sync registers)
to allow asynchronous interaction between the two clock domains. In
such cases, you can to ignore the timing paths between registers in the
two clock domains while running timing analysis, even if the clocks are
related.

f For more details about how to do this, refer to the Classic Timing Analyzer
chapter or the TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus II handbook.

Evaluate the clock skew between the source clock and the destination
clock to determine if that is reducing the available setup time. You can
check the shortest and longest clock path reports to see what is causing
any clock skew. Avoid using combinational logic in clock paths because it
contributes to clock skew. Differences in the logic or in its routing
between the source and destination can cause clock skew problems and
result in warnings during compilation.

Global Routing Resources

Check the global signal utilization in your design to ensure that
appropriate signals have been placed on global routing resources. In the
Compilation Report, open the Fitter report and click the Resource
Section. Analyze the Global & Other Fast Signals and Non-Global High
Fan-out Signals reports to see if any changes are required.

You may be able to reduce clock skew for high fan-out signals by placing
them on global routing resources. Conversely, you can reduce the
insertion delay of low fan-out signals by removing them from global
routing resources. Doing so can improve clock enable timing and control
signal recovery/removal timing, but increases clock skew. You can also
use the Global Signal setting in the Assignment Editor to control global
routing resources. If the signal fan-out is low and it feeds locations in one
area of the device, you can use any regional or fast regional clocks
available.

Altera Corporation 8–23
November 2006

Resource Utilization Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–23
November 2006

Resource Utilization Optimization Techniques (LUT-Based Devices)

Compilation Time

In long compilations, most of the time is spent in the Analysis & Synthesis
and Fitter modules. Analysis & Synthesis includes synthesis netlist
optimizations, if you have turned on those options. The Fitter includes
two steps, placement and routing, and also includes physical synthesis if
you turned on those options. The Flow Elapsed Time section of the
Compilation Report shows how much time is spent running the Analysis
& Synthesis and Fitter modules. The Fitter Messages report in the Fitter
section of the Compilation Report shows specifically how much time was
spent in placement and how much time was spent in routing.

1 The applicable messages are indicated as follows, with each time
increment in two-digit format:
Info: Fitter placement operations ending:
elapsed time = <hour:min:sec>
Info: Fitter routing operations ending: elapsed
time = <hour:min:sec>

Placement is the process of finding optimum locations for the logic in
your design. Routing is the process of connecting the nets between the
logic in your design. There are many possible placements for the logic in
a design, and finding better placements typically takes more compilation
time. Good logic placement allows you to more easily meet your timing
requirements and makes the design easier to route.

Resource
Utilization
Optimization
Techniques
(LUT-Based
Devices)

After design analysis, the next stage of design optimization is to improve
resource utilization. Complete this stage before proceeding to I/O timing
optimization or fMAX timing optimization. Ensure that you have already
set the basic constraints described in “Initial Compilation” on page 8–5
before proceeding with the resource utilization optimizations discussed
in this section. If a design does not fit into a specified device, use the
techniques in this section to achieve a successful fit. After you optimize
resource utilization and your design fits in the desired target device,
optimize I/O timing as described in “I/O Timing Optimization
Techniques (LUT-Based Devices)” on page 8–40.

Resolving Resource Utilization Issues Summary

Resource utilization issues can be divided into the following three
categories:

■ Issues relating to I/O pin utilization or placement, including
dedicated I/O blocks such as PLLs or LVDS transceivers (“I/O Pin
Utilization or Placement” on page 8–24).

8–24 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–24 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

■ Issues relating to logic utilization or placement, including logic cells
containing registers and look-up tables as well as dedicated logic
such as memory blocks and DSP blocks (“Logic Utilization or
Placement” on page 8–25).

■ Issues relating to routing (“Routing” on page 8–36).

I/O Pin Utilization or Placement

Use the suggestions in the following sections to help you resolve I/O
resource problems.

Use I/O Assignment Analysis

On the Processing menu, point to Start and click Start I/O Assignment
Analysis to help with pin placement. The Start I/O Assignment Analysis
command allows you to check your I/O assignments early in the design
process. You can use this command to check the legality of pin
assignments before, during, or after compilation of your design. If design
files are available, you can use this command to perform more thorough
legality checks on your design’s I/O pins and surrounding logic. These
checks include proper reference voltage pin usage, valid pin location
assignments, and acceptable mixed I/O standards.

Common issues with I/O placement relate to the fact that differential
standards have specific pin pairings, and certain I/O standards may be
supported only on certain I/O banks.

If your compilation or I/O assignment analysis results in specific errors
relating to I/O pins, follow the recommendations in the error message.
Right-click on the message in the Messages window and click Help to
open the Quartus II Help topic for this message.

Modify Pin Assignments or Choose a Larger Package

If a design that has pin assignments fails to fit, compile the design without
the pin assignments to determine whether a fit is possible for the design
in the specified device and package. You can use this approach if a
Quartus II error message indicates fitting problems due to pin
assignments.

If the design fits when all pin assignments are ignored or when several
pin assignments are ignored or moved, you may have to modify the pin
assignments for the design or choose a larger package.

If the design fails to fit because of lack of available I/Os, a successful fit
can often be obtained by using a larger device package (which could be
the same device density) that has more available user I/O pins.

Altera Corporation 8–25
November 2006

Resource Utilization Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–25
November 2006

Resource Utilization Optimization Techniques (LUT-Based Devices)

f For more information about I/O assignment analysis, refer to the I/O
Management chapter in volume 2 of the Quartus II Handbook.

Logic Utilization or Placement

Use the suggestions in the following subsections to help you resolve logic
resource problems, including logic cells containing registers and look-up
tables (LUTs) as well as dedicated logic such as memory blocks and DSP
blocks.

Use Register Packing

The Auto Packed Registers option implements the functions of two cells
into one logic cell by combining the register of one cell in which only the
register is used with the LUT of another cell in which only the LUT is
used. Figure 8–8 shows register packing and the gain of one logic cell in
the design.

Figure 8–8. Register Packing

8–26 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–26 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Registers can also be packed into DSP blocks (Figure 8–9).

Figure 8–9. Register Packing in DSP Blocks

The following list shows the most common cases in which register
packing helps to optimize a design:

■ A LUT can be implemented in the same cell as an unrelated register
with a single data input

■ A LUT can be implemented in the same cell as the register that is fed
by the LUT

■ A LUT can be implemented in the same cell as the register that feeds
the LUT

■ A register can be packed into a RAM block
■ A register can be packed into a DSP block
■ A register can be packed into an I/O Element (IOE)

The following options are available for register packing (for certain
device families):

■ Off—Does not pack registers.
■ Normal—Default setting packs registers when this is not expected to

hurt timing results.
■ Minimize Area—Aggressively packs registers to reduce area.
■ Minimize Area with Chains—Aggressively packs registers to

reduce area. This option packs registers with carry chains. It also
converts registers into register cascade chains and packs them with
other logic to reduce area. This option is available only for Stratix and
Cyclone series devices, and MAX II devices.

Altera Corporation 8–27
November 2006

Resource Utilization Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–27
November 2006

Resource Utilization Optimization Techniques (LUT-Based Devices)

■ Auto—Attempts to achieve the best performance while maintaining
a fit for the design in the specified device. The Fitter combines all
combinational (LUT) and sequential (register) functions that benefit
circuit speed. In addition, more aggressive combinations of
unrelated combinational and sequential functions are performed to
the extent required to reduce the area of the design to achieve a fit in
the specified device. This option is available only for Stratix and
Cyclone series devices, and MAX II devices.

■ Sparse—In this mode, the combinational (LUT) and sequential
(register) functions are combined such that the combined logic has
either a combinational output or a sequential output but not both.
This mode is available only for Cyclone II, Stratix II, and Stratix III
devices. This option results in a higher LAB usage, but might give
you better timing performance because of reduced routing
congestion.

■ Sparse Auto—In this mode, the Quartus II Fitter starts with sparse
mode packing, and then attempts to achieve best performance while
maintaining a fit for the specified device. Later optimizations are
carried out in a way similar to the Auto mode. This mode is available
only for Cyclone II, Stratix II, and Stratix III devices.

For the Cyclone and Stratix series of devices and MAX II devices, the
default register packing mode is Auto. For other devices, the default is
Normal.

Turning on register packing decreases the number of logic elements (LEs)
or adaptive logic modules (ALMs) in the design, but could also decrease
performance in some cases. On the Assignments menu, click Settings. In
the Category list, select Fitter Settings, and then click More Settings.
Turn on Auto Packed Registers to turn on register packing.

The area reduction and performance results can vary greatly depending
on the design. Typical results for register packing are shown in the
following tables. Table 8–1 shows typical results for Stratix II and
Stratix III devices. Table 8–2 shows typical results for Cyclone II devices,
and Table 8–3 shows typical results for Stratix, Stratix GX, and Cyclone
devices.

8–28 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–28 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

The Auto setting performs more aggressive register packing as needed,
so the typical results vary depending on the device resource utilization.

Table 8–2 shows typical results for Cyclone II devices.

Table 8–1. Typical Register Packing Results for Stratix II & Stratix III
Devices

Register Packing Setting Relative fMAX Relative ALM Count

Off 0.95 1.29

Normal 1.00 1.00

Minimize Area 0.98 0.97

Minimize Area with Chains 0.98 0.97

Auto (default) 1.0 until device is very
full, then gradually to
0.98 as required

1.0 until device is very
full, then gradually to
0.97 as required

Table 8–2. Typical Register Packing Results for Cyclone II Devices

Register Packing Setting Relative fMAX Relative LE Count

Off 0.97 1.40

Normal 1.00 1.00

Minimize Area 0.96 0.93

Minimize Area with Chains 0.94 0.91

Auto (default) 1.0 until device is very
full, then gradually to
0.94 as required

1.0 until device is very
full, then gradually to
0.91 as required

Altera Corporation 8–29
November 2006

Resource Utilization Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–29
November 2006

Resource Utilization Optimization Techniques (LUT-Based Devices)

Table 8–3 shows results for Stratix, Stratix GX, and Cyclone devices.

Remove Fitter Constraints

A design with conflicting constraints or constraints that are difficult to
meet may not fit the targeted device. This can occur when the location or
LogicLock assignments are too strict and there are not enough routing
resources.

In this case, use the Routing Congestion view in the Timing Closure
Floorplan or Chip Planner (for supported devices) to locate routing
problems in the floorplan, then remove any location or LogicLock region
assignments in that area. If your design still does not fit, the design is
over-constrained. To correct the problem, remove all location and
LogicLock assignments and run successive compilations, incrementally
constraining the design before each compilation. You can delete specific
location assignments in the Assignment Editor or Timing Closure
Floorplan or the Chip Planner (for supported devices). Remove
LogicLock assignments in the Timing Closure Floorplan (or in the Chip
Planner), in the LogicLock Regions Window, or, on the Assignments
menu, click Remove Assignments. Turn on the assignment categories
you want to remove from the design in the Available assignment
categories list.

f For more information about the Routing Congestion view in the Timing
Closure Floorplan, refer to the Quartus II Help.

Table 8–3. Typical Register Packing Results for Stratix, Stratix GX &
Cyclone Devices

Register Packing Setting Relative fMAX Relative LE Count

Off 1.00 1.12

Normal 1.00 1.00

Minimize Area 0.97 0.93

Minimize Area with Chains 0.94 0.90

Auto (default) 1.0 until device is very
full, then gradually to
0.94 as required

1.0 until device is very
full, then gradually to
0.90 as required

8–30 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–30 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Perform WYSIWYG Resynthesis with Balanced or Area Setting

If you use another EDA synthesis tool and want to determine if the
Quartus II software can remap the circuit to use fewer LEs or ALMs,
follow these steps:

1. On the Assignments menu, click Settings. In the Category list, select
Analysis & Synthesis Settings, and turn on Perform WYSIWYG
primitive resynthesis (using optimization techniques specified in
Analysis & Synthesis settings) on the Synthesis Netlist
Optimizations page. Or, on the Assignments menu, click
Assignment Editor, and apply the Perform WYSIWYG Primitive
Resynthesis logic option to a specific module in your design.

2. On the Assignments menu, click Settings. In the Category list, select
Analysis & Synthesis Settings, and choose Balanced or Area under
Optimization Technique. Or, on the Assignments menu, click
Assignment Editor. Set the Optimization Technique to Balanced or
Area for a specific module in your design.

3. Recompile the design.

1 The Balanced setting typically produces utilization results that
are very similar to the Area setting, with better performance
results. The Area setting may give better results in some unusual
cases. Performing WYSIWYG resynthesis for area in this way
typically reduces fMAX.

Optimize Synthesis for Area, Not Speed

If your design fails to fit because it uses too much logic, resynthesize the
design to improve the area utilization. First, ensure that you have set your
device and timing constraints correctly in your synthesis tool.
Particularly when the area utilization of the design is a concern, ensure
that you do not over-constrain the timing requirements for the design.
Synthesis tools generally try to meet the specified requirements, which
can result in higher device resource usage if the constraints are too
aggressive.

If resource utilization is an important concern, some synthesis tools offer
an easy way to optimize for area instead of speed. If you are using
Quartus II integrated synthesis, choose Balanced or Area for the
Optimization Technique. You can also specify this logic option for
specific modules in your design with the Assignment Editor in cases
where you want to reduce area using the Area setting (potentially at the
expense of fMAX performance) while leaving the default Optimization
Technique setting at Balanced (for the best trade-off between area and

Altera Corporation 8–31
November 2006

Resource Utilization Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–31
November 2006

Resource Utilization Optimization Techniques (LUT-Based Devices)

speed for certain device families) or Speed. You can also use the Speed
Optimization Technique for Clock Domains logic option to specify that
all combinational logic in or between the specified clock domain(s) is
optimized for speed.

In some synthesis tools, not specifying an fMAX requirement may result in
less resource utilization.

1 In the Quartus II software, the Balanced setting typically
produces utilization results that are very similar to those
produced by the Area setting, with better performance results.
The Area setting may give better results in some unusual cases.

f For information about setting timing requirements and synthesis options
in Quartus II integrated synthesis and other synthesis tools, refer to the
appropriate chapter in the Synthesis section in volume 1 of the Quartus II
Handbook, or your synthesis software’s documentation.

Other attributes or options can also help improve the quality of synthesis
results, including the recommendations in the following sections.

Change State Machine Encoding

State machines can be encoded using various techniques. Using binary or
gray code encoding typically results in fewer state registers than one-hot
encoding, which requires one register for every state bit. If your design
contains state machines, changing the state machine encoding to one that
uses the minimal number of registers may reduce resource utilization.
The effect of state machine encoding varies depending on the way your
design is structured.

If your design does not manually encode the state bits, you can specify the
state machine encoding in your synthesis tool. When using Quartus II
Integrated Synthesis, go to the Assignments menu and click Settings. In
the Category list, select Analysis & Synthesis Settings and turn on
Minimal Bits for State Machine Processing. You also can specify this
logic option for specific modules or state machines in your design with
the Assignment Editor.

Flatten the Hierarchy During Synthesis

Synthesis tools typically provide the option of preserving hierarchical
boundaries, which may be useful for verification or other purposes.
However, optimizing across hierarchical boundaries allows the synthesis
tool to perform the most logic minimization, which can reduce area.
Therefore, to achieve the best results, flatten your design hierarchy
whenever possible. If you are using Quartus II integrated synthesis,

8–32 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–32 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

ensure that the Preserve Hierarchical Boundary logic option is turned
off, that is, make sure that you have not turned on the option in the
Assignment Editor or with Tcl assignments. If you are using Quartus II
incremental compilation, you cannot flatten your design across design
partitions. Incremental compilation always preserves the hierarchical
boundaries between design partitions. Follow Altera’s recommendations
for design partitioning, such as registering partition boundaries to reduce
the effect of cross-boundary optimizations.

f For more information about using incremental compilation and
recommendations for design partitioning, refer to the Quartus II
Incremental Compilation for Hierarchical & Team-Based Design chapter in
volume 1 of the Quartus II Handbook. If you are using an incremental
synthesis flow that requires separate hierarchy blocks, you can find
additional recommendations for design partitioning in the Design
Recommendations for Altera Devices chapter in volume 1 of the Quartus II
Handbook.

Restructure Multiplexers

Multiplexers form a large portion of the logic utilization in many FPGA
designs. By optimizing your multiplexed logic, you can achieve a more
efficient implementation in your Altera device.

The Quartus II software provides the Restructure Multiplexers logic
option, which can extract and optimize buses of multiplexers during
synthesis. This option is available on the Analysis & Synthesis Settings
page of the Settings dialog box and is useful if your design contains buses
of fragmented multiplexers. This option restructures multiplexers more
efficiently for area, allowing the design to implement multiplexers with a
reduced number of LEs or ALMs. Using the Restructure Multiplexers
logic option can reduce your design’s fMAX. This option is turned on
automatically when you set the Quartus II Analysis & Synthesis
Optimization Technique option to Area or Balanced. To change the
default setting, on the Assignments menu, click Settings. In the Category
list, select Analysis & Synthesis Settings, and click the appropriate
option from the Restructure Multiplexers list to set the option globally.

f For design guidelines to achieve optimal resource utilization for
multiplexer designs, refer to the Recommended HDL Coding Styles chapter
in volume 1 of the Quartus II Handbook. For more information about the
Restructure Multiplexers option in the Quartus II software, refer to the
Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II
Handbook.

Altera Corporation 8–33
November 2006

Resource Utilization Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–33
November 2006

Resource Utilization Optimization Techniques (LUT-Based Devices)

Retarget Memory Blocks

If the design fails to fit because it runs out of device memory resources, it
might be due to a lack of a certain type of memory. For example, a design
that requires two M-RAM blocks might be targeted to a Stratix EP1S10
device, which has only one M-RAM block. By building one of the
memories with a different size memory block, such as an M4K memory
block, you might obtain a fit.

If the memory was created with the MegaWizard® Plug-In Manager, open
the MegaWizard Plug-In Manager and edit the RAM block type so it
targets a new memory block size.

ROM and RAM memory blocks can also be inferred from your HDL code,
and your synthesis software can place large shift registers into memory
blocks by inferring the altshift_taps megafunction. This inference
can be turned off in your synthesis tool to cause the memory to be placed
in logic instead of in memory blocks. To disable inference when using
Quartus II Integrated Synthesis, on the Assignments menu, click
Settings. In the Category list, select Analysis & Synthesis, and turn off
the Auto RAM Replacement, Auto ROM Replacement, or Auto Shift
Register Replacement logic option as appropriate for your project. Or,
disable the option for a specific entity in the Assignment Editor.

Depending on your synthesis tool, you can also set the RAM block type
for inferred memory blocks. In Quartus II integrated synthesis, set the
ramstyle attribute to the desired memory type for the inferred RAM
blocks, or set the option to logic to implement the memory block in
standard logic instead of a memory block.

Consider the resource utilization by hierarchy in the report file, and
determine whether there is an unusually high register count in any of the
modules. Some coding styles may prevent the Quartus II software from
inferring RAM blocks from the source code because of their architectural
implementation, and the software must implement the logic in flip-flops,
instead. As an example, a function such as an asynchronous reset on a
register bank might make it incompatible with the RAM blocks in the
device architecture, and the register bank is implemented in flip-flops.
Often it is possible to move a large register bank into RAM by slight
modification of associated logic.

f For more information about memory inference control in other synthesis
tools, refer to the appropriate chapter in the Synthesis section in volume 1
of the Quartus II Handbook, or your synthesis software’s documentation.
For more information about coding styles and HDL examples that
ensure memory inference, refer to the Recommended HDL Coding Styles
chapter in volume 1 of the Quartus II Handbook.

8–34 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–34 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Retarget or Balance DSP Blocks

A design may not fit because it requires too many DSP blocks. All DSP
block functions can be implemented with logic cells, so you can retarget
some of the DSP blocks to logic to obtain a fit.

If the DSP function was created with the MegaWizard Plug-In Manager,
open the MegaWizard Plug-In Manager and edit the function so it targets
logic cells instead of DSP blocks. The Quartus II software uses the
DEDICATED_MULTIPLIER_CIRCUITRY megafunction parameter to
control the implementation.

DSP blocks also can be inferred from your HDL code for multipliers,
multiply-adders, and multiply-accumulators. This inference can be
turned off in your synthesis tool. When you are using Quartus II
integrated synthesis, you can disable inference by turning off the
Auto DSP Block Replacement logic option for your whole project. On
the Assignments menu, click Settings. In the Category list, select
Analysis & Synthesis Settings, and turn off Auto DSP Block
Replacement. Alternatively, you can disable the option for a specific
block with the Assignment Editor.

f For more information about disabling DSP block inference in other
synthesis tools, refer to the appropriate chapter in the Synthesis section in
volume 1 of the Quartus II Handbook, or your synthesis software’s
documentation.

The Quartus II software also offers the DSP Block Balancing logic
option, which implements DSP block elements in logic cells or in different
DSP block modes. The default Auto setting allows DSP block balancing
to convert the DSP block slices automatically as appropriate to minimize
the area and maximize the speed of the design. You can use other settings
for a specific node or entity, or on a project-wide basis, to control how the
Quartus II software converts DSP functions into logic cells and DSP
blocks. Using any value other than Auto or Off overrides the
DEDICATED_MULTIPLIER_CIRCUITRY parameter used in
megafunction variations.

f For more details about the Quartus II logic options described in this
section, refer to the Quartus II Help.

Altera Corporation 8–35
November 2006

Resource Utilization Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–35
November 2006

Resource Utilization Optimization Techniques (LUT-Based Devices)

Optimize Source Code

If your design does not fit because of logic utilization, and the methods
described in the preceding sections do not sufficiently improve the
resource utilization of the design, modify the design at the source to
achieve the desired results. You can often improve logic significantly by
making design-specific changes to your source code. This is typically the
most effective technique for improving the quality of your results.

If your design does not fit into available LEs or ALMs, but you have
unused memory or DSP blocks, check to see if you have code blocks in
your design that describe memory or DSP functions that are not being
inferred and placed in dedicated logic. You may be able to modify your
source code to allow these functions to be placed into dedicated memory
or DSP resources in the target device.

Ensure that your state machines are recognized as state machine logic and
optimized appropriately in your synthesis tool. State machines that are
recognized are generally optimized better than if the synthesis tool treats
them as generic logic. In the Quartus II software, you can check for the
State Machine report under Analysis & Synthesis in the Compilation
Report. This report provides details, including the state encoding for each
state machine that was recognized during compilation. If your state
machine is not being recognized, you may need to change your source
code to enable it to be recognized.

f For coding style guidelines including examples of HDL code for
inferring memory and DSP functions, refer to the Inferring and
Instantiating Altera Megafunctions section of the Recommended HDL Coding
Styles chapter in volume 1 of the Quartus II Handbook. For guidelines and
sample HDL code for state machines, refer to the State Machines section
in the Recommended HDL Coding Styles chapter in volume 1 of the
Quartus II Handbook.

Use a Larger Device

If a successful fit cannot be achieved because of a shortage of LEs or
ALMs, memory, or DSP blocks, you may need to use a larger device.

8–36 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–36 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Routing

Use the suggestions in the following subsections to help you resolve
routing resource problems.

Set Auto Register Packing to Auto

This option is useful for reducing LE or ALM count in a design. This
option is available for the Cyclone and Stratix series of devices. On the
Settings menu, select Fitter Settings. Click More Settings. From the
options list, select Auto Register Packing and select the Auto option from
the drop-down menu.

When you choose a register packing setting to perform more register
packing than the Auto setting, the extra register packing may affect the
routability of the design as an unintended result. The Minimize the area
with chains setting restricts placement and reduces routability
significantly more than using the Minimize Area setting. For more
information about register packing, refer to“Use Register Packing” on
page 8–25.

Set Fitter Aggressive Routability Optimizations to Always

If routing resources are resulting in no-fit errors, use this option to reduce
routing wire utilization. On the Assignments menu, click Settings. In the
Category list, select Fitter Settings. Click More Settings. In the More
Fitter Settings dialog box, set Fitter Aggressive Routability
Optimizations to Always and click OK.

On average, in Stratix II devices, this option saves approximately 3% wire
utilization but can hurt performance by approximately 1%. In Stratix III
devices, this option saves approximately 6% wire utilization, at the same
time degrading the performance by approximately 3%.

These optimizations are used automatically when the Fitter performs
more than one fitting attempt, but turning the option on increases the
optimization effort on the first fitting attempt.

Increase Placement Effort Multiplier

Increasing the placement effort can improve the routability of the design,
allowing the software to route a design that otherwise requires too many
routing resources. On the Assignments menu, click Settings. In the
Category list, select Fitter Settings. Click More Settings. In the More
Fitter Settings dialog box, increase the value of the Placement Effort
Multiplier to increase placement effort. The default value is 1.0. Legal
values must be greater than 0 and can be non-integer values. Higher

Altera Corporation 8–37
November 2006

Resource Utilization Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–37
November 2006

Resource Utilization Optimization Techniques (LUT-Based Devices)

numbers increase compilation time but may improve placement quality.
For example, a value of 4 increases fitting time by approximately 2 to 4
times but may increase the quality of results.

Increased effort is used automatically when the Fitter performs more than
one fitting attempt. Setting a multiplier higher than one (before
compilation) increases the optimization effort on the first fitting attempt.
The second and third fitting loops increase the Placement Effort
Multiplier to 4 and then to 16. These loops result in increased compilation
times, with possible improvement in the quality of placement.

Increase Router Effort Multiplier

The Router Effort Multiplier controls how quickly the router tries to find
a valid solution. The default value is 1.0, and legal values must be greater
than 0. Numbers higher than 1 (up to 3 is generally reasonable) may
improve routing quality at the expense of run-time on difficult-to-route
circuits. Numbers closer to 0 (for example, 0.1) can reduce router runtime,
but usually reduce routing quality slightly. Experimental evidence shows
that a multiplier of 3.0 reduces overall wire usage by about 2%. There is
usually no gain in performance beyond a multiplier value of 3.

You can use the Router Effort Multiplier to a higher than default value for
difficult-to-route designs. To set the Router Effort Multiplier, from the
Assignments menu, click Settings, and then click Fitter Settings. Click
the More Settings button. From the options available, select Router
Effort Multiplier and edit the value in the subsequent dialog box that
appears.

Remove Fitter Constraints

A design with conflicting constraints or constraints that are difficult to
meet may not fit the targeted device. This can occur when location or
LogicLock assignments are too strict and there are not enough routing
resources.

In this case, use the Routing Congestion view in the Timing Closure
Floorplan to locate routing problems in the floorplan, then remove any
location or LogicLock region assignments from that area. If your design
still does not fit, the design is over-constrained. To correct the problem,
remove all location and LogicLock assignments and run successive
compilations, incrementally constraining the design before each
compilation. You can delete specific location assignments in the
Assignment Editor or Timing Closure Floorplan. On the Assignments
menu, click LogicLock Regions Window to remove LogicLock

8–38 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–38 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

assignments. Or, on the Assignments menu, click Remove Assignments
and turn on the assignment categories you want to remove from the
design in the Available assignment categories list.

f For more information about the Routing Congestion view in the Timing
Closure Floorplan, refer to the Quartus II Help. The Routing Congestion
view is available on the View menu if you enable Field View.

Set Maximum Router Optimization Level

To improve routability in cases in which the router did not pick up the
optimal routing lines, set the Router Optimization Level to Maximum.
This setting determines how aggressively the router tries to meet timing
requirements. Setting this option to Maximum can increase design speed
slightly, at the cost of increased compilation time. Setting this option to
Minimum can reduce compilation time, at the cost of slightly reduced
design speed. The default value is Normal.

To modify the Router Optimization level, on the Assignments menu, click
Settings. The Settings dialog box appears. In the Category list, click Fitter
Settings. Click on the More Settings tab. From the available settings,
select Router Optimization Level and choose the required setting from
the drop-down menu.

Optimize Synthesis for Area, Not Speed

In some cases, resynthesizing the design to improve the area utilization
can also improve the routability of the design. First, ensure that you have
set your device and timing constraints correctly in your synthesis tool.
Ensure that you do not over-constrain the timing requirements for the
design, particularly when the area utilization of the design is a concern.
Synthesis tools generally try to meet the specified requirements, which
can result in higher device resource usage if the constraints are too
aggressive.

If resource utilization is important to improving the routing results in
your design, some synthesis tools offer an easy way to optimize for area
instead of speed. If you are using Quartus II integrated synthesis, on the
Assignments menu, click Settings. In the Category list, select Analysis &
Synthesis Settings, and choose Balanced or Area under Optimization
Technique.

You can also specify this logic option for specific modules in your design
with the Assignment Editor in cases where you want to reduce area using
the Area setting (potentially at the expense of fMAX performance). You can
apply the setting to specific modules while leaving the default
Optimization Technique setting at Balanced (for the best trade-off

Altera Corporation 8–39
November 2006

Resource Utilization Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–39
November 2006

Resource Utilization Optimization Techniques (LUT-Based Devices)

between area and speed for certain device families) or Speed. You can
also use the Speed Optimization Technique for Clock Domains logic
option to specify that all combinational logic in or between the specified
clock domain(s) is optimized for speed.

1 In the Quartus II software, the Balanced setting typically
produces utilization results that are very similar to those
obtained with the Area setting, with better performance results.
The Area setting may give better results in some unusual cases.

In some synthesis tools, not specifying an fMAX requirement may result in
less resource utilization which may improve routability.

f For information about setting timing requirements and synthesis options
in Quartus II integrated synthesis and other synthesis tools, refer to the
appropriate chapter in the Synthesis section in volume 1 of the Quartus II
Handbook, or your synthesis software’s documentation.

Optimize Source Code

If your design does not fit because of routing problems, and the methods
described in the preceding sections do not sufficiently improve the
routability of the design, modify the design at the source to achieve the
desired results. You can often improve results significantly by making
design-specific changes to your source code, such as duplicating logic or
changing the connections between blocks that require significant routing
resources.

Use a Larger Device

If a successful fit cannot be achieved because of a shortage of routing
resources, you may need to use a larger device.

8–40 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–40 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

I/O Timing
Optimization
Techniques
(LUT-Based
Devices)

The next stage of design optimization focuses on I/O timing. Ensure that
you have made the appropriate assignments as described in “Initial
Compilation” on page 8–5, and that the resource utilization is satisfactory,
before proceeding with I/O timing optimization. Because changes to the
I/O paths affect the internal fMAX, complete this stage before proceeding
to the fMAX timing optimization stage as described in the “fMAX Timing
Optimization Techniques (LUT-Based Devices)” on page 8–47.

The options presented in this section address how to improve I/O timing,
including the setup delay (tSU), hold time (tH), and clock-to-output (tCO)
parameters.

Improving Setup & Clock-to-Output Times Summary

Table 8–4 shows the recommended order in which to use techniques to
reduce tSU and tCO times. Check marks indicate which timing parameters
are affected by each technique. Reducing tSU times increases hold (tH)
times.

Table 8–4. Improving Setup & Clock-to-Output Times Note (1) (Part 1 of 2)

Technique
Affects

tSU

Affects
tCO

Ensure that the appropriate constraints are set for the failing I/Os (page 8–12) v v
Use timing-driven compilation for I/O (page 8–41) v v
Use fast input register (page 8–42) v —

Use fast output register and fast output enable register (page 8–42) — v
Decrease the value of Input Delay from Pin to Input Register or set Decrease Input Delay
to Input Register = ON (page 8–43) v —

Decrease the value of Input Delay from Pin to Internal Cells, or set Decrease Input Delay
to Internal Cells = ON (page 8–43) v —

Decrease the value of Delay from Output Register to Output Pin, or set Increase Delay to
Output Pin = OFF (page 8–44)

— v
Increase the value of Input Delay from Dual-Purpose Clock Pin to Fan-Out Destinations
(page 8–45) v —

Use PLLs to shift clock edges (page 8–45) v v
Use the Fast Regional Clock option (page 8–46) — v
For MAX II devices, set Guarantee I/O paths to zero, Hold Time at Fast Timing Corner to
OFF, or When tSU and tPD constraints permit (page 8–46) v —

Altera Corporation 8–41
November 2006

I/O Timing Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–41
November 2006

I/O Timing Optimization Techniques (LUT-Based Devices)

Timing-Driven Compilation

To perform IOC timing optimization using the Optimize IOC Register
Placement For Timing option, perform the following steps.

1. On the Assignments menu, click Settings.

2. In the Category list, select Fitter Settings and click More Settings.

3. In the More Fitter Settings dialog box, under Existing options
settings, select Optimize IOC Register Placement for Timing.

This option moves registers into I/O elements if required to meet tSU or
tCO assignments, duplicating the register if necessary (as in the case where
a register fans out to multiple output locations). This option is enabled by
default and is a global setting. The option does not apply to MAX II
devices because they do not contain I/O registers.

For APEX™ 20KE and APEX 20KC devices, if the I/O register is not
available, the Fitter tries to move the register into the logic array block
(LAB) adjacent to the I/O element.

The Optimize IOC Register Placement for Timing option affects only
pins that have a tSU or tCO requirement. Using the I/O register is only
possible if the register directly feeds a pin or is fed directly by a pin. This
setting does not affect registers with the following characteristics:

■ Have combinational logic between the register and the pin
■ Are part of a carry or cascade chain
■ Have an overriding location assignment
■ Use the synchronous load or asynchronous clear ports of APEX 20K

and APEX II devices
■ Are input registers that use the synchronous load port and the value

is not 1 (in device families where the port is available, other than
APEX 20K, APEX II, and FLEX® 6000 devices)

■ Use the asynchronous load port and the value is not 1 (in device
families where the port is available)

Increase the value of Delay to output enable pin or set Increase delay to output enable
pin (page 8–45) — v

Note to Table 8–4:
(1) These options may not apply to all device families.

Table 8–4. Improving Setup & Clock-to-Output Times Note (1) (Part 2 of 2)

Technique
Affects

tSU

Affects
tCO

8–42 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–42 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Registers with the characteristics listed are optimized using the regular
Quartus II Fitter optimizations.

Fast Input, Output & Output Enable Registers

You can place individual registers in I/O cells manually by making fast
I/O assignments with the Assignment Editor. For an input register, use
the Fast Input Register option; for an output register, use the Fast Output
Register option; and for an output enable register, use the Fast Output
Enable Register option. In MAX II devices, which have no I/O registers,
these assignments lock the register into the LAB adjacent to the I/O pin if
there is a pin location assignment for that I/O pin.

If the fast I/O setting is on, the register is always placed in the I/O
element. If the fast I/O setting is off, the register is never placed in the I/O
element. This is true even if the Optimize IOC Register Placement for
Timing option is turned on. If there is no fast I/O assignment, the
Quartus II software determines whether to place registers in I/O
elements if the Optimize IOC Register Placement for Timing option is
turned on.

The three fast I/O options (Fast Input Register, Fast Output Register,
and Fast Output Enable Register) also can be used to override the
location of a register that is in a LogicLock region, and force it into an I/O
cell. If this assignment is applied to a register that feeds multiple pins, the
register is duplicated and placed in all relevant I/O elements. In MAX II
devices, the register is duplicated and placed in each distinct LAB
location that is next to an I/O pin with a pin location assignment.

Programmable Delays

Various programmable delay options can be used to minimize the tSU and
tCO times. For Stratix series devices, Cyclone series devices, and MAX II
devices, the Quartus II software automatically adjusts the applicable
programmable delays to help meet timing requirements. For APEX series
devices, the default values are set to avoid any hold time problems.
Programmable delays are advanced options that you should use only
after you compile a project, check the I/O timing, and determine that the
timing is unsatisfactory. For detailed information about the effect of these
options, refer to the device family handbook or data sheet.

After you have made a programmable delay assignment and compiled
the design, you can view the value of every delay chain for every I/O pin
in the Delay Chain Summary section of the Quartus II Compilation
Report.

Altera Corporation 8–43
November 2006

I/O Timing Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–43
November 2006

I/O Timing Optimization Techniques (LUT-Based Devices)

You can assign programmable delay options to supported nodes with the
Assignment Editor. You also can view and modify the delay chain setting
for the target device with the Quartus II Chip Planner and Resource
Property Editor. When you use the Resource Property Editor to make
changes after performing a full compilation, recompiling the entire
design is not necessary; you can save changes directly to the netlist.
Because these changes are made directly to the netlist, the changes are not
made again automatically when you recompile the design. The change
management features allow you to reapply the changes on subsequent
compilations.

Users can not control the programmable delays in Stratix III devices.
However, the software may use programmable delays internally during
the place-and-route phase.

f For more information about using the Quartus II Chip Planner and
Resource Property Editor, refer to the Design Analysis & Engineering
Change Management with Chip Planner chapter in volume 3 of the
Quartus II Handbook.

Table 8–5 summarizes the programmable delays available for Altera
devices.

Table 8–5. Programmable Delays for Altera Devices (Part 1 of 3)

Programmable Delay Description I/O Timing
Impact Devices

Decrease input delay to input
register

Decreases propagation delay from an input
pin to the data input of the input register in the
I/O cell associated with the pin. Applied to
input/bidirectional pin or register it feeds.

Decreases tS U
Increases tH

● Stratix
● Stratix GX
● Cyclone
● APEX II
● APEX 20KE
● APEX 20KC
● Mercury™
● MAX 7000B

Input delay from pin to input
register

Sets propagation delay from an input pin to the
data input of the input register implemented in
the I/O cell associated with the pin. Applied to
input/bidirectional pin.

Changes tS U
Changes tH

● Stratix II
● Stratix II GX
● Cyclone II

8–44 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–44 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Decrease input delay to
internal cells

Decreases the propagation delay from an
input or bidirectional pin to logic cells and
embedded cells in the device. Applied to
input/bidirectional pin or register it feeds.

Decreases tS U
Increases tH

● Stratix
● Stratix GX
● Cyclone
● APEX II
● APEX 20KE
● APEX 20KC
● Mercury
● FLEX 10K®

● FLEX 6000
● ACEX® 1K

Input delay from pin to
internal cells

Sets the propagation delay from an input or
bidirectional pin to logic and embedded cells in
the device. Applied to a input or bidirectional
pin.

Changes tS U
Changes tH

● Stratix II
● Stratix II GX
● Cyclone II
● MAX II

Decrease input delay to
output register

Decreases the propagation delay from the
interior of the device to an output register in an
I/O cell. Applied to input/bidirectional pin or
register it feeds.

Decreases tP D ● Stratix
● Stratix GX
● APEX II
● APEX 20KE
● APEX 20KC

Increase delay to output
enable pin

Increases the propagation delay through the
tri-state output to the pin. The signal can either
come from internal logic or the output enable
register in an I/O cell. Applied to
output/bidirectional pin or register feeding it.

Increases tC O ● Stratix
● Stratix GX
● APEX II
● Mercury

Delay to output enable pin Sets the propagation delay to an output enable
pin from internal logic or the output enable
register implemented in an I/O cell.

Changes tC O ● Stratix II
● Stratix II GX

Increase delay to output pin Increases the propagation delay to the output
or bidirectional pin from internal logic or the
output register in an I/O cell. Applied to
output/bidirectional pin or register feeding it.

Increases tC O ● Stratix
● Stratix GX
● Cyclone
● APEX II
● APEX 20KE
● APEX 20KC
● Mercury

Delay from output register to
output pin

Sets the propagation delay to the output or
bidirectional pin from the output register
implemented in an I/O cell. This option is off by
default.

Changes tC O ● Stratix II
● Cyclone II
● Stratix II GX

Increase input clock enable
delay

Increases the propagation delay from the
interior of the device to the clock enable input
of an I/O input register.

N/A ● Stratix
● Stratix GX
● APEX II
● APEX 20KE
● APEX 20KC

Table 8–5. Programmable Delays for Altera Devices (Part 2 of 3)

Programmable Delay Description I/O Timing
Impact Devices

Altera Corporation 8–45
November 2006

I/O Timing Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–45
November 2006

I/O Timing Optimization Techniques (LUT-Based Devices)

Use PLLs to Shift Clock Edges

Using a PLL typically improves I/O timing automatically. If the timing
requirements are still not met, most devices allow the PLL output to be
phase shifted in order to change the I/O timing. Shifting the clock
backwards gives a better tCO at the expense of tSU, while shifting it
forward gives a better tSU at the expense of tCO and tH. Refer to
Figure 8–10. This technique can be used only in devices that offer PLLs
with the phase shift option.

Figure 8–10. Shift Clock Edges Forward to Improve tSU at the Expense of tCO

You can achieve the same type of effect in certain devices using the
programmable delay called Input Delay from Dual Purpose Clock Pin
to Fan-Out Destinations, described in Table 8–5.

Input delay from dual
purpose clock pin to fan-out
destinations

Sets the propagation delay from a dual-
purpose clock pin to its fan-out destinations
that are routed on the global clock network.
Applied to an input or bidirectional dual-
purpose clock pin.

N/A ● Cyclone II

Increase output clock enable
delay

Increases the propagation delay from the
interior of the device to the clock enable input
of the I/O output register and output enable
register.

N/A ● Stratix
● Stratix GX
● APEX II
● APEX 20KE
● APEX 20KC

Increase output enable clock
enable delay

Increases the propagation delay from the
interior of the device to the clock enable input
of an output enable register.

N/A ● Stratix
● Stratix GX

Increase tZX delay to output
pin

Used for zero bus-turnaround (ZBT) by
increasing the propagation delay of the falling
edge of the output enable signal.

Increases tC O ● Stratix
● Stratix GX
● APEX II
● Mercury

Table 8–5. Programmable Delays for Altera Devices (Part 3 of 3)

Programmable Delay Description I/O Timing
Impact Devices

8–46 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–46 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Use Fast Regional Clocks in Stratix Devices & Regional Clocks
in Stratix II Devices

Stratix EP1S25, EP1S20, and EP1S10 devices, and Stratix GX EP1SGX25
and EP1SGX10 devices, contain two fast regional clock networks,
FCLK[1..0], in each quadrant, fed by input pins that can connect to
other fast regional clock networks.

In Stratix EP1S30, Stratix GX EP1SGX40, and larger devices in both
families, there are two fast regional clock networks in each half-quadrant.
Dedicated FCLK input pins feed these clock nets directly. Stratix fast
regional clocks have less delay to I/O elements than regional or global
clocks, and are used for high fan-out control signals.

Stratix II, Stratix II GX, and Stratix III devices provide 32 regional clock
networks. There are eight regional clock networks, RCLK[7..0] in each
quadrant of the device that are driven by the dedicated input pins
CLK[15..0], by PLL outputs, or by internal logic. These regional clock
networks provide the lowest clock delay and skew for logic contained in
a single quadrant. Placing clocks on these low-skew and low-delay clock
nets provides better tCO performance.

Change How Hold Times are Optimized for MAX II Devices

For MAX II devices, you can use the Guarantee I/O paths have zero hold
time at Fast Timing Corner option to control how hold time is optimized
by the Quartus II software. On the Assignments menu, click Settings. In
the Category list, select Fitter Settings. Click More Settings. In the More
Fitter Settings dialog box, set the option globally. Or, on the Assignments
menu, click Assignment Editor to set this option for specific I/Os.

The option controls whether the Fitter uses timing-driven compilation to
optimize a design to achieve a zero hold time for I/Os that feed globally
clocked registers at the fast (best-case) timing corner, even in the absence
of any user timing assignments. When this option is set to On (default),
the Fitter guarantees zero hold time (tH) for I/Os feeding globally clocked
registers at the fast timing corner, at the expense of possibly violating tSU
or tPD timing constraints. When this option is set to When tsu and tpd
constraints permit, the Fitter achieves zero hold time for I/Os feeding
globally clocked registers at the fast timing corner only when tSU or tPD
timing constraints are not violated. When this option is set to Off, designs
are optimized to meet user timing assignments only.

By setting this option to Off or When tsu and tpd constraints permit, you
improve tSU at the expense of tH.

Altera Corporation 8–47
November 2006

fMAX Timing Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–47
November 2006

fMAX Timing Optimization Techniques (LUT-Based Devices)

fMAX Timing
Optimization
Techniques
(LUT-Based
Devices)

The next stage of design optimization is to improve fMAX timing. There are
a number of options available if the performance requirements are not
achieved after compilation.

Before optimizing your design, you should understand the structure of
your design as well as the type of logic affected by each optimization. An
optimization can decrease performance if the optimization does not
benefit your logic structure.

Improving fMAX Summary

The choice of options and settings to improve fMAX depends on the failing
paths in the design. To achieve the best results relative to your
performance requirements, apply the following techniques, and compile
the design after each:

1. Ensure that your timing assignments are complete. For details, refer
to “Timing Requirement Settings” on page 8–6.

2. Ensure that you have reviewed any warning messages from your
initial compilation, and checked for ignored timing assignments.
Refer to “Design Analysis” on page 8–14 for details and fix any of
these problems before proceeding with optimization.

3. Apply netlist synthesis optimization options and physical synthesis
(page 8–48).

4. Modify the Fitter seed (page 8–56). You can omit this step if a large
number of critical paths are failing, or if paths are failing by large
amounts.

5. Apply the following synthesis options to optimize for speed:

● Optimize Synthesis for Speed, Not Area (page 8–52)
● Flatten the Hierarchy During Synthesis (page 8–53)
● Set the Synthesis Effort to High (page 8–54)
● Change State Machine Encoding (page 8–54)
● Duplicate Logic for Fan-Out Control (page 8–54)
● Prevent Shift Register Inference (page 8–55)
● Use Other Synthesis Options Available in Your Synthesis Tool

(page 8–56)

6. Make LogicLock assignments (page 8–58) to control placement.

7. Make design source code modifications to fix areas of the design
that are still failing timing requirements by significant amounts
(page 8–57).

8–48 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–48 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

8. Make location assignments, or, as a last resort, perform manual
placement by back-annotating the design (page 8–61).

f You can use the DSE to automate the process of running several different
compilations with different settings. For more information, refer to the
Design Space Explorer chapter in volume 2 of the Quartus II Handbook.

If these techniques do not achieve performance requirements, additional
design source code modifications may be required (page 8–57).

Synthesis Netlist Optimizations & Physical Synthesis
Optimizations

The Quartus II software offers advanced netlist optimization options,
including physical synthesis. Various netlist optimizations can help
improve the performance of many designs regardless of the synthesis tool
used. Netlist optimizations can be applied both during synthesis and
during fitting.

The synthesis netlist optimizations occur during the synthesis stage of the
Quartus II compilation. Operating either on the output from another
EDA synthesis tool or as an intermediate step in Quartus II integrated
synthesis, these optimizations make changes to the synthesis netlist to
improve either area or speed, depending on your selected optimization
technique.

The following synthesis netlist optimizations are available:

■ WYSIWYG primitive resynthesis (for netlists from third-party EDA
synthesis tools)

■ Gate-level register retiming

On the Assignments menu, click Settings. In the Category list, expand
Analysis & Synthesis Settings and select Synthesis Netlist
Optimizations to view and modify the synthesis netlist optimization
options.

If you use another EDA synthesis tool and want to determine if the
Quartus II software can remap the circuit to improve performance, you
can use the Perform WYSIWYG Primitive Resynthesis option. This
option directs the Quartus II software to unmap the LEs in an atom netlist
to logic gates, and then map the gates back to Altera-specific primitives.
Using Altera-specific primitives enables the Fitter to remap the circuits
using architecture-specific techniques.

Altera Corporation 8–49
November 2006

fMAX Timing Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–49
November 2006

fMAX Timing Optimization Techniques (LUT-Based Devices)

To turn on the Perform WYSIWYG Primitive Resynthesis option, on the
Assignments menu, click Settings. In the Category list, expand Analysis
& Synthesis Settings and select Synthesis Netlist Optimizations. Turn
on Perform WYSIWYG primitive resynthesis (using optimization
techniques specified in Analysis & Synthesis settings).

The Quartus II technology mapper optimizes the design for Speed, Area,
or Balanced, according to the setting of the Optimization Technique
option. To change this setting, on the Assignments menu, click Settings.
In the Category list, select Analysis & Synthesis Settings, and choose
Speed or Balanced under Optimization Technique.

The Perform gate-level register retiming option enables movement of
registers across combinational logic to balance timing, allowing the
Quartus II software to trade off the delay between timing-critical paths
and non-critical paths. You can use this option with Quartus II Integrated
synthesis, or if you are using a third-party EDA synthesis tool, you can
use this option if you have turned on Perform WYSIWYG primitive
resynthesis (using optimization techniques specified in Analysis &
Synthesis settings).

The physical synthesis optimizations occur during the Fitter stage of
Quartus II compilation. Physical synthesis optimizations make
placement-specific changes to the netlist that improve speed performance
results for a specific Altera device.

The following physical synthesis optimizations are available:

■ Physical synthesis for combinational logic
■ Automatic asynchronous signal pipelining
■ Physical synthesis for registers

● Register duplication
● Register retiming

On the Assignments menu, click Settings. In the Category list, select
Fitter Settings, and specify the physical synthesis optimization options
on the Physical Synthesis Optimizations page. You can also specify the
Physical synthesis effort, which sets the level of physical synthesis
optimization that you want the Quartus II software to perform.

The Perform physical synthesis for combinational logic option allows
the Quartus II Fitter to resynthesize the combinational logic in a design to
reduce delay along the critical path and improve design performance.

The Perform automatic asynchronous signal pipelining allows the
Quartus II Fitter to insert pipeline stages for asynchronous clear and
asynchronous load signals automatically during fitting to increase circuit

8–50 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–50 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

performance. You can use this option if asynchronous control signal
recovery and removal times do not meet your requirements. The option
improves performance for designs in which asynchronous signals in very
fast clock domains cannot be distributed across the chip quickly enough
(because of long global network delays).

1 The Perform automatic asynchronous signal pipelining option
adds registers to nets driving the asynchronous clear or
asynchronous load ports of registers. This adds register delays
(and latency) to the reset, adding the same number of register
delays for each destination using the reset. Therefore the option
should be used only when adding latency to reset signals does
not violate any design requirements. This option also prevents
the promotion of signals to use global routing resources.

The Perform register duplication fitter option allows the Quartus II
Fitter to duplicate registers based on fitter placement information to
improve design performance. The Fitter can also duplicate combinational
logic when this option is enabled.

The Perform register retiming fitter option allows the Quartus II Fitter to
move registers across combinational logic to balance timing. This option
turns on algorithms similar to the Perform gate-level register retiming
option. This option applies to registers and combinational logic that have
already been placed into logic cells, and it compliments the synthesis
gate-level option.

f For more information and detailed descriptions of these netlist
optimization options, refer to the Netlist Optimizations & Physical
Synthesis chapter in volume 2 of the Quartus II Handbook.

Because performance results are design-dependant, try these options in
different combinations until you achieve the best results. Generally,
turning on all the options gives the best results but significantly increases
compilation time. This section provides typical benchmark results using
various designs and amounts of logic with synthesis netlists from leading
third-party synthesis tools and compiled with Quartus II software. These
results use the default Balanced setting for the Optimization Technique
for WYSIWYG resynthesis. Changing the setting to Speed or Area can
affect your results.

Tables 8–6 through 8–8 show the average results for different device
families, using the following measures for the quality of results:

■ fMAX Gain—The percentage gain in clock fMAX performance
■ Win Ratio—The percentage of designs that showed better

performance with the option on than without the option on

Altera Corporation 8–51
November 2006

fMAX Timing Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–51
November 2006

fMAX Timing Optimization Techniques (LUT-Based Devices)

■ Winner’s fMAX Gain—The average percentage improvement for the
designs that showed better performance with these settings (the
designs considered a win)

■ Logic Area Change—The percentage gain in logic utilization.
Negative values mean reduced area, and positive values mean
increased area

■ Compile Time Change—The multiplication factor for the
compilation time when the option is used

Table 8–6. Average Results of Synthesis Netlist & Physical Synthesis Optimizations for Stratix & Cyclone
Designs

Optimization Method
fMAX Gain

(%)
Win Ratio

(%)

Winner’s
fMAX Gain

(%)

 Logic
Area

Change
(%)

Compile
Time

Change
(×)

WYSIWYG primitive resynthesis 3 60 6 –8 1.0

Physical synthesis for combinational logic and registers

Using physical synthesis Fast effort level 10 86 12 4 1.4

Using physical synthesis Normal effort
level

15 86 16 4 2.2

Using physical synthesis Extra effort level 17 86 18 4 3.7

Table 8–7. Average Results of Synthesis Netlist & Physical Synthesis Optimizations for Stratix II &
Cyclone II Designs

Optimization Method
fMAX Gain

(%)
Win Ratio

(%)

Winner’s
fMAX Gain

(%)

 Logic
Area

Change
(%)

Compile
Time

Change
(×)

WYSIWYG primitive resynthesis 3 60 6 –8 1.0

Physical synthesis for combinational logic and registers

Using physical synthesis Fast effort level 11 82 14 2.5 1.3

Using physical synthesis Normal effort
level

14 88 17 4 2.0

Using physical synthesis Extra effort level 15 88 18 4.3 2.3

8–52 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–52 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Turn Off Extra-Effort Power Optimization Settings

If PowerPlay Power Optimization settings are set to Extra Effort, your
design performance may be affected. If improving timing performance is
more important than reducing power use, set the Power Optimization
setting to Normal.

To change the PowerPlay Power Optimization level, on the Assignments
menu, choose Settings. The Setting dialog box appears. From the
Category list, select Analysis & Synthesis Settings. From the drop-down
menu, select the appropriate level of PowerPlay Power Optimization
level.

f For more information about reducing power use, refer to the Power
Optimization chapter in volume 2 of the Quartus II Handbook.

Optimize Synthesis for Speed, Not Area

The manner in which the design is synthesized has a large impact on
design performance. Design performance varies depending on the way
the design is coded, which synthesis tool is used, and which options are
specified when synthesizing. Change your synthesis options if a large
number of paths are failing, or specific paths are failing by a large amount
and have many levels of logic.

Set your device and timing constraints in your synthesis tool. Synthesis
tools are timing-driven and optimize to meet specified timing
requirements. If you do not specify target frequency, some synthesis tools
optimize for area.

Table 8–8. Average Performance of Synthesis Netlist & Physical Synthesis Optimizations for Stratix III
Designs

Optimization Method
fMAX Gain

(%)
Win Ratio

(%)

Winner’s
fMAX Gain

(%)

 Logic
Area

Change
(%)

Compile
Time

Change
(×)

WYSIWYG primitive resynthesis 3 60 6 –8 1.0

Physical synthesis for combinational logic and registers

Using physical synthesis Fast effort level 8 75 11 2 1.2

Using physical synthesis Normal effort
level

10 79 14 3 1.7

Using physical synthesis Extra effort level 11 79 15 3 2.0

Altera Corporation 8–53
November 2006

fMAX Timing Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–53
November 2006

fMAX Timing Optimization Techniques (LUT-Based Devices)

Some synthesis tools offer an easy way to instruct the tool to focus on
speed instead of area.

For Quartus II integrated synthesis, on the Assignments menu, click
Settings. In the Category list, select Analysis & Synthesis Settings, and
specify Speed as the Optimization Technique option. You can also
specify this logic option for specific modules in your design with the
Assignment Editor while leaving the default Optimization Technique
setting at Balanced (for the best trade-off between area and speed for
certain device families) or Area (if area is an important concern). You can
also use the Speed Optimization Technique for Clock Domains option
to specify that all combinational logic in or between the specified clock
domain(s) is optimized for speed.

To achieve best performance with push-button compilation, follow the
recommendations in the following sections for other synthesis settings.
You can use DSE to experiment with different Quartus II synthesis
options to optimize your design for the best performance.

f For information about setting timing requirements and synthesis options
in Quartus II integrated synthesis and third-party synthesis tools, refer
to the appropriate chapter in the Synthesis section in volume 1 of the
Quartus II Handbook, or refer to your synthesis software documentation.

Flatten the Hierarchy During Synthesis

Synthesis tools typically let you preserve hierarchical boundaries, which
can be useful for verification or other purposes. However, the best
optimization results generally occur when the synthesis tool optimizes
across hierarchical boundaries because doing so often allows the
synthesis tool to perform the most logic minimization, which can
improve performance. Whenever possible, flatten your design hierarchy
to achieve the best results. If you are using Quartus II integrated
synthesis, ensure that the Preserve Hierarchical Boundary option is
turned off. If you are using Quartus II incremental compilation, you
cannot flatten your design across design partitions. Incremental
compilation always preserves the hierarchical boundaries between
design partitions. Follow Altera's recommendations for design
partitioning such as registering partition boundaries to reduce the effect
of cross-boundary optimizations.

8–54 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–54 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

f For more information about using incremental compilation and
recommendations for design partitioning, refer to the Quartus II
Incremental Compilation for Hierarchical & Team-Based Design chapter in
volume 1 of the Quartus II Handbook. If you are using an incremental
synthesis flow that requires separate hierarchy blocks, you can find
additional recommendations for design partitioning in the Design
Recommendations for Altera Devices chapter in volume 1 of the Quartus II
Handbook.

Set the Synthesis Effort to High

Some synthesis tools offer varying synthesis effort levels to trade off
compilation time with synthesis results. Set the synthesis effort to high to
achieve best results when applicable.

Change State Machine Encoding

State machines can be encoded using various techniques. One-hot
encoding, which uses one register for every state bit, usually provides the
best performance. If your design contains state machines, changing the
state machine encoding to one-hot can improve performance at the cost
of area.

If your design does not manually encode the state bits, you can select the
state machine encoding chosen in your synthesis tool. In Quartus II
integrated synthesis, on the Assignments menu, click Settings. In the
Category list, select Analysis & Synthesis Settings, and for State
Machine Processing, choose One-Hot. You also can specify this logic
option for specific modules or state machines in your design with the
Assignment Editor.

In some cases (especially in Stratix II and Stratix III devices), encoding
styles other than the default offer better performance. Experiment with
different encoding styles to see what effect the style has on your resource
utilization and timing performance.

Duplicate Logic for Fan-Out Control

Duplicating logic or registers can help improve timing in cases where
moving a register in a failing timing path to reduce routing delay creates
other failing paths, or where there are timing problems due to the fan-out
of the registers.

Many synthesis tools support options or attributes that specify the
maximum fan-out of a register. When using Quartus II integrated
synthesis, you can set the Maximum Fan-Out logic option in the
Assignment Editor to control the number of destinations for a node so

Altera Corporation 8–55
November 2006

fMAX Timing Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–55
November 2006

fMAX Timing Optimization Techniques (LUT-Based Devices)

that the fan-out count does not exceed a specified value. You can also use
the maxfan attribute in your HDL code. The software duplicates the node
as needed to achieve the specified maximum fan-out.

1 Logic duplication using Maximum Fan-Out assignments
normally increases resource utilization, and can potentially
increase compilation time depending on the placement and the
total resource usage within the selected device. The
improvement in timing performance that results because of
Maximum Fan-Out assignments is very design-specific.

If you are using Maximum Fan-Out assignments, Altera
recommends benchmarking your design with and without these
assignments to evaluate whether they give the expected
improvement in timing performance, and use the assignments
only when you get improved results.

You can manually duplicate registers in the Quartus II software
regardless of the synthesis tool used. To duplicate a register, apply the
Manual Logic Duplication option to the register with the Assignment
Editor.

The manual logic duplication option also accepts wildcards. This is an
easy and powerful duplication technique that you can use without
editing your source code. You can use this technique, for example, to
make a duplicate of a large fan-out node for all of its destinations in a
certain design hierarchy, such as hierarchy_A. To apply such an
assignment in the Assignment Editor, make an entry such as the one
shown in Table 8–9:

f For more information about the manual logic duplication option, refer to
the Quartus II Help.

Prevent Shift Register Inference

In some cases, turning off the inference of shift registers increases
performance. Doing so forces the software to use logic cells to implement
the shift register instead of implementing the registers in memory blocks
using the altshift_taps megafunction. If you implement shift
registers in logic cells instead of memory, logic utilization is increased.

Table 8–9. Duplicating Logic in the Assignment Editor

From To Assignment Name Value

My_high_fanout_node *hierarchy_A* Manual Logic Duplication high_fanout_to_A

8–56 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–56 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Use Other Synthesis Options Available in Your Synthesis Tool

With your synthesis tool, experiment with the following options if they
are available:

■ Turn on register balancing or retiming
■ Turn on register pipelining
■ Turn off resource sharing

These options may increase performance. They typically increase the
resource utilization of your design.

Fitter Seed

The Fitter seed affects the initial placement configuration of the design.
Changing the seed value changes the Fitter results because the fitting
results change whenever there is a change in the initial conditions.
Because each seed value results in a somewhat different fit, you can
experiment with several different seeds to attempt to obtain better fitting
results and timing performance.

When there are changes in your design, there is some random variation
in performance between compilations. This variation is inherent in
placement and routing algorithms—there are too many possibilities to try
them all and get the absolute best result, so the initial conditions change
the compilation result.

Note that any design change that directly or indirectly affects the Fitter
has the same type of random effect as changing the seed value. This
includes any change in source files, Analysis & Synthesis settings, Fitter
settings, or Timing Analyzer settings. The same effect can appear if you
use a different computer processor type or different operating system
because different systems can change the way floating point numbers are
calculated in the Fitter.

If your design is finalized, you can compile your design with different
seeds to obtain one optimal result. If any design or setting changes occur,
they can make a previously optimal seed value no longer optimal.

If a design optimization slightly changes the fMAX timing or number of
failing paths, you can’t always be certain that your change caused the
improvement or degradation or whether it could be due to random
effects in the Fitter. If your design is still changing, running a seed sweep
(compiling your design with multiple seeds) determines whether the
average result has improved after an optimization change and whether a
setting that increases compilation time has benefits worth the increased

Altera Corporation 8–57
November 2006

fMAX Timing Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–57
November 2006

fMAX Timing Optimization Techniques (LUT-Based Devices)

time (such as turning the physical synthesis effort to extra). The sweep
also shows the amount of random variation you should expect for your
design.

On the Assignments menu, select Fitter Settings to control the initial
placement with the Seed. You can use the Design Space Explorer (DSE) to
perform a seed sweep easily.

f For more information about compiling with different seeds using the
DSE script, refer to the Design Space Explorer chapter in volume 2 of the
Quartus II Handbook.

Optimize Source Code

If the methods described in the preceding sections do not sufficiently
improve timing of the design, modify your design files to achieve the
desired results. Try restructuring the design to use pipelining or more
efficient coding techniques. In many cases, optimizing the design’s source
code can have a very significant effect on your design performance. In
fact, optimizing your source code is typically the most effective technique
for improving the quality of your results, and is often a better choice than
using LogicLock or location assignments.

If the critical path in your design involves memory or DSP functions,
check whether you have code blocks in your design that describe memory
or functions that are not being inferred and placed in dedicated logic. You
may be able to modify your source code to cause these functions to be
placed into high-performance dedicated memory or resources in the
target device.

Ensure that your state machines are recognized as state machine logic and
optimized appropriately in your synthesis tool. State machines that are
recognized are generally optimized better than if the synthesis tool treats
them as generic logic. In the Quartus II software, you can check for the
State Machine report under Analysis & Synthesis in the Compilation
Report. This report provides details, including the state encoding for each
state machine that was recognized during compilation. If your state
machine is not being recognized, you may need to change your source
code to enable it to be recognized.

f For coding style guidelines including examples of HDL code for
inferring memory, and functions and guidelines and sample HDL code
for state machines, refer to the Recommended HDL Coding Styles chapter
in volume 1 of the Quartus II Handbook.

8–58 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–58 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

LogicLock Assignments

You can make LogicLock assignments for optimization based on nodes,
design hierarchy, or critical paths. This method can be used if a large
number of paths are failing, and recoding the design does not seem to be
necessary. LogicLock assignments can help if routing delays form a large
portion of your critical path delay, and placing logic closer together in the
device improves the routing delay. This technique is most beneficial for
devices with hierarchical routing structures such as the APEX 20K device
family.

1 Improving fitting results with LogicLock assignments,
especially for larger devices such as the Stratix series of devices,
can be difficult. The LogicLock feature is intended to be used for
performance preservation, therefore LogicLock assignments do
not always improve the performance of the design. In many
cases you cannot improve upon results from the Fitter by
making location assignments.

If there are existing LogicLock assignments in your design, remove the
assignments if your design methodology permits it. Recompile the design
to see if the assignments are making the performance worse.

When making LogicLock assignments, it is important to consider how
much flexibility to give the Fitter. LogicLock assignments provide more
flexibility than hard location assignments. Assignments that are more
flexible require higher Fitter effort, but reduce the chance of design over-
constraint. The following types of LogicLock assignments are available,
listed in order of decreasing flexibility:

■ Soft LogicLock regions
■ Auto size, floating location regions
■ Fixed size, floating location regions
■ Fixed size, locked location regions

To determine what to put into a LogicLock region, refer to the timing
analysis results and the Timing Closure Floorplan. The
register-to-register fMAX paths in the Timing Analyzer section of the
Compilation Report help you recognize patterns.

The following sections describe cases in which LogicLock regions can
help to optimize a design.

f For more information about using LogicLock regions, refer to the
LogicLock Design Methodology chapter in volume 2 of the Quartus II
Handbook.

Altera Corporation 8–59
November 2006

fMAX Timing Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–59
November 2006

fMAX Timing Optimization Techniques (LUT-Based Devices)

Hierarchy Assignments

For a design with the hierarchy shown in Figure 8–11, which has failing
paths in the timing analysis results similar to those shown in Table 8–10,
mod_A is probably a problem module. In this case, a good strategy to fix
the failing paths is to place the mod_A hierarchy block in a LogicLock
region so that all the nodes are closer together in the floorplan.

Figure 8–11. Design Hierarchy

Table 8–10 shows the failing paths connecting two regions together
within mod_A listed in the timing analysis report.

Hierarchical LogicLock regions are also important if you are using an
incremental compilation flow. Each design partition for incremental
compilation should be placed in a separate LogicLock region to reduce
conflicts and ensure good quality of results as the design develops. In this
case, you should not use soft LogicLock regions because they allow the
fitter to move nodes away from the region. You can use auto size and
floating location regions to find a good design floorplan, but you should
then fix the size and placement to achieve best results in future
compilations.

f For more information about using incremental compilation and
recommendations for creating a design floorplan using LogicLock
regions, refer to the Quartus II Incremental Compilation for Hierarchical &
Team-Based Design chapter in volume 1 of the Quartus II Handbook.

Table 8–10. Failing Paths in a Module Listed in Timing Analysis

From To

|mod_A|reg1 |mod_A|reg9

|mod_A|reg3 |mod_A|reg5

|mod_A|reg4 |mod_A|reg6

|mod_A|reg7 |mod_A|reg10

|mod_A|reg0 |mod_A|reg2

8–60 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–60 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Path Assignments

If you see a pattern such as the one shown in Figure 8–12 and Table 8–11,
it often indicates paths with a common problem. In this case, a path-based
assignment can be made from all d_reg registers to all memaddr registers.
You can make a path-based assignment to place all source registers,
destination registers, and the nodes between them in a LogicLock region
with the wildcard characters “*” and “?”.

You also can explicitly place the nodes of a critical path in a LogicLock
region. However, using this method instead of path assignments can
result in alternate paths between the source and destination registers
becoming critical paths.

Figure 8–12. Failing Paths in Timing Analysis

Table 8–11 shows the failing paths listed in the timing analysis report.

Table 8–11. Failing Paths in Timing Analysis

From To

|d_reg[1] |memaddr[5]

|d_reg[1] |memaddr[6]

|d_reg[1] |memaddr[7]

|d_reg[2] |memaddr[0]

|d_reg[2] |memaddr[1]

Altera Corporation 8–61
November 2006

fMAX Timing Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–61
November 2006

fMAX Timing Optimization Techniques (LUT-Based Devices)

f For more information about path-based LogicLock assignments, refer to
the LogicLock Design Methodology chapter in volume 2 of the Quartus II
Handbook.

Location Assignments & Back-Annotation

If a small number of paths are failing to meet their timing requirements,
you can use hard location assignments to optimize placement. Location
assignments are less flexible for the Quartus II Fitter than LogicLock
assignments. In some cases, when you are very familiar with your design,
you can enter location constraints in a way that produces better results.

1 Improving fitting results, especially for larger devices such as
the Stratix series of devices, can be difficult. Location
assignments do not always improve the performance of the
design. In many cases you cannot improve upon the results from
the Fitter by making location assignments.

The following are commonly used location assignments, listed in order of
decreasing flexibility:

■ Custom regions
■ Back-annotated LAB location assignments
■ Back-annotated LE or ALM location assignments

Custom Regions

A custom region is a rectangular region containing user-assigned nodes,
which are constrained in the region’s boundaries. If any portion of a block
in the device floorplan, such as an M-RAM block, overlaps a custom
region, it is considered to be entirely in that region.

Custom regions are hard location assignments that cannot be overridden
and are very similar to fixed-size, locked-location, LogicLock regions.
Custom regions are commonly used when logic must be constrained to a
specific portion of the device.

Back-Annotation & Manual Placement

Assigning the location of nodes in a design to the locations to which they
were assigned during the last compilation is called “back-annotation”.
When nodes are locked to their assigned locations in a back-annotated
design, you can manually move specific nodes without affecting other
back-annotated nodes. The process of manually moving and reassigning
specific nodes is called manual placement.

8–62 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–62 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

1 Back-annotation is very restrictive to the compiler, so you
should back-annotate only when the design has been finalized
and no further changes are expected. Assignments can become
invalid if the design is changed. Combinational nodes often
change names when a design is resynthesized, even if they are
unrelated to the logic that was changed.

Moving nodes manually can be very difficult for large devices.
In many cases, you cannot improve upon the Fitter’s results.

Illegal or unroutable location constraints can cause “no fit”
errors.

Before making location assignments, determine whether to back-
annotate to lock down the assigned locations of all nodes in the design.
When you are using a hierarchical design flow, you can lock down node
locations in one LogicLock region only, while other node locations are left
floating in a fixed LogicLock region. By implementing a hierarchical
approach, you can use the LogicLock design methodology to reduce the
dependence of logic blocks on other logic blocks in the device.

Consistent node names are required to perform back-annotation. If you
use Quartus II integrated synthesis or any Quartus II optimizations, such
as the WYSIWYG primitive resynthesis netlist optimization or any
physical synthesis optimizations, you must create an atom netlist before
you back-annotate to lock down the placement of any nodes. This creates
consistent node names.

1 Physical synthesis optimizations are placement-specific as well
as design-specific. Unless you back-annotate the design before
recompilation, the physical synthesis results can differ. This
happens because the atom netlist creates different placement
results. By back-annotating the design, the design source and
the atom netlist use the same placement when the design is
recompiled. When you are using an atom netlist and you want
to maintain the same placement results as a previous
compilation, use LogicLock regions and back-annotate the
placement of all nodes in the design. Not back-annotating the
design can result in the design source and the atom netlist
having different placement results and therefore different
synthesis results.

f For more information about creating atom netlists for your design, refer
to the LogicLock Design Methodology chapter in volume 2 of the Quartus II
Handbook.

Altera Corporation 8–63
November 2006

fMAX Timing Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–63
November 2006

fMAX Timing Optimization Techniques (LUT-Based Devices)

When you back-annotate a design, you can choose whether to assign the
nodes either to LABs (this is preferred because of increased flexibility) or
LEs/ALMs. You also can choose to back-annotate routing to further
restrict the Fitter and force a specific routing within the device.

1 Using back-annotated routing with physical synthesis
optimizations can result in a routing failure.

f For more information about back-annotating routing, refer to the
Quartus II Help.

When performing manual placement at a detailed level, Altera suggests
that you move LABs, not logic cells (LEs or ALMs). The Quartus II
software places nodes that share the same control signals in appropriate
LABs. Successful placement and routing is more difficult when you move
individual logic cells. This is because LEs with different control signals
are put into the same LAB may not have any unused control signals
available and the design may not fit.

In general, when you are performing manual placement and routing, fix
all I/O paths firsts because there are often fewer options available to meet
I/O timing. After I/O timing has been met, focus on manually placing
fMAX paths. This strategy is consistent with the methodology outlined in
this chapter.

The best way to meet performance is to move nodes closer together. For a
critical path such as the one shown in Figure 8–13, moving the destination
node closer to the other nodes reduces the delay and helps meet your
timing requirements.

Figure 8–13. Reducing Delay of Critical Path

8–64 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–64 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Optimizing Placement for Stratix, Stratix II & Cyclone II Devices

In the Stratix series of devices and Cyclone II devices, the row
interconnect delay is slightly faster than the column interconnect delay.
Therefore, when placing nodes, optimal placement is typically an ellipse
around the source or destination node. In Figure 8–14, if the source is
located in the center, any of the shaded LABs should give approximately
the same delay.

Figure 8–14. Possible Optimal Placement Ellipse

In addition, you should avoid crossing any M-RAM memory blocks for
node-to-node routing, because routing paths across M-RAM blocks
requires using R24 or C16 routing lines.

To determine the actual delays to and from a resource, use the Show
Physical Timing Estimate feature in the Timing Closure Floorplan.

f For more information about using the Timing Closure Floorplan, refer to
the Timing Closure Floorplan chapter in volume 2 of the Quartus II
Handbook.

Optimizing Placement for Cyclone Devices

In Cyclone devices, the row and column interconnect delays are similar;
therefore, when placing nodes, optimal placement is typically a circle
around the source or destination node.

Altera Corporation 8–65
November 2006

Resource Utilization Optimization Techniques (Macrocell-Based CPLDs)

Altera Corporation 8–65
November 2006

Resource Utilization Optimization Techniques (Macrocell-Based CPLDs)

Try to avoid long routes across the device. Long routes require more than
one routing line to cross the Cyclone device.

Optimizing Placement for Mercury, APEX II & APEX 20KE/C Devices

For the Mercury, APEX II, and APEX 20KE/C device families, the delay
for paths is reduced by placing the source and destination nodes in the
same geographical resource location. The following list shows the device
resources in order from fastest to slowest:

■ LAB
■ MegaLAB™ structure
■ MegaLAB column
■ Row

For example, if the nodes cannot be placed in the same MegaLAB
structure to reduce the delay, then place them in the same MegaLAB
column. For the actual delays to and from resources, use the Show
Physical Timing Estimate feature in the Timing Closure Floorplan.

Resource
Utilization
Optimization
Techniques
(Macrocell-
Based CPLDs)

The following recommendations help you take advantage of the
macrocell-based architecture in the MAX 7000 and MAX 3000 device
families to yield maximum speed, reliability, and device resource
utilization while minimizing fitting difficulties.

After design analysis, the first stage of design optimization is to improve
resource utilization. Complete this stage before proceeding to timing
optimization. First, ensure that you have set the basic constraints
described in “Initial Compilation” on page 8–5. If your design is not
fitting into a specified device, use the techniques in this section to achieve
a successful fit.

Use Dedicated Inputs for Global Control Signals

MAX 7000 and MAX 3000 devices have four dedicated inputs that can be
used for global register control. Because the global register control signals
can bypass the logic cell array and directly feed registers, product terms
can be preserved for primary logic. Also, because each signal has a
dedicated path into the LAB, global signals also can bypass logic and data
path interconnect resources.

Because the dedicated input pins are designed for high fan-out control
signals and provide low skew, you should always assign global signals
(such as clock, clear, and output enable) to the dedicated input pins.

8–66 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–66 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

You can use logic-generated control signals for global control signals
instead of dedicated inputs. However, the following list shows the
disadvantages to using logic-generated control signals:

■ More resources are required (logic cells, interconnect).
■ More data skew is introduced.
■ If the logic-generated control signals have high fan-out, the design

may be more difficult to fit.

By default, the Quartus II software uses dedicated inputs for global
control signals automatically. You can assign control signals to dedicated
input pins in one of the following ways:

■ In the Assignment Editor, choose one of the two following methods:
● Assign pins to dedicated pin locations.
● Assign a Global Signal setting to the pins.

■ On the Assignments menu, click Settings. In the Category list, select
Register Control Signals in the Auto Global Options section of the
Analysis & Synthesis Settings page.

■ Insert a GLOBAL primitive after the pins.
■ If you have already assigned pins for the design in the

MAX+PLUS® II software, on the Assignments menu, click Import
Assignments.

Reserve Device Resources

Because pin and logic option assignments might be necessary for board
layout and performance requirements, and because full utilization of the
device resources can increase the difficulty of fitting the design, Altera
recommends that you leave 10% of the device’s logic cells and 5% of the
I/O pins unused to accommodate future design modifications. Following
the Altera-recommended device resource reservation guidelines for
macrocell-based CPLDs increases the chance that the Quartus II software
can fit the design during recompilation after changes or assignments have
been made.

Pin Assignment Guidelines & Procedures

Sometimes user-specified pin assignments are necessary for board layout.
This section discusses pin assignment guidelines and procedures.

Altera Corporation 8–67
November 2006

Resource Utilization Optimization Techniques (Macrocell-Based CPLDs)

Altera Corporation 8–67
November 2006

Resource Utilization Optimization Techniques (Macrocell-Based CPLDs)

To minimize fitting issues with pin assignments, follow these guidelines:

■ Assign speed-critical control signals to dedicated inputs.
■ Assign output enables to appropriate locations.
■ Estimate fan-in to assign output pins to the appropriate LAB.
■ Assign output pins that require parallel expanders to macrocells

numbered 4 to 16.

1 Altera recommends that you allow the Quartus II software to
choose pin assignments automatically when possible.

Control Signal Pin Assignments

Assign speed-critical control signals to dedicated input pins. Every
MAX 7000 and MAX 3000 device has four dedicated input pins (GCLK1,
OE2/GCLK2, OE1, GCLRn). You can assign clocks to global clock
dedicated inputs (GCLK1, OE2/GCLK2), clear to the global clear dedicated
input (GCLRn), and speed-critical output enable to global OE dedicated
inputs (OE1, OE2/GCLK2).

Output Enable Pin Assignments

Occasionally, because the total number of required output enable pins is
more than the dedicated input pins, output enable signals must be
assigned to I/O pins. Therefore, to minimize possible fitting errors, refer
to the pin tables on the Literature page of Altera’s website when assigning
the output enable pins for MAX 7000 and MAX 3000 devices.

Estimate Fan-In When Assigning Output Pins

Macrocells with high fan-in can cause more placement problems for the
Quartus II Fitter than those with low fan-in. The maximum fan-in per
LAB should not exceed 36 in MAX 7000 and MAX 3000 devices.
Therefore, estimate the fan-in of logic (such as an x-input AND gate) that
feeds each output pin. If the total fan-in of logic that feeds each output pin
in the same LAB exceeds 36, compilation may fail. To save resources and
prevent compilation errors, avoid assigning pins that have high fan-in.

Outputs Using Parallel Expander Pin Assignments

Figure 8–15 illustrates how parallel expanders are used within a LAB.
MAX 7000 and MAX 3000 devices contain chains that can lend or borrow
parallel expanders. The Quartus II Fitter places macrocells in a location
that allows them to lend and borrow parallel expanders appropriately.

8–68 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–68 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

As shown in Figure 8–15, only macrocells 2 through 16 can borrow
parallel expanders. Therefore, assign output pins that may need parallel
expanders to pins adjacent to macrocells 4 through 16. Altera
recommends using macrocells 4 through 16 because they can borrow the
largest number of parallel expanders.

Figure 8–15. LAB Macrocells & Parallel Expander Associations

Altera Corporation 8–69
November 2006

Resource Utilization Optimization Techniques (Macrocell-Based CPLDs)

Altera Corporation 8–69
November 2006

Resource Utilization Optimization Techniques (Macrocell-Based CPLDs)

Resolving Resource Utilization Problems

There are two common Quartus II compilation fitting issues that cause
errors: excessive macrocell usage and lack of routing resources. Macrocell
usage errors occur when the total number of macrocells in the design
exceeds the available macrocells in the device. Routing errors occur when
the available routing resources are insufficient to implement the design.
Check the Message Window for the no-fit compilation results.

1 Messages in the Message window are also copied in the Report
Files. Right-click on a message and select Help for more
information.

Resolving Macrocell Usage Issues

Occasionally, a design requires more macrocell resources than are
available in the selected device, which results in the design not fitting.
The following list provides tips for resolving macrocell usage issues as
well as tips to minimize the number of macrocells used.

■ On the Assignments menu, click Settings. In the Category list, select
Analysis & Synthesis Settings, and turn off Auto Parallel
Expanders. If the design’s clock frequency (fMAX) is not an important
design requirement, turn off parallel expanders for all or part of the
project. The design usually requires more macrocells if parallel
expanders are turned on.

■ Change Optimization Technique from Speed to Area. Selecting Area
instructs the compiler to give preference to area utilization rather
than speed (fMAX). On the Assignments menu, click Settings. In the
Category list, change the Optimization Technique option in the
Analysis & Synthesis Settings page.

■ Use D-type flipflops instead of latches. Altera recommends that you
always use D-type flipflops instead of latches in your design because
D-type flipflops can reduce the macrocell fan-in, and thus reduce
macrocell usage. The Quartus II software uses extra logic to
implement latches in MAX 7000 and MAX 3000 designs because
MAX 7000 and MAX 3000 macrocells contain D-type flipflops
instead of latches.

■ Use asynchronous clear and preset instead of synchronous clear and
preset. To reduce the product term usage, use asynchronous clear
and preset in your design whenever possible. Using other control
signals such as synchronous clear produces macrocells and pins with
higher fan-out.

8–70 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–70 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

1 After following the suggestions in this section, if your project
still does not fit the targeted device, consider using a larger
device. When upgrading to a different density, the vertical-
package-migration feature of the MAX 7000 and MAX 3000
device families allows pin assignments to be maintained.

Resolving Routing Issues

Routing is another resource that can cause design fitting issues. For
example, if the total fan-in into a LAB exceeds the maximum allowed, a
no-fit error can occur during compilation. If your design does not fit the
targeted device because of routing issues, consider the following
suggestions.

■ Use dedicated inputs/global signals for high fan-out signals. The
dedicated inputs in MAX 7000 and MAX 3000 devices are designed
for speed-critical and high fan-out signals. Always assign high fan-
out signals to dedicated inputs/global signals.

■ Change the Optimization Technique option from Speed to Area.
This option may resolve routing resource and macrocell usage issues.
Refer to the same suggestion in “Resolving Macrocell Usage Issues”
on page 8–69.

■ Reduce the fan-in per cell. If you are not limited by the number of
macrocells used in the design, you can use the Fan-in per cell (%)
option to reduce the fan-in per cell. The allowable values are
20–100%; the default value is 100%. Reducing the fan-in can reduce
localized routing congestion but increase the macrocell count. You
can set this logic option in the Assignment Editor or under More
Settings in the Analysis & Synthesis Settings page of the Settings
dialog box.

■ On the Assignments menu, click Settings. In the Category list, select
Analysis & Synthesis Settings, and turn off Auto Parallel
Expanders. By turning off the parallel expanders, the Quartus II
software has more fitting flexibility for each macrocell, allowing
macrocells to be relocated. For example, each macrocell (previously
grouped together in the same LAB) can be moved to a different LAB
to reduce routing constraints.

Altera Corporation 8–71
November 2006

Resource Utilization Optimization Techniques (Macrocell-Based CPLDs)

Altera Corporation 8–71
November 2006

Resource Utilization Optimization Techniques (Macrocell-Based CPLDs)

■ Insert logic cells. Inserting logic cells reduces fan-in and shared
expanders used per macrocell, increasing routability. By default, the
Quartus II software automatically inserts logic cells when necessary.
Otherwise, Auto Logic Cell can be disabled as follows. On the
Assignments menu, click Settings. In the Category list, select
Analysis & Synthesis Settings. Under More Settings, turn off Auto
Logic Cell Insertion. Refer to “Using LCELL Buffers to Reduce
Required Resources” on page 8–71 for more information.

■ Change pin assignments. If you are willing to discard your pin
assignments, you can let the Quartus II Fitter ignore some or all the
assignments.

1 If you prefer reassigning pins to increase routing efficiency,
refer to “Pin Assignment Guidelines & Procedures” on
page 8–66.

Using LCELL Buffers to Reduce Required Resources

Complex logic, such as multilevel XOR gates, are often implemented with
more than one macrocell. When this occurs, the Quartus II software
automatically allocates shareable expanders—or additional macrocells
(called synthesized logic cells)—to supplement the logic resources that
are available in a single macrocell. You also can break down complex logic
by inserting logic cells in the project to reduce the average fan-in and the
total number of shareable expanders needed. Manually inserting logic
cells can provide greater control over speed-critical paths.

Instead of using the Quartus II software’s Auto Logic Cell Insertion
option, you can manually insert logic cells. However, Altera recommends
that you use the Auto Logic Cell Insertion option unless you know
which part of the design is causing the congestion.

A good location to manually insert LCELL buffers is where a single
complex logic expression feeds multiple destinations in your design. You
can insert an LCELL buffer just after the complex expression; the
Quartus II Fitter extracts this complex expression and places it in a
separate logic cell. Rather than duplicate all the logic for each destination,
the Quartus II software feeds the single output from the logic cell to all
destinations.

8–72 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–72 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

To reduce fan-in and prevent no-fit compilations caused by routing
resource issues, insert an LCELL buffer after a NOR gate, refer to
Figure 8–16. The Figure 8–16 design was compiled for a MAX 7000AE
device. Without the LCELL buffer, the design requires two macrocells,
eight shareable expanders, and the average fan-in is 14.5 macrocells.
However, with the LCELL buffer, the design requires three macrocells,
eight shareable expanders, and the average fan-in is just 6.33 macrocells.

Figure 8–16. Reducing the Average Fan-In by Inserting LCELL Buffers

Altera Corporation 8–73
November 2006

Timing Optimization Techniques (Macrocell-Based CPLDs)

Altera Corporation 8–73
November 2006

Timing Optimization Techniques (Macrocell-Based CPLDs)

Timing
Optimization
Techniques
(Macrocell-
Based CPLDs)

After resource optimization, design optimization focuses on timing.
Ensure that you have made the appropriate assignments as described in
“Initial Compilation” on page 8–5, and that the resource utilization is
satisfactory before proceeding with timing optimization.

Maintaining system performance at or above certain timing requirements
is an important goal of circuit designs. The following five timing
parameters are primarily responsible for a design’s performance:

■ Setup time (tSU), the propagation time for input data signals
■ Hold time (tH), the propagation time for input data signals
■ Clock-to-output time (tCO), the propagation time for output signals.
■ Pin-to-pin delays (tPD), the time required for a signal from an input

pin to propagate through combinational logic and appear at an
external output pin

■ Maximum clock frequency (fMAX), the internal register-to-register
performance.

This section provides guidelines to improve the timing if the timing
requirements are not met. Figure 8–17 shows the parts of the design that
determine the tSU, tH, tCO, tPD, and fMAX timing parameters.

Figure 8–17. Main Timing Parameters that Determine the System’s Performance

Timing results for tSU, tH, tCO, tPD, and fMAX are found in the Compilation
Report for the classic timing analyzer, as discussed in “Design Analysis”
on page 8–14.

When you are analyzing a design to improve performance, be sure to
consider the two major contributors to long delay paths:

■ Excessive levels of logic
■ Excessive loading (high fan-out)

8–74 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–74 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

When a MAX 7000 or MAX 3000 device signal drives more than one LAB,
the programmable interconnect array (PIA) delay increases by 0.1 ns per
additional LAB fan-out. Therefore, to minimize the added delay,
concentrate the destination macrocells into fewer LABs, minimizing the
number of LABs that are driven. The main cause of long delays in circuit
design is excessive levels of logic.

Improving Setup Time

Sometimes the tSU timing reported by the Quartus II Fitter does not meet
your timing requirements. To improve the tSU timing, refer to the
following guidelines:

■ Turn on the Fast Input Register option using the Assignment Editor.
The Fast Input Register option allows input pins to directly drive
macrocell registers via the fast-input path, thus minimizing the
pin-to-register delay. This option is useful when a pin drives a D-type
flipflop that does not have combinational logic between the pin and
the register.

■ Reduce the amount of logic between the input and the register.
Excessive logic between the input pin and register causes more
delays. To improve setup time, Altera recommends that you reduce
the amount of logic between the input pin and the register whenever
possible.

■ Reduce fan-out. The delay from input pins to macrocell registers
increases when the fan-out of the pins increases. To improve the
setup time, minimize the fan-out.

Improving Clock-to-Output Time

To improve a design’s clock-to-output time, minimize the
register-to-output-pin delay. To improve the tCO timing, refer to the
following guidelines.

■ Use the global clock. In addition to minimizing the delay from a
register to an output pin, minimizing the delay from the clock pin to
the register also can improve tCO timing. Always use the global clock
for low-skew and speed-critical signals.

■ Reduce the amount of logic between the register and output pin.
Excessive logic between the register and the output pin causes more
delay. Always minimize the amount of logic between the register and
output pin for faster clock-to-output time.

Altera Corporation 8–75
November 2006

Timing Optimization Techniques (Macrocell-Based CPLDs)

Altera Corporation 8–75
November 2006

Timing Optimization Techniques (Macrocell-Based CPLDs)

Table 8–12 shows the timing results for an EPM7064AETC100-4 device
when a combination of the Fast Input Register option, global clock, and
minimal logic is used. When the Fast Input Register option is turned on,
the tSU timing is improved (tSU decreases from 1.6 ns to 1.3 ns and from
2.8 ns to 2.5 ns). The tCO timing is improved when the global clock is used
for low-skew and speed-critical signals (tCO decreases from 4.3 ns to
3.1 ns). However, if there is additional logic used between the input pin
and the register or the register and the output pin, the tSU and tCO delays
increase.

Table 8–12. EPM7064AETC100-4 Device Timing Results

Number of
Registers

tSU

(ns)
tH

(ns)
tCO

(ns)
Global

Clock Used

Fast Input
Register
Option

D Input
Location

Q Output
Location

Additional Logic Between:

D Input
Location &
Register

Register &
Q Output
Location

1 1.3 1.2 4.3 No On LAB A LAB A No No

1 1.6 0.3 4.3 No Off LAB A LAB A No No

1 2.5 0 3.1 Yes On LAB A LAB A No No

1 2.8 0 3.1 Yes Off LAB A LAB A No No

1 3.6 0 3.1 Yes Off LAB A LAB A Yes No

1 2.8 0 7.0 Yes Off LAB D LAB A No Yes

16 with the
same D
and clock
inputs

2.8 0 All
6.2

Yes Off LAB D LAB A, B No No

32 with the
same D
and clock
inputs

2.8 0 All
6.4

Yes Off LAB C LAB A, B,
C

No No

8–76 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–76 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Improving Propagation Delay (tPD)

Achieving fast propagation delay (tPD) timing is required in many system
designs. However, if there are long delay paths through complex logic,
achieving fast propagation delays can be difficult. To improve your
design’s tPD, Altera recommends that you follow the guidelines discussed
in this section.

■ On the Assignments menu, click Settings. In the Category list, select
Analysis & Synthesis Settings, and turn on Auto Parallel
Expanders. Turning on the parallel expanders for individual nodes
or sub-designs can increase the performance of complex logic
functions. However, if the project’s pin or logic cell assignments use
parallel expanders placed physically together with macrocells
(which can reduce routability), parallel expanders can cause the
Quartus II Fitter to have difficulties finding and optimizing a fit.
Additionally, the number of macrocells required to implement the
design increases and results in a no-fit error during compilation if the
device resources are limited. For more information about turning the
Auto Parallel Expanders option on, refer to “Resolving Macrocell
Usage Issues” on page 8–69.

■ Set the Optimization Technique to Speed. By default, the Quartus II
software sets the Optimization Technique option to Speed for
MAX 7000 and MAX 3000 devices. Reset the Optimization
Technique option to Speed only if you previously set it to Area. On
the Assignments menu, click Settings. In the Category list, select
Analysis & Synthesis Settings, and turn on Speed under
Optimization Technique.

Improving Maximum Frequency (fMAX)

Maintaining the system clock at or above a certain frequency is a major
goal in circuit design. For example, if you have a fully synchronous
system that must run at 100 MHz, the longest delay path from the output
of any register to the inputs of the registers it feeds must be less than
10 ns. Maintaining the system clock speed can be difficult if there are long
delay paths through complex logic. Altera recommends that you follow
the following guidelines to improve your design’s clock speed (fMAX).

Altera Corporation 8–77
November 2006

Timing Optimization Techniques (Macrocell-Based CPLDs)

Altera Corporation 8–77
November 2006

Timing Optimization Techniques (Macrocell-Based CPLDs)

■ On the Assignments menu, click Settings. In the Category list, select
Analysis & Synthesis Settings and turn on Auto Parallel
Expanders. Turning on the parallel expanders for individual nodes
or subdesigns can increase the performance of complex logic
functions. However, if the project’s pin or logic cell assignments use
parallel expanders placed physically together with macrocells
(which can reduce routability), parallel expanders can cause the
Quartus II Compiler to have difficulties finding and optimizing a fit.
Additionally, the amount of macrocells required to implement the
design also increases and can result in a no-fit error during
compilation if the device’s resources are limited. For more
information about using the Auto Parallel Expanders option, refer to
“Resolving Macrocell Usage Issues” on page 8–69.

■ Use global signals or dedicated inputs. Altera MAX 7000 and
MAX 3000 devices have dedicated inputs that provide low skew and
high speed for high fan-out signals. Minimize the number of control
signals in the design and use the dedicated inputs to implement
them.

■ Set the Optimization Technique to Speed. By default, the Quartus II
software sets the Optimization Technique option to Speed for
MAX 7000 and MAX 3000 devices. Reset the Optimization
Technique option to Speed only if you have previously set it to Area.
You can reset the Optimization Technique option. In the Category
list, choose Analysis & Synthesis Settings, and turn on Speed under
Optimization Technique.

■ Pipeline the design. Pipelining, which increases clock frequency
(fMAX), refers to dividing large blocks of combinational logic by
inserting registers. For more information about pipelining, refer to
“Optimizing Source Code—Pipelining for Complex Register Logic”
on page 8–77.

Optimizing Source Code—Pipelining for Complex Register Logic

If the methods described in the preceding sections do not sufficiently
improve your results, modify the design at the source to achieve the
desired results. Using a pipelining technique can consume device
resources, but it also lowers the propagation delay between registers,
allowing you to maintain high system clock speed.

8–78 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–78 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

The benefits of pipelining can be demonstrated with a 4-to-16 pipelined
decoder that decodes 4-bit numbers. The decoder is based on five 2-to-4
pipelined decoders with outputs that are registered using D-type
flipflops. Figure 8–18 shows one of the 2-to-4 pipelined decoders. The
function 2TO4DEC is the 2-to-4 decoder that feeds all four decoded
outputs (out1, out2, out3, and out4) to the D-type flipflops in 4REG.

Figure 8–18. A 2- to 4-Pipelined Decoder

Figure 8–19 shows five 2-to-4 decoders (2TO4REGDEC) that are combined
to form a 4-to-16 pipelined decoder. The first decoder (2TO4REGDEC1)
decodes the two most significant bits (MSB) (in3 and in4) of the 4-to-16
decoder. The decoded output from the 2TO4REGDEC1 decoder enables
only one of the rest of the 2-to-4 decoders (2TO4REGDEC2,
2TO4REGDEC3, 2TO4REGDEC4, or 2TO4REGDEC5). The inputs in1 and
in2 are decoded by the enabled 2-to-4 decoder. Because the time to
generate the decoded output increases with the size of the decoder,
pipelining the design reduces the time consumed to generate the decoded
output, thus improving the maximum frequency. In Figure 8–19, the
MSBs (in3 and in4) are decoded in the first clock cycle, while the other
bits (in1 and in2) are decoded in the following clock cycle.

Altera Corporation 8–79
November 2006

Timing Optimization Techniques (Macrocell-Based CPLDs)

Altera Corporation 8–79
November 2006

Timing Optimization Techniques (Macrocell-Based CPLDs)

Figure 8–19. Five 2-to-4 Pipelined Decoders Combined to Form a 4-to-16 Pipelined Decoder

8–80 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–80 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Compilation-
Time
Optimization
Techniques

If optimizing the compilation time of your design is important, use the
techniques in this section. Be aware that reducing compilation time using
some of these techniques can reduce the overall quality of results.

Incremental Compilation

You can speed up design iteration time by an average of 60% when
making changes to the design and reach design timing closure more
efficiently with the incremental compilation feature. Using incremental
compilation allows you to organize your design into logical and physical
partitions for design synthesis and fitting. Design iterations can be made
dramatically faster by recompiling only a particular design partition and
merging results with previous compilation results of other partitions. You
can also use optimization techniques such as physical synthesis for
specific design partitions while leaving other modules untouched to
preserve performance.

When making changes to the design, use the incremental synthesis
feature (part of incremental compilation) to save synthesis time.
Incremental synthesis allows you to set design partitions to ensure that
only those sections of a design that have been updated are resynthesized
when the design is compiled, which reduces synthesis time and run-time
memory usage.

If you are using a third-party synthesis tool, you can create separate atom
netlist files for parts of your design that you already have synthesized
and optimized so that you update only the parts of the design that
change.

Regardless of your synthesis tool, you can use full incremental
compilation along with LogicLock regions to preserve your placement
and routing results for unchanged partitions while working on other
partitions. This ability provides the most reduction in compilation time
and run-time memory usage because neither synthesis nor fitting must be
performed for unchanged partitions in the design.

You can also perform a bottom-up compilation in which parts of the
design are compiled completely independently in separate Quartus II
projects, and then exported into the top-level design. This flow is useful
in team-based designs or when incorporating third-party IP.

Altera Corporation 8–81
November 2006

Compilation-Time Optimization Techniques

Altera Corporation 8–81
November 2006

Compilation-Time Optimization Techniques

f For information about the full incremental compilation flow in the
Quartus II software, refer to the Quartus II Incremental Compilation for
Hierarchical & Team-Based Design chapter in volume 1 of the Quartus II
Handbook. For information about using the Quartus II incremental
synthesis feature alone, refer to the Quartus II Integrated Synthesis chapter
in volume 1 of the Quartus II Handbook. For information about creating
multiple netlist files in third-party tools for use with incremental
compilation, refer to the appropriate chapter in the Synthesis section in
volume 1 of the Quartus II Handbook.

Reduce Synthesis Time & Synthesis Netlist Optimization Time

You can reduce synthesis time by reducing your use of netlist
optimizations and by using incremental synthesis. For more ideas on
reducing synthesis time in third-party EDA synthesis tools, refer to your
tool’s documentation.

Synthesis Netlist Optimizations

You can use Quartus II integrated synthesis to synthesize and optimize
HDL designs, and you can use synthesis netlist optimizations to optimize
netlists that were synthesized by third-party EDA software. Using these
netlist optimizations can cause the Analysis & Synthesis module to take
much longer to run. Look at the Analysis & Synthesis messages to find
out how much time these optimizations take. The compilation time spent
in Analysis & Synthesis is typically small compared to the compilation
time spent in the Fitter.

If your design meets your performance requirements without synthesis
netlist optimizations, turn off the optimizations to save time. If you need
to turn on synthesis netlist optimizations to meet performance, you can
optimize parts of your design hierarchy separately to reduce the overall
time spent in analysis and synthesis.

Check Early Timing Estimation before Fitting

The Quartus II software allows you to get an estimate of your timing
results after synthesis, before the design is fully processed by the Fitter. In
cases where you want a quick estimate of your design results before
proceeding with further design or synthesis tasks, this feature can save
you significant compilation time. For more information, refer to “Early
Timing Estimation” on page 8–12.

In the Processing menu, point to Start, and click Start Early Timing
Estimate after you perform analysis and synthesis in the Quartus II
software.

8–82 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–82 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Reduce Placement Time

The time needed to place a design depends on two factors: the number of
ways the logic in the design can be placed in the device and the settings
that control how hard the placer works to find a good placement. You can
reduce the placement time in two ways:

■ Change the settings for the placement algorithm.
■ Use incremental compilation to preserve the placement for parts of

the design.

Sometimes there is a trade-off between placement time and routing time.
Routing time can increase if the placer does not run long enough to find
a good placement. When you reduce placement time, make sure that it
does not increase routing time and negate the overall time reduction.

Fitter Effort Setting

On the Assignments menu, click Settings. In the Category list, select
Fitter Settings, and use the Fitter effort setting to shorten runtime by
changing the effort level to Auto Fit or Fast Fit.

Placement Effort Multiplier Settings

You can control the amount of time the Fitter spends in placement by
reducing one aspect of placement effort with the Placement Effort
Multiplier option. On the Assignments menu, click Settings. Select Fitter
Settings, and click More Settings. Under Existing Option Settings, select
Placement Effort Multiplier. The default is 1.0. Legal values must be
greater than 0 and can be non-integer values. Numbers between 0 and 1
can reduce fitting time, but also can reduce placement quality and design
performance. Numbers higher than 1 increase placement time and
placement quality, but may reduce routing time for designs with routing
congestion. For example, a value of 4 increases placement time by
approximately 2 to 4 times, but may increase quality.

Final Placement Optimization Levels

The Final Placement Optimization Level option specifies whether the
Fitter performs final placement optimizations. This can be set to Always,
Never, and Automatically. Performing optimizations may improve fMAX
timing and fitting, but may require longer compilation times. The default
setting of Automatically can be used with the Auto Fit Fitter Effort Level
(also the default) to let the fitter decide whether these optimizations
should run based on the routability and timing requirements of the
design.

Altera Corporation 8–83
November 2006

Compilation-Time Optimization Techniques

Altera Corporation 8–83
November 2006

Compilation-Time Optimization Techniques

Setting the Final Placement Optimization to Never often reduces your
compilation time, but typically affects routablity negatively and reduces
timing performance.

To change the PowerPlay Power Optimization level, on the Assignments
menu, choose Settings. The Setting dialog box appears. From the
Category list, select Fitter Settings. Click the More Settings button. Select
Final Placement Optimization Level, and then from the drop-down
menu, select the required setting.

Physical Synthesis Effort Settings

You can use the physical synthesis options to optimize your post-
synthesis netlist and improve your timing performance. These options,
which affect placement, can significantly increase compilation time. Refer
to Table 8–6 on page 8–51 for detailed results.

If your design meets your performance requirements without physical
synthesis options, turn them off to save time. You also can use the
Physical synthesis effort setting on the Physical Synthesis
Optimizations page under Fitter Settings in the Category list to reduce
the amount of extra compilation time that these optimizations use. The
Fast setting directs the Quartus II software to use a lower level of physical
synthesis optimization that, compared to the normal level, can cause a
smaller increase in compilation time. However, the lower level of
optimization can result in a smaller increase in design performance.

Limit to One Fitting Attempt

This option causes the software to quit after one fitting attempt option,
instead of looping through placement and routing with increased effort.
Preventing multiple fitter loops controls compilation time. The option
increases the fitting effort on this one fitting attempt so it increases the
compilation time as compared to a compilation that requires only one
fitting attempt.

If your design is not routable, using the Limit to one fitting attempt
option results in a fitting error due to routing. The option might also be
useful in this case, because finishing fitting more quickly allows you to
analyze the results more quickly and optimize your design appropriately
to improve routability.

From the Assignments menu, select Settings. On the Fitter Settings page,
turn on Limit to one fitting attempt.

8–84 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–84 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Preserving Placement, Incremental Compilation, & LogicLock Regions

Preserving information about previous placements can make future
placements take less time. The incremental compilation provides an easy-
to-use methodology for preserving placement results. For more
information, refer to “Incremental Compilation” on page 8–80 and the
references listed in the section.

Reduce Routing Time

The time needed to route a design depends on three factors: the device
architecture, the placement of the design in the device, and the
connectivity between different parts of the design. Typically the routing
time is not a significant amount of the compilation time. If your design
takes a long time to route, perform one or more of the following actions:

■ Check for routing congestion
■ Let the placer run longer to find a more routable placement
■ Use incremental compilation to preserve routing information for

parts of your design

Identify Routing Congestion in the Timing Closure Floorplan

To identify areas of congested routing in your design, open the Timing
Closure Floorplan. On the Assignments menu, click Timing Closure
Floorplan, and turn on Show Routing Congestion. This feature is
available only when you choose the Field View on the View menu.
Routing resource usage above 90% indicates routing congestion. You can
change the connections in your design to reduce routing congestion. If the
area with routing congestion is in a LogicLock region or between
LogicLock regions, change or remove the LogicLock regions and
recompile the design. If the routing time remains the same, then the time
is a characteristic of the design and the placement. If the routing time
decreases, consider changing the size, location, or contents of LogicLock
regions to reduce congestion and decrease routing time.

Router Effort Multiplier Setting

To control how quickly the router finds a fit, you can change the value of
the Router Effort Multiplier option by performing the following steps:

1. On the Assignments menu, click Settings.

2. In the Category list, select Fitter Settings, and click More Settings.

3. Select the Router Effort Multiplier option from the drop-down
menu.

Altera Corporation 8–85
November 2006

Compilation-Time Optimization Techniques

Altera Corporation 8–85
November 2006

Compilation-Time Optimization Techniques

The default value is 1.0. Legal values must be greater than 0. Numbers
closer to 0 (for example, 0.1) can reduce router run-time, but usually
reduce router quality slightly, which also may reduce design
performance.

Preserve Routing Incremental Compilation & LogicLock Regions

Preserving information about the previous routing results for part of the
design can make future routing efforts take less time. The use of
LogicLock regions with incremental compilation provides an easy-to-use
methodology that preserves placement and routing results. For more
information, refer to “Incremental Compilation” on page 8–80 and the
references listed in the section.

Use Multiple Processors for Multi-Threaded Compilation

The Quartus II software can run some algorithms in parallel to take
advantage of multiple processors and reduce compilation time when
more than one processor is available to compile the design. You can
specify the maximum number of processors that the software can use.
The software may not necessarily use all the processors that you specify
during a given compilation, but it never uses more than the specified
number of processors to ensure other jobs running on the same machine
are not affected.

By allowing the Quartus II software to use two processors, you may be
able to reduce the fitting time by up to 10%. Four processors can reduce
fitting time by up to 15%. There is no marked reduction beyond this when
more than four processors are in use, however. The actual reduction in
compilation time depends on the design and the specific settings used for
compilation. For example, compilations with fast-corner optimization
turned on benefit more from using multiple processors than do
compilations that do not use fast-corner optimization. The runtime
requirement is not reduced for some other compilation stages, such as
Analysis and Synthesis.

With certain design flows in which timing analysis runs alone, using
multiple processors can reduce the time required for timing analysis by
an average of 12% when using two processors. This reduction can reach
an average of 15% when using four processors.

1 Do not consider processors with Intel Hyper-Threading to be
more than one processor. If you have a single processor with
Intel Hyper-Threading enabled, you should set the number of
processors to one. Altera recommends that you do not use the
Intel Hyper-Threading feature for Quartus II compilations.

8–86 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–86 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

The Quartus II software does not check the number of processors
physically available, and configures its algorithms to use the specified
number of processors. Therefore, you should not specify more processors
than those actually available. Doing so could have an adverse effect,
resulting in increased compilation time.

Using multiple processors does not affect the quality of the fit. For a given
fitter seed on a specific design, the fit is exactly the same, regardless of
whether it uses one processor or multiple processors. The only difference
between such compilations using different number of processors is the
compilation times.

To set the number of processors available for Quartus II compilation, on
the Assignments menu, select Settings. From the Settings dialog box,
under Category, click Compilation Process Settings. In the dialog box
that appears, specify the Maximum processors for multithreaded
Quartus II use. The default value for the number of processors is 1.

Scripting
Support

You can run procedures and make settings described in this chapter in a
Tcl script. You can also run some procedures at a command prompt. For
detailed information about scripting command options, refer to the
Quartus II Command-Line and Tcl API Help browser. To run the Help
browser, type the following command at the command prompt:

quartus_sh --qhelp r
The Quartus II Scripting Reference Manual includes the same information
in PDF form.

f For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook. Refer to the Quartus II
Settings File Reference Manual for information about all settings and
constraints in the Quartus II software. For more information about
command-line scripting, refer to the Command-Line Scripting chapter in
volume 2 of the Quartus II Handbook.

You can specify many of the options described in this section either in an
instance, or at a global level, or both.

Use the following Tcl command to make a global assignment:

set_global_assignment -name <QSF variable name> <value>

Use the following Tcl command to make an instance assignment:

set_instance_assignment -name <QSF variable name> <value> \
-to <instance name>

Altera Corporation 8–87
November 2006

Scripting Support

Altera Corporation 8–87
November 2006

Scripting Support

Initial Compilation Settings

The Quartus Settings File variable name is used in the Tcl assignment to
make the setting along with the appropriate value. The Type column
indicates whether the setting is supported as a global setting, an instance
setting, or both.

1 This chapter refers to timing settings and analysis in the
Quartus II Classic Timing Analyzer. For equivalent settings and
analysis in the TimeQuest Timing Analyzer, refer to the
TimeQuest Timing Analyzer or the Switching to the TimeQuest
Timing Analyzer chapters in volume 3 of the Quartus II Handbook.

Table 8–13 lists the Quartus Settings File variable name and applicable
values for the settings discussed in “Initial Compilation” on page 8–5.

Resource Utilization Optimization Techniques (LUT-Based
Devices)

Table 8–14 lists the Quartus Settings File variable name and applicable
values for the settings discussed in “Resource Utilization Optimization
Techniques (LUT-Based Devices)” on page 8–23. The QSF variable name

Table 8–13. Initial Compilation Settings

Setting Name Quartus Settings File Variable Name Values Type

Device Setting DEVICE <device part number> Global

Use Smart Compilation SPEED_DISK_USAGE_TRADEOFF SMART, NORMAL Global

Optimize IOC Register
Placement For Timing

OPTIMIZE_IOC_REGISTER_
PLACEMENT_FOR_TIMING

ON, OFF Global

Optimize Hold Timing OPTIMIZE_HOLD_TIMING OFF, IO PATHS AND MINIMUM
TPD PATHS, ALL PATHS

Global

Fitter Effort FITTER_EFFORT STANDARD FIT, FAST FIT,
AUTO FIT

Global

Router Effort Multiplier ROUTER_EFFORT_MULTIPLIER Any positive, non-zero value Global

Router Timing
Optimization level

ROUTER_TIMING_OPTIMIZATION_L
EVEL

NORMAL, MINIMUM, MAXIMUM Global

Final Placement
Optimization

FINAL_PLACEMENT_OPTIMIZATION ALWAYS, AUTOMATICALLY,
NEVER

Global

8–88 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–88 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

is used in the Tcl assignment to make the setting along with the
appropriate value. The Type column indicates whether the setting is
supported as a global setting, an instance setting, or both.

I/O Timing Optimization Techniques (LUT-Based Devices)

Table 8–15 lists the QSF variable name and applicable values for the
settings discussed in “I/O Timing Optimization Techniques (LUT-Based
Devices)” on page 8–40. The QSF variable name is used in the Tcl
assignment to make the setting along with the appropriate value. The
Type column indicates whether the setting is supported as a global
setting, an instance setting, or both.

Table 8–14. Resource Utilization Optimization Settings

Setting Name QSF Variable Name Values Type

Auto Packed Registers
(1)

AUTO_PACKED_REGISTERS_
<device family name>

OFF, NORMAL,
MINIMIZE AREA,
MINIMIZE AREA
WITH CHAINS, AUTO

Global,
Instance

Perform WYSIWYG
Primitive Resynthesis

ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP ON, OFF Global,
Instance

Optimization
Technique

<device family name>_OPTIMIZATION_
TECHNIQUE

AREA, SPEED,
BALANCED

Global,
Instance

Speed Optimization
Technique for Clock
Domains

SYNTH_CRITICAL_CLOCK ON, OFF Instance

State Machine
Encoding

STATE_MACHINE_PROCESSING AUTO, ONE-HOT,
MINIMAL BITS,
USER-ENCODE

Global,
Instance

Preserve Hierarchy PRESERVE_HIERARCHICAL_BOUNDARY OFF, RELAXED, FIRM Instance

Auto RAM
Replacement

AUTO_RAM_RECOGNITION ON, OFF Global,
Instance

Auto ROM
Replacement

AUTO_ROM_RECOGNITION ON, OFF Global,
Instance

Auto Shift Register
Replacement

AUTO_SHIFT_REGISTER_RECOGNITION ON, OFF Global,
Instance

Auto Block
Replacement

AUTO_DSP_RECOGNITION ON, OFF Global,
Instance

Notes to Table 8–14:
(1) Allowable values for this setting depend on the device family that is selected.

Altera Corporation 8–89
November 2006

Scripting Support

Altera Corporation 8–89
November 2006

Scripting Support

fMAX Timing Optimization Techniques (LUT-Based Devices)

Table 8–16 lists the QSF variable name and applicable values for the
settings discussed in “fMAX Timing Optimization Techniques (LUT-Based
Devices)” on page 8–47. The QSF variable name is used in the Tcl
assignment to make the setting along with the appropriate value. The
Type column indicates whether the setting is supported as a global
setting, an instance setting, or both.

Table 8–15. I/O Timing Optimization Settings

Setting Name Quartus Settings File Variable Name Values Type

Optimize IOC
Register Placement
For Timing

OPTIMIZE_IOC_REGISTER_PLACEMENT_FOR_TIMING ON, OFF Global

Fast Input Register FAST_INPUT_REGISTER ON, OFF Instance

Fast Output
Register

FAST_OUTPUT_REGISTER ON, OFF Instance

Fast Output Enable
Register

FAST_OUTPUT_ENABLE_REGISTER ON, OFF Instance

Table 8–16. FMAX Timing Optimization Settings (Part 1 of 2)

Setting Name Quartus Settings File Variable Name Values Type

Perform WYSIWYG
Primitive Resynthesis

ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP ON, OFF Global,
Instance

Perform Gate Level
Register Retiming

ADV_NETLIST_OPT_SYNTH_GATE_RETIME ON, OFF Global

Allow Register
Retiming to trade off
tS U/tC O with fM A X

ADV_NETLIST_OPT_RETIME_CORE_AND_IO ON, OFF Global

Perform Physical
Synthesis for
Combinational Logic

PHYSICAL_SYNTHESIS_COMBO_LOGIC ON, OFF Global

Perform Register
Duplication

PHYSICAL_SYNTHESIS_REGISTER_DUPLICATION ON, OFF Global

Perform Register
Retiming

PHYSICAL_SYNTHESIS_REGISTER_RETIMING ON, OFF Global

Physical Synthesis
Effort

PHYSICAL_SYNTHESIS_EFFORT NORMAL, EXTRA,
FAST

Global

Seed SEED <integer> Global

Maximum Fan-Out MAX_FANOUT <integer> Instance

8–90 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–90 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Duplicate Logic for Fan-Out Control
The manual logic duplication option accepts wildcards. This is an easy
and powerful duplication technique that you can use without editing
your source code. You can use this technique, for example, to make a
duplicate of a large fan-out node for all of its destinations in a certain
design hierarchy, such as hierarchy_A. To make such an assignment
with Tcl, use a command similar to Example 8–1.

Example 8–1. Duplication Technique
set_instance_assignment -name DUPLICATE_ATOM \

high_fanout_to_A -from high_fanout_node \
-to *hierarchy_A*

Conclusion Today’s complex designs have complex requirements. Methodologies for
fitting your design and for achieving timing closure are fundamental to
optimal performance in today’s designs. Using the Quartus II design
optimization methodology closes timing quickly on complex designs,
reduces iterations by providing more intelligent and better linkage
between analysis and assignment tools, and balances multiple design
constraints including multiple clocks, routing resources, and area
constraints.

The Quartus II software provides many features to achieve optimal
results. Follow the techniques presented in this chapter to efficiently
optimize a design for area or timing performance, or to reduce
compilation time.

Manual Logic
Duplication

DUPLICATE_ATOM <node name> Instance

Optimize Power
during Synthesis

OPTIMIZE_POWER_DURING_SYNTHESIS NORMAL, OFF
EXTRA_EFFORT

Global

Optimize Power
during Fitting

OPTIMIZE_POWER_DURING_FITTING NORMAL, OFF
EXTRA_EFFORT

Global

Table 8–16. FMAX Timing Optimization Settings (Part 2 of 2)

Setting Name Quartus Settings File Variable Name Values Type

Altera Corporation 8–91
November 2006

Document Revision History

Altera Corporation 8–91
November 2006

Document Revision History

Document
Revision History

The table below shows the revisionhistory for this chapter.

Table 8–17. Documentation Revision History (Part 1 of 2)

Date &
Document

Version
Changes Made Summary of

Changes

November 2006
v6.1.0

Updated for the Quartus II software version 6.1.0:
● Added references to the Power Optimization Advisor and

Incremental Compilation Advisor
● Updated text to include TimeQuest Timing Analyzer
● Added check_timing for illegal & ignored constraints
● In the “Resource Utilization” section, modified note about ALM

counts
● In the “Use Register Packing” section, updated for Stratix II support;

added new benchmarking tables
● Added new sections to the “Routing” section:

• Set Auto Register Packing to Auto
• Set Fitter Aggressive Routability Optimizations to Always
• Increase Router Effort Multiplier
• Set Maximum Router Optimization Level

● To the “Increase Placement Effort Multiplier”section, added that
second and third fitting loops increase the multiplier to 4 and then 16

● Added relevant information for Stratix III
● In the “Synthesis Netlist Optimizations & Physical Synthesis

Optimizations” section, updated benchmarking information in tables;
reorganized information for clarity

● Added new section: “Turn Off Extra-Effort Power Optimization
Settings”

Updates for
TimeQuest
support, Stratix III
devices, and
updated
benchmarking
tables.

May 2006
v6.0.0

Updated for the Quartus II software version 6.0.0:
● Added Optimization advisors.
● Added initial compilation information.
● Added design analysis information.
● Added fMAX timing optimization techniques.

December 2005
v5.1.1

Minor typographic corrections.

October 2005
v5.1.0

Chapter 8 was formerly Chapter 7 in version 5.0.

May 2005
v5.0.0

Chapter 7 was formerly Chapter 6 in version 4.2.

8–92 Altera Corporation
 November 2006

Quartus II Handbook, Volume 2

8–92 Altera Corporation
November 2006

Quartus II Handbook, Volume 2

Dec. 2004
v2.1

Updated for Quartus II software version 4.2:
● Re-organized chapter.
● Added Early Timing Estimation segment.
● Removed Incremental Fitting segment.
● Updated Optimization Advisors.
● Updated Resource Utilization Optimization Techniques (LUT-Based

Devices) segment.
● Added the DSP Block Balancing logic option to Retarget or Balance

DSP Blocks segment.
● Updated Duplicate Logic for Fan-Out Control segment.
● Updates to tables, figures.

June 2004
v2.0

● Updates to tables, figures.
● New functionality in the Quartus II software version 4.1.

Feb. 2004
v1.0

Initial release.

Table 8–17. Documentation Revision History (Part 2 of 2)

Date &
Document

Version
Changes Made Summary of

Changes

Altera Corporation 9–1
November 2006 Preliminary

9. Power Optimization

Introduction The Quartus® II software offers power-driven compilation to fully
optimize device power consumption. Power-driven compilation focuses
on reducing your design’s total power consumption using power-driven
synthesis and power-driven place-and-route. This chapter describes the
power-driven compilation feature and flow in detail, as well as low
power design techniques that can further reduce power consumption in
your design. The techniques primarily target Stratix® III, Stratix II,
Stratix II GX, Cyclone™ II, and HardCopy® II devices. These devices
utilize a low-k dielectric material that dramatically reduces dynamic
power and improves performance. Stratix III and Stratix II devices
include new, more efficient, logic structures called adaptive logic
modules (ALMs) that obtain maximum performance while minimizing
power consumption. Cyclone II devices offer the optimal blend of high
performance and low power in a low-cost FPGA.

f For more information on Stratix III architecture, refer to the Stratix III
Device Handbook.

Altera® provides the Quartus II PowerPlay Power Analyzer to aid you
during the design process by delivering fast and accurate estimations of
power consumption. You can minimize power consumption, while
taking advantage of the industry’s leading FPGA performance, by using
the tools and techniques described in this chapter.

f For more information on the PowerPlay Power Analyzer, refer to the
PowerPlay Power Analyzer chapter in volume 3 of the Quartus II Handbook.

Total FPGA power consumption is comprised of I/O power, core static
power, and core dynamic power. This chapter focuses on design
optimization options and techniques that help reduce core dynamic
power and I/O power. In addition to these techniques there are
additional power optimization techniques available for Stratix III
devices. These techniques include:

■ Selectable Core Voltage
■ Programmable Power Technology
■ Device Speed Grade selection

f For more information on power optimization techniques available for
Stratix II devices, refer to application note AN: 437 Power Optimization in
Stratix III FPGAs.

QII52016-6.1.0

9–2 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 1

Power
Dissipation

This section describes the sources of power dissipation in Stratix II and
Cyclone II devices. You can refine techniques that reduce power
consumption in your design by understanding the sources of power
dissipation.

Figure 9–1 shows the power dissipation of Stratix II and Cyclone II
devices in different designs. All designs were analyzed at a fixed clock
rate of 200 MHz and exhibited varied logic resource utilization across
available resources.

Figure 9–1. Average Core Dynamic Power Dissipation

Notes to Figure 9–1:
(1) 112 different designs were used to obtain these results.
(2) 93 different designs were used to obtain these results.
(3) In designs using DSP blocks, DSPs consumed 5% of core dynamic power.

As shown in Figure 9–1, a significant amount of the total power is
dissipated in routing for both Stratix II and Cyclone II devices, with the
remaining power dissipated in logic, clock, and RAM blocks.

In Stratix II and Cyclone II devices, a series of column and row
interconnect wires of varying lengths provide signal interconnections
between logic array blocks (LABs), memory block structures, and digital
signal processing (DSP) blocks or multiplier blocks. These interconnects
dissipate the largest component of device power.

Average Core Dynamic Power Dissipation by Block
 Type in Stratix II Devices at a 12.5% Toggle Rate (1)

Routing
35%

Combinational Logic
15%

Registered Logic
25%

DSP Blocks
1% (3)

Average Core Dynamic Power Dissipation by Block
 Type in Cyclone II Devices at a 12.5% Toggle Rate (2)

Memory
9%

Global Clock Routing
15%

Routing
39%

Combinational Logic
23%

Registered Logic
16%

Memory
14%

Global Clock Routing
7%

DSP Blocks
1% (3)

Altera Corporation 9–3
November 2006 Preliminary

Design Space Explorer

FPGA combinational logic is another source of power consumption. The
basic building block of logic in Stratix II devices is the ALM, and in
Cyclone II devices, it is the logic element (LE).

f For more information on ALMs and LEs in Stratix III, Stratix II, and
Cyclone II devices, refer to the Stratix III Device Handbook, Stratix II
Device Handbook, and the Cyclone II Device Handbook, respectively.

Memory and clock resources are other major consumers of power in
FPGAs. Stratix II devices feature the TriMatrix memory architecture.
TriMatrix memory includes 512-bit M512 blocks, 4-Kbit M4K blocks, and
512-Kbit M-RAM blocks, which are each configurable to support many
features. Cyclone II devices have 4-Kbit M4K memory blocks.

Design Space
Explorer

The Design Space Explorer (DSE) is a simple, easy-to-use, design
optimization utility that is included in the Quartus II software. The DSE
explores and reports optimal Quartus II software options for your design,
targeting either power optimization, design performance, or area
utilization improvements. You can use the DSE to implement the
techniques described in this chapter.

Figure 9–2 shows the DSE user interface. The Settings tab is divided into
Project Settings and Exploration Settings.

9–4 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 1

Figure 9–2. Design Space Explorer User Interface

The Search for Lowest Power option, under Exploration Settings, uses a
predefined exploration space that targets overall design power
improvements. This setting focuses on applying different options that
specifically reduce total design thermal power. You can also set the
Optimization Goal option for your design using the Advanced tab in the
DSE window. You can select your design optimization goal, such as
optimize for power, from the list of available settings in the Optimization
Goal list. The DSE then uses the selection from the Optimization Goal
list, along with the Search for Lowest Power selection, to determine the
best compilation results.

By default, the Quartus II PowerPlay Power Analyzer is run for every
exploration performed by the DSE when the Search for Lowest Power
option is selected. This helps you debug your design and determine
trade-offs between power requirements and performance optimization.

Altera Corporation 9–5
November 2006 Preliminary

Power-Driven Compilation

f For more information on the DSE, refer to the Design Space Explorer
chapter in volume 2 of the Quartus II Handbook.

Power-Driven
Compilation

The standard Quartus II compilation flow consists of Analysis and
Synthesis, Fitter, Assembler, and Timing Analysis. Power-driven
compilation takes place at the analysis and synthesis and fitter levels.
Power-driven compilation settings are divided in the PowerPlay power
optimization list on the Analysis & Synthesis Settings page, and
PowerPlay power optimization on the Fitter Setting page. The following
section describes these power optimization options at the analysis and
synthesis and fitter levels.

Power-Driven Synthesis

Synthesis netlist optimization occurs during the synthesis stage of the
compilation flow. The optimization technique makes changes to the
synthesis netlist to optimize your design according to the selection of
area, speed, or power optimization. This section describes power
optimization techniques at the synthesis level.

The Analysis & Synthesis Settings page allows you to specify logic
synthesis options. The PowerPlay power optimization option is
available for Stratix III, Stratix II, Stratix II GX, Stratix, Stratix GX,
Cyclone II, Cyclone, and MAX® II devices (Figure 9–3).

To perform power optimization at the synthesis level in the Quartus II
software, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box
appears.

2. In the Category list, select Analysis & Synthesis. The Analysis &
Synthesis page is shown.

3. In the PowerPlay power optimization list, select your preferred
setting. This option determines how aggressively Analysis and
Synthesis optimizes the design for power.

9–6 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 1

Figure 9–3. Analysis & Synthesis Settings Page

Table 9–1 shows the settings in the PowerPlay power optimization list.
You can apply these settings on a project or entity level.

Table 9–1. Optimize Power during synthesis options

Settings Description

Off No power optimizations are performed

Normal compilation (Default) Enables power optimizations as long as they are
not expected to reduce design performance

Extra effort Enables you to perform additional power
optimizations which can reduce design
performance

Altera Corporation 9–7
November 2006 Preliminary

Power-Driven Compilation

The Normal compilation setting is turned on by default. This setting
performs memory optimization and power-aware logic mapping during
synthesis.

Memory blocks can represent a large fraction of total design dynamic
power as described in “Reducing Memory Power Consumption” on
page 9–22. Minimizing the number of memory blocks accessed during
each clock cycle can significantly reduce memory power. Memory
optimization involves effective movement of user-defined read/write
enable signals to associated read-and-write clock enable signals for all
memory types (Figure 9–4).

Figure 9–4. Memory Transformation

Figure 9–4 shows a default implementation of a simple dual-port
memory block in which write-clock enable and read-clock enable signals
are connected to VCC, making both read-and-write memory ports active
during each clock cycle. Memory transformation effectively moves the
read-enable and write-enable signals to the respective read-clock enable
and write-clock enable signals. By using this technique, memory ports are
shut down when they are not accessed. This significantly reduces your
design’s memory power consumption. For more information on clock
enable signals, refer to “Reducing Memory Power Consumption” on
page 9–22.

The other type of power optimization that takes place with the Normal
compilation setting is power-aware logic mapping. The power-aware
logic mapping reduces power by rearranging the logic during synthesis
to eliminate nets with high toggle rates.

The Extra effort setting performs the functions of the Normal
compilation setting and other memory optimizations to further reduce
memory power by shutting down memory blocks that are not accessed.
This level of memory optimization may require extra logic which can
reduce design performance.

Data Q

Wr Clk
Enable

Write
Address

Rd Clk
Enable

Read
Address

Clock

Write
Enable

Read
Enable

VCC

Wren

Write
Address

Data Q

Rden

VCC

Read
Address

Data Q

Wr Clk
Enable

Write
Address

Rd Clk
Enable

Read
Address

Clock

Write
Enable

Read
Enable

VCC

Wren

Write
Address

Data Q

Rden

VCC

Read
Address

Switch

Switch

9–8 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 1

The Extra effort setting also performs power-aware memory balancing.
Power-aware memory balancing automatically chooses the best memory
configuration for your memory implementation and provides optimal
power saving by determining the number of memory blocks, decoder,
and multiplexer circuits needed. If you have not previously specified
target-embedded memory blocks for your design’s memory functions,
the power-aware balancer automatically selects it during memory
implementation.

Figure 9–5 shows an example of a 4K × 4 (4K deep and 4 bit wide)
memory implementation in two different configurations using M4K
memory blocks available in Stratix II devices. The minimum logic area
implementation uses M4K blocks configured as 4K × 1. This
implementation is the default in the Quartus II software because it has the
minimum logic area (0 logic cells) and the highest speed. However, all
four M4K blocks are active on each memory access in this
implementation, which increases RAM power. The minimum RAM
power implementation is created by selecting Extra effort in the
PowerPlay power optimization list. This implementation automatically
uses four M4K blocks configured as 1K × 4 for optimal power saving. An
address decoder is implemented by the altsyncram megafunction to
select which of the four M4K blocks should be activated on a given cycle,
based on the state of the top two user address bits. The altsyncram
megafunction automatically implements a multiplexer to feed the
downstream logic by choosing the appropriate M4K output. This
implementation reduces RAM power because only one M4K block is
active on any cycle, but it requires extra logic cells, costing logic area and
potentially impacting design performance.

There is a trade-off between power saved by accessing fewer memories
and power consumed by the extra decoder and multiplexor logic. The
Quartus II software automatically balances the power savings against the
costs to choose the lowest power configuration for each logical RAM.

Altera Corporation 9–9
November 2006 Preliminary

Power-Driven Compilation

Figure 9–5. 4K × 4 Memory Implementation Using Multiple M4K Blocks

Memory optimization options can also be controlled by the
Low_Power_Mode parameter in the Default Parameters page of the
Settings dialog box. The settings for this parameter are None, Auto, and
ALL. None corresponds to the Off setting in the PowerPlay power
optimization list. Auto corresponds to the Normal compilation setting
and ALL corresponds to the Extra effort setting, respectively. You can
apply PowerPlay power optimization either on a compiler basis or on
individual entities. The Low_Power_Mode parameter always takes
precedence over the Optimize Power for Synthesis option for power
optimization on memory.

You can also set the MAXIMUM_DEPTH parameter manually to configure
the memory for low power optimization. This technique is the same as
the power-aware memory balancer, but it is manual rather than
automatic like the Extra effort setting in the PowerPlay power
optimization list. You can set the MAXIMUM_DEPTH parameter for
memory modules manually in the megafunction instantiation or in the
MegaWizard® Plug-In Manager for power optimization as described in
“Reducing Memory Power Consumption” on page 9–22. The
MAXIMUM_DEPTH parameter always takes precedence over the Optimize
Power for Synthesis options for power optimization on memory
optimization.

Addr
Decoder

4

1K Deep × 4 Wide
M4K RAM

Addr[0:9]

Addr[10:11]

Data[0:3]

Addr[10:11]

4K Words Deep &
4 Bits Wide

Addr[0:11]

4K Deep × 1 Wide
M4K RAM

Data[0:3]

Minimum RAM Power
(Power Efficient)

Minimum Logic Area
(Power Inefficient)

9–10 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 1

Power-Driven Synthesis Experiment for Stratix II Devices

In this experiment for Stratix II devices, three designs are compiled with
the Quartus II software using Normal compilation and Extra effort
settings in the PowerPlay power optimization list. The default setting for
Fitter is Normal compilation. Table 9–2 shows resources used in the
power-driven synthesis experiment.

The PowerPlay Power Analyzer estimates the power using a gate-level
simulation output file. Figure 9–6 shows that the power-driven synthesis
reduces memory power consumption by as much as 68% in Stratix II
devices.

Figure 9–6. Memory Blocks Power Saving Using the Power-Driven Synthesis
for Stratix II Devices

Power-Driven Fitter

The Fitter Settings page enables you to specify options for fitting
(Figure 9–7). The PowerPlay power optimization option is available for
Stratix III, Stratix II, Stratix II GX, Cyclone II, HardCopy II, and MAX II
devices.

Table 9–2. Resources Used in the Power-Driven Synthesis Experiment for Stratix II Devices

Design Name Settings ALUT Register Memory Bits

Design 1 Normal compilation 8,941 9,150 293,856

Extra effort 8,954 9,151 293,856

Design 2 Normal compilation 28,169 12,148 1,009,920

Extra effort 28,817 12,297 1,009,920

Design 3 Normal compilation 5,376 2,809 153,864

Extra effort 5,559 2,813 153,864

0%
10%
20%
30%
40%
50%
60%
70%

1 2 3

Designs

Po
w

er
 S

av
in

gs

Altera Corporation 9–11
November 2006 Preliminary

Power-Driven Compilation

To perform power optimization at the fitter level, perform the following
steps:

1. On the Assignments menu, click Settings. The Settings dialog box
appears.

2. In the Category list, select Fitter Settings. The Fitter Settings page is
shown.

3. In the PowerPlay power optimization list, select your preferred
setting. This option determines how aggressively the Fitter
optimizes the design for power.

Figure 9–7. Fitter Settings Window

9–12 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 1

Table 9–3 lists the settings in the PowerPlay power optimization list.
These settings can only be applied on a project-wide basis. The Extra
effort setting for the Fitter requires extensive effort to optimize the design
for power and can increase the compilation time.

The Normal compilation setting is selected by default and performs DSP
optimization by creating power-efficient DSP block configurations for
your DSP functions. For Stratix III devices, this setting, which is based on
timing constraints entered for the design, enables the Programmable
Power Technology to configure tiles as high-speed mode or low-power
mode. Tiles are the combination of LAB and MLAB pairs (including the
adjacent routing associated with LAB and MLAB) which can be
configured to operate in high-speed or low-power mode. This level of
power optimization will not have any affect on the fitting, timing results,
or the compile time.

f For more information on Stratix III power optimization, refer to Power
Optimization in Stratix III FPGAs.

The Extra effort setting performs the functions of the Normal
compilation setting and other place-and-route optimizations during
fitting to fully optimize the design for power. The Fitter applies an extra
effort to minimize power even after timing requirements have been met
by effectively moving the logic closer during placement to localize
high-toggling nets, and using routes with low capacitance. However, this
effort can increase the compilation time.

The Extra effort setting uses a Signal Activity File (.saf) or Verilog Value
Change Dump File (.vcd) that guides the Fitter to fully optimize the
design for power based on the signal activity of the design. The best
power optimization during fitting results from using the most accurate
signal activity information. Signal activities from full post-fit netlist
(timing) simulation provide the highest accuracy because all node
activities reflect the actual design behavior, provided that supplied input
vectors are representative of typical design operation. If you do not have
a Signal Activity File (from simulation or other source), then the

Table 9–3. Power-Driven Fitter Option

Settings Description

Off No power optimizations are performed

Normal compilation
(Default)

Enables power optimizations as long as they are not
expected to reduce design performance

Extra effort Enables you to perform additional power
optimizations that can reduce design performance

Altera Corporation 9–13
November 2006 Preliminary

Power-Driven Compilation

Quartus II software uses assignments, clock assignments, and vectorless
estimation values (PowerPlay Power Analyzer Tool settings) to estimate
the signal activities. This information is used to optimize your design for
power during fitting.

1 Only the Extra effort setting in the PowerPlay power
optimization list for the Fitter option uses the signal activities
(from Value Change Dump File or SAF) during fitting. The
settings made in the PowerPlay Power Analyzer Settings page
in the Settings dialog box are used to calculate the signal activity
of your design.

f For more information on Signal Activity Files and Verilog Value Change
Dump Files, and how to create them, refer to the PowerPlay Power
Analyzer chapter in volume 3 of the Quartus II Handbook.

Power-Driven Fitter Experiment for Stratix II Devices

In this experiment for Stratix II devices, three designs are compiled with
the Quartus II software using the Normal compilation and Extra effort
settings in the Fitter for the PowerPlay power optimization list. The
default setting for Analysis and Synthesis is Normal compilation.

Table 9–4 shows resources used in the power-driven fitter experiment.

The PowerPlay Power Analyzer estimates the power using a gate-level
simulation output file. Figure 9–8 shows that the power-driven fitter
technique reduces power consumption by as much as 19% in Stratix II
devices.

Table 9–4. Designs Used in the Power-Driven Fitter Experiment for Stratix II
Devices

Design Name ALUTs (Normal Compilation) ALUTs (Extra Effort)

Design 1 21,435 21,363

Design 2 19,035 18,970

Design 3 5,335 5,328

9–14 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 1

Figure 9–8. Power Savings Using the Power-Driven Fitter for Stratix II Devices

Recommended
Flow for
Power-Driven
Compilation

Figure 9–9 shows the recommended design flow to fully optimize your
design for power during compilation. This flow utilizes the power-driven
synthesis and power-driven fitter options. On average, you can reduce
core dynamic power by 16% with the extra effort synthesis and extra
effort fitting settings, as compared to off settings in both synthesis and
fitter options for power-driven compilation.

Figure 9–9. Recommended Flow for Power-Driven Compilation

Area-Driven Synthesis

Using of area optimization rather than timing or delay optimization
during synthesis saves power because you use fewer logic blocks. Using
less logic usually means less switching activity.

0%
5%

10%
15%
20%
25%

1 2 3

Designs

Po
w

er
 S

av
in

gs

.saf
or

.vcd

Power-Driven
Synthesis of Design

Power-Driven
Fitting of Design

Find Signal Toggle
Rates: Gate-Level

Simulation with
Glitch Filtering

Fit Design

Altera Corporation 9–15
November 2006 Preliminary

Recommended Flow for Power-Driven Compilation

Area-Driven Synthesis Experiment for Stratix II Devices

In this experiment for Stratix II devices, five designs are compiled with
the Quartus II software in two ways. First, the designs are compiled
optimizing for area. The same designs are then compiled optimizing for
speed. The power optimization settings for synthesis and fitting are set to
Off.

Table 9–5 shows ALUT usage in the area-driven synthesis experiment.

The PowerPlay Power Analyzer estimates the power using a gate-level
simulation output file. Figure 9–10 shows that the area-driven technique
reduces power consumption by as much as 31% in Stratix II devices.

Figure 9–10. Power Savings Using Area-Driven Synthesis for Stratix II Devices

Area-Driven Synthesis Experiment for Cyclone II Devices

In this experiment for Cyclone II devices, five designs are compiled with
the Quartus II software in two ways. First, the designs are compiled
optimizing for area. The same designs are then compiled optimizing for
speed.

Table 9–5. Designs Used in the Area-Driven Synthesis Experiment for
Stratix II Devices

Design Name ALUTs (Area Mapping) ALUTs (Speed Mapping)

Design 1 5,682 8,553

Design 2 16,986 17,783

Design 3 36,554 36,312

Design 4 4,717 5,820

Design 5 15,947 15,978

0%
5%

10%
15%
20%
25%
30%
35%

1 2 43 5

Designs

Po
w

er
 S

av
in

gs

9–16 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 1

Table 9–6 shows LE usage in the area-driven synthesis experiment.

The PowerPlay Power Analyzer estimates the power using a gate-level
simulation output file. Figure 9–11 shows that the area-driven technique
reduces power consumption by as much as 15% in Cyclone II devices.

Figure 9–11. Power Savings Using Area-Driven Synthesis for Cyclone II
Devices

Gate-Level Register Retiming

You can also use gate-level register retiming to reduce circuit switching
activity. Retiming shuffles registers across combinational blocks without
changing design functionality. The Perform gate-level register retiming
option in the Quartus II software enables the movement of registers
across combinational logic to balance timing, allowing the software to
trade off the delay between timing critical and non-critical timing paths.

Retiming uses fewer registers than pipelining. Figure 9–12 shows an
example of gate-level register retiming, where the 10 ns critical delay is
reduced by moving the register relative to the combinational logic,
resulting in the reduction of data depth and switching activity.

Table 9–6. Designs Used in the Area-Driven Synthesis Experiment for
Cyclone II Device

Design Name LEs (Area Mapping) LEs (Speed Mapping)

Design 1 13,020 16,429

Design 2 13,317 13,636

Design 3 5,384 5,690

Design 4 33,640 40,008

Design 5 21,409 22,988

0%
2%
4%
6%
8%

1 2 43 5

Po
w

er
 S

av
in

gs

Designs

10%
12%
14%
16%

Altera Corporation 9–17
November 2006 Preliminary

Recommended Flow for Power-Driven Compilation

Figure 9–12. Gate-Level Register Retiming

1 Gate-level register retiming makes changes at the gate level. If
you are using an atom netlist from a third-party synthesis tool,
you must also select the Perform WYSIWYG primitive
resynthesis option to undo the atom primitives to gates
mapping (so that register retiming can be performed), and then
to remap gates to Altera primitives. When using the Quartus II
integrated synthesis, retiming occurs during synthesis before
the design is mapped to Altera primitives.

f For more information on register retiming, refer to the Netlist
Optimizations & Physical Synthesis chapter in volume 2 of the Quartus II
Handbook.

Gate-Level Register Retiming Experiment for Stratix II Devices

In this experiment for Stratix II devices, three designs are compiled with
the Quartus II software in two ways. First, a netlist from a third-party
synthesis tool is compiled. Then, the same netlist is compiled after
selecting the Perform WYSIWYG primitive resynthesis and Perform
gate-level register retiming options.

D Q D Q

D Q D Q

D Q

D Q

10 ns 5 ns

7 ns 8 ns

Before

After

9–18 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 1

Table 9–7 shows resource usage results.

The PowerPlay Power Analyzer estimates the power using a gate-level
simulation output file. Figure 9–13 shows that the combination of
WYSIWYG remapping and gate-level register retiming reduces power
consumption by nearly 6% in Stratix II devices.

Figure 9–13. Power Savings Using Retiming for Stratix II Devices

Gate-Level Register Retiming Experiment for Cyclone II Devices

In this experiment for Cyclone II devices, three designs are compiled with
the Quartus II software in two ways. First, a netlist from a third-party
synthesis tool is compiled. Then, the same netlist is compiled by selecting
the Perform WYSIWYG primitive resynthesis and Perform gate-level
register retiming options.

Table 9–7. Resources Used in the Gate-Level Register Retiming Experiment
for Stratix II Devices

Design
Name

WYSIWYG &
Register
Retiming

ALUTs Registers DSP
Blocks Memory

Design 1 No 2,051 691 0 16

Yes 1,882 731 0 16

Design 2 No 123,909 40,070 0 0

Yes 95,593 39,816 0 0

Design 3 No 6,354 6,019 64 3,584

Yes 7,496 5,970 64 3,584

6%
5%
4%
3%
2%
1%
0%

1 2 3
Designs

Po
w

er
 S

av
in

gs

Altera Corporation 9–19
November 2006 Preliminary

Design Guidelines

Table 9–8 shows resource usage results.

The PowerPlay Power Analyzer estimates the power using a gate-level
simulation output file. Figure 9–14 shows that the combination of
WYSIWYG remapping and gate-level register retiming reduces power
consumption by as much as 21% in Cyclone II devices.

Figure 9–14. Power Savings Using Retiming for Cyclone II Devices

Design
Guidelines

Several low-power design techniques can reduce power consumption
when applied during FPGA design implementation. This section
provides detailed design techniques for Stratix III, Stratix II, and
Cyclone II devices that affect overall design power. The results of these
techniques may be different from design to design.

Clock Power Management

Clocks represent a significant portion of dynamic power consumption
due to their high switching activity and long paths. Figure 9–1 shows a
7% average contribution to power consumption for global clock routing
in Stratix II devices and 15% in Cyclone II devices. Actual clock-related

Table 9–8. Resources Used in the Gate-Level Register Retiming Experiment
for Cyclone II Devices

Design
Name

WYSIWYG
& Register
Retiming

LEs Registers Multiplier
Blocks Memory

Design 1 No 385 137 0 0

Yes 278 143 0 0

Design 2 No 14,758 1,683 0 0

Yes 13,079 1,683 0 0

Design 3 No 31,727 29,097 96 3,120

Yes 27,038 24,272 96 3,120

0%
5%

10%
15%
20%
25%

1 2 3
Designs

Po
w

er
 S

av
in

gs

9–20 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 1

power consumption is higher than this because the power consumed by
local clock distribution within logic, memory, and DSP or multiplier
blocks is included in the power consumption for the respective blocks.

Clock routing power is automatically optimized by the Quartus II
software, which only enables those portions of the clock network that are
required to feed downstream registers. Power can be further reduced by
gating clocks when they are not needed. It is possible to build clock gating
logic, but this approach is not recommended because it is difficult to
generate a glitch-free clock in FPGAs using ALMs or LEs.

Stratix III, Stratix II, and Cyclone II devices use clock control blocks that
include an enable signal. A clock control block is a clock buffer that lets
you dynamically enable or disable the clock network and dynamically
switch between multiple sources to drive the clock network. You can use
the Quartus II MegaWizard Plug-In Manager to create this clock control
block with the altclkctrl megafunction. Stratix II and Cyclone II
devices provide clock control blocks for global clock networks. In
addition, Stratix II devices have clock control blocks for regional clock
networks. The dynamic clock enable feature lets internal logic control the
clock network. When a clock network is powered down, all the logic fed
by that clock network does not toggle, thereby reducing the overall power
consumption of the device. Figure 9–15 shows a 4-input clock control
block diagram.

Figure 9–15. Clock Control Block Diagram

The enable signal is applied to the clock signal before being distributed to
global routing. Therefore, the enable signal can either have a significant
timing slack (at least as large as the global routing delay) or it can reduce
the fMAX of the clock signal.

f For more information about using clock control blocks, refer to the
altclkctrl Megafunction User Guide.

Another contributor to clock power consumption is the LAB clock that
distributes a clock to the registers within a LAB. LAB clock power can be
the dominant contributor to overall clock power. For example, in

inclk 3×
inclk 2×
inclk 1×
inclk 0×

clkselect[1..0]

outclk

ena

Altera Corporation 9–21
November 2006 Preliminary

Design Guidelines

Cyclone II devices, each LAB can use two clocks and two clock enable
signals as, shown in Figure 9–16. Each LAB’s clock signal and clock
enable signal are linked. For example, an LE in a particular LAB using the
labclk1 signal also uses the labclkena1 signal.

Figure 9–16. LAB-Wide Control Signals

To reduce LAB-wide clock power consumption without disabling the
entire clock tree, use the LAB-wide clock enable to gate the LAB-wide
clock. The Quartus II software automatically promotes register-level
clock enable signals to the LAB-level. All registers within an LAB that
share a common clock and clock enable are controlled by a shared gated
clock. To take advantage of these clock enables, use a clock enable
construct in the relevant HDL code for the registered logic.

LAB-Wide Clock Enable Example

This VHDL code makes use of a LAB-wide clock enable. This clock-gating
logic is automatically turned into an LAB-level clock enable signal.

IF clk'event AND clock = '1' THEN
 IF logic_is_enabled = '1' THEN
 reg <= value;
 ELSE
 reg <= reg;
 END IF;
END IF;

6

labclk1 labclk2 labclr2syncload

labclkena1 labclkena2 labclr1 synclr

Local
Interconnect

Local
Interconnect

Local
Interconnect

Local
Interconnect

Dedicated
LAB Row
Clocks

9–22 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 1

f For more information on LAB-wide control signals, refer to the Stratix II
Architecture or Cyclone II Architecture chapters in the respective device
handbook.

Reducing Memory Power Consumption

The memory blocks in FPGA devices can represent a large fraction of
typical core dynamic power. Memory represents 14% of the core dynamic
power in a typical Stratix II device design and 9% in a Cyclone II device
design. Memory blocks are unlike most other blocks in the device because
most of their power is tied to the clock rate, and is insensitive to the toggle
rate on the data and address lines.

When a memory block is clocked, there is a sequence of timed events that
occur within the block to execute a read or write. The circuitry controlled
by the clock consumes the same amount of power regardless of whether
or not the address or data has changed from one cycle to the next. Thus,
the toggle rate of input data and the address bus have no impact on
memory power consumption.

The key to reducing memory power consumption is to reduce the number
of memory clocking events. You can achieve this through clock
network-wide gating described in “Clock Power Management” on
page 9–19, or on a per-memory basis through use of the clock enable
signals on the memory ports. Figure 9–17 shows the logical view of the
internal clock of the memory block. Use the appropriate enable signals on
the memory to make use of the clock enable signal instead of gating the
clock.

Figure 9–17. Memory Clock Enable Signal

Using of the clock enable signal enables the memory only when necessary
and shuts it down for the rest of the time, reducing the overall memory
power consumption. You can use the Quartus II MegaWizard Plug-In
Manager to create these enable signals by selecting the Clock enable
signal option for the appropriate port when generating the memory block
function (Figure 9–18).

 Internal Memory Clk
Clk Enable

Clk

Altera Corporation 9–23
November 2006 Preliminary

Design Guidelines

Figure 9–18. MegaWizard Plug-In Manager RAM 2-Port Clock Enable Signal
Selectable Option

For example, consider a design that contains a 32-bit-wide M4K memory
block in ROM mode that is running at 200 MHz. Assuming that the
output of this block is only needed approximately every four cycles, this
memory block will consume 8.45 mW of dynamic power according to the
demands of the downstream logic. By adding a small amount of control
logic to generate a read clock enable signal for the memory block only on
the relevant cycles, the power can be cut 75% to 2.15 mW.

You can also use the MAXIMUM_DEPTH parameter in your memory
megafunction to save power in Stratix II and Cyclone II devices; however,
this approach may increase the number of LEs required to implement the
memory and affect design performance.

You can set the MAXIMUM_DEPTH parameter for memory modules
manually in the megafunction instantiation or in the MegaWizard
Plug-In Manager (Figure 9–19). The Quartus II software can
automatically choose the best design memory configuration for optimal
power as described in “Power-Driven Compilation” on page 9–5.

9–24 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 1

Figure 9–19. MegaWizard Plug-In Manager RAM 2-Port Maximum Depth
Selectable Option

Memory Power Reduction Example

Table 9–9 shows power usage measurements for a 4K × 36 simple
dual-port memory implemented using multiple M4K blocks in a Stratix II
EP2S15 device. For each implementation, the M4K blocks are configured
with a different memory depth.

Table 9–9. 4K × 36 Simple Dual-Port Memory Implemented Using Multiple
M4K Blocks

M4K Configuration Number of M4K Blocks ALUTs

4K × 1 (Default setting) 36 0

2K × 2 36 40

1K × 4 36 62

512 × 9 32 143

256 × 18 32 302

128 × 36 32 633

Altera Corporation 9–25
November 2006 Preliminary

Design Guidelines

Figure 9–20 shows the amount of power saved using the
MAXIMUM_DEPTH parameter. For all implementations, a user-provided
read enable signal is present to indicate when read data is needed. Using
this power saving technique can reduce power consumption by as much
as 60%.

Figure 9–20. Power Savings Using MAXIMUM_DEPTH Parameter

As the memory depth becomes more shallow, memory dynamic power
decreases because unaddressed M4K blocks can be shut off using a
decoded combination of address bits and the read enable signal. For a
128-deep memory block, power used by the extra LEs starts to outweigh
the power gain achieved by using a more shallow memory block depth.
The power consumption of the memory blocks and associated LEs
depends on the memory configuration.

Pipelining & Retiming

Designs with many glitches consume more power because of faster
switching activity. Glitches cause unnecessary and unpredictable
temporary logic switches at the output of combinational logic. A glitch
usually occurs when there is a mismatch in input signal timing leading to
unequal propagation delay.

For example, consider an input change on one input of a 2-input XOR
gate from 1 to 0, followed a few moments later by an input change from
0 to 1 on the other input. For a brief moment of time, both inputs become
1 (high) during the state transition, resulting in 0 (low) at the output of
the XOR gate. Subsequently, when the second input transition takes
place, the XOR gate output becomes 1 (high). During signal transition, a
glitch is produced before the output becomes stable, as shown in
Figure 9–21. This glitch can propagate to subsequent logic and create
unnecessary switching activity, increasing power consumption. Circuits
with many XOR functions, such as arithmetic circuits or cyclic
redundancy check (CRC) circuits, tend to have many glitches if there are
several levels of combinational logic between registers.

0%
10%
20%
30%
40%
50%
60%
70%

4K × 1 2K × 2 256 × 18 128 × 361K × 4 512 × 9
M4K Configuration

Po
w

er
 S

av
in

gs

9–26 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 1

Figure 9–21. XOR Gate Showing Glitch at the Output

Pipelining can reduce design glitches by inserting flipflops into long
combinational paths. Flipflops do not allow glitches to propagate through
combinational paths. Therefore, a pipelined circuit tends to have less
glitching. Pipelining has the additional benefit of generally allowing
higher clock speed operations, although it does increase the latency of a
circuit (in terms of the number of clock cycles to a first result). Figure 9–22
shows an example where pipelining is applied to break-up a long
combinational path.

Figure 9–22. Pipelining Example

Pipelining is very effective for glitch-prone arithmetic systems because it
reduces switching activity, resulting in reduced power dissipation in
combinational logic. Additionally, pipelining allows higher-speed

XOR (Exclusive OR) Gate

A

B Q

A

B

Q

Timing Diagram for the 2-Input XOR Gate

Glitch

t

Combinational
Logic

Combinational
Logic

Combinational
Logic

Short Logic
Depth

Short Logic
Depth

Long Logic
DepthD Q D Q

D Q D Q D Q

Non-Pipelined

Pipelined

Altera Corporation 9–27
November 2006 Preliminary

Design Guidelines

operation by reducing logic-level numbers between registers. The
disadvantage of this technique is that if there are not many glitches in
your design, pipelining may increase power consumption by adding
unnecessary registers. Pipelining can also increase resource utilization.

Pipelining Experiment for Stratix II Devices

In this experiment, three designs are implemented in Stratix II devices
with and without pipelining. These three designs use arithmetic heavily
(based on XOR functions) that may result in significant glitching.

Table 9–10 shows the resource utilization for the designs used in the
experiment.

The PowerPlay Power Analyzer estimates the power using a gate-level
simulation output file. Figure 9–23 shows that pipelining reduces
dynamic power consumption by as much as 31% in Stratix II devices.

Figure 9–23. Power Savings Using Pipelining for Stratix II Devices

Table 9–10. Resources Used in the Pipelining Experiment for Stratix II
Devices

Design Name Pipelined ALUTs Registers

Multiplier (Design 1) No 9,726 448

Yes 9,772 1,109

Accumulator multipliers
(Design 2)

No 13,719 1,120

Yes 14,007 2,260

Fir filter (Design 3) Yes (level 1) 1,048 949

Yes (level 2) 932 929

0%
5%

10%
15%
20%
25%
30%
35%

1 2 3
Designs

Po
w

er
 S

av
in

gs

9–28 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 1

Pipelining Experiment for Cyclone II Devices

In this experiment, three designs are implemented in Cyclone II devices
with and without pipelining. These three designs heavily use arithmetic
(based on XOR functions) that may result in significant glitching.

Table 9–11 shows resource utilization for the designs used in the
experiment.

The PowerPlay Power Analyzer estimates the power using a gate-level
simulation output file. Figure 9–24 shows that pipelining reduces
dynamic power by as much as 31% in Cyclone II devices.

Figure 9–24. Power Savings Using Pipelining for Cyclone II Devices

Architectural Optimization

You can use design-level architectural optimization by taking advantage
of specific device architecture features. These features include dedicated
memory and DSP or multiplier blocks available in FPGA devices to
perform memory or arithmetic-related functions. You can use these

Table 9–11. Resources Used in the Pipelining Experiment for Cyclone II
Devices

Design Name Pipelined LEs Registers

Accumulator Multipliers
(Design 1)

No 6,870 320

Yes 13,071 3,719

Adder (Design 2) No 7,392 1,076

Yes 7,343 752

Divider (Design 3) No 6,659 320

Yes 6,735 520

0%
5%

10%
15%
20%
25%
30%
35%

1 2 3
Designs

Po
w

er
 S

av
in

gs

Altera Corporation 9–29
November 2006 Preliminary

Design Guidelines

blocks in place of LUTs to reduce power consumption. For example, you
can build large shift registers from RAM-based FIFO buffers instead of
building the shift registers from the LE registers.

The Stratix II device family allows you to efficiently target small,
medium, and large memories with the TriMatrix memory architecture.
Each TriMatrix memory block is optimized for a specific function. The
M512 memory blocks are useful for implementing small FIFO buffers,
DSP, and clock domain transfer applications. M512 memory blocks are
more power-efficient than the distributed memory structures in some
competing FPGAs. The M4K memory blocks are used to implement
buffers for a wide variety of applications, including processor code
storage, large look-up table implementation, and large memory
applications. The M-RAM blocks are useful in applications where a large
volume of data must be stored on-chip. Effective utilization of these
memory blocks can have a significant impact on power reduction in your
design.

The Cyclone II device family has configurable M4K memory blocks that
provide various memory functions such as RAM, FIFO buffers, and
ROM.

f For more information on using DSP and memory blocks efficiently, refer
to the Area & Timing Optimization chapter in volume 2 of the Quartus II
Handbook.

Architectural Optimization Experiment for Stratix II Devices

In this experiment, three designs are implemented in Stratix II devices in
three ways to illustrate the power-reducing capabilities of dedicated
blocks. The first two designs use logic elements and DSP blocks. The third
design uses M4K and M-RAM blocks. In the third design, you can see that
using MRAM blocks is more power efficient than using M4K blocks for
large memory applications. The power optimization options for synthesis
and fitting are turned off in this experiment.

Table 9–12 shows relative resource usage results.

Table 9–12. Designs Used in the Architectural Optimization Experiment for Stratix II Devices (Part 1 of 2)

Design Name Implementation ALUT Register DSP Blocks Memory

Design 1 Regular
implementation

9,726 448 0 0

Dedicated resource
implementation

1,124 448 121 0

9–30 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 1

The PowerPlay Power Analyzer estimates the power using a gate-level
simulation output file. Figure 9–25 shows that the architectural
optimization technique has power savings of over 60% in Stratix II
devices.

Figure 9–25. Power Savings Using Dedicated Blocks for Stratix II Devices

Architectural Optimization Experiment for Cyclone II

In this experiment, three designs are implemented in Cyclone II devices
in three ways to illustrate the power-reducing capabilities of dedicated
blocks. The first two designs use LEs and multiplier blocks. The third
design uses LEs and M4K blocks.

Design 2 Regular
implementation

13,719 1,120 0 0

Dedicated resource
implementation

2,880 896 212 0

Design 3 M4K 286 228 0 1,835,008 (M4K)

M-RAM 224 224 0 1,835,008 (M-RAM)

Table 9–12. Designs Used in the Architectural Optimization Experiment for Stratix II Devices (Part 2 of 2)

Design Name Implementation ALUT Register DSP Blocks Memory

0%
10%
20%
30%
40%
50%
60%
70%

1 2 3

Po
w

er
 S

av
in

gs

Designs

Altera Corporation 9–31
November 2006 Preliminary

Design Guidelines

Table 9–13 shows relative resource usage results.

The PowerPlay Power Analyzer estimates the power using a gate-level
simulation output file. Figure 9–26 shows that the architectural
optimization technique has power savings of as much as 88% in
Cyclone II devices.

Figure 9–26. Power Savings Using Dedicated Blocks for Cyclone II Devices

Table 9–13. Designs Used in the Architectural Optimization Experiment for Cyclone II Devices

Design Name Implementation LEs Register Multiplier
Blocks Memory

Design 1 Regular
implementation

6,870 320 0 0

Dedicated
resource
implementation

1,130 320 49 0

Design 2 Regular
implementation

7,343 752 0 0

Dedicated
resource
implementation

1,401 608 44 0

Design 3 Regular
implementation

1,550 1,265 0 0

M4K 72 72 0 1,152

0%
10%
20%
30%
40%
50%
60%
70%

1 2 3

80%
90%

100%

Po
w

er
 S

av
in

gs

Designs

9–32 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 1

I/O Power Guidelines

Non-terminated I/O standards such as LVTTL and LVCMOS have a
rail-to-rail output swing. The voltage difference between logic-high and
logic-low signals at the output pin is equal to the VCCIO supply voltage. If
the capacitive loading at the output pin is known, the dynamic power
consumed in the I/O buffer can be calculated as:

P = 0.5 × F × C × V2

In this equation, F is the output transition frequency and C is the total load
capacitance being switched. V is equal to VCCIO supply voltage. Because
of the quadratic dependence on VCCIO, lower voltage standards consume
significantly less dynamic power. In addition, lower pin capacitance is an
important factor in considering I/O power consumption. Hardware and
simulation data show that Stratix II device I/O pins have half the pin
capacitance of the nearest competing FPGA. Cyclone II devices exhibit
20% less I/O power consumption than competitive, low-cost, 90 nm
FPGAs.

Transistor-to-transistor logic (TTL) I/O buffers consume very little static
power. As a result, the total power consumed by a LVTTL or LVCMOS
output is highly dependent on load and switching frequency.

When using resistively terminated I/O standards like SSTL and HSTL,
the output load voltage swings by a small amount around some bias
point. The same dynamic power equation is used, where V is the actual
load voltage swing. Because this is much smaller than VCCIO, dynamic
power is lower than for nonterminated I/O under similar conditions.
These resistively terminated I/O standards dissipate significant static
(frequency-independent) power, because the I/O buffer is constantly
driving current into the resistive termination network. However, the
lower dynamic power of these I/O standards means they often have
lower total power than LVCMOS or LVTTL for high-frequency
applications. Use the lowest drive strength I/O setting that meets your
speed and waveform requirements to minimize I/O power when using
resistively terminated standards.

You can save a small amount of static power by connecting unused I/O
banks to the lowest possible VCCIO voltage of 1.2 V.

Altera Corporation 9–33
November 2006 Preliminary

Design Guidelines

Table 9–14 shows the total supply and thermal power consumed by
outputs using different I/O standards for Stratix II devices. The numbers
are for an I/O pin transmitting random data clocked at 200 MHz with a
10 pF capacitive load.

For this specific configuration, non-terminated standards generally use
less power, but this is not always the case. If the frequency or the
capacitive load is increased, the power consumed by non-terminated
outputs increases faster than the power of terminated outputs.

f For more information on I/O Standards, refer to the Selectable I/O
Standards in Stratix II Devices chapter in volume 2 of the Stratix II Device
Handbook or the Selectable I/O Standards in Cyclone II Devices chapter in the
Cyclone II Device Handbook.

When calculating I/O power, the PowerPlay Power Analyzer uses the
default capacitive load set for the I/O standard in the Capacitive Loading
tab of the Device & Pin Options dialog box. If Enable Advanced I/O
Timing is turned on, I/O power is measured using an equivalent load
calculated as the sum of the near capacitance, the transmission line
distributed capacitance, and the far end capacitance as defined in the
Board Trace Model tab of the Device & Pin Options dialog box or the

Table 9–14. I/O Power for Different I/O Standards for Stratix II Devices

Standard
Total Supply Current Drawn

from VCCIO Supply (mA)
Total On-Chip Thermal

Power Dissipation (mW)

3.3-V LVTTL 2.42 9.87

2.5-V LVCMOS 1.9 6.69

1.8-V LVCMOS 1.34 4.18

1.5-V LVCMOS 1.18 3.58

3.3-V PCI 2.47 10.23

SSTL-2 class I 6.07 4.42

SSTL-2 class II 10.72 5.1

SSTL-18 class I 5.33 3.28

SSTL-18 class II 8.56 4.06

HSTL-15 class I 6.06 3.49

HSTL-15 class II 11.08 4.87

HSTL-18 class I 6.87 4.09

HSTL-18 class II 12.33 5.82

9–34 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 1

Board Trace Model view in the Pin Planner. Any other components
defined in the board trace model are not taken into account for the power
measurement.

f For information on using Advanced I/O Timing and configuring a board
trace model, refer to the I/O Management chapter in volume 2 of the
Quartus II Handbook.

Power Optimization Advisor

The Quartus II software includes the Power Optimization Advisor which
provides specific power optimization advice and recommendations
based on the current design project settings and assignments. The advisor
covers many of the suggestions listed in this chapter. The following
example shows how to reduce your design power with the Power
Optimization Advisor.

Power Optimization Advisor Example

After compiling your design, run the PowerPlay Power Analyzer to
determine your design power and to see where power is dissipated in
your design. Based on this information, you can run the power
optimization advisor to implement recommendations that can reduce
design power. Figure 9–27 shows the Power Optimization Advisor after
compiling a design that is not fully optimized for power.

Altera Corporation 9–35
November 2006 Preliminary

Design Guidelines

Figure 9–27. Power Optimization Advisor

The Power Optimization Advisor shows the recommendations that can
reduce power in your design. The recommendations are split into stages
to show the order in which you should apply the recommended settings.
The first stage shows the options that are easy to implement, as it has to
do mostly with CAD settings, and are highly effective in reducing design
power. An icon indicates whether each recommended setting is made in
the current project. In Figure 9–27, the checkmark icon for Stage 1 shows
the recommendations that are already implemented. The warning icons
indicate recommendations that are not followed for this compilation. The
information icon shows the general suggestions. Each recommendation
includes the description, summary of the affect of the recommendation,
and the action required to make the appropriate setting.

There is a link from each recommendation to the appropriate location in
the Quartus II user interface where you can change the setting, such as the
Power-Driven Synthesis setting. You can change the Power-Driven
Synthesis setting by clicking Open Settings dialog box - Analysis &
Synthesis Settings page (Figure 9–28). The Setting dialog box is shown
with the Analysis & Synthesis Settings page selected, where you can
change the PowerPlay power optimization settings.

9–36 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 1

Figure 9–28. Analysis & Synthesis Settings Page

After making the recommended changes, recompile your design. The
Power Optimization Advisor indicates with green checkmarks that the
recommendations were implemented successfully (Figure 9–29). You can
use the PowerPlay Power Analyzer to verify your design power results.

Altera Corporation 9–37
November 2006 Preliminary

Design Guidelines

Figure 9–29. Implementation of Power Optimization Advisor Recommendations

The recommendations listed in Stage 2 generally involve design changes,
rather than CAD settings changes as in Stage 1. You can use these
recommendations to further reduce your design power consumption.
Altera recommends that you implement Stage 1 recommendations first,
then the Stage 2 recommendations.

Conclusion

The combination of a smaller process technology, the use of low-k
dielectric material, and reduced supply voltage, significantly reduces
dynamic power consumption in the latest FPGAs. In order to further
reduce your dynamic power, you should use the design
recommendations presented in this chapter to optimize resource
utilization and minimize power consumption.

9–38 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 1

Document
Revision History

Table 9–15 shows the revision history for this document.

Table 9–15. Document Revision History

Date &
Document

Version
Changes Made Summary of Changes

November 2006
v6.1.0

Updated figures to accomodate GUI changes in the
software.

Added information about
Stratix III support. Changes in
procedures were made for
Quartus II enhancements to
new user functionality.

May 2006 v6.0.0 Updated for the Quartus II software version 6.0.0:
● Updated device support.
● Added multi-VCD/SAF support information.
● Updated achieved power reductions values.

October 2005
v5.1.0

Chapter 9 was formerly Chapter 7 in Volume 1: Stratix II
Low Power Design Techniques.

Altera Corporation 10–1
November 2006 Preliminary

10. Timing Closure Floorplan

Introduction With FPGA designs surpassing the million-gate mark, designers need
advanced tools to better analyze timing closure issues to achieve their
system performance goals. The Altera® Quartus® II software offers many
advanced design analysis tools that allow detailed timing analysis of
your designs, including a fully integrated Timing Closure Floorplan
Editor. Beginning with version 6.1, the Timing Closure Floorplan Editor
has also been integrated with the Chip Planner tool. This chapter explains
how to use the Timing Closure Floorplan to enhance your FPGA design
analysis.

f For more information about the Chip Planner, refer to the Design Analysis
& Engineering Change Management with Chip Planner chapter in volume 3
of the Quartus II Handbook.

Table 10–1 lists the device families supported by the Timing Closure
Floorplan Editor, the Chip Planner (Timing Closure Floorplan and Chip
Editor), or both.

1 For device families that support both the Timing Closure
Floorplan and the Chip Planner, Altera recommends using the
Chip Planner for design analysis.

Table 10–1. Timing Closure Floorplan Support (Part 1 of 2)

Device Family Timing Closure Floorplan Chip Planner (Floorplan
and Chip Editor)

Stratix® III — v
HardCopy® II — v
Stratix v v
Stratix GX v v
Stratix II v v
Stratix II GX v v
Cyclone® v v
Cyclone II v v
MAX® II v v
MAX 7000 v —

ACEX® v —

QII52006-6.1.0

10–2 Altera Corporation
November 2006

Invoking the Timing Closure Floorplan Editor

Invoking the
Timing Closure
Floorplan Editor

To invoke the Timing Closure Floorplan Editor, on the Assignments
menu, click Timing Closure Floorplan (Figure 10–1).

Figure 10–1. Invoking the Timing Closure Floorplan

1 If the device in your project is a HardCopy II or Stratix III
device, the following message appears: “Can’t display a
floorplan: the current device family is only supported by Chip
Planner.” To create and see the floorplan for these devices, you
must use the Chip Planner.

FLEX 10K®
FLEX® 10KA
FLEX 10KE
FLEX 6000

v —

APEX™ II
APEX 20KC
APEX 20KE

v —

Table 10–1. Timing Closure Floorplan Support (Part 2 of 2)

Device Family Timing Closure Floorplan Chip Planner (Floorplan
and Chip Editor)

Altera Corporation 10–3
November 2006

Timing Closure Floorplan

You can also invoke the Timing Closure Floorplan tool by right-clicking
on the following sources, pointing to Locate, and clicking Locate in
Timing Closure Floorplan:

■ Compilation Report
■ Node Finder
■ Project Navigator
■ RTL source code
■ RTL Viewer
■ Simulation Report
■ Timing Report

Figure 10–2 shows the icons in the Timing Closure Floorplan toolbar.

Figure 10–2. Timing Closure Floorplan Icons

10–4 Altera Corporation
November 2006

Design Analysis Using the Timing Closure Floorplan

Design Analysis
Using the
Timing Closure
Floorplan

The Timing Closure Floorplan Editor allows you to analyze your designs
visually before and after performing a full design compilation in the
Quartus II software. This floorplan editor, used in conjunction with the
Quartus II timing analyzer, provides a powerful method for performing
design analysis.

Timing Closure Floorplan Views

The Timing Closure Floorplan Editor incorporates five ways to view your
design:

■ Field view
■ Interior Cells view
■ Interior Labs view
■ Package Top view
■ Package Bottom view

Field View

The Field view provides a color-coded, high-level view of the resources
used in the device floorplan. All device resources, such as embedded
system blocks (ESBs) and MegaLAB blocks, are outlined. Figure 10–3
shows the Field view of a Stratix II device.

Altera Corporation 10–5
November 2006

Timing Closure Floorplan

Figure 10–3. Field View of a Stratix II Device

To view the details of a resource in the Field view, select the resource,
right-click, and click Show Details. To hide the details, select all the
resources, right-click, and click Hide Details (Figure 10–4).

DSP
BLOCKS

M512
BLOCKS

M4K
BLOCKS

I/O
BLOCKS

M-RAM

10–6 Altera Corporation
November 2006

Design Analysis Using the Timing Closure Floorplan

Figure 10–4. Show Details & Hide Details of a Logic Array Block in Field View

Other Views

You can also view your design in the Timing Closure Floorplan Editor
with the traditional Interior Cells, Interior Labs, Package Top, and
Package Bottom views. Use the View menu to display the various
floorplan views. The Interior Cells view provides a detailed view of
device resources, including device pins and individual logic elements
within a MegaLAB.

Viewing Assignments

The Timing Closure Floorplan editor differentiates between user
assignments and Fitter placements. User assignments include
LogicLock™ regions and are made by a user. Assignments are directives
to the Quartus II Fitter for placing certain logic nodes at desired locations.
They are used to create the floorplan of your device. Fitter placements are
the locations where the Quartus II software places unconstrained (or
unassigned) nodes during compilation. You can view both user and Fitter
placements at the same time.

Altera Corporation 10–7
November 2006

Timing Closure Floorplan

If the device is changed after a compilation, the user assignment and
Fitter placement options cannot be used together. When this situation
occurs, the Fitter placement displays the last compilation result and the
user assignment displays the floorplan of the newly selected device.

To see the user assignments, click the Show User Assignments icon in the
Floorplan Editor toolbar, or, on the View menu, point to Assignments and
click Show User Assignments. Figure 10–5 shows the user assignments.

Figure 10–5. User Assignments

To see the Fitter placements, click the Show Fitter Placements icon in the
Floorplan Editor toolbar, or, on the View menu, point to Assignments and
click Show Fitter Placements. Figure 10–6 shows the Fitter placements.

10–8 Altera Corporation
November 2006

Design Analysis Using the Timing Closure Floorplan

Figure 10–6. Fitter Placements

Viewing Critical Paths

The View Critical Paths feature displays routing paths in the floorplan, as
shown in Figure 10–7. The criticality of a path is determined by its slack
and is also shown in the timing analysis report.

Altera Corporation 10–9
November 2006

Timing Closure Floorplan

Figure 10–7. Critical Paths

To view critical paths in the Timing Closure Floorplan, click the Critical
Path Settings icon on the toolbar, or, on the View menu, point to Routing
and click Critical Paths Settings.

When viewing critical paths, you can specify the clock in the design to be
viewed. You can determine which paths to display by specifying the slack
threshold in the slack field.

1 Timing settings must be made and a timing analysis performed
for paths to be displayed in the floorplan.

f For more information about performing static timing analyses of your
design with a timing analyzer, refer to the Classic Timing Analyzer and the
TimeQuest Timing Analyzer chapters in volume 3 of the Quartus II
Handbook.

Viewing the critical paths is extremely useful for determining the
criticality of nodes based on placement. There are a number of ways to
view the details of the critical path.

10–10 Altera Corporation
November 2006

Design Analysis Using the Timing Closure Floorplan

The default view in the Timing Closure Floorplan shows the path with the
source and destination registers displayed. You can also view all the
combinational nodes along the worst-case path between the source and
destination nodes. To view the full path, click on the delay label to select
the path, right-click, and select Show Path Edges. Figure 10–8 shows a
critical path through combinational nodes. To hide the combinational
nodes, select the path, right-click, and select Hide Path Edges.

1 You must view the routing delays to select a path.

Figure 10–8. Worst-Case Combinational Paths of Critical Paths

To assign the path to a LogicLock region using the Paths dialog box, select
the path, right-click, and select Properties.

You can determine the maximum routing delay between two nodes
within a LogicLock region. To use this feature, on the View menu, point
to Routing and click Show Intra-region Delay. Place your cursor over a
Fitter-placed LogicLock region to see the maximum delay. Figure 10–9
shows the maximum routing delay of a LogicLock region.

Altera Corporation 10–11
November 2006

Timing Closure Floorplan

Figure 10–9. Maximum Intra-Region Delay

f For more information about making path assignments with the Paths
dialog box, refer to the LogicLock Design Methodology chapter in volume 2
of the Quartus II Handbook.

After running timing analysis, you can locate timing paths from the
timing reports file produced. Right-click on any row in the report file,
point to Locate, and click Locate in Timing Closure Floorplan
(Figure 10–10). The Timing Closure Floorplan is invoked with the timing
path highlighted.

Figure 10–10. Invoking the Timing Closure Floorplan from the Classic Timing Analyzer Report

f For more information about viewing the critical timing path and other
timing paths in the Chip Planner after running timing analysis, refer to
the Design Analysis & Engineering Change Management with Chip Planner
chapter in volume 3 of the Quartus II Handbook.

10–12 Altera Corporation
November 2006

Design Analysis Using the Timing Closure Floorplan

f For more information about optimizing your design in the Quartus II
software, refer to the Area & Timing Optimization chapter in volume 2 of
the Quartus II Handbook. With the options and tools available in the
Timing Closure Floorplan and the techniques described in that chapter,
the Quartus II software can help you achieve timing closure in a more
time-efficient manner.

Physical Timing Estimates

In the Timing Closure Floorplan Editor, you can select a resource and see
the approximate delay to any other resource on the device. After you
select a resource, the delay is represented by the color of potential
destination resources. The darker the color of the resource, the longer the
delay (Figure 10–11).

Figure 10–11. Physical Timing Estimates View

Altera Corporation 10–13
November 2006

Timing Closure Floorplan

You can also obtain an approximation of the delay between two points by
selecting a source and holding your cursor over a potential destination
resource (Figure 10–12).

Figure 10–12. Delay for Physical Timing Estimate in the Timing Closure
Floorplan

The delays represent an estimate based on probable best-case routing.
The delay may be greater than what is shown, depending on the
availability of routing resources. In general, there is a strong correlation
between the probable and actual delay.

To view the physical timing estimates, click the Show Physical Timing
Estimate icon, or, on the View menu, point to Routing and click Show
Physical Timing Estimates.

You can use the physical timing estimate information when manually
placing logic in a device. This information allows you to place critical
nodes and modules closer together, and non-critical or unrelated nodes
and modules further apart, reducing the routing congestion between
critical and non-critical entities and modules. This placement enables the
Quartus II Fitter to meet the timing requirements.

10–14 Altera Corporation
November 2006

Design Analysis Using the Timing Closure Floorplan

LogicLock Region Connectivity

To see how logic in LogicLock regions interfaces, view the connectivity
between LogicLock regions. This capability is extremely useful when
entities are assigned to LogicLock regions. You can also see the fan-in and
fan-out of selected LogicLock regions.

To view the connections in the timing closure floorplan, on the View
menu, point to Routing and click Show LogicLock Regions
Connectivity. Figure 10–13 shows standard LogicLock region
connections.

Figure 10–13. LogicLock Region Connections with Connection Count

As shown in Figure 10–13, the thickness of the connection line indicates
how many connections exist between regions. To see the number of
connections between regions, on the View menu, point to Routing and
click Show Connection Count.

Altera Corporation 10–15
November 2006

Timing Closure Floorplan

LogicLock region connectivity is applicable only when the user
assignments are enabled in the Timing Closure Floorplan. When you use
floating LogicLock regions, the origin of the user-assigned region is not
necessarily the same as the Fitter-placed region. You can change the
origin of your floating LogicLock regions to that of the last compilation
origin in the LogicLock Regions window or by selecting Back-Annotate
Origin and Lock under Location in the LogicLock Regions Properties
dialog box.

To see the fan-in or fan-out of a LogicLock region in the Timing Closure
Floorplan, select the user-assigned LogicLock region while the fan-in or
the fan-out option is turned on.

To set the fan-in option, click the Show Node Fan-In icon, or, on the View
menu, point to Routing and click Show Node Fan-In. To set the fan-out
option, click the Show Node Fan-Out icon, or, on the View menu, point
to Routing and click Show Node Fan-Out. Only the nodes that have user
assignments are visible when viewing fan-in or fan-out of LogicLock
regions. Figure 10–14 shows the fan-out of a selected LogicLock region.

Figure 10–14. Fan-Out of a LogicLock Region

f For more information about the LogicLock incremental design
capability, refer to the LogicLock Design Methodology chapter in volume 2
of the Quartus II Handbook.

10–16 Altera Corporation
November 2006

Design Analysis Using the Timing Closure Floorplan

Viewing Routing Congestion

The View Routing Congestion feature allows you to determine the
percentage of routing resources used after a compilation. This feature
identifies where there is a lack of routing resources.

The congestion is visually represented by the color and shading of logic
resources. The darker shading represents a greater routing resource
utilization. Logic resources that are red have routing resource utilization
greater than the specified threshold.

To view routing congestion in the floorplan, click the Show Routing
Congestion icon, or, on the View menu, point to Routing and click Show
Routing Congestion. To set the criteria for the critical path you want to
view, click the Routing Congestion Settings icon, or, on the View menu,
point to Routing and click Routing Congestion Settings.

In the Routing Congestion Settings dialog box, you can choose the
routing resource (Interconnect type) you want to examine and set the
congestion threshold. Routing congestion is calculated based on the total
resource usage divided by the total available resources (Figure 10–15).

Figure 10–15. Routing Congestion Settings Dialog Box

If you use the routing congestion viewer to determine where there is a
lack of routing resources, examine each routing resource individually to
determine which ones use close to 100% of the available resources
(Figure 10–16).

Altera Corporation 10–17
November 2006

Timing Closure Floorplan

Figure 10–16. Routing Congestion of a Sample Design in a Stratix II Device

Conclusion Design analysis for timing closure is a fundamental requirement for
optimal performance in highly complex designs. The Quartus II Timing
Closure Floorplan Editor helps you close timing quickly on complex
designs.

10–18 Altera Corporation
November 2006

Document Revision History

Document
Revision History

Table 10–2 shows the revision history for this document.

Table 10–2. Documentation Revision History

Date &
Document

Version
Changes Made Summary of Changes

November 2006
v6.1.0

Updated for the Quartus II software version 6.1.0:
● Added Table 10–1 on page 10–1 that shows which

device families support the Timing Closure
Floorplan tool, the Chip Planner tool, or both

● Consolidated section on I/O timing Analysis Report
File under “Viewing Critical Paths” section

The Chip Planner integrates the
Timing Closure Floorplan and Chip
Editor tools into one tool. The
Timing Closure Floorplan is the
only floorplan tool available for
some device families, as listed in
Table 10–1 on page 10–1.

May 2006
v6.0.0

Updated for the Quartus II software version 6.0.0:
● Updated device support.

October 2005
v5.1.0

Chapter 10 was formerly Chapter 8 in version 5.0.

May 2005
v5.0.0

Chapter 8 was formerly Chapter 7 in version 4.2.

December 2004
v2.1

Updated for Quartus II software version 4.2:
● Removed By Delay and Show Routing Delays

options from the Viewing Critical Paths segment.
● Updates to figures.

June 2004
v2.0

● Updates to tables, figures.
● New functionality in the Quartus II software version

4.1.

February 2004
v1.0

Initial release.

Altera Corporation 11–1
November 2006 Preliminary

11. Netlist Optimizations &
Physical Synthesis

Introduction The Quartus® II software offers advanced netlist optimization options,
including physical synthesis, to optimize your design beyond the
optimization performed in the course of the standard Quartus II
compilation flow. The effect of these options depends on the structure of
your design, but netlist optimizations can help improve the performance
of your design regardless of the synthesis tool used. Device support for
these optimizations varies; see the appropriate section for details.

Netlist optimization options work with your design’s atom netlist, which
describes a design in terms of Altera®-specific primitives. An atom netlist
file can take the form of an Electronic Design Interchange Format file
(.edf) or a Verilog Quartus Mapping file (.vqm) generated by a
third-party synthesis tool, or a netlist used internally by the Quartus II
software. Netlist optimizations are applied at different stages of the
Quartus II compilation flow, either during synthesis or during fitting.

The synthesis netlist optimizations occur during the synthesis stage of the
Quartus II compilation flow. The synthesis netlist optimizations make
changes to the synthesis netlist output from a third-party synthesis tool
or make changes as an intermediate step in Quartus II integrated
synthesis (one of the optimizations applies only to third-party synthesis
netlists). These netlist changes are beneficial in terms of area or speed,
depending on your selected optimization technique.

Physical synthesis optimizations take place during the fitter stage of the
Quartus II compilation flow. These optimizations make
placement-specific changes to the netlist that improve performance
results for a specific Altera device.

This chapter explains how the netlist optimizations in the Quartus II
software can modify your design’s netlist and help improve your quality
of results. The following sections “Synthesis Netlist Optimizations” on
page 11–3 and “Physical Synthesis Optimizations” on page 11–11 explain
how the available optimizations work. This chapter also provides
information about preserving your compilation results through
back-annotation and writing out a new netlist, and provides guidelines
for applying the various options.

QII52007-6.1.0

11–2 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

1 When synthesis netlist optimization or physical synthesis
options are turned on, the node names for primitives in the
design can change. The fact that nodes may be renamed must be
considered if you are using a LogicLock™ or verification flow
that may require fixed node names, such as the SignalTap® II
logic analyzer or formal verification. If your design flow
requires fixed node names, you may need to turn off the
synthesis netlist optimization and physical synthesis options.

Primitive node names are specified during synthesis. When
netlist optimizations are applied, node names may change as
primitives are created and removed. Hardware description
language (HDL) attributes applied to preserve logic in
third-party synthesis tools cannot be honored because those
attributes are not written into the atom netlist read by the
Quartus II software. If you are synthesizing in the Quartus II
software, you can use the Preserve Register (preserve) and
Keep Combinational Logic (keep) attributes to maintain certain
nodes in the design.

f For more information about using these attributes during synthesis in
the Quartus II software, refer to the Quartus II Integrated Synthesis
chapter in volume 1 of the Quartus II Handbook.

Altera Corporation 11–3
November 2006 Preliminary

Synthesis Netlist Optimizations

Synthesis Netlist
Optimizations

To view and modify the synthesis netlist optimization options, on the
Assignments menu, click Settings. In the Category list, select Analysis &
Synthesis Settings, select Synthesis Netlist Optimizations, and specify
the options for performing netlist optimization during synthesis, as
shown in Figure 11–1.

Figure 11–1. Synthesis Netlist Optimizations Page

The sections “WYSIWYG Primitive Resynthesis” and “Gate-Level
Register Retiming” on page 11–5 describe these synthesis netlist
optimizations, and how they can help improve the quality of results for
your design.

WYSIWYG Primitive Resynthesis

You can use the Perform WYSIWYG primitive resynthesis (using
optimization technique specified in Analysis & Synthesis settings)
synthesis option when you have an atom netlist file that specifies a design
as Altera-specific primitives. Atom netlist files can take the form of either
an Electronic Design Interchange Format file or a Verilog Quartus
Mapping file generated by a third-party synthesis tool. To select this
option, on the Assignments menu, click Settings. In the Category list,
select Analysis & Synthesis Settings, select Synthesis Netlist

11–4 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Optimizations, and turn on Perform WYSIWYG primitive resynthesis
(using optimization technique specified in Analysis & Synthesis
settings). If you want to perform WYSIWYG resynthesis on only a
portion of your design, you can use the Assignment Editor to assign the
Perform WYSIWYG primitive resynthesis logic option to a lower-level
entity in your design. This option can be used with the HardCopy® series,
Stratix® series, Cyclone™ series, MAX® II, or APEX™ series device
families.

The Perform WYSIWYG primitive resynthesis option directs the
Quartus II software to un-map the logic elements (LEs) in an atom netlist
to logic gates, and then re-map the gates back to Altera-specific
primitives. This feature allows the Quartus II software to use different
techniques specific to the device architecture during the re-mapping
process. This feature re-maps the design using the Optimization
Technique specified for your project.

To turn on this option, on the Assignments menu, click Settings. In the
Category list, select Analysis & Synthesis Settings. In the Analysis &
Synthesis Settings page, under Optimization Technique, select Speed,
Area, or Balanced to specify how the Quartus II technology mapper
optimizes the design. The Balanced setting is the default for many Altera
device families; this setting optimizes the timing critical parts of the
design for speed and the rest for area.

f Refer to the Quartus II Integrated Synthesis chapter in volume 1 of the
Quartus II Handbook for details on the Optimization Technique option.

Figure 11–2 shows the Quartus II software flow for this feature.

Figure 11–2. WYSIWYG Primitive Resynthesis

Altera Corporation 11–5
November 2006 Preliminary

Synthesis Netlist Optimizations

The Perform WYSIWYG primitive resynthesis option is not applicable
if you are using Quartus II integrated synthesis. With the Quartus II
synthesis, you do not have to un-map Altera primitives; they are already
mapped during the synthesis step using the techniques that are used with
the WYSIWYG primitive resynthesis option.

The Perform WYSIWYG primitive resynthesis option un-maps and
re-maps only logic cell, also referred to as LCELL or LE primitives, and
regular I/O primitives (which may contain registers). Double data rate
(DDR) I/O primitives, memory primitives, digital signal processing
(DSP) primitives, and logic cells in carry/cascade chains are not touched.
Logic specified in an encrypted Verilog Quartus Mapping file or an
Electronic Design Interchange Format file, such as third-party intellectual
property (IP), is not touched.

Turning on this option can cause drastic changes to the node names in the
Verilog Quartus Mapping file or Electronic Design Interchange Format
file from your third-party synthesis tool, because the primitives in the
atom netlist are being broken apart and then remapped within the
Quartus II software. Registers can be minimized away and duplicates
removed, but registers that are not removed have the same name after
remapping.

Any nodes or entities that have the Netlist Optimizations logic option set
to Never Allow are not affected during WYSIWYG primitive resynthesis.
To apply this logic option, on the Assignments menu, click Assignment
Editor. This option disables WYSIWYG resynthesis for parts of your
design.

Gate-Level Register Retiming

The Perform gate-level register retiming option enables movement of
registers across combinational logic to balance timing, allowing the
Quartus II software to trade off the delay between timing-critical paths
and non-critical paths. See Figure 11–3 on page 11–6 for an example. This
option can be used with the HardCopy® series, Stratix series, Cyclone
series, MAX II, and APEX series device families. To set this option, on the
Assignments menu, click Settings. In the Category list, select Analysis &
Synthesis Settings, select Synthesis Netlist Optimizations. In the
Synthesis Netlist Optimizations page, turn on Perform gate-level
register retiming.

11–6 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

The functionality of your design is not changed when the Perform
gate-level register retiming option is turned on. However, if any registers
in your design have the Power-Up Don’t Care logic option assigned, the
values of registers during power-up may change due to this register and
logic movement. The Power-Up Don’t Care logic option is turned on
globally by default. To change the default setting for this option, on the
Assignments menu, click Settings. In the Category list, select
Analysis & Synthesis Settings. In the Analysis & Synthesis Settings
page, click More Settings.

You can set the Power-Up Don't Care logic option for individual registers
or entities using the Assignment Editor. You can also specify a power-up
value for individual registers or entities with the Power-Up Level logic
option. Registers that are explicitly assigned power-up values are not
combined with registers that have been explicitly assigned other values.

Figure 11–3 shows an example of gate-level register retiming where the
10 ns critical delay is reduced by moving the register relative to the
combinational logic.

Figure 11–3. Gate-Level Register Retiming Diagram

Register retiming makes changes at the gate level. If you are using an
atom netlist from a third-party synthesis tool, you must also use the
Perform WYSIWYG primitive resynthesis option to un-map atom
primitives to gates (so that register retiming can be performed) and then
to re-map gates to Altera primitives. If your design uses Quartus II
integrated synthesis, retiming occurs during synthesis before the design
is mapped to Altera primitives. Megafunctions instantiated in a design
are always synthesized using the Quartus II software.

Altera Corporation 11–7
November 2006 Preliminary

Synthesis Netlist Optimizations

The design flows for the case of integrated Quartus II synthesis and a
third-party atom netlist are shown in Figure 11–4.

Figure 11–4. Gate-Level Synthesis

The gate-level register retiming option only moves registers across
combinational gates. Registers are not moved across LCELL primitives
instantiated by the user, memory blocks, DSP blocks, or carry/cascade
chains that you have instantiated. Carry/cascade chains are always left
intact when performing register retiming.

One benefit of register retiming is the ability to move registers from the
inputs of a combinational logic block to the output, potentially combining
the registers. In this case, some registers are removed, and one is created
at the output, as shown in Figure 11–5.

Figure 11–5. Combining Registers with Register Retiming

The register retiming option can only move and combine registers in this
type of situation if the following conditions are met:

■ All registers have the same clock signal
■ All registers have the same clock enable signal
■ All registers have asynchronous control signals that are active under

the same conditions
■ Only one register has an asynchronous load other than VCC or GND

11–8 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Retiming can always create multiple registers at the input of a
combinational block from a register at the output of a combinational
block. In this case, the new registers have the same clock and clock enable.
The asynchronous control signals and power-up level are derived from
previous registers to provide equivalent functionality.

The Gate-level Retiming report provides a list of registers that were
created and removed during register retiming. To access this report, on
the Processing menu, click Compilation Report. In the Analysis &
Synthesis list, select Optimization Results, select Netlist Optimizations,
and click Gate-level Retiming (Figure 11–6).

1 The node names for these registers change during the retiming
process.

Figure 11–6. Gate-Level Retiming Report

You can set the Netlist Optimizations logic option to Never Allow to
prevent register movement during register retiming. This option can be
applied either to individual registers or entities in the design using the
Assignment Editor.

The following registers are not moved during gate-level register retiming:

■ Registers that have any timing constraint other than global fMAX, tSU,
or tCO. For example, any node affected by a Multicycle or Cut Timing
assignment is not moved.

■ Registers that feed asynchronous control signals on another register.
■ Registers feeding the clock of another register.
■ Registers feeding a register in another clock domain.
■ Registers that are fed by a register in another clock domain.
■ Registers connected to serializer/deserializer (SERDES).
■ Registers that have the Netlist Optimizations logic option set to

Never Allow.

Altera Corporation 11–9
November 2006 Preliminary

Synthesis Netlist Optimizations

■ Registers feeding output pins (without logic between the register
and the pin).

■ Registers fed by an input pin (without logic between register and
input pin).

■ Both registers in a direct connection from input pin-to-register-to-
register if both registers have the same clock and the first register
does not fan out to anywhere else. These registers are considered
synchronization registers.

■ Both registers in a direct connection from register-to-register if both
registers have the same clock, the first register does not fan out to
anywhere else, and the first register is fed by another register in a
different clock domain (directly or through combinational logic).
These registers are considered synchronization registers.

You can change the retiming behavior for a sequence of synchronization
or meta-stability registers by changing the value of the Retiming
Meta-Stability Register Sequence Length logic option. The value of this
option indicates the number of synchronization registers that will not be
moved during gate-level register retiming. The default value is 2. To set
the value to any number greater than 0, on the Assignments menu, click
Settings. In the Settings dialog box, select Analysis & Synthesis Settings
and click More Settings. A value of 1 means that any registers connected
to the first register in a register-to-register connection can be moved
during retiming. A value of n > 1 means that any registers in a sequence
of length 1, 2,… n are not moved during gate-level register retiming as
long as all of the following are true:

■ The first register is fed either directly by a pin or by a register in
another clock domain (directly or through combinational logic)

■ All registers in the sequence have the same clock
■ All but the last register feed the next register in the sequence directly

and do not fan out to anywhere else

If you want to consider registers with any of these conditions for register
retiming, you can override these rules by setting the Netlist
Optimizations logic option to Always Allow for a given set of registers.

Allow Register Retiming to Trade-Off tSU/tCO with fMAX

To determine whether the Quartus II compiler should attempt to increase
fMAX at the expense of tSU or tCO times, on the Assignments menu, click
Settings. In the Category list, select Analysis & Synthesis Settings, and
select Synthesis Netlist Optimizations. In the Synthesis Netlist
Optimizations page, turn on Allow register retiming to trade off
Tsu/Tco with Fmax. This option affects the optimizations performed due
to the gate-level register retiming option.

11–10 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

When both the Perform gate-level register retiming and the Allow
register retiming to trade off Tsu/Tco with Fmax options are turned on,
retiming can affect registers that feed and are fed by I/O pins. If the latter
option is not turned on, the retiming option does not touch any registers
that connect to I/O pins through one or more levels of combinational
logic.

Preserving Synthesis Netlist Optimization Results

The Quartus II software generates the same results on every compilation
for the same source code and settings on a given system. Therefore, it is
typically not necessary to take any steps to preserve your results from
compilation to compilation. When changes are made to the source code
or to the settings, you usually get the best results by allowing the software
to compile without using any previous compilation results or location
assignments. In some cases, if you avoid running Analysis & Synthesis,
or quartus_map, and run the Fitter or another desired Quartus II
executable instead, you can skip the synthesis stage of the compile.

You can use the incremental compilation feature to preserve synthesis
results for a particular partition of your design by choosing a netlist type
of post-synthesis.

1 You should use the incremental compilation flow to preserve
compilation results instead of the LogicLock back-annotation
flow described here.

f For information about the incremental compilation design methodology,
refer to the Quartus II Incremental Compilation chapter in volume 1 of the
Quartus II Handbook.

If you wish, you may preserve the nodes resulting from netlist
optimizations. Preserving the nodes may be required if you use the
LogicLock flow to back-annotate placement and/or import one design
into another. (Note that this is not needed if you use the incremental
compilation design flow along with the LogicLock feature).

If you are using any Quartus II synthesis netlist optimization options, you
can save your optimized results. To do so, on the Assignments menu,
click Settings. In the Category list, select Compilation Process Settings.
In the Compilation Process Settings page, turn on Save a node-level
netlist of the entire design into a persistent source file. This option saves
your final results as an atom-based netlist in Verilog Quartus Mapping
file format. By default, the Quartus II software places the Verilog Quartus
Mapping file in the atom_netlists directory under the current project
directory. If you want to create a different Verilog Quartus Mapping file

Altera Corporation 11–11
November 2006 Preliminary

Physical Synthesis Optimizations

using different Quartus II settings, on the Assignments menu, click
Settings. In the Category list, select Compilation Process Settings. In the
Compilation Process Settings page, change the File name setting.

If you are using the synthesis netlist optimizations (and not any physical
synthesis optimizations), generating a Verilog Quartus Mapping file is
optional. To lock down the location of all logic and device resources in the
design with or without a Quartus II-generated Verilog Quartus Mapping
file, on the Assignments menu, click Back-Annotate Assignments and
specify the desired options. You should use back-annotated location
assignments unless the design has been finalized. Making any changes to
the design invalidates your back-annotated location assignments. If you
need to make changes later on, use the new source HDL code as your
input files, and remove the back-annotated assignments corresponding to
the old code or netlist.

If you create a Verilog Quartus Mapping file and wish to recompile the
design, use the new Verilog Quartus Mapping file as the input source file
and turn off the synthesis netlist optimizations for the new compilation.

Physical
Synthesis
Optimizations

Traditionally, the Quartus II design flow has involved separate steps of
synthesis and fitting. The synthesis step optimizes the logical structure of
a circuit for area, speed, or both. The fitter then places and routes the logic
cells to ensure critical portions of logic are close together and use the
fastest possible routing resources. While this push-button flow produces
excellent results, the synthesis stage is unable to anticipate the routing
delays seen in the fitter. Since routing delays are a significant part of the
typical critical path delay, performing synthesis operations with physical
delay knowledge allows the tool to target its timing-driven optimizations
at these parts of the design. This tight integration of the fitting and
synthesis processes is known as physical synthesis.

The following sections describe the physical synthesis optimizations
available in the Quartus II software, and how they can help improve your
performance results. Physical synthesis optimization options can be used
with the Stratix and Cyclone series device families, as well as with
HardCopy II devices.

If you are migrating your design to a HardCopy II device, you can target
physical synthesis optimizations to the FPGA architecture in the FPGA-
first flow or to the HardCopy II architecture in the HardCopy-first flow.
The optimizations are mapped to the other device architecture during the
migration process. Note that you cannot target optimizations to optimize
for both device architectures individually because doing so would result
in a different post-fitting netlist for each device.

11–12 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

f For more information about using physical synthesis with HardCopy
devices, refer to the Quartus II Support of HardCopy Series Devices chapter
in volume 1 of the Quartus II Handbook.

To view and modify the physical synthesis optimization options, on the
Assignments menu, click Settings. In the Category list, select Fitter
Settings and select Physical Synthesis Optimizations as shown in
Figure 11–7.

Figure 11–7. Physical Synthesis Optimization Settings

The physical synthesis optimizations are split into two groups: those that
affect only combinational logic and not registers, and those that can affect
registers. The options are split to allow you to keep your registers intact
for formal verification or other reasons.

The following physical synthesis optimizations are available:

■ Physical synthesis for combinational logic
■ Automatic asynchronous signal pipelining
■ Physical synthesis for registers:

● Register duplication
● Register retiming

Altera Corporation 11–13
November 2006 Preliminary

Physical Synthesis Optimizations

You can control the effect of physical synthesis with the Physical
synthesis effort option. The default selection is Normal. The Extra effort
setting uses extra compilation time to try to achieve extra circuit
performance, while the Fast effort setting uses less compilation time than
Normal but may not achieve the same gains.

All Physical Synthesis optimizations write results to the Netlist
Optimizations report. To access this report, on the Processing menu, click
Compilation Report. In the Category list, select Fitter and select
Compilation Report. This report provides a list of atom netlist files that
were modified, created, and deleted during physical synthesis.

The node names for these atoms change during the physical synthesis
process.

Nodes or entities that have the Netlist Optimizations logic option set to
Never Allow are not affected by the physical synthesis algorithms. To
access this logic option, on the Assignments menu, click Assignment
Editor. Use this option to disable physical synthesis optimizations for
parts of your design.

Automatic Asynchronous Signal Pipelining

The Perform automatic asynchronous signal pipelining option on the
Physical Synthesis Optimizations page in the Fitter Settings section of
the Settings dialog box allows the Quartus II fitter to perform automatic
insertion of pipeline stages for asynchronous clear and asynchronous
load signals during fitting when these signals negatively affect
performance. You can use this option if asynchronous control signal
recovery and removal times are not achieving their requirements.

This option improves performance for designs in which asynchronous
signals in very fast clock domains cannot be distributed across the chip
fast enough due to long global network delays. This optimization
performs automatic pipelining of these signals, while attempting to
minimize the total number of registers inserted.

1 The Perform automatic asynchronous signal pipelining option
adds registers to nets driving the asynchronous clear or
asynchronous load ports of registers. This adds register delays
(adds latency) to the reset, adding the same number of register
delays for each destination using the reset, changing the
behavior of the signal in the design. Therefore this option should
only be used when adding latency to reset signals does not
violate any design requirements. This option also prevents the
promotion of signals to global routing resources.

11–14 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

The Quartus II software performs automatic asynchronous signal
pipelining only if Recovery/Removal Analysis is enabled. Pipelining is
allowed only on asynchronous signals that have the following properties:

■ The asynchronous signal is synchronized to a clock (a
synchronization register drives the signal)

■ The asynchronous signal fans-out only to asynchronous control
ports of registers

To access the Recovery/Removal Analysis option, on the Assignments
menu, click Settings. In the Category list, select Timing
Requirements & Options. On the Timing Requirements & Options page,
click More Settings.

The Quartus II software does not perform automatic asynchronous signal
pipelining on asynchronous signals that have the Netlist Optimization
logic option set to Never Allow.

Physical Synthesis for Combinational Logic

To resynthesize the design and reduce delay along the critical path using
the Quartus II fitter, on the Assignments menu, click Settings. In the
Category list, select Fitter Settings and select Physical Synthesis
Optimizations. In the Physical Synthesis Optimizations page, click
Perform physical synthesis for combinational logic. The software can
accomplish this type of optimization by swapping the look-up table
(LUT) ports within LEs so that the critical path has fewer layers through
which to travel. See Figure 11–8 for an example. This option also allows
the duplication of LUTs to enable further optimizations on the critical
path.

Figure 11–8. Physical Synthesis for Combinational Logic

In the first case, the critical input feeds through the first LUT to the second
LUT. The Quartus II software swaps the critical input to the first LUT
with an input feeding the second LUT. This reduces the number of LUTs
contained in the critical path. The synthesis information for each LUT is
altered to maintain design functionality.

Altera Corporation 11–15
November 2006 Preliminary

Physical Synthesis Optimizations

The Physical synthesis for combinational logic option affects only
combinational logic in the form of LUTs. The registers contained in the
affected logic cells are not modified. Inputs into memory blocks, DSP
blocks, and I/O elements (IOEs) are not swapped.

The Quartus II software does not perform combinational optimization on
logic cells that have the following properties:

■ Are part of a chain
■ Drive global signals
■ Are constrained to a single logic array block (LAB) location
■ Have the Netlist Optimizations option set to Never Allow

If you want to consider logic cells with any of these conditions for
physical synthesis, you can override these rules by setting the Netlist
Optimizations logic option to Always Allow on a given set of nodes.

Physical Synthesis for Registers—Register Duplication

The Perform register duplication fitter option on the Physical synthesis
Optimizations page in the Fitter Settings section of the Settings dialog
box allows the Quartus II fitter to duplicate registers based on fitter
placement information. Combinational logic can also be duplicated when
this option is enabled. A logic cell that fans out to multiple locations can
be duplicated to reduce the delay of one path without degrading the
delay of another. The new logic cell may be placed closer to critical logic
without affecting the other fan-out paths of the original logic cell.
Figure 11–9 shows an example of register duplication.

Figure 11–9. Register Duplication

11–16 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

The Quartus II software does not perform register duplication on logic
cells that have the following properties:

■ Are part of a chain
■ Contain registers that drive asynchronous control signals on another

register
■ Contain registers that drive the clock of another register
■ Contain registers that drive global signals
■ Contain registers that are constrained to a single LAB location
■ Contain registers that are driven by input pins without a tSU

constraint
■ Contain registers that are driven by a register in another clock

domain
■ Are considered virtual I/O pins
■ Have the Netlist Optimizations option set to Never Allow

f For more information about virtual I/O pins, see the LogicLock Design
Methodology chapter in volume 2 of the Quartus II Handbook.

If you want to consider logic cells that meet any of these conditions for
physical synthesis, you can override these rules by setting the Netlist
Optimizations logic option to Always Allow on a given set of nodes.

Physical Synthesis for Registers—Register Retiming

The Perform register retiming fitter option in the Physical Synthesis
Optimizations page in the Fitter Settings section of the Settings dialog
box allows the Quartus II fitter to move registers across combinational
logic to balance timing. This option enables algorithms similar to the
Perform gate-level register retiming option (see “Gate-Level Register
Retiming” on page 11–5). This option applies to the atom level (registers
and combinational logic have already been placed into logic cells), and it
compliments the synthesis gate-level option.

Altera Corporation 11–17
November 2006 Preliminary

Physical Synthesis Optimizations

The Quartus II software does not perform register retiming on logic cells
that have the following properties:

■ Are part of a cascade chain
■ Contain registers that drive asynchronous control signals on another

register
■ Contain registers that drive the clock of another register
■ Contain registers that drive a register in another clock domain
■ Contain registers that are driven by a register in another clock

domain
■ Contain registers that are constrained to a single LAB location
■ Contain registers that are connected to SERDES
■ Are considered virtual I/O pins
■ Registers that have the Netlist Optimizations logic option set to

Never Allow

f For more information about virtual I/O pins, refer to the LogicLock
Design Methodology chapter in volume 2 of the Quartus II Handbook.

If you want to consider logic cells that meet any of these conditions for
physical synthesis, you can override these rules by setting the
Netlist Optimizations logic option to Always Allow on a given set of
registers.

Preserving Your Physical Synthesis Results

Given the same source code and settings on a given system, the
Quartus II software generates the same results for every compilation.
Therefore, it is typically not necessary to take any steps to preserve your
results from compilation to compilation. When changes are made to the
source code or to the settings, you usually get the best results by allowing
the software to compile without using any previous compilation results
or location assignments. However, if you do wish to preserve the
compilation results, make sure to follow the guidelines outlined in this
section.

You can use the incremental compilation feature to preserve fitting results
for a particular partition of your design by choosing a netlist type of
post-fit.

1 You should use the incremental compilation flow to preserve
compilation results instead of the LogicLock back-annotation
flow described here.

f For information about the incremental compilation design methodology,
refer to the Quartus II Incremental Compilation for Hierarchical &
Team-Based Design chapter in volume 1 of the Quartus II Handbook.

11–18 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

If you wish, you can preserve the nodes resulting from physical synthesis.
Preserving the nodes may be required if you use the LogicLock flow to
back-annotate placement and/or import one design into another. (Note
that this is not needed if you use the incremental compilation design flow
along with the LogicLock feature).

If you are using any Quartus II physical synthesis optimization options,
you can save the nodes in your optimized result using the Save a
node-level netlist into a persistent source file (Verilog
Quartus Mapping File) option on the Compilation Process Settings
page in the Settings dialog box. This option saves your final results as an
atom-based netlist in Verilog Quartus Mapping file format. By default,
the Quartus II software places the Verilog Quartus Mapping file in the
atom_netlists directory under the current project directory. If you want to
create a different Verilog Quartus Mapping file using different Quartus II
settings, you may do so by changing the File name setting on the
Compilation Process Settings page in the Settings dialog box.

If you are using the physical synthesis optimizations and you wish to lock
down the location of all LEs and other device resources in the design
using the Back-Annotate Assignments command, a Verilog Quartus
Mapping file netlist is required to preserve the changes that were made to
your original netlist. Since the physical synthesis optimizations depend
on the placement of the nodes in the design, back-annotating the
placement changes the results from physical synthesis. Changing the
results means that node names are different, and your back-annotated
locations are no longer valid. To access this option, on the Assignments
menu, click Back-Annotate Assignments.

You should not use a Quartus II-generated Verilog Quartus Mapping file
or back-annotated location assignments with physical synthesis
optimizations unless the design has been finalized. Making any changes
to the design invalidates your physical synthesis results and
back-annotated location assignments. If you need to make changes later,
use the new source HDL code as your input files, and remove the
back-annotated assignments corresponding to the Quartus II-generated
Verilog Quartus Mapping file.

To back-annotate logic locations for a design that was compiled with
physical synthesis optimizations, first create a Verilog Quartus Mapping
file. When recompiling the design with the hard logic location
assignments, use the new Verilog Quartus Mapping file as the input
source file and turn off the physical synthesis optimizations for the new
compilation.

Altera Corporation 11–19
November 2006 Preliminary

Applying Netlist Optimization Options

If you are importing a Verilog Quartus Mapping file and back-annotated
locations into another project that has any Netlist Optimizations turned
on, it is important to apply the Netlist Optimizations = Never Allow
constraint, to make sure node names don't change, otherwise the
back-annotated location or LogicLock assignments are invalid.

1 You should use the incremental compilation flow to preserve
compilation results instead of using logic back-annotation.

Applying Netlist
Optimization
Options

Netlist optimizations options can have various effects on different
designs. Designs that are well coded or have already been restructured to
balance critical path delays may not see a noticeable difference in
performance.

To obtain optimal results when using netlist optimization options, you
may need to vary the options applied to find the best results. By default,
all options are off. Turning on additional options leads to the largest effect
on the node names in the design. Take this into consideration if you are
using a LogicLock or verification flow such as the SignalTap II logic
analyzer or formal verification that requires fixed or known node names.
On average, applying all of the physical synthesis options at the Extra
effort level produces the best results for those options, but adds
significantly to the compilation time. You can also use the
Physical synthesis effort option to decrease the compilation time.

The synthesis netlist optimizations typically do not add much
compilation time, relative to the overall design compilation time.

1 When you are using a third-party atom netlist (Verilog Quartus
Mapping file or Electronic Design Interchange Format file), the
WYSIWYG Primitive Resynthesis option must be turned on in
order to use the Gate-level Register Retiming option.

The Design Space Explorer (DSE) tool command language (Tcl)/Tk script
is provided with the Quartus II software to automate the application of
various sets of netlist optimization options.

f For more information about using the DSE script to run multiple
compilations, refer to the Design Space Explorer chapter in volume 2 of the
Quartus II Handbook. For information about typical performance results
using combinations of netlist optimization options and other
optimization techniques, refer to the Area & Timing Optimization chapter
in volume 2 of the Quartus II Handbook.

11–20 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Scripting
Support

You can run procedures and make settings described in this chapter in a
Tcl script. You can also run some procedures at a command prompt. For
detailed information about scripting command options, refer to the
Quartus II Command-Line and Tcl API Help browser. To run the Help
browser, type the following command at the command prompt:

quartus_sh --qhelp r
The Scripting Reference Manual includes the same information in PDF
form.

f For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook. Refer to the Quartus II
Settings File Reference Manual for information about all settings and
constraints in the Quartus II software. For more information about
command-line scripting, refer to the Command-Line Scripting chapter in
volume 2 of the Quartus II Handbook.

You can specify many of the options described in this section either on an
instance, or at a global level, or both.

Use the following Tcl command to make a global assignment:

set_global_assignment -name <QSF variable name> <value>

Use the following Tcl command to make an instance assignment:

set_instance_assignment -name <QSF variable name> <value> -to <instance name>

Synthesis Netlist Optimizations

Table 11–1 lists the Quartus II Settings File (.qsf) variable name and
applicable values for the settings discussed in “Synthesis Netlist
Optimizations” on page 11–3. The Quartus II Settings File variable name

Altera Corporation 11–21
November 2006 Preliminary

Scripting Support

is used in the Tcl assignment to make the setting along with the
appropriate value. The Type column indicates whether the setting is
supported as a global setting, an instance setting, or both.

Physical Synthesis Optimizations

Table 11–2 lists the Quartus II Settings File variable name and applicable
values for the settings discussed in “Physical Synthesis Optimizations”
on page 11–11. The Quartus II Settings File variable name is used in the
Tcl assignment to make the setting, along with the appropriate value. The
Type column indicates whether the setting is supported as a global
setting, an instance setting, or both.

Table 11–1. Synthesis Netlist Optimizations & Associated Settings

Setting Name Quartus II Settings File Variable Name Values Type

Perform WYSIWYG
Primitive Resynthesis

ADV_NETLIST_OPT_SYNTH_WYSIWYG_
REMAP

ON, OFF Global,
Instance

Optimization Technique <Device Family Name>_
OPTIMIZATION_TECHNIQUE

AREA, SPEED,
BALANCED

Global,
Instance

Perform Gate-Level
Register Retiming

ADV_NETLIST_OPT_SYNTH_GATE_RETIME ON, OFF Global

Power-Up Don't Care ALLOW_POWER_UP_DONT_CARE ON, OFF Global

Allow Register
Retiming to trade off
Tsu/Tco with Fmax

ADV_NETLIST_OPT_RETIME_CORE_AND_IO ON, OFF Global

Save a node-level
netlist into a persistent
source file

LOGICLOCK_INCREMENTAL_COMPILE_
ASSIGNMENT

ON, OFF Global

LOGICLOCK_INCREMENTAL_COMPILE_FILE <filename>

Allow Netlist
Optimizations

ADV_NETLIST_OPT_ALLOWED "ALWAYS
ALLOW", DEFAULT,
"NEVER ALLOW"

Instance

Table 11–2. Physical Synthesis Optimizations & Associated Settings (Part 1 of 2)

Setting Name Quartus II Settings File Variable Name Values Type

Physical Synthesis for
Combinational Logic

PHYSICAL_SYNTHESIS_COMBO_LOGIC ON, OFF Global

Automatic
Asynchronous Signal
Pipelining

PHYSICAL_SYNTHESIS_ASYNCHRONOUS_
SIGNAL_PIPELINING

ON, OFF Global

11–22 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Incremental Compilation

For information about scripting and command line usage for incremental
compilation as mentioned in “Preserving Synthesis Netlist Optimization
Results” on page 11–10 or “Preserving Your Physical Synthesis Results”
on page 11–17, refer to the Quartus II Incremental Compilation chapter in
volume 1 of the Quartus II Handbook.

Back-Annotating Assignments

You can use the logiclock_back_annotate Tcl command to
back-annotate resources in your design. This command can
back-annotate resources in LogicLock regions, and resources in designs
without LogicLock regions.

f For more information about back-annotating assignments, see
“Preserving Synthesis Netlist Optimization Results” on page 11–10 or
“Preserving Your Physical Synthesis Results” on page 11–17.

The following Tcl command back-annotates all registers in your design.

logiclock_back_annotate -resource_filter "REGISTER"

The logiclock_back_annotate command is in the backannotate
package.

Perform Register
Duplication

PHYSICAL_SYNTHESIS_REGISTER_DUPLICATION ON, OFF Global

Perform Register
Retiming

PHYSICAL_SYNTHESIS_REGISTER_RETIMING ON, OFF Global

Power-Up Don't Care ALLOW_POWER_UP_DONT_CARE ON, OFF Global,
Instance

Power-Up Level POWER_UP_LEVEL HIGH,LOW Instance

Allow Netlist
Optimizations

ADV_NETLIST_OPT_ALLOWED "ALWAYS
ALLOW",
DEFAULT,
"NEVER
ALLOW"

Instance

Save a node-level
netlist into a persistent
source file

LOGICLOCK_INCREMENTAL_COMPILE_ASSIGNMENT ON, OFF Global

LOGICLOCK_INCREMENTAL_COMPILE_FILE <filename>

Table 11–2. Physical Synthesis Optimizations & Associated Settings (Part 2 of 2)

Setting Name Quartus II Settings File Variable Name Values Type

Altera Corporation 11–23
November 2006 Preliminary

Conclusion

Conclusion Synthesis netlist optimizations and physical synthesis optimizations
work in different ways to restructure and optimize your design netlist.
Taking advantage of these Quartus II netlist optimizations can help
improve your quality of results.

Document
Revision History

Table 11–3 shows the revision history for this document.

Table 11–3. Document Revision History

Date &
Document

Version
Changes Made Summary of Changes

November 2006
v6.1.0

Added revision history for document.

May 2006 v6.0.0 Minor updates for the Quartus II software version 6.0.0.

October 2005
v5.1.0

Chapter 11 was formerly Chapter 9 in version 5.0.

May 2005 v5.0.0 Chapter 9 was formerly Chapter 8 in version 4.2.

Dec. 2004 v2.1 Updated for Quartus II software version 4.2:
● General formatting and editing updates.
● Additional description about fixed and primitive node

names for synthesis netlist optimization and physical
synthesis options.

● Updates to figures.
● Clarified APEX support.
● Added information about node name changes for atoms

during physical synthesis.
● Deleted Physical Synthesis Report section.

June 2004 v2.0 ● Updates to tables and figures.
● New functionality in the Quartus II software version 4.1.

Feb. 2004 v1.0 Initial release.

11–24 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Altera Corporation 12–1
November 2006 Preliminary

12. Design Space Explorer

Introduction The Quartus® II software includes many advanced optimization
algorithms to help you achieve timing closure and reduce dynamic
power. The various settings and parameters control the behavior of the
algorithms. These options provide complete control over the Quartus II
software optimization and power techniques.

Each FPGA design is unique. There is no standard set of options that
always results in the best performance or power utilization. Each design
requires a unique set of options to achieve optimal performance. This
chapter describes the Design Space Explorer (DSE), a utility written in
Tcl/Tk that automates finding the best set of options for your design. DSE
explores the design space of your design by applying various
optimization techniques and analyzing the results.

DSE Concepts

This section explains the concepts and terminology used by DSE.

Exploration Space & Exploration Point

Before DSE explores a design, DSE creates an exploration space, which
consists of Synthesis and Fitter settings available in the Quartus II
software. Each group of settings in an exploration space is referred to as
a point. An exploration space contains one or more points. DSE traverses
the points in the exploration space to determine optimal settings for your
design.

Seed & Seed Sweeping

The Quartus II Fitter uses a seed to specify the starting value that
randomly determines the initial placement for the current design. The
seed value can be any non-negative integer value. Changing the starting
value may or may not produce better fitting. However, varying the value
of the seed or seed sweeping allows the Quartus II software to determine
an optimal value for the current design.

QII52008-6.1.0

12–2 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

DSE extends Fitter seed sweeping in exploration spaces by providing a
method for sweeping through general compilation and Fitter parameters
to find the best options for your design. You can run DSE in various
exploration space modes, ranging from an exhaustive
try-all-options-and-values mode to a mode that focuses on one
parameter.

DSE Exploration

DSE compares all exploration point results with the results of a base
compilation, generated from the initial settings that you specify in the
original Quartus II project files. As DSE traverses all points in the
exploration space, all settings, not explicitly modified by DSE, default to
the base compilation setting. For example, if an exploration point turns on
register retiming but does not modify the register packing setting, the
register packing setting defaults to the value you specified in the base
compilation.

1 DSE performs the base compilation with the settings you
specified in the original Quartus II project. These settings are
restored after DSE traverses all points in the exploration space.

General
Description

You can use DSE in either the graphical user interface (GUI) or from a
command line. To run DSE with the GUI, either click Design Space
Explorer on the Tools menu in the Quartus II software, or at the command
prompt, type:

quartus_sh --dse r

To run DSE from a command line, type the following command at the
command prompt:

quartus_sh --dse -nogui [<options>] r

Altera Corporation 12–3
November 2006 Preliminary

General Description

You can run DSE with the following options:

-archive
 -concurrent-compiles [0..6]
 -custom-file <filename>
 -decision-column <"column name">
 -exploration-space <"space">
 -ignore-failed-base
 -ignore-signalprobe
 -ignore-signaltap
 -llr-restructuring
 -lower-priority
 -lsf-queue <queue name>
 -nogui
 -optimization-goal <"goal">
 -project <project name>
 -revision <revision name>
 -run-power
 -search-method <"method">
 -seeds <seed list>
 -skip-base
 -slaves <"slave list">
 -stop-after-time <dd:hh:mm>
 -stop-after-zero-failing-paths
 -use-lsf

The DSE script is in the default Quartus II software installation in
<Quartus II installation directory>/common/tcl/apps/dse/dse.tcl on the
PC, Solaris, HP-UX, and Linux platforms. You can launch DSE using one
of the following methods:

■ On the Tools menu, click Launch Design Space Explorer.
■ On Windows, select Start > Programs > Altera > Design Space

Explorer or Quartus II <version number>.

1 For more information on DSE, launch the DSE GUI. On the Help
menu, click Contents or press the F1 key.

12–4 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Figure 12–1 shows the DSE user interface. The Settings tab is divided into
two sections: Project Settings and Exploration Settings.

Figure 12–1. DSE User Interface

Timing Analyzer Support

DSE supports both the Classic Timing Analyzer and the TimeQuest
Timing Analyzer. You must set the timing analyzer prior to opening the
project in DSE. Once the timing analyzer is set, DSE performs the design
exploration with the selected timing analyzer that guides the fitter.

1 TimeQuest is launched directly from DSE if you set the default
timing analyzer to TimeQuest.

Altera Corporation 12–5
November 2006 Preliminary

DSE Flow

DSE Flow You can run DSE at any point in the design process. However, Altera
recommends that you run DSE late in your design cycle when you are
focusing on optimizing performance and power. The results gained from
different combinations of optimization options may not persist over large
changes in a design. Running DSE in signature mode (refer to “Signature
Mode” on page 12–13) at the midpoint of your design cycle shows you
the affect of various parameters such as the register packing logic option
on your design.

DSE runs the Quartus II software for every compilation specified in the
Exploration Settings options. DSE selectively determines the best
settings for your design based on the Optimization Goal selected for the
exploration. The Quartus II software always attempts to achieve all your
timing requirements regardless of the Optimization Goal set in DSE. The
Optimization Goal changes the metrics that DSE evaluates to determine
if one compilation is better than another. Design Space Explorer does not
change the behavior of the Quartus II software.

DSE reports the compilation that has the smallest slack. Specifying all
timing requirements before you use DSE to explore your design is very
important to ensure that DSE finds the optimal set of parameters for your
design based on design criteria you set in your initial design.

You can change the initial placement configuration used by the Quartus II
Fitter by varying the Fitter Seed value. You can enter seed values in the
Seeds field of the DSE user interface.

1 You can set the seed value on the Assignments menu, click Fitter
Settings in the Settings dialog box.

Compilation time increases as DSE exploration spaces become more
comprehensive. Increased compilation time results from running several
compilations and comparing the generated results with the original base
compilation results.

For typical designs, varying only the seed value results in a 5% fMAX
increase. For example, when compiling with three different seeds,
one-third of the time fMAX does not improve over the initial compilation,
one-third of the time fMAX gets 5% better, and one-third of the time fMAX
gets 10% better.

12–6 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

DSE Support for
Altera Device
Families

DSE setting support varies across device families. To see the range of
settings DES supports, click the Advanced Search radio button on the
Settings tab, then select the Advanced tab to access the settings listed in
the following categories:

■ Exploration Space
■ Optimization Goal
■ Search Method

The following device families support all Advanced setting types:

■ Stratix® III
■ Stratix II
■ Stratix
■ Stratix GX
■ CycloneTM II
■ Cyclone
■ MAX® II

The following device families support only the Advanced Exploration
Space and Optimization Goal settings shown in Table 12–1:

■ APEXTM 20K
■ APEX 20KC
■ APEX 20KE
■ APEX II
■ FLEX® 10K
■ FLEX 10KA
■ FLEX 10KE

Click the Advanced Search radio button on the Settings tab before you
select the Advanced tab to access the settings in Table 12–1.

Table 12–1. Advanced Exploration Space Support for APEX 20K, APEX II & FLEX 10K Devices

Seed sweep Area optimization space

Signature fitting effort level Extra effort space

Extra effort for Quartus II Integrated Synthesis Projects Custom space

Altera Corporation 12–7
November 2006 Preliminary

DSE Project Settings

DSE Project
Settings

This section provides the following information about DSE project
settings:

■ Setting up the DSE work environment
■ Specifying the revision
■ Setting the initial seed
■ Quartus II integrated synthesis
■ Restructuring LogicLock regions

Setting Up the DSE Work Environment

From the DSE user interface, you can open a Quartus II project for a
design exploration with either of the following actions:

■ On the File menu, click Open Project and browse to your project.
■ Use the Open icon to open a project.

Specifying the Revision

You can specify the revision to be explored with the Revision field in the
DSE user interface. The Revision field is populated after the Quartus II
project has been opened.

1 If no revisions were created in the Quartus II project, the default
revision, which is the top-level entity, is used. For more
information, refer to Quartus II Project Management chapter in
volume 2 of the Quartus II Handbook.

Setting the Initial Seed

To specify the seed that DSE uses for an exploration, specify a
non-negative integer value in the Seed box under Project Settings on the
Settings tab. The seed value determines your design’s initial placement
in a Quartus II compilation.

To specify a range of seeds, type the low end of the range followed by a
hyphen, followed by the high end of the range. For example, 2-5-DSE uses
every seed in the range.

Restructuring LogicLock Regions

The Allow LogicLock Region Restructuring option allows DSE to
modify LogicLock region properties in your design, if any exist. DSE
applies the Soft property to LogicLock regions to improve timing. In
addition, DSE can remove LogicLock regions that negatively affect the
performance of the design.

12–8 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Use the Exploration Settings list to select the type of exploration to
perform: Search for Best Area, Search for Best Performance, Search for
Lowest Power, or Advanced Search.

1 The “Exploration Space” on page 12–10 describes the type of
explorations you can perform.

Search for Best Performance, Search for Best Area Options, or Search for
Lowest Power Option

The Search for Best Performance option uses a predefined exploration
space that targets performance improvements for your design.
Depending on the device your design targets, you can select up to four
predefined exploration spaces: Low (Seed Sweep), Medium (Extra Effort
Space), High (Physical Synthesis Space), and Highest (Physical
Synthesis with Retiming Space). As you move from Low to Highest, the
number of options explored by DSE increases, causing compilation time
to increase.

The Search for Lowest Power option uses a predefined exploration space
that targets overall power improvements for your design. When Search
for Lowest Power is selected, DSE automatically runs the PowerPlay
Power Analyzer for each point in the space. You must ensure that the
PowerPlay Power Analyzer is configured correctly to ensure accurate
results. DSE issues a warning if the confidence level for any power
estimate is low.

The Search for Best Area option uses a predefined exploration space that
targets device utilization improvements for your design.

Advanced Search Option

The Advanced Search option provides full control over the exploration
space, the optimization goal for your design, and the search method used
in a design exploration. Refer to “Performing an Advanced Search in
Design Space Explorer” on page 12–9 for detailed information on how to
set up and perform an Advanced Search in DSE.

1 You can use Advanced Search to define exploration spaces that
are equivalent to the Search for Best Area, Search for Lowest
Power, and Search for Best Performance options.

Altera Corporation 12–9
November 2006 Preliminary

Performing an Advanced Search in Design Space Explorer

Quartus II Integrated Synthesis

The Project Uses Quartus II Integrated Synthesis option works only for
designs that have been synthesized with Quartus II integrated synthesis.
With this option turned on, DSE explores options that affect the synthesis
stage of compilation.

f For more information on integrated synthesis options, refer to the
Quartus II Integrated Synthesis chapter in volume 1 of the
Quartus II Handbook.

Performing an
Advanced
Search in
Design Space
Explorer

You must make three exploration settings in the Advanced Search dialog
box before exploring a design. These three settings, Exploration Space,
Optimization Goal, and Search Method, are described in the following
sections. Figure 12–2 shows the Advanced Search dialog box.

1 You can access the Advanced tab only after you open a
Quartus II project in DSE and select Advanced Search on the
Settings tab.

Figure 12–2. DSE Advanced Search Dialog Box

12–10 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Exploration Space

The Exploration Space list controls the types of explorations that DSE
performs on your design. DSE traverses the points in the exploration
space, applying the settings to the design and comparing compilation
results to determine the best settings for your design. DSE offers the
following exploration space types:

■ Seed Sweep
■ Extra Effort Spaces
■ Physical Synthesis Spaces
■ Retiming Spaces
■ Area Optimization Space
■ Custom Space
■ Signature mode—Power Optimization Spaces

1 Not all Advanced exploration space types are available for
every device family. Refer to “DSE Support for Altera Device
Families” on page 12–6 for Advanced exploration space support
for various device families.

Compilation time increases proportionally to the breadth of the
explorations. The exploration space compilation time increases with the
number and type of exploration spaces DSE explores, especially with
exploration space types that have more optimization options and
parameters.

On the Options menu, click Advanced, and turn on Save Exploration
Space to File to save an XML file representing the exploration space. DSE
writes the exploration space to a file named <project name>.dse in the
project directory. You can modify this file to create a custom exploration
space.

For more information on using custom exploration spaces in DSE, refer to
“Creating Custom Spaces for DSE” on page 12–21.

Seed Sweep

Enter the seed values in the Seeds field in the DSE user interface. There
are no “magic” seeds. The variation between seeds is truly random, any
non-negative integer value is as likely to produce good results. DSE
defaults to seeds 3, 5, 7, and 11. The Seed Sweep exploration space does
not change your netlist.

1 The Seeds field accepts individual seed values, for example, 2,
3, 4, and 5, or seed ranges, for example, 2-5.

Altera Corporation 12–11
November 2006 Preliminary

Performing an Advanced Search in Design Space Explorer

Compilation time increases 1× for every seed value you specify. For
example, if you enter five seeds, the compilation time increases to 5× the
initial compilation time.

Extra Effort Spaces

The Extra Effort Space exploration space adds the Register Packing
option to the exploration space done by the Seed Sweep. The Extra Effort
Space exploration space also increases the Quartus II Fitter effort during
placement and routing. However, the Extra Effort Space exploration
space does not change your netlist.

Physical Synthesis Spaces

The Physical Synthesis Space exploration space adds physical synthesis
options such as register retiming and physical synthesis for
combinational logic to the options included in the Extra Effort Space
exploration space. These netlist optimizations move registers in your
design. Look-up tables (LUTs) are modified by these options. However,
the design behavior is not affected by these options.

f For more information about physical synthesis, refer to the Netlist
Optimizations & Physical Synthesis chapter in volume 2 of the Quartus II
Handbook.

The Physical Synthesis for Quartus II Integrated Synthesis Projects
exploration space includes all the options in the Physical Synthesis
exploration space and explores various Quartus II integrated synthesis
optimization options. The Physical Synthesis for Quartus II Integrated
Synthesis Projects exploration space works only for designs that have
been synthesized using Quartus II integrated synthesis software.

Retiming Space

The Physical Synthesis with Retiming Space exploration space includes
all the options in the Physical Synthesis Space exploration space and
explores register retiming. Register retiming can move registers in your
design.

The Physical Synthesis Retiming Space for Quartus II Integrated
Synthesis Projects exploration space includes all the options in Physical
Synthesis with Retiming Space exploration space, and also explores
various Quartus II integrated synthesis optimization options. The
Physical Synthesis with Retiming Space for Quartus II Integrated
Synthesis Projects exploration space works only for designs that have
been synthesized using the Quartus II integrated synthesis.

12–12 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Area Optimization Space

The Area Optimization Space exploration space explores options that
affect logic cell utilization for your design. These options include register
packing and Optimization Technique set to Area.

Custom Space

Use the Custom Space exploration space to selectively explore the effects
of various optimization options on your design. This exploration space
gives you complete control over which options are explored and in what
mode. In the Custom Space mode you can explore all optimization
options available in DSE.

For a summary of the settings adjusted by each exploration space, refer to
Table 12–2.

For more information about using custom exploration spaces with DSE,
refer to “Creating Custom Spaces for DSE” on page 12–21.

Table 12–2. Summaries of Exploration Spaces Note (1)

Search Type

Exploration Spaces

Seed
Sweep Extra Effort Physical

Synthesis Retiming Area
Optimization Custom

Analysis & Synthesis Settings

Optimization technique — — v v v v
Perform WYSIWYG resynthesis — — v v v v
Perform gate-level register
retiming

— — — v — v
Fitter Settings

Fitter seed v v v v v v
Register packing — v v v v v
Increase PowerFit fitter effort — v v v — v
Perform physical synthesis for
combinational logic

— — v v — v
Perform register retiming — — — v — v
Note to Table 12–2:
(1) For exploration spaces that includes Quartus II Integrated Synthesis Projects, DSE increases the synthesis effort.

Altera Corporation 12–13
November 2006 Preliminary

Performing an Advanced Search in Design Space Explorer

Signature Mode

In Signature mode, DSE analyzes the fMAX, slack, compilation time, and
area trade-offs of a single parameter. Running the single parameter over
multiple seeds, DSE reports the average of the resulting values. With this
information you gain a better understanding of how that parameter
affects your design. There are four signature mode settings in DSE:

■ Signature: Fitting Effort Level
■ Signature: Netlist Optimizations
■ Signature: Fast Fit
■ Signature: Register Packing

Each setting explores a specific optimization option for your design. For
example, in Signature: Register Packing mode, DSE explores the Auto
Packed Registers logic option with its four settings (OFF, Normal,
Minimized Area, and Minimize Area with Chains), and reports the
effects of each on your design.

Optimization Goal

Design metrics are extremely important in exploring your design,
whether the metric is performance, logic utilization, or a combination of
both. These metrics allow you to determine which compilation is best,
based on the design requirements. By specifying options in the
Optimization Goal settings, you specify your optimization design goals.
DSE then uses the Optimization Goal settings to determine the best
compilation results. Table 12–3 summarizes the six available optimization
settings.

Table 12–3. Optimization Goal Settings

Setting Description

Optimize for Speed The exploration point containing the smallest worst-case slack value is selected
as the best run.

Optimize for Area The exploration point containing the lowest logic cell count is selected as the best
run

Optimize for Power The exploration point containing the lowest thermal power dissipation, and, if
possible, a positive worst-case slack value, is selected as the best run.

Optimize for Negative Slack
and Failing Path

The exploration point containing the best average negative worst-case slack and
lowest number of failing paths is selected as the best run.

Optimize for Average Period The exploration point containing the highest average period in a multiclock design
is selected as the best run.

Optimize for Quality Fit The exploration point containing the highest quality of fit is selected as the best
run.

12–14 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Quality of Fit (QoF)

Quality of Fit (QoF) is a better evaluation of fit than traditional worst-case
slack metrics, because QoF considers all timing domains. QoF is not
susceptible to the common mistake of accepting a fit because it has
marginally better worst-case slack than other marginal timing domains
with much worse slack. For example, the traditional worst-case slack
metric favors a fit that achieves -2 ns slack for clock A and -5 ns slack for
clock B, over a fit that achieves 1 ns slack for clock A and -5.5 ns slack for
clock B. By applying a piece-wise linear function to each domain slack
value, QoF ensures that large improvements in domains with ample slack
do not unnecessarily skew the overall quality assessment of the fit.

To achieve a representative QoF value, ensure that slack values from
domains that are easily meeting timing requirements do not offset the
slack values from domains that are marginally meeting timing
requirements. To correlate these values correctly, DSE applies a
piece-wise linear function to the individual slack values before they are
added together. This function reduces the improvement per unit of
additional slack in a domain, as the domain slack improves. For example,
the improvement of 100 ps in a domain that begins with 0 ns of slack is
weighted more significantly than a 100 ps improvement in a domain that
begins with 10 ns of slack.

To calculate the QoF for a design, use the sum of worst- case slack values
for all timing domains reported by timing analysis. Timing domains
include: Clock Setup, Clock Hold, tSU, tCO, tPD, tH, min tCO, min tPD, and
other timing parameters. For example, if clock A has a Clock Setup slack
of -500 ps, and clock B has a Clock Setup slack of 200 ps, the QoF for these
two domains is -700 ps. The higher the QoF value reported, the better the
QoF.

The QoF can be calculated for every design by entering the following Tcl
command in the Tcl console:

source [file join $::quartus(binpath) tcl_scripts dse
calculate_quality_of_fit.tcl]

1 All variables in the above statement are predefined; type the
statement as shown without any variable substitution.

Altera Corporation 12–15
November 2006 Preliminary

DSE Flow Options

Search Method

The Search Method setting allows you to control the breadth of the search
that DSE performs. DSE provides two search methods: Exhaustive search
of exploration space and Accelerated search of exploration space. These
search methods are described in Table 12–4.

DSE Flow
Options

You can control the configuration of DSE with the following options:

■ Create a Revision from a DSE Point
■ Stop If Zero Failing Paths are Achieved
■ Continue Exploration Even If Base Compilation Fails
■ Run Quartus II PowerPlay Power Analyzer During Exploration
■ Archive All Compilations
■ Stop Flow After Time
■ Save Exploration Space to File
■ Ignore SignalTap & SignalProbe Settings
■ Skip Base Analysis & Compilation If Possible
■ Lower Priority of Compilation Threads
■ DSE Configuration File

Create a Revision from a DSE Point

After you have performed a design exploration with DSE, a Quartus II
revision can be made from any exploration point. This option facilitates
the creation of multiple revisions based on the same space point for
further optimization within the Quartus II software. Figure 12–3 shows
the Create a Revision From a DSE Point dialog box.

Table 12–4. Search Methods

Search Method Description

Exhaustive search of exploration space Applies all settings available in the exploration space to all seeds
specified. This search method yields optimal settings for your design,
but this search requires the most time.

Accelerated search of exploration space Finds the best exploration space for your design by first determining
the best settings and then sweeping the settings across all seeds
specified.

12–16 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Figure 12–3. Create a Revision from a DSE Point

The criteria DSE uses to determine the best space point in an exploration
is known as the Decision column. As DSE explores a design space, the
best exploration point changes according to the following inequality:

<Current Decision Column Value> > <Previous Decision Column Value>

By default, DSE uses worst-case slack as the Decision column for an
exploration. The worst-case slack Decision column is the greatest slack
value in an exploration, which can be I/O timing or clock slack values.
You can change the Decision column on the Options menu. On the
Options menu, click Advanced, and select Change Decision Column.
Table 12–5 lists the available Decision columns. The Decision column
can be any column within the Quartus II Timing Analyzer Report.

Table 12–5. DSE Change Decision Columns

Decision Column Name Description

Worst-case slack (default) Determines best exploration point on worst-case slack in the exploration
space.

Clock Setup: '<clock name>':
Slack

Determines best exploration point on the <clock name> specified.

Clock Setup: '*': Slack Determines best exploration point on all clocks.

Worst-case minimum tCO Slack Determines best exploration point on worst case minimum tCO slack.

Worst-case tH Slack Determines best exploration point on worst-case tH slack.

Worst-case tSU Slack Determines best exploration point on worst case tSU slack.

<any column name> Determines best exploration point on any column available in the Quartus II
timing analysis report file.

Altera Corporation 12–17
November 2006 Preliminary

DSE Flow Options

Stop If Zero Failing Paths are Achieved

Instructs DSE to stop exploring the space after it encounters any point,
including the base point, that has zero failing paths. DSE uses the failing
path count reported in the All Failing Paths report column to make this
decision.

Continue Exploration Even If Base Compilation Fails

With the Continue Exploration Even If Base Compilation Fails option
turned on, DSE continues the exploration even when a design
compilation error occurs. For example, if timing settings are not applied
to your design, a DSE error occurs. To cause DSE to continue with the
exploration instead of halting when an error occurs, turn on this option.

Run Quartus II PowerPlay Power Analyzer During Exploration

Turn on Run Quartus II PowerPlay Power Analyzer During Exploration
to invoke the Quartus II PowerPlay Analyzer for every exploration
performed by DSE. Using this option can help you debug your design
and determine trade-offs between power requirements and performance
optimization.

Archive All Compilations

Turn on Archive All Compilations to create a Quartus II Archive File
(.qar) for each compilation. These archive files are saved to the dse
directory in the design’s working directory.

Stop Flow After Time

Turn on Stop Flow After Time to stop further exploration after a specified
number of days, hours, and/or minutes.

1 Exploration time might exceed the specified value because DSE
does not stop in the middle of a compilation.

Save Exploration Space to File

Turn on Save Exploration Space to File to write out a <project name>.dse
file containing all options explored by DSE. You can use or modify this file
to perform a custom exploration.

12–18 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Ignore SignalTap & SignalProbe Settings

DSE uses advanced physical synthesis options that are not compatible
with the SignalTap® II or SignalProbe™ features. As a result, DSE issues
an error message when a project is opened for exploration that has either
SignalTap II or SignalProbe turned on. The error message is similar to the
following:

Error Opening Project---------------------------
Project is using SignalProbe. Please turn off
SignalProbe before using this project with Design Space
Explorer or Ignore SignalProbe Setting in your Design
on the Options menu.

When the Ignore SignalTap and SignalProbe Settings option is turned
on, DSE bypasses this check.

If you have already verified the design, you might save compilation time
and improve resource utilization by turning this option on.

Skip Base Analysis & Compilation If Possible

Skip Base Analysis & Compilation If Possible allows the DSE to skip the
Analysis & Elaboration stage or the compilation of the base point if base
point compilation results are available from a previous Quartus II
compilation.

Lower Priority of Compilation Threads

The Lower Priority of Compilation Threads option allows DSE to run
the Quartus II executables with the lower_priority option. The
lower_priority option lowers the priority of the Quartus II
executable.

DSE Configuration File

Many options exist that allow you to customize the behavior of each DSE
exploration. For example, you can specify seed values or a list of slave
computers to be used for a distributed exploration run. Each time you
close the DSE GUI it saves these values in a configuration file, dse.conf.
The net time you launch the DSE GUI, it reads the values from dse.conf
and restores the previous exploration settings.

Altera Corporation 12–19
November 2006 Preliminary

DSE Advanced Information

Where the dse.conf file is stored varies based on the operating system
that launches DSE. Table 12–6 specifies the locations where dse.conf files
are stored based on operating system usage.

1 Settings specified in the DSE command-line mode are not saved
to a dse.conf configuration file.

DSE Advanced
Information

This section covers advanced features that are available in DSE. These
features increase the processing efficiency of design space exploration
and provide further customization of the design space.

Computer Load Sharing in DSE Using Distributed Exploration

When you select Distribute Compiles to Other Machines, the DSE uses
cluster computing technology to decrease exploration time. DSE uses
multiple client computers to compile points in the specified exploration
space. When you select the Distributed DSE option, DSE functions in one
of the following operation modes:

■ Use LSF Resources: DSE uses the Platform LSF grid computing
technology to distribute exploration space points to a computing
network.

■ Distribute Compiles to Other Machines uses a Quartus II master
process: DSE acts as a master and distributes exploration space
points to client computers.

Distributed DSE Using LSF Resources

The easiest way to use distributed DSE technology is to submit the
compilations to a preconfigured LSF cluster at your local site. For more
information on LSF software, refer to www.platform.com, or contact your
system administrator. Turn on Use LSF resources to enable this
feature.You can specify an LSF queue when you select the Configure
Clients option.

Table 12–6. DSE Configuration File Location

OS File Location (default) Comment

Windows %APPDATA%/Altera/dse.conf If the variable %APPDATA% is not defined, the
configuration file is saved to
/.altera.quartus/dse.conf

Unix ~/.altera.quartus/dse.conf

12–20 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Distributed DSE Using a Quartus II Master Process

Before DSE can use computers in the local area network to compile points
in the exploration space, you must create Quartus II software slave
instances on the computers that will be used as clients. Type the following
command at a command prompt on a client computer:

 quartus_sh --qslave r
Repeating this on several computers creates a cluster of Quartus II
software slaves for DSE to use. After you have created a set of Quartus II
software slaves on the network, add the names of each slave computer in
the Configure Clients dialog box. Figure 12–4 shows an example of client
entries for a distributed search.

Figure 12–4. Client Entry in DSE

At the start of an exploration, DSE assumes the role of a Quartus II
software master process and submits points to the slaves on the list to
compile. If the list is empty, DSE issues an error and the search stops.

1 For more information on running and configuring Quartus
slaves, at the command prompt type:

quartus_sh --help=qslave r

You must use the same version of the Quartus II software to run the slave
processes as you use to run DSE. To determine which Quartus II software
version that you are using to run DSE, select Help and click About DSE.
Unexpected results can occur if you mix different Quartus II software
versions when using the Distributed DSE search feature.

Altera Corporation 12–21
November 2006 Preliminary

DSE Advanced Information

Concurrent Local Compilations

To reduce compilation time, DSE can compile exploration points
concurrently. The Concurrent Local Compilations option allows you to
specify the number of local compilations that DSE performs. For the
Concurrent Local Compilations option, you can specify up to six
concurrent compilations by choosing an integer value ranging from 1
through 6. You can use this option in conjunction with distributed
processing. However, your system must have both the appropriate
resources and licenses to perform concurrent compilations, and
distributed processing. Multiprocessor or multicore systems are
recommended for concurrent local compilations.

1 Concurrent Local Compilations require a separate Quartus II
software license for each concurrent compilation. For example,
if you compile four concurrent compilations, you need four
licenses. Be sure before you choose a Concurrent Local
Compilations value and start compilation that sufficient
licenses are available.

Creating Custom Spaces for DSE

You can use custom spaces to explore combinations of options that are not
in the predefined Exploration Space list. An exploration space is defined
in an XML file. The following sections describe the tags you use to create
a Custom Space that DSE can process.

A custom space is defined by the following three pairs of tags:

■ <DESIGNSPACE> and </DESIGNSPACE>
■ <POINT> and </POINT>
■ <PARAM> and </PARAM>

DESIGNSPACE Tag

The <DESIGNSPACE> tag defines the start of the exploration space of a
custom space. The end tag </DESIGNSPACE> defines the end of the
exploration space. Both of these tags are required for all custom spaces.

POINT Tag

The POINT tag pair must occur within the DESIGNSPACE tag pair. The
<POINT <name>=<stage> enabled=”<value>”> tag defines the start of the
exploration point in a custom exploration space. The end tag </POINT>
defines the end of the exploration point. The POINT also allows you to
specify the <stage> value and whether a particular point is active for a
particular DSE exploration.

12–22 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

The “<stage>” value in the POINT tag can be one of the following:

■ map—indicates an Analysis & Synthesis setting change for that point
■ fit—indicates a Fitter setting change for that point
■ seed—indicates a Fitter seed change
■ llr—indicates a LogicLock property change

The <value> value in the POINT tag can either be "1," indicating that for a
specific stage the exploration point is active, or "0" for an inactive point.

An example of a POINT tag follows:

<POINT space=”map” enabled=”1”>
...
</POINT>

The preceding point indicates a point that has Analysis & Synthesis
setting changes and is active during Analysis & Synthesis.

PARAM Tag

The PARAM tag pair must occur within the POINT tag pair. The
<PARAM name=”<parameter>”> tag defines the start of a parameter to be
modified for a particular exploration point. The end tag </PARAM>
defines the end of the parameter. The Analysis & Synthesis settings and
the “<parameter>” values are shown in Table 12–7.

Table 12–7. Analysis & Synthesis Settings Note (1)

Analysis & Synthesis Settings Description Value

STRATIX_OPTIMIZATION_TECHNIQUE Type of optimization technique to use
during the Analysis & Synthesis stage
of a Quartus II software compilation for
a Stratix device.

SPEED,
AREA,
BALANCED

CYCLONE_OPTIMIZATION_TECHNIQUE Type of optimization technique to use
during the Analysis & Synthesis stage
of a Quartus II software compilation for
a Cyclone device.

SPEED,
AREA,
BALANCED

ADV_NETLIST_OPT_SYNTH_GATE_RETIME Gate-level register retiming. OFF, ON

ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP WYSIWYG primitive resynthesis. OFF, ON

DSE_SYNTH_EXTRA_EFFORT_MODE Controls the Quartus II software
synthesis effort.

MODE_1,
MODE_2,
MODE_3

Note to Table 12–7:
(1) Not all Analysis & Synthesis settings are available for all device families.

Altera Corporation 12–23
November 2006 Preliminary

DSE Advanced Information

Table 12–8 shows the Fitter settings. An example of a PARAM tag is shown
below:

<PARAM name=”ADV_NETLIST_OPT_SYNTH_GATE_RETIME”> ON </PARAM>
The point in the example above indicates that the Analysis and Synthesis
setting gate-level retiming is turned on for the exploration space point.

Simple Custom Space

The custom exploration space example below shows a simple custom
exploration space performing a seed sweep with settings for the Analysis
& Synthesis and the Fitter compilation stages.

<DESIGNSPACE>
<POINT space="map" enabled="1">

 <PARAM name="CYCLONE_OPTIMIZATION_TECHNIQUE">SPEED</PARAM>
 <PARAM name="ADV_NETLIST_OPT_SYNTH_GATE_RETIME">ON</PARAM>
 <PARAM name="ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP">ON</PARAM>
 <PARAM name="STRATIX_OPTIMIZATION_TECHNIQUE">SPEED</PARAM>
 </POINT>
<POINT space="fit" enabled="1">
 <PARAM name="PHYSICAL_SYNTHESIS_REGISTER_RETIMING">ON</PARAM>
 <PARAM name="PHYSICAL_SYNTHESIS_REGISTER_DUPLICATION">

ON</PARAM>
 <PARAM name="AUTO_PACKED_REG_CYCLONE">OFF</PARAM>
 <PARAM name="AUTO_PACKED_REGISTERS_STRATIX">OFF</PARAM>
 <PARAM name="SEED">3</PARAM>
 <PARAM name="PHYSICAL_SYNTHESIS_COMBO_LOGIC">ON</PARAM>
</POINT>

Table 12–8. Fitter Settings Note (1)

Fitter Settings Description Value

AUTO_PACKED_REGISTERS_STRATIX Register packing for
Stratix devices

NORMAL, MINIMIZE_AREA,
MINIMIZE_AREA_WITH_CHAINS

AUTO_PACKED_REG_CYCLONE Register packing for
Cyclone devices

OFF, MINIMIZE_AREA,
MINIMIZE_AREA_WITH_CHAINS

INNER_NUM PowerFit fitter effort
level

{integer value}

PHYSICAL_SYNTHESIS_COMBO_LOGIC Physical synthesis for
combinational logic

OFF, ON

PHYSICAL_SYNTHESIS_REGISTER_
DUPLICATION

Physical synthesis for
register duplication

OFF, ON

PHYSICAL_SYNTHESIS_REGISTER_
RETIMING

Physical synthesis for
register retiming

OFF, ON

Note to Table 12–8:
(1) Not all Fitter settings are available for all device families.

12–24 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

</DESIGNSPACE>

The example defines a custom exploration space that has two points: one
map exploration point which changes synthesis settings, and one fit
exploration point which change the Quartus II Fitter settings. The map
point sets the optimization technique to speed, turns on gate-level
retiming, and turns on the WYSIWYG resynthesis. For the fit point,
register retiming, register duplication, and physical synthesis for
combinational logic are turned on; register packing is turned off; and a
seed value of three is used.

Custom Space XML Schema

The following example contains an XML schema describing the XML
format for custom exploration space files. You can use an advanced XML
editor or XML verification tool to validate any custom exploration files
against this schema.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"

attributeFormDefault="unqualified">
<xs:element name="DESIGNSPACE">

<xs:annotation>
<xs:documentation>The root element of a design space

 description</xs:documentation>
</xs:annotation>
<xs:complexType>

<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element ref="POINT"/>

</xs:sequence>
<xs:attribute name="project" type="xs:string" use="optional"/>

Altera Corporation 12–25
November 2006 Preliminary

DSE Advanced Information

Document
Revision History

Table 12–9 show the revision history for this document.

Table 12–9. Document Revision History

Date &
Document

Version
Changes Made Summary of Changes

November 2006
v6.1.0 Added revison history to the document.

Added support information
for the Stratix III device.

May 2006 v6.0.0 Updated for the Quartus II software version 6.0.0:
● Updated with the new TimeQuest Timing Analyzer feature.

October 2005
v5.1.0

Chapter 12 was formerly Chapter 10 in version 5.0.

May 2005 v5.0.0 Chapter 10 was formerly Chapter 9 in version 4.2.

Dec. 2004 v2.1 ● Updates to tables and figures.
● New functionality in the Quartus II software version 4.2.

June 2004 v2.0 ● Updates to tables and figures.
● New functionality in the Quartus II software version 4.1.

Feb. 2004 v1.0 Initial release.

12–26 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Altera Corporation 13–1
November 2006 Preliminary

13. LogicLock Design
Methodology

Introduction Available exclusively in the Altera® Quartus® II software, the
LogicLock™ feature enables you to design, optimize, and lock down your
design one module at a time. With the LogicLock feature, you can
independently create and implement each logic module into a
hierarchical or team-based design. With this method, you can preserve
the performance of each module during system integration. The
LogicLock feature also facilitates the incremental compilation flow for
block-based design available in the Quartus II software.

f For more information on hierarchical and team-based design, refer to the
Quartus II Incremental Compilation for Hierarchical & Team-Based Design
chapter in volume 1 of the Quartus II Handbook.

The Quartus II software beginning with version 4.2 supports the
LogicLock block-based design flow for all of the following device
families:

■ Stratix® II, Stratix, Stratix GX
■ Cyclone™ series
■ MAX® II, APEX®, APEX II
■ Excalibur™
■ Mercury™ (Mercury devices support only locked and fixed regions)

1 This chapter assumes that you are familiar with the basic
functionality of the Quartus II software.

Improving Design Performance

The LogicLock flow helps you optimize and preserve performance. You
can use the LogicLock flow to place modules, entities, or any group of
logic into regions in a device’s floorplan. LogicLock assignments can be
hierarchical, which allows you to have more control over the placement
and performance of each module as well as groups of modules.

In addition to hierarchical blocks, you can apply LogicLock constraints to
individual nodes; for example, you can make a wildcard path-based
LogicLock assignment on a critical path. This technique is useful if the
critical path spans multiple design blocks.

QII52009-6.1.0

13–2 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

1 Although LogicLock constraints can improve performance, they
can also degrade performance if they are not applied correctly.

The Quartus II
LogicLock
Methodology

The LogicLock design methodology lets you place the logic in each netlist
file into a fixed or floating region in an Altera device. You can then
maintain the placement and, if necessary, the routing of your blocks in the
Altera device, thus retaining performance. Also, the LogicLock design
methodology allows you to create design floorplans to obtain good
results with the full incremental compilation flow in the Quartus II
software.

Figures 13–1 compares the traditional design flow with the LogicLock
design flow.

Figure 13–1. Traditional Design Flow Compared with Quartus II LogicLock
Design Flow

f For more information on block-based design with the LogicLock feature,
refer to the Quartus II Incremental Compilation for Hierarchical &
Team-Based Design chapter in volume 1 of the Quartus II Handbook.

Design

Integrate

Optimize

Verify

Traditional Design Flow

Design, Optimize & Verify

Integrate

Verify

LogicLock Design Flow

Altera Corporation 13–3
November 2006 Preliminary

Preserving Timing Results Using the LogicLock Flow

Preserving
Timing Results
Using the
LogicLock Flow

To preserve the timing results for a design module in the Quartus II
software, you need to preserve the placement and routing information for
all the logic in the design module. You can use one of two methods to
preserve the placement and the routing results for a design module:

■ You can use the LogicLock design methodology to back-annotate
logic locations within a LogicLock region, which makes assignments
to each node in the design.

■ You can use the incremental compilation flow to preserve the fitting
results for a design partition, and use the LogicLock design
methodology to create a design floorplan that achieves good results.

f For more information on block-based design with the LogicLock feature,
refer to the Quartus II Incremental Compilation for Hierarchical &
Team-Based Design chapter in volume 1 of the Quartus II Handbook.

When preserving logic placement in an Altera device, using LogicLock
back-annotation, an atom netlist preserves the node names in subblocks
of your design. An atom netlist contains design information that fully
describes the submodule logic in terms of the device architecture. In the
atom netlist, the nodes are fixed as Altera primitives and the node names
do not change if the atom netlist does not change. If a node name changes,
any placement information associated with that node, such as LogicLock
assignments made when back-annotating a region, is invalid and ignored
by the compiler.

If all the netlists are contained in one Quartus II project, use the
LogicLock flow to back-annotate the logic in each region. If a design
region changes, only the netlist associated with the changed region is
affected. When you place and route the design using the Quartus II
software, the software needs to re-fit only the LogicLock region
associated with the changed netlist file.

1 Turn on the Prevent further netlist optimization option when
back-annotating a region with the Synthesis Netlist
Optimizations and/or Physical Synthesis Optimization
options turned on. This sets the Netlist Optimizations option to
Never Allow for all nodes in the region, avoiding the possibility
of a node name change in the top-level design when the region
is recompiled.

13–4 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

You may need to remove previously back-annotated assignments for a
modified block because the node names may be different in the newly
synthesized version. When you recompile with one new netlist file, the
placement and assignments for the unchanged netlist files assigned to
other LogicLock regions are not affected. Therefore, you can make
changes to code in an independent block and not interfere with another
designer’s changes, even when all the blocks are integrated into the same
top-level design.

With the LogicLock design methodology, you can develop and test
submodules without affecting other areas of a design.

Designing with
the LogicLock
Feature

To design with the LogicLock feature, create a LogicLock region in a
supported device and then assign logic to the region. The LogicLock
region can contain any contiguous, rectangular block of device resources.
After you optimize the logic placed within the boundaries of a region to
achieve the required performance, you must back-annotate the region’s
contents to lock the logic placement and routing. Locking the placement
and routing preserves the performance when you integrate the region
with the rest of the design.

This section explains the basics of designing with the LogicLock regions,
including:

■ Creating LogicLock Regions
■ Timing Closure Floorplan View
■ LogicLock Region Properties
■ Hierarchical (Parent and/or Child) LogicLock Regions
■ Assigning LogicLock Region Content
■ Excluded Resources
■ Tcl Scripts
■ Importing and Exporting LogicLock Regions
■ Additional Quartus II LogicLock Design Features

Creating LogicLock Regions

There are four ways to create a LogicLock region:

■ On the Assignments menu, click LogicLock Regions Window.
■ Using the Create New Region button in the Timing Closure

Floorplan.
■ On the View menu, click Project Navigator. Use the Hierarchy tab.
■ Tcl scripts.

Altera Corporation 13–5
November 2006 Preliminary

Preserving Timing Results Using the LogicLock Flow

LogicLock Regions Window

The LogicLock window is comprised of the LogicLock Regions window
(Figure 13–2) and LogicLock Region Properties dialog box. Use the
LogicLock Regions window to create LogicLock regions and assign nodes
and entities to them. The dialog box provides a summary of all LogicLock
regions in your design. In the LogicLock Regions window, you can
modify a LogicLock region’s size, state, width, height, and origin as well
as whether the region is soft or reserved. When the region is
back-annotated, the placement of the nodes within the region are relative
to the region’s origin, and the region’s node placement during
subsequent compilations is maintained.

1 The origin location varies based on device family. For Stratix II,
Stratix, Stratix GX, Cyclone series, and MAX II devices, the
LogicLock region’s origin is located at the bottom-left corner of
the region. For all other supported devices, the origin is located
at the top-left corner of the region.

The LogicLock Regions window displays any LogicLock regions that
contain illegal assignments in red. If you make illegal assignments, you
can use the Repair Branch command to reset the assignments for the
currently selected region and its descendents to legal default values.

For more information on the Repair Branch command, refer to “Repair
Branch” on page 13–22.

Figure 13–2. LogicLock Regions Window

You can customize the LogicLock Regions window by dragging and
dropping the various columns. The columns can also be hidden.

1 The Soft and Reserved columns are not shown by default.

13–6 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

For designs targeting Stratix II, Stratix, Stratix GX, Cyclone series, and
MAX II devices, the Quartus II software automatically creates a
LogicLock region that encompasses the entire device. This default region
is labelled Root_region, and it is effectively locked and fixed.

Use the LogicLock Region Properties dialog box to obtain detailed
information about your LogicLock region, such as which entities and
nodes are assigned to your region and what resources are required (see
Figure 13–3). The LogicLock Region Properties dialog box shows the
properties of the current selected regions.

1 To open the LogicLock Region Properties dialog box,
double-click any region in the LogicLock Regions window, or
right-click the region and click Properties.

Figure 13–3. LogicLock Region Properties Dialog Box

Altera Corporation 13–7
November 2006 Preliminary

Preserving Timing Results Using the LogicLock Flow

To back-annotate the contents of your LogicLock regions, perform these
steps:

1. In the LogicLock Region Properties dialog box, click
Back-Annotate Contents. The Back-Annotate Assignments dialog
is shown.

2. In the Back-Annotate Assignments dialog box, in the Back
annotation type list, select Advanced (Figure 13–4) and click OK.

3. In the LogicLock Region Properties dialog box, click OK.

1 If using the incremental compilation flow, logic back-annotation
is not required. Preserve placement results using the Post-Fit
Netlist Type instead of making placement assignments with
back-annotation as described in this section.

Figure 13–4. Back-Annotate Assignments Dialog Box (Advanced Type)

1 You also can back-annotate routing within LogicLock regions to
preserve performance of the regions. For more information on
back-annotating routing, refer to “Back-Annotating Routing
Information” on page 13–34.

13–8 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

When you back-annotate a region’s contents, all of the design element
nodes appear under Back-annotated nodes with an assignment to a
device resource under Node Location, for example, logic array block
(LAB), M512, M4K, M-RAM, and digital signal processing (DSP) block.
Each node’s location is the placement of the node after the last
compilation. If the origin of the region changes, the node’s location
changes to maintain the same relative placement. This relative placement
preserves the performance of the module. If cell assignments are
demoted, then the nodes are assigned to LABs rather than directly to logic
cells.

Timing Closure Floorplan Editor

The Timing Closure Floorplan Editor has toolbar buttons that are used to
manipulate LogicLock regions as shown in Figure 13–5. You can use the
Create New LogicLock Region button to draw LogicLock regions in the
device floorplan.

1 The Timing Closure Floorplan Editor displays LogicLock
regions when you select Show User Assignments or Show
Fitter Placements. The type of region determines its appearance
in the floorplan.

The Timing Closure Floorplan Editor differentiates between user
assignments and fitter placements. When the Show User Assignments
option is enabled in the Timing Closure Floorplan, you can see current
assignments made to a LogicLock region. When the Fitter Placement
option is enabled, you can see the properties of the LogicLock region after
the last compilation. User-assigned LogicLock regions appear in the
Floorplan Editor with a dark blue border (Figure 13–5). Fitter-placed
regions appear in the Floorplan Editor with a magenta border.

Altera Corporation 13–9
November 2006 Preliminary

Preserving Timing Results Using the LogicLock Flow

Figure 13–5. Floorplan Editor Toolbar Buttons

Design Hierarchy

After you perform either a full compilation or analysis and elaboration on
the design, the Quartus II software displays the hierarchy of the design.
On the View menu, click Project Navigator. With the hierarchy of the
design fully expanded, as shown in Figure 13–6, To create a LogicLock
region, with the design fully expanded, right-click on any design entity in
the design and click Create New LogicLock Region.

13–10 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Figure 13–6. Using the Project Navigator to Create LogicLock Regions

Timing Closure Floorplan View

The Timing Closure Floorplan view provides you with current and last
compilation assignments on one screen. You can display device resources
in either of two views: the Field View and the Interior Cells View, as
shown in Figure 13–7. The Field View provides an uncluttered view of the
device floorplan in which all device resources such as embedded system
blocks (ESBs) and MegaLAB™ blocks are outlined. The Interior Cells
View provides a detailed view of device resources, including individual
logic elements within a MegaLAB and device pins.

Altera Corporation 13–11
November 2006 Preliminary

Preserving Timing Results Using the LogicLock Flow

Figure 13–7. Timing Closure Floorplan Editor

LogicLock Region Properties

A LogicLock region is defined by its size (height and width) and location
(where the region is located on the device). You can specify the size
and/or location of a region, or the Quartus II software can generate them
automatically. The Quartus II software bases the size and location of the
region on the region’s contents and the module’s timing requirements.
Table 13–1 describes the options for creating LogicLock regions.

Field View Interior Cells View

Table 13–1. Types of LogicLock Regions

Properties Values Behavior

State Floating
(default),
Locked

Floating regions allow the Quartus II software to determine the region’s location on
the device. Locked regions represent user-defined locations for a region and are
shown with a solid boundary in the floorplan. A locked region must have a fixed size.

Size Auto
(default),
Fixed

Auto-sized regions allow the Quartus II software to determine the appropriate size of
a region given its contents. Fixed regions have a user-defined shape and size.

Reserved Off (default),
On

The reserved property allows you to define whether the Fitter can use the resources
within a region for entities that are not assigned to the region. If the reserved property
is turned on, only items assigned to the region can be placed within its boundaries.

Soft Off (default),
On

Soft (on) regions give more deference to timing constraints, and allow some entities
to leave a region if it improves the performance of the overall design. Hard (off)
regions do not allow contents to be placed outside of the boundaries of the region.

Origin Any
Floorplan
Location

The origin is the origin of the LogicLock region’s placement on the floorplan. For
Stratix, Stratix II, Stratix GX, Cyclone series, and MAX II devices, the origin is
located in the lower left corner. The origin is located in the upper left corner for other
device families.

13–12 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

1 The Quartus II software cannot automatically define a region’s
size if the location is locked. Therefore, if you want to specify the
exact location of the region, you must also specify the size.
Mercury devices support only locked and fixed regions.

The floorplan excerpt in Figure 13–8 shows the LogicLock region
properties for a design implemented in a Stratix device.

Figure 13–8. LogicLock Region Properties

Hierarchical (Parent and/or Child) LogicLock Regions

With the LogicLock design flow, you can define a hierarchy for a group of
regions by declaring parent and/or child regions. The Quartus II
software places a child region completely within the boundaries of its
parent region, allowing you to further constrain module locations.
Additionally, parent and child regions allow you to further improve a
module’s performance by constraining the nodes in the module’s critical

Altera Corporation 13–13
November 2006 Preliminary

Preserving Timing Results Using the LogicLock Flow

path. Figure 13–9 shows an example child region within a parent region,
including labels for a locked location and floating location in a Stratix II
device.

Figure 13–9. Child Region Within a Parent Region

1 The LogicLock region hierarchy does not have to be the same as
the design hierarchy.

A child region’s location can float within its parent or remain locked
relative to its parent’s origin. A locked parent region’s location is locked
relative to the device. If the child’s location is locked and the parent’s
location is changed, the child’s origin changes but maintains the same
placement relative to the origin of its parent. Either you or the Quartus II
software can determine a child region’s size; however, the child region
must fit entirely within the parent region.

Assigning LogicLock Region Content

Once you have defined a LogicLock region, you must assign resources to
it using the Timing Closure Floorplan, the LogicLock Regions dialog box,
the Assignment Editor, or Tcl scripts with the Quartus II Tcl Console or
the quartus_sh executable.

13–14 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Using Drag & Drop to Place Logic

You can drag selected logic displayed in the Hierarchy tab of the Project
Navigator, Node Finder, or a schematic design file and drop it into the
Timing Closure Floorplan or the LogicLock Regions dialog box.
Figure 13–10 shows logic that has been dragged from the Hierarchy tab
of the Project Navigator and dropped into a LogicLock region in the
Timing Closure Floorplan.

Figure 13–10. Drag & Drop Logic in the Timing Closure Floorplan

Figure 13–11 shows logic that has been dragged from the Hierarchy tab
of the Project Navigator and dropped into the LogicLock Regions
Properties dialog box. Logic can also be dropped into the Design
Element Assigned column of the Contents tab of the LogicLock Region
Properties box.

Altera Corporation 13–15
November 2006 Preliminary

Preserving Timing Results Using the LogicLock Flow

Figure 13–11. Drag & Drop Logic into the LogicLock Regions Dialog Box

1 You must manually assign pins to a LogicLock region. The
Quartus II software does not include pins automatically when
you assign an entity to a region. The software only obeys pin
assignments to locked regions that border the periphery of the
device. For Stratix, Stratix II, Cyclone II, Cyclone, and MAX II
devices, the locked regions must include the I/O pins as
resources.

Excluded Resources

The Excluded Resources feature allows you to easily exclude specific
device resources such as DSP blocks or M4K memory blocks from a
LogicLock region. For example, you can specify resources that belong to
a specific entity that are assigned to a LogicLock region, and specify that
these resources be included with the exception of the DSP blocks. Use the
Excluded Resources feature on a per-LogicLock region member basis.
Figure 13–12 shows the LogicLock Region Properties dialog box with the
Excluded Resources highlighted.

13–16 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Figure 13–12. LogicLock Region Properties Dialog Box

To exclude certain device resources from an entity, in the LogicLock
Region Properties dialog box, highlight the entity in the Design Element
Assigned column, and click Edit Excluded Resources. The Excluded
Resources dialog box is shown (Figure 13–13). In the Excluded
Resources dialog box, you can select the device resources you want to
exclude from the entity. Once you have selected the resources to exclude,
the Excluded Resources column is updated in the LogicLock Region
Properties dialog box to reflect the excluded resources.

Altera Corporation 13–17
November 2006 Preliminary

Preserving Timing Results Using the LogicLock Flow

Figure 13–13. Excluded Resources

1 The Excluded Resources feature prevents certain resource types
from being included in a region, but it does not prevent the
resources from being placed inside the region unless the region’s
“Reserved” property is set to On. To inform the Fitter that
certain resources are not required inside a LogicLock region,
define a resource filter.

Tcl Scripts

You can create LogicLock regions and assign nodes to them with Tcl
commands that you can run from the Tcl Console or at the command
prompt. The Tcl command set_logiclock is used to create or change
the attributes of LogicLock regions.

f For more information on creating and using LogicLock regions and
contents, refer to the Command Line and Tcl API topics in the Quartus II
online Help or “Scripting Support” on page 13–38.

Importing and Exporting LogicLock Regions

1 This section describes the steps required to import and export
the LogicLock regions. For information on importing and
exporting the assignments for lower-level design partitions
using the incremental compilation flow, refer to the Quartus II
Incremental Compilation for Hierarchical & Team-Based Design
chapter in volume 1 of the Quartus II Handbook.

13–18 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

For the Quartus II software to achieve optimal placement, you should
make timing assignments for all clock signals in the design, including tSU,
tCO, and tPD.

To facilitate the LogicLock design flow, the Timing Closure Floorplan
highlights resources that have back-annotated LogicLock regions.

Export the Module

This section describes how to export a module’s constraints to a format
that can be imported by a top-level design. To be exported, a module
requires design information as an atom netlist (VQM or EDF), placement
information stored in a Quartus II Settings File, and routing information
stored in a Routing Constraints File (.rcf).

Atom Netlist Design Information
The atom netlist contains design information that fully describes the
module’s logic in terms of an Altera device architecture. If the design was
synthesized using a third-party tool and then brought into the Quartus II
software, an atom netlist already exists and the node names are fixed. You
do not need to generate another atom netlist. However, if you use any
Synthesis Netlist Optimizations or Physical Synthesis Optimizations, you
must generate a Verilog Quartus Mapping Netlist File (.vqm) using the
Quartus II software, because the original atom netlist may have changed
as a result of these optimizations.

1 Turn on the Prevent further netlist optimization option when
back-annotating a region with the Synthesis Netlist
Optimizations and/or Physical Synthesis Optimization
options turned on. This sets the Netlist Optimizations to Never
Allow for all nodes in the region, avoiding the possibility of a
node name change when the region is imported into the
top-level design.

If you synthesized the design as a VHDL Design File (.vhd), Verilog
Design File (.v), Text Design File (.tdf), or a Block Design File (.bdf) in the
Quartus II software, you must also create an atom netlist to fix the node
names. During compilation, the Quartus II software creates a Verilog
Quartus Mapping Netlist File in the atom_netlists subdirectory in the
project directory.

1 If the atom netlist is from a third-party synthesis tools and the
design has a black-box library of parameterized modules (LPM)
functions or Altera megafunctions, you must generate a
Quartus II Verilog Quartus Mapping Netlist File for the
black-box modules.

Altera Corporation 13–19
November 2006 Preliminary

Preserving Timing Results Using the LogicLock Flow

f For instructions on creating an atom netlist in the Quartus II software,
refer to Saving Synthesis Results for an Entity to a Verilog Quartus Mapping
File in Quartus II Help.

When you export LogicLock regions, all your design assignments are
exported. Filtering is done only when the design is imported. However,
you can export a subentity of the compilation hierarchy and all of its
relevant regions. To do this, right-click the entity in the Hierarchy tab of
the Project Navigator and click Export Assignments.

Placement Information
The Quartus II Settings File contains the module’s LogicLock constraint
information, including clock settings, pin assignments, and relative
placement information for back-annotated regions. To maintain
performance, you must back-annotate the module.

Routing Information
The Routing Constraints File (.rcf) contains the module’s LogicLock
routing information. To maintain performance, you must back-annotate
the module.

Exporting the Routing Constraint File and Atom Netlist
To specify the Routing Constraint File and Atom Netlist to export,
perform the following steps:

1. Run a full compilation.

2. On the Assignments menu, click LogicLock Regions Window.

3. Right-click the region name, and click Properties.

4. In the LogicLock Region Properties dialog box, click
Back-Annotate Contents.

5. Enable or disable any of the advanced options such as Prevent
further netlist optimization.

6. Turn on Routing, and click OK.

7. In the LogicLock Region Properties dialog box, click OK.

8. On the Assignments menu, click Export Assignments.

9. In the Export Assignments dialog box, turn on Export
back-annotated routing and Save a node-level netlist of the entire
design into a persistent source file, click OK.

13–20 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

f For instructions on exporting a LogicLock region assignment in the
Quartus II software, refer to Exporting LogicLock Region Assignments &
Other Entity Assignments in Quartus II Help.

Import the Module

To specify which Quartus II Settings File for a specific instance or entity,
use the LogicLock Import File Name option in the Assignment Editor.
This option lets you specify different LogicLock region constraints for
each instance of an entity and import them into the top-level design. You
also can specify an RCF file with the LogicLock Routing Constraints File
Name option in the Assignment Editor.

When importing LogicLock regions into the top-level design, you must
specify the Quartus II Settings File and Routing Constraints File for the
modules in the project. If the design instantiates a module multiple times,
the Quartus II software applies the LogicLock regions multiple times.

1 Before importing LogicLock regions, you must perform analysis
and elaboration, or compile the top-level design, thus ensuring
that the Quartus II software is aware of all instances of the
lower-level modules.

The following sections describe how to specify a Quartus II Settings File
for a module and how to import the LogicLock assignments into the
top-level design.

Importing the Routing Constraints File and the Atom Netlist File
To specify the Quartus II Settings File and atom netlist to import, perform
the following steps:

1. On the Assignments menu, click Import Assignments. In the
Import Assignments dialog box, click Advanced.

2. In the Advanced Import Settings dialog box, turn on
Back-annotated routing.

Now, when you import a LogicLock region, the routing constraint file is
also be imported.

Import the Assignments
On the Assignments menu, click Import Assignments to import the
assignments. The Import Assignments dialog box is shown
(Figure 13–14).

Altera Corporation 13–21
November 2006 Preliminary

Preserving Timing Results Using the LogicLock Flow

Figure 13–14. Import Assignments Dialog Box

Use the options available in the Advanced Import Settings dialog box to
control how you import your LogicLock regions (Figure 13–15).

Figure 13–15. Advanced Import Settings Dialog Box

To prevent spurious no-fit errors, parent, or top-level regions with
multiple instances (that do not contain back-annotated routing
information), are imported with their states set to floating. Otherwise, the
region’s state remains as specified in the Quartus II Settings File. This
allows the Quartus II software to move LogicLock regions to areas on the

13–22 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

device with free resources. A child region is locked or floating relative to
its parent region’s origin as specified in the module’s original LogicLock
constraints.

1 If you want to lock a LogicLock region to a location, you can
manually lock down the region in the LogicLock Regions dialog
box or the Timing Closure Floorplan.

Each imported LogicLock region has a name that corresponds to the
original LogicLock region name combined with the instance name in the
form of <instance name>|<original LogicLock region name>. For example, if
a LogicLock region for a module is named LLR_0 and the instance name
for the module is Filter:inst1, then the LogicLock region name in the
top-level design is Filter:inst1|LLR_0.

Compile & Verify the Top-Level Design

After importing all modules, you can compile and verify the top-level
design. The compilation report shows whether system timing
requirements have been met.

Additional Quartus II LogicLock Design Features

To complement the LogicLock Regions dialog box and Device Floorplan
view, the Quartus II software has additional features to help you design
with the LogicLock feature.

Tooltips

When you move the mouse pointer over a LogicLock region name on the
Hierarchy tab of the Project Navigator or LogicLock Regions dialog box,
or over the top bar of the LogicLock region in the Timing Closure
Floorplan, the Quartus II software displays a tooltip with information
about the properties of the LogicLock region.

Placing the mouse pointer over fitter-placed LogicLock regions displays
the maximum routing delay within the LogicLock region. To enable this
feature, on the View menu, point to Routing and click Show Intra-region
Delay.

Repair Branch

When you retarget your design to either a larger or smaller device, there
is a chance that your LogicLock regions no longer contain valid values for
location or size in the new device, resulting in an illegal LogicLock region.
In the LogicLock Regions dialog box, the Quartus II software identifies
and displays in red the names of illegal LogicLock regions.

Altera Corporation 13–23
November 2006 Preliminary

Preserving Timing Results Using the LogicLock Flow

To correct the illegal LogicLock region, use the Repair Branch command.
Right click the desired LogicLock region’s name and choose Repair
Branch.

If more then one illegal LogicLock region exists, you can repair all
regions. To do so, right-click the first line in the LogicLock window that
contains the text “LogicLock Regions” and click Repair Branch.

Reserve LogicLock Region

The Quartus II software honors all entity and node assignments to
LogicLock regions. Occasionally, entities and nodes do not occupy an
entire region, which leaves some of the region’s resources unoccupied. To
increase the region’s resource utilization and performance, the Quartus II
software’s default behavior fills the unoccupied resources with other
nodes and entities that have not been assigned to any other region. You
can prevent this behavior by turning on Reserve unused logic cells on
the Contents tab of the LogicLock Region Properties dialog box. When
this option is turned on, your LogicLock region only contains the entities
and nodes that you have specifically assigned to your LogicLock region.

In a team-based design environment, this option is extremely helpful in
device floorplanning. When this option is turned on, each team can be
assigned a portion of the device floorplan where placement and
optimization of each submodule occurs. Device resources can be
distributed to every module without affecting the performance of other
modules.

Prevent Assignment to LogicLock Regions Option

Turning on the Prevent Assignment to LogicLock Regions option
excludes the specified entity or node from being a member of any
LogicLock region. However, it does not prevent the entity or node from
entering into LogicLock regions. The fitter places the entity or node
anywhere on the device as if no regions exist. For example, if an entire
module is assigned to a LogicLock region, when this option is turned on,
you can exclude a specific subentity or node from the region.

1 You can make the Prevent Assignment to LogicLock Regions
assignment to an entity or node in the Assignment Editor under
Assignment Name.

13–24 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

LogicLock Regions Connectivity

The Timing Closure Floorplan Editor allows you to see connections
between various LogicLock regions that exist within a design. The
connection between the regions is drawn as a single line between the
LogicLock regions. The thickness of this line is proportional to the
number of connections between the regions.

Rubber Banding

On the View menu, click Routing, and select Rubber Banding to show
existing connections between LogicLock regions and nodes during
movement of LogicLock regions within the Floorplan Editor.

Show Critical Paths

You can display the critical paths in the design by turning on the Show
Critical Paths option. Use this option with the Critical Paths Settings
option to display paths based on the Timing Analysis report, as shown in
Figure 13–16.

Figure 13–16. Show Critical Paths & Critical Paths Settings

Show Connection Count

You can determine the number of connections between LogicLock
regions by turning on the Show Connection Count option.

Analysis & Synthesis Resource Utilization by Entity

The Compilation Report contains an Analysis & Synthesis Resource
Utilization by Entity section, which reports accurate resource usage
statistics, including entity-level information. This feature is useful when
manually creating LogicLock regions.

Altera Corporation 13–25
November 2006 Preliminary

Preserving Timing Results Using the LogicLock Flow

Path-Based Assignments

You can assign paths to LogicLock regions based on source and
destination nodes, allowing you to easily group critical design nodes into
a LogicLock region. The path source and destination nodes can be any of
the following:

■ Valid register-to-register path, meaning that the source and
destination nodes must be registers

■ Valid pin-to-register path, meaning the source node is a pin and the
destination node is a register

■ Valid register to pin path, meaning that the source node is a register
and the destination node is a pin

■ Valid pin-to-pin path, meaning that both the source and destination
nodes are pins

Figure 13–17 shows the Paths dialog box.

To access the Paths dialog box, on the Contents tab of the Logic Lock
Regions dialog box, click Add Path or Edit Path.

1 Both “*” and “?” wildcard characters are allowed for the source
and destination nodes. When creating path-based assignments,
you can exclude specific nodes using the Name exclude field in
the Paths dialog box.

13–26 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Figure 13–17. Paths Dialog Box

You can also use the Quartus II Timing Analysis Report to create
path-based assignments by following these steps:

1. Expand the Timing Analyzer section in the Compilation Report.

2. Select any of the clocks in the section that is labeled “Clock
Setup:<clock name>.”

3. Locate a path that you want to assign to a LogicLock region. Drag
this path from the Report window and drop it in the <<new>>
section of the LogicLock Region window.

This operation creates a path-based assignment from the source register
to the destination register as shown in the Timing Analysis Report.

Altera Corporation 13–27
November 2006 Preliminary

Preserving Timing Results Using the LogicLock Flow

Quartus II Revisions Feature

When you create, modify, or import LogicLock regions into a top-level
design, you may need to experiment with different configurations to
achieve your desired results. The Quartus II software provides the
Revisions feature that allows for a convenient way to organize the same
project with different settings until an optimum configuration is found.

On the Project menu, click Revisions. In the Revisions dialog box, create
and set revisions. Revision can be based on the current design or any
previously created revisions. A description can also be entered for each
revision created. This is a convenient way to organize the placement
constraints created for your LogicLock regions.

LogicLock Assignment Precedence

Conflicts might arise during the assignment of entities and nodes to
LogicLock regions. For example, an entire top-level entity might be
assigned to one region and a node within this top-level entity assigned to
another region. To resolve conflicting assignments, the Quartus II
software maintains an order of precedence for LogicLock assignments.
The Quartus II software’s order of precedence is as follows from highest
to lowest:

1. Exact node-level assignments
2. Path-based and wildcard assignments
3. Hierarchical assignments

However, conflicts might also occur within path-based and wildcard
assignments. Path-based and wildcard assignment conflicts arise when
one path-based or wildcard assignment contradicts another path-based
or wildcard assignment. For example, a path-based assignment is made
containing a node labeled X and assigned to LogicLock region
PATH_REGION. A second assignment is made using wildcard assignment
X* with node X being placed into region WILDCARD_REGION. As a result
of these two assignments, node X is assigned to two regions:
PATH_REGION and WILDCARD_REGION.

To resolve this type of conflict, the Quartus II software keeps the order in
which the assignments were made and treats the last assignment created
with the highest priority.

13–28 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

1 Open the Priority dialog box by selecting Priority on the
Contents tab of the LogicLock properties dialog box. You can
change the priority of path-based and wildcard assignments by
using the Up or Down buttons in the Priority dialog box. To
prioritize assignments between regions, you must select
multiple LogicLock regions. Once the regions have been
selected, you can open the Priority dialog box from the
LogicLock Properties window.

LogicLock Regions Versus Soft LogicLock Regions

Normally all nodes assigned to a particular LogicLock region always
reside within the boundaries of that region. Soft LogicLock regions can
enhance design performance by removing the fixed rectangular
boundaries of LogicLock regions. When you assign a LogicLock region as
being “Soft,” the Quartus II software attempts to place as many nodes
assigned to the region as close together as possible, and has the added
flexibility of moving nodes outside of the soft region to meet your design
performance requirement. This allows the Quartus II Fitter greater
flexibility in placing nodes in the device to meet your performance
requirements.

When you assign nodes to a soft LogicLock region, they can be placed
anywhere in the device, but if the soft region is the child of a region, the
nodes are not assigned outside the boundaries of the first non-soft parent
region. If a non-soft parent does not exist (in a design targeting a Stratix II,
Stratix GX, Stratix, Cyclone II, Cyclone, or MAX II device), the region
floats within the Root_region, that is, the boundaries of the device. You
can turn on the Soft Region option on the Location tab of the LogicLock
Region Properties dialog box.

1 Soft regions can have an arbitrary hierarchy that allows any
combination of parent and child to be a soft region. The
Reserved option is not compatible with soft regions.

Soft LogicLock regions cannot be back-annotated because the Quartus II
software may have placed nodes outside of the LogicLock region
resulting in undefinable location assignments relative to the region’s
origin and size.

Soft LogicLock regions are available for all device families that support
floating LogicLock regions.

Altera Corporation 13–29
November 2006 Preliminary

Preserving Timing Results Using the LogicLock Flow

Virtual Pins

When you compile a design in the Quartus II software, all I/O ports are
directly mapped to pins on the targeted device. The I/O port mapping
may create problems for a modular and hierarchical design as lower level
modules may have I/O ports that exceed device pins available on the
targeted device. Or, the I/O ports may not directly feed a device pin, but
instead drive other internal nodes. The Quartus II accommodates this
situation by supporting virtual pins.

The Virtual Pin assignment communicates to the Quartus II software
which I/O ports of the design module are internal nodes in the top-level
design. These assignments prevent the number of I/O ports in the lower
level module from exceeding the total number of available device pins.
Every I/O port that is designated as a virtual pin is mapped to either an
LCELL or ALM, depending on the target device. Figure 13–19 shows the
virtual input and output pins in the Timing Closure Floorplan Editor.

1 Bidirectional, registered I/O pins, and I/O pins with output
enable signals cannot be virtual pins.

In the top-level design, these virtual pins are connected to an internal
node of another module. Making assignments to virtual pins allows you
to place them in the same location or region on the device as the
corresponding internal nodes would exist in the top-level module. This
feature has the added benefit of providing accurate timing information
during lower-level module optimization.

To accommodate designs with multiple clock domains, you can specify
individual clock signals by turning on the Virtual Pin Clock option for
each virtual pin.

Use the following guidelines for creating virtual pins in the Quartus II
software:

■ Clock pins should not be declared as virtual pins.
■ Nodes/signals that drive physical device pins in the top-level design

should not be declared as virtual pins.

13–30 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Figure 13–18. Virtual I/O Pins in the Quartus II Floorplan Editor

1 Bidirectional, registered I/O pins, and I/O pins with output
enable signals cannot be virtual pins. All virtual pins must map
to device I/O pins in the top-level design.

Figure 13–19 shows assigning virtual pins using the Assignment Editor.

Altera Corporation 13–31
November 2006 Preliminary

LogicLock Restrictions

Figure 13–19. Using the Assignment Editor to Assign Virtual Pins

1 In the Node Finder, setting Filter Type to Pins: Virtual allows
you to display all assigned virtual pins in the design. From the
Assignment Editor, to access the Node Finder, double-click the
To field; when the arrow appears on the right side of the field,
click the arrow and select Node Finder.

LogicLock
Restrictions

This section discusses restrictions to consider when you use the
LogicLock design flow, including:

■ Constraint priority
■ Placing LogicLock regions
■ Placing memory, pins, and other device features into LogicLock

regions

Constraint Priority

During the design process, placing restrictions on nodes or entities in the
design often is necessary. These restrictions often conflict with the node
or entity assignments for a LogicLock region. To avoid conflicts, consider

13–32 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

the order of precedence given to constraints by the Quartus II software
during fitting. The following assignments have priority over LogicLock
region assignments:

■ Assignments to device resources and location assignments
■ Fast input register and fast output register assignments
■ Local clock assignments for Stratix devices
■ Custom region assignments
■ I/O standard assignments

The Quartus II software removes nodes and entities from LogicLock
regions if any of these constraints are applied to them.

Placing LogicLock Regions

A fixed region must contain all of the resources required for the module.
Although the Quartus II software automatically can place and size
LogicLock regions to meet resource and timing requirements, you can
manually place and size regions to meet your design needs. To do so,
follow these guidelines:

■ LogicLock regions with pin assignments must be placed on the
periphery of the device, adjacent to the pins. (For Stratix II, Stratix,
Stratix GX, Cyclone series, and MAX II devices, you must also
include the I/O block.)

■ Floating LogicLock regions cannot overlap.
■ Avoid creating fixed and locked regions that overlap.
■ After back-annotating a region, the software can place the region

only in areas on the device with exactly the same resources.

1 These guideline are particularly important if you want to import
multiple instances of a module into a top-level design, because
you must ensure that the device has two or more locations with
exactly the same device resources. If the device does not have
another area with exactly the same resources, the Quartus II
software generates a fitting error during compilation of the
top-level design.

Figure 13–20 shows a floorplan with two instantiations of the same
module. Both modules have the same LogicLock constraints and require
exactly the same resources. The Quartus II software places the two
LogicLock regions in different areas of the device that have the same
resources.

Altera Corporation 13–33
November 2006 Preliminary

LogicLock Restrictions

Figure 13–20. Floorplan of Two Instances of a LogicLock Region

Placing Memory, Pins & Other Device Features into LogicLock
Regions

A LogicLock region includes all device resources within its boundaries.
You can assign pins to LogicLock regions; however, this placement puts
location constraints on the region. When the Quartus II software places a
floating auto-sized region, it places the region in an area that meets the
requirements of the LogicLock region’s contents.

1 Pin assignments to LogicLock regions are effective only in fixed
and locked regions. Pins assigned to floating regions do not
influence the region’s placement.

Only one LogicLock region can claim a device resource. If the boundary
includes part of a device resource, such as a DSP block, the Quartus II
software allocates the entire resource to the LogicLock region.
Figure 13–21 shows two overlapping regions in the same Stratix DSP
block. The Quartus II software can assign this resource to only one of the
LogicLock regions. The region’s resource requirements determine which
region gets the assignment. If both regions require a DSP block, the
Quartus II software issues a fitting error.

13–34 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Figure 13–21. Overlapping LogicLock Regions

Back-Annotating
Routing
Information

LogicLock regions not only allow you to preserve the placement of logic
from one compilation to the next, but also allow you to retain the routing
inside the LogicLock regions. With both placement and routing locked,
you have an extremely portable design module that can be used many
times in a top-level design without requiring further optimization.

1 Back-annotate routing only if necessary because this can prevent
the Quartus II Fitter from finding an optimal fit for your design.

Back-annotate the routing from the Assignments menu, by choosing
Routing from the Back-Annotate Assignments dialog box. Refer to
Figure 13–4.

1 If you are not using an atom netlist, you must turn on the Save
a node-level netlist of the entire design into a persistent source
file option (on the Assignments menu, click Back-Annotate
Assignments) if back-annotation of routing is selected. Writing
out a Verilog Quartus Mapping Netlist File causes the Quartus II
software to enforce persistent naming of nodes when saving the
routing information. The Verilog Quartus Mapping Netlist File
is then used as the design’s source.

Back-annotated routing information is valid only for regions with fixed
sizes and locked locations. The Quartus II software ignores the routing
information for LogicLock regions you specify as floating and
automatically sized.

Altera Corporation 13–35
November 2006 Preliminary

Back-Annotating Routing Information

The Disable Back-Annotated Node locations option in the LogicLock
Region Properties dialog box is not available if the region contains both
back-annotated routing and back-annotated nodes.

Exporting Back-Annotated Routing in LogicLock Regions

To export the LogicLock region routing information, on the Assignments
menu, click Export Assignments, and in the Export Assignments dialog
box, turn on Export Back-annotated routing. This generates a Quartus II
Settings File and a Routing Constraints File in the specified directory. The
Quartus II Settings File contains all LogicLock region properties as
specified in the current design. The Routing Constraints File contains all
the necessary routing information for the exported LogicLock regions.

This Routing Constraints File works only with the atom netlist for the
entity being exported.

Only regions that have back-annotated routing information have their
routing information exported when you export the LogicLock regions.
All other regions are exported as regular LogicLock regions.

To determine if a LogicLock region contains back-annotated routing, refer
to the Content Status box shown on the Contents tab of the LogicLock
Region Properties dialog box. If routing has been back-annotated, the
status is “Nodes and Routing Back-Annotated” (Figure 13–22).

13–36 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Figure 13–22. LogicLock Status

The Quartus II software also reports whether routing information has
been back-annotated in the Timing Closure Floorplan. LogicLock regions
with back-annotated routing have an “R” in the top-left hand corner of
the region (Figure 13–23).

Altera Corporation 13–37
November 2006 Preliminary

Back-Annotating Routing Information

Figure 13–23. Back-Annotation of Routing

Importing Back-Annotated Routing in LogicLock Regions

To import LogicLock region routing information, you must specify the
instance that will have its routing information imported. This is done
with the assignment LogicLock Routing Constraints File in the
Assignment Editor.

1 A Routing Constraints File must be explicitly specified using the
LogicLock Back-annotated Routing Import File Name
assignment prior to importing any LogicLock region.

The Quartus II software imports LogicLock regions with back-annotated
routing as regions locked to a location and of fixed size.

You can import back-annotated routing if only one instance of the
imported region exists in the top level of the design. If more than one
instance of the imported region exists in the top level of the design, the
routing constraint is ignored and the LogicLock region is imported
without back-annotation of routing. This is because routing resources
from one part of the device may not be exactly the same in another area
of the device.

13–38 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

1 When importing the Routing Constraints File for a lower level
entity, you must use the same atom netlist, that is, the Verilog
Quartus Mapping Netlist File that was used to generate the
Routing Constraints File. This ensures that the node names
annotated in the Routing Constraints File match those in the
atom netlist.

Scripting
Support

You can run procedures and make settings described in this chapter in a
Tcl script. You can also run some procedures at a command prompt. For
detailed information about scripting command options, refer to the
Quartus II Command-Line and Tcl API Help browser. To run the Help
browser, type the following command at the command prompt:

quartus_sh --qhelp r

The Scripting Reference Manual has the same information in PDF form.

f For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook. Refer to the Quartus II
Settings File Reference Manual for information about all settings and
constraints in the Quartus II software. For more information about
command-line scripting, refer to the Command-Line Scripting chapter in
volume 2 of the Quartus II Handbook.

Initializing & Uninitializing a LogicLock Region

You must initialize the LogicLock data structures before creating or
modifying any LogicLock regions and before executing any of the Tcl
commands listed below.

Use the following Tcl command to initialize the LogicLock data
structures:

initialize_logiclock

Use the following command to uninitialize the LogicLock data structures
before closing your project:

uninitialize_logiclock

Creating or Modifying LogicLock Regions

Use the following Tcl command to create or modify a LogicLock region:

set_logiclock -auto_size true -floating true -region \
<my_region-name>

Altera Corporation 13–39
November 2006 Preliminary

Scripting Support

1 In the above example, the region’s size is set to auto and the state
set to floating.

If you specify a region name that does not exist in the design, the
command creates the region with the specified properties. If you specify
the name of an existing region, the command changes all properties you
specify, and leaves unspecified properties unchanged.

For more information about creating LogicLock regions, refer to
“Creating LogicLock Regions” on page 13–4.

Obtaining LogicLock Region Properties

Use the following Tcl command to obtain LogicLock region properties.
This example returns the height of the region named my_region.

get_logiclock -region my_region -height

Assigning LogicLock Region Content

Use the following Tcl commands to assign or change nodes and entities in
a LogicLock region. This example assigns all nodes with names matching
fifo* to the region named my_region.

set_logiclock_contents -region my_region -to fifo*

You can also make path-based assignments with the following Tcl
command:

set_logiclock_contents -region my_region -from \
fifo -to ram*

For more information about assigning LogicLock Region Content, refer to
“Assigning LogicLock Region Content” on page 13–13.

Prevent Further Netlist Optimization

Use this Tcl code to prevent further netlist optimization for nodes in a
back-annotated LogicLock region. In your code, specify the name of your
LogicLock region.

foreach node [get_logiclock_contents -region \
<region name> -node_locations] {

set node_name [lindex $node 0]

13–40 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

set_instance_assignment -name
ADV_NETLIST_OPT_ALLOWED "NEVER ALLOW" -to $node_name

The get_logiclock_contents command is in the logiclock
package.

Save a Node-level Netlist for the Entire Design into a Persistent
Source File (.vqm)

Make the following assignments to cause the Quartus II Fitter to save a
node-level netlist for the entire design into a Verilog Quartus Mapping
Netlist File:

set_global_assignment \
-name LOGICLOCK_INCREMENTAL_COMPILE_ASSIGNMENT ON
set_global_assignment \
-name LOGICLOCK_INCREMENTAL_COMPILE_FILE <file name>

Any path specified in the file name must be relative to the project
directory. For example, specifying atom_netlists/top.vqm places
top.vqm in the atom_netlists subdirectory of your project directory.

A Verilog Quartus Mapping Netlist File is saved in the directory specified
at the completion of a full compilation.

For more information about saving a node-level netlist, refer to “Atom
Netlist Design Information” on page 13–18.

Exporting LogicLock Regions

Use the following Tcl command to export LogicLock region assignments.
This example exports all LogicLock regions in your design to a file called
export.qsf.

logiclock_export -file export.qsf

For more information about exporting LogicLock regions refer to “Export
the Module” on page 13–18.

Altera Corporation 13–41
November 2006 Preliminary

Scripting Support

Importing LogicLock Regions

Use the following Tcl commands to import LogicLock region
assignments. This example ignores any pin assignments in the imported
region.

set_instance_assignment -name LL_IMPORT_FILE \
my_region.qsf -to my_destination

logiclock_import -no_pins

Running the import command imports the assignment types for each
entity in the design hierarchy. The assignments are imported from the file
specified in the LL_IMPORT_FILE setting.

For more information about importing LogicLock regions, refer to
“Import the Module” on page 13–20.

Setting LogicLock Assignment Priority

Use the following Tcl code to set the priority for a LogicLock region’s
members. This example reverses the priorities of the LogicLock region in
your design.

set reverse [list]
foreach member [get_logiclock_member_priority] {

set reverse [insert $reverse 0 $member]
{
set_logiclock_member_priority $reverse

For more information about setting the LogicLock assignment priority,
refer to “Constraint Priority” on page 13–31.

Assigning Virtual Pins

Use the following Tcl command to turn on the virtual pin setting for a pin
called my_pin:

set_instance_assignment -name VIRTUAL_PIN ON \
-to my_pin

For more information about assigning virtual pins, refer to “Virtual Pins”
on page 13–29.

13–42 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Back-Annotating LogicLock Regions

The Quartus II software provides the back-annotate Tcl package that
allows you to back-annotate the contents of a LogicLock region. Use the
following command line option to back-annotate a LogicLock region:

logiclock_back_annotate [-h | -help] [-long_help]
[-region <region name>] [-from <source name>]
[-to <destination name>] [-exclude_from] [-exclude_to] [-path_exclude <path_exclude name>]
[-no_delay_chain] [-no_contents] [-lock] [-routing]
[-resource_filter <resource_filter value>] [-no_dont_touch]

[-remove_assignments] [-no_demote_lab] [-no_demote_mac] [-no_demote_pin] [-no_demote_ram]

For example, the following command back-annotates all nodes and
routing in the region, one_region.

package require ::quartus::backannotate
logiclock_back_annotate -routing -lock -no_demote_lab -region one_region

f For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook. For more information
about command-line scripting, refer to the Command-Line Scripting
chapter in volume 2 of the Quartus II Handbook.

Conclusion The LogicLock block-based design flow shortens design cycles because it
allows design and the implementation of design modules to occur
independently, and also preserves performance of each design module
during system integration. You can export modules, making design reuse
easier.

You can include a module in one or more projects while maintaining
performance, and reducing development costs and time-to-market.
LogicLock region assignments give you complete control over logic and
memory placement so that you can use LogicLock region assignments to
improve the performance of non-hierarchical designs.

Altera Corporation 13–43
November 2006 Preliminary

Conclusion

Document
Revision History

Table 13–2 shows the revision history for this document.

Table 13–2. Document Revision History

Date &
Document

Version
Changes Made Summary of Changes

November 2006
v6.1.0

Added revision history to the document.

May 2006
v6.0.0

Minor updates for the Quartus II software version 6.0.0.

October 2005
v5.1.0

Chapter 13 was formerly Chapter 11 in version 5.0.

May 2005
v5.0.0

Chapter 11 was formerly Chapter 10 in version 4.2.

Dec. 2004 v2.2 ● Updates to tables and figures.
● New functionality in the Quartus II software version

4.2.

August 2004
v2.1

● New functionality in the Quartus II software version
4.1 Sp1.

June 2004 v2.0 ● Updates to tables and figures.
● New functionality in the Quartus II software version

4.1.

Feb. 2004 v1.0 Initial release.

13–44 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Altera Corporation 14–1
November 2006 Preliminary

14. Synplicity Amplify
Physical Synthesis Support

Introduction Synplicity has developed the Amplify Physical Optimizer physical
synthesis software to help designers meet performance and
time-to-market goals. You can use this software to create location
assignments and optimize critical paths outside the Quartus® II software
design environment. The Amplify Physical Optimizer design software,
which runs on the Synplify Pro synthesis engine, creates a Tcl script with
hard location assignments and LogicLock™ regions to control logic
placement in the Quartus II software. Depending on the design, the
Amplify Physical Optimizer software can improve Altera® device
performance over Synplify Pro-compiled designs by reducing the
number of logic levels and the interconnect delays in critical paths.
Moreover, the Amplify Physical Optimizer software allows designers to
compile multiple implementations in parallel to reduce optimization
time.

f For more information on the Synplify Pro software, refer to Synplicity
Synplify & SynplifyPro Support chapter in volume 1 of the Quartus II
Handbook.

This chapter explains the physical synthesis concepts, including an
overview of the Amplify Physical Optimizer software and Quartus II
flow.

Software
Requirements

The examples in this document were generated using the following
software versions:

■ Quartus II, version 5.1
■ Amplify Physical Optimizer, version 3.7

QII52011-6.1.0

14–2 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Amplify Physical
Synthesis
Concepts

The Amplify Physical Optimizer physical synthesis tool uses information
about the interconnect architectures of Altera devices to reduce
interconnect and logic delays in the critical paths. Timing-driven
synthesis tools cannot accurately predict how place-and-route tools
function; therefore, determining the real critical path with the synthesis
tool is a difficult task.

Synthesis tools create technology-level netlist files that work with
floorplans using place-and-route tools. Synthesis tools also define netlist
names that are used in place-and-route, which means hard location
assignments may not apply in the next revision of the resynthesized
netlist as nodes names might have been renamed or removed.

Physical synthesis allows you to create floorplans at the register transfer
level (RTL) of a design, giving you the ability to perform logic tunneling
and replication. Physical synthesis also gives you the flexibility to make
changes at the RTL level, allowing these changes to reflect in previously
planned paths.

Physical synthesis uses knowledge of the FPGA device architecture to
place paths into customized regions. This process will minimize
interconnect delays as interconnect and placement information
influences the synthesis process of the design.

When the Amplify Physical Optimizer software synthesizes a design, it
creates a .vqm atom-netlist and Tcl script files, which are read by the
Quartus II software. You can create a Quartus II project with the VQM
netlist as the top-level module and source the Tcl script generated by the
Amplify Physical Optimizer software. The Tcl script sets the design's
device, timing constraints (Timing Driven Compilation [TDC] value,
multicycle paths, and false paths), and any other constraints specified by
the Amplify Physical Optimizer software. After you source the Tcl script,
you can compile the design in the Quartus II software.

f Refer to “Forward Annotating Amplify Physical Optimizer Constraints
into the Quartus II Software” on page 14–12 for more information on
setting up a Quartus II project with Amplify Physical Optimizer Tcl
script files.

After the Quartus II software compiles the design, the software performs
a timing analysis on the design. The timing analysis reports all timing-
related information for the design. If the design does not meet the timing
requirements, you can use the timing analysis numbers as a reference
when running the next iteration of physical synthesis through the
Amplify Physical Optimizer software. This same timing analysis
information is also reported in a file called <revision name>.tan.rpt in the
design directory.

Altera Corporation 14–3
November 2006 Preliminary

Amplify-to-Quartus II Flow

Amplify-to-
Quartus II Flow

If timing requirements are not met with the Amplify Physical Optimizer
flow, you should first place and route the design in the Quartus II
software without physical constraints. After compilation, you can
determine which critical paths should be optimized in the Amplify
Physical Optimizer tool in the next iteration. Figure 14–1 shows the
Amplify Physical Optimizer design flow.

Figure 14–1. Software Design Flow

Initial Pass: No Physical Constraints

The initial iteration involves synthesizing the design in the Amplify
Physical Optimizer software without physical constraints.

Before beginning the physical synthesis flow, run an initial pass in the
Amplify Physical Optimizer without physical constraints. At the
completion of every Quartus II compilation, the Quartus II Timing
Analyzer performs a comprehensive static timing analysis on your design
and reports your design’s performance and any timing violations. If the
design does not meet performance requirements after the first pass,
additional passes can be made in the Amplify software.

Amplify Software

Timing
Requirements

Satisfied?

Yes

No

Configure Device

Physical Optimization

Quartus II Software

VHDL Verilog
HDL
Files

14–4 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Create New Implementations

To set the Amplify Physical Optimizer software options, perform the
following steps:

1. Compile the design with the Resource Sharing and FSM Compiler
options selected and the Frequency setting specified in MHz. For
optimal synthesis, the Amplify software includes the retiming,
pipelining, and FSM Explorer options. For designs with multiple
clocks, set the frequency of individual clocks with Synthesis
Constraints Optimization Environment (SCOPE).

2. Select New Implementation. The Options for Implementation
dialog box appears.

3. Specify the part, package, and speed grade of the targeted device in
the Device tab.

4. Turn on the Map Logic to Atoms option in the Device Mapping
Options dialog box.

5. Turn off the Disable I/O Insertion and Perform Cliquing options.

6. Specify the name and directory in the Implementation Results tab.
The result format should be VQM, and you should select Optional
Output Files as the Write Vendor Constraint File option so that the
software can generate the Tcl script containing the project
constraints.

7. Specify the number of critical paths and the number of start and end
points to report in the Timing Report tab. Figure 14–2 shows the
main Amplify Physical Optimizer project window.

These steps create a directory where the results of this pass are recorded.
Ensure that the Amplify Physical Optimizer software implementation
options are set as described in the initial pass.

Altera Corporation 14–5
November 2006 Preliminary

Amplify-to-Quartus II Flow

Figure 14–2. Amplify Physical Optimizer Project Window

Iterative Passes: Optimizing the Critical Paths

In the iterative passes, you optimize the design by placing logic in the
device floorplan within the Amplify software. Amplify's floorplan is a
high-level view of the device architecture. The floorplan view is
dependent upon the target device family. When the Amplify Physical
Optimizer re-optimizes the current critical path, additional critical paths
may be created. Continue to add new constraints to the existing floorplan
until it meets the performance requirements. The design may need
several iterations to meet these performance requirements. Since
optimizing critical paths involves trying different implementations, the
creation of various Amplify project implementations will help in
organizing the placement of logic in the floorplan.

14–6 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Using the
Amplify Physical
Optimizer
Floorplans

When designs do not meet performance requirements with the initial
pass through the Amplify Physical Optimizer software, you can create
location assignments to reduce interconnect and logic delays to improve
your design's performance.

You must determine which paths to constrain based on the critical paths
from the previous implementation. When Quartus II projects are
launched with the Amplify Tcl script, the Quartus II software generates a
<revision name>.tan. rpt file that lists the critical paths for the design. You
can then create custom structure regions for critical paths. After critical
paths are implemented in a floorplan with the Amplify Physical
Optimizer software, you must resynthesize the design. The software will
then attempt to optimize the critical paths and reduce the number of logic
levels. After the Amplify Physical Optimizer software resynthesizes the
design, the Quartus II software must compile the new implementation. If
the design does not meet timing requirements, perform another physical
synthesis iteration.

Use the following steps to create a floorplan in the Amplify Physical
Optimizer software:

1. Click the New Physical Constraint File icon at the top of the
Amplify Physical Optimizer window.

2. Click Yes on the Estimation Needed dialog box; the floorplan
window is shown (Figure 14–3).

Figure 14–3. Stratix 1S20 Floorplan in the Amplify Physical Optimizer Software

Altera Corporation 14–7
November 2006 Preliminary

Using the Amplify Physical Optimizer Floorplans

The floorplan view is located at the top of the screen and the RTL view is
at the bottom of the screen.

You can specify modules or individual paths in the Amplify Physical
Optimizer software. Using modules can quickly resolve timing problems.

Use the following steps in the software to create a floorplan module:

1. Create a region in the Amplify Physical Optimizer device floorplan
window and select the module in the RTL view of the design.

2. Drag the module to the new region. The software will then report
the utilization of the region.

3. Resynthesize the design in the software to reoptimize the critical
path after the modules have location constraints.

4. Write out the placement constraints into the VQM netlist and the Tcl
script.

Repeat the above procedure to create as many regions as required.

Multiplexers

To create a floorplan for critical paths with one or more multiplexers,
create multiple regions and assign the multiplexer to one region and the
logic to another. Figure 14–4 shows placing critical paths with
multiplexers.

Figure 14–4. Placing Critical Paths with Multiplexers

Region 2

Region 1

Region 3

Device Column

Place multiplexer in
Region 2 or Region 3.

Place logic portion
in Region 1.

Logic FIFO,
RAM, or

Black Box

14–8 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

If the critical path contains a multiplexer feeding a register, create a region
and place the multiplexer along with the entire critical path in the region
(Figure 14–5).

Figure 14–5. Critical Paths with Multiplexers Feeding Registers

If the critical path is too large for the region, divide the critical path and
ensure that the multiplexer and register are in the same region.
Figure 14–6 shows large critical paths with multiplexers feeding registers.

Figure 14–6. Large Critical Paths with Multiplexers Feeding Registers

Critical Path

Include this multiplexer in the
same region as the critical path
to extract the enable flip flop.

Logic

Critical Path too Large for One LAB

Include this multiplexer in the same region as
the register to to extract the enable flip flop.

Logic

Altera Corporation 14–9
November 2006 Preliminary

Using the Amplify Physical Optimizer Floorplans

Independent Paths

Designs may have two or more independent critical paths. To create an
independent path in the Amplify Physical Optimizer software, follow the
steps below:

1. Create a region and assign the first critical path to that region.

2. Create another region, leaving one MegaLAB structure between the
first and second regions.

3. Assign the second critical path to the second region.

Feedback Paths

If critical paths have the same start and end points, follow the steps below
in the Amplify Physical Optimizer software (Figure 14–7):

1. Select the register and instance not directly connected to the register.

2. Right-click and select Filter Schematic twice.

3. Highlight the line leading out of the register and either press P or
right-click the line. Select Expand Paths. Assign this logic to a
region.

Figure 14–7. Critical Paths with the Same Starting or Ending Points

Starting & Ending Points

Figure 14–8 shows a critical path that has multiple starting and ending
points. Use Find to display all the starting and ending points in the RTL
view in Amplify. Expand the paths between those points. If there is
unrelated logic between the multiple starting points and ending points,

C1 C2 C3 C4

If the critical path does not include I/O pins,
create region in columns C2 or C3.

14–10 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

assign the starting points and ending points to the same region. Similarly,
if there is unrelated logic between starting points and multiple ending
points, assign the starting points and ending points to the same region.

Figure 14–8. Critical Paths with Multiple Starting or Ending Points

If the two critical paths share a register at the starting or ending point,
assign one critical path to one region, and assign the other critical path to
an adjacent region. Figure 14–9 shows two critical paths that share a
register.

Figure 14–9. Two Critical Paths Sharing a Register

If the fanout is on the shared region, replicate the register and assign both
registers to two regions (Figure 14–10). This is done by dragging the same
register to the required regions. Entities and nodes are also replicated by
performing the same procedure.

A BCombinational
Logic

Combinational
Logic

Combinational
Logic

Combinational
Logic

Combinational
Logic

Combinational
Logic

Register
2

Register
1

Region 1

Critical Path 1 End Point

Region 2

Register
3

Critical Path 2 Start Point

Region 1
Critical
Path 1

Region 2
Critical
Path 2Logic 1 Logic 2

Altera Corporation 14–11
November 2006 Preliminary

Using the Amplify Physical Optimizer Floorplans

Figure 14–10. Fanout on a Shared Region

Utilization

Designs with device utilizations of 90% or higher may have difficulties
during fitting in the Quartus II software. If the device has several finite
state machines, you should implement the state machines with sequential
encoding, as opposed to one-hot encoding.

To check area utilization, check the Amplify Physical Optimizer log file
and .srr file for region utilization, after the mapping stage is complete. On
the Run menu, click Estimate Area to update the utilization estimates.

Detailed Floorplans

If the critical path does not meet timing requirements after physical
optimization, you can create new regions to achieve timing closure. It is
recommended that regions do not overlap. Regions should either be
entirely contained in another region or remain entirely outside of it. Select
the logic requiring optimization from the existing region. Deselect the
logic and assign it to the new region. Run the Amplify Physical Optimizer
software on the design with the modified physical constraints. Then place
and route the design.

reg_2reg_1

Critical Path 1 End Point

reg_3

Critical Path 2 Start Point

Region 1
Critical
Path 1

Region 2
Critical
Path 2

reg_1

Critical Path 1 End Point

reg_3

Critical Path 2 Start Point (reg_2 replicate)

reg_2 Replicate
reg_2

Logic

LogicLogic

Logic

Logic

Logic

Logic

Logic

14–12 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

Forward Annotating Amplify Physical Optimizer Constraints into
the Quartus II Software

The Amplify Physical Optimizer software simplifies the forward
annotating of both timing and location constraints into the Quartus II
software through the generation of three Tcl scripts. At the completion of
a physical synthesis run, in the Amplify Physical Optimizer software, the
following Tcl scripts are generated:

■ <project name>_cons.tcl
■ <project name>.tcl
■ <project name>_rm.tcl

Table 14–1 provides a description of each script’s purpose.

To forward annotate Amplify Physical Optimizer's constraints into the
Quartus II software you must use quartus_cmd. The quartus_cmd
command must be used as Amplify Physical Optimizer's Tcl scripts are
not compatible with quartus_sh. The following command will execute
the <project name>_cons, which will create a Quartus II project with all
Amplify Physical Optimizer constraints forward annotated, and will
perform a compilation.

<command prompt>quartus_cmd f-my_project_cons.tcl r

1 You must execute the <project name>_cons.tcl first.

After compilation, you may customize the project either in the Quartus II
GUI or sourcing a custom Tcl script.

f Refer to the Tcl Scripting chapter in volume 2 of the Quartus II Handbook
for more information on creating and understanding Tcl scripts in the
Quartus II software.

Table 14–1. Amplify Physical Optimizer Tcl Script Description

Tcl File Description

<project name>_cons This Tcl script will create and compile a Quartus II project. The <project name>.tcl
will automatically be sourced when this script is sourced.

<project name> This script contains forward annotation of constraint information including clock
frequency, duty cycle, location, etc.

<project name>_rm This script removes any previous constraints from the project. The removed
constrainst is saved in <project name>_prev.tcl

Altera Corporation 14–13
November 2006 Preliminary

Using the Amplify Physical Optimizer Floorplans

Altera Megafunctions Using the MegaWizard Plug-In Manager
with the Amplify Software

When you use the Quartus II MegaWizard® Plug-In Manager to set up
and parameterize a megafunction, it creates either a VHDL or Verilog
HDL wrapper file. This file instantiates the megafunction (a black box
methodology) or, for some megafunctions, generates a fully
synthesizeable netlist for improved results with EDA synthesis tools such
as Synplify (a clear box methodology).

Clear Box Methodology

The MegaWizard Plug-In Manager-generated fully synthesizeable netlist
is referred to as a clear box methodology because the Amplify Physical
Optimizer software can “see” into the megafunction file. The clear box
feature enables the synthesis tool to report more accurate timing
estimates and take better advantage of timing driven optimization.

To turn on the clear box, go to the Tools menu, and select the MegaWizard
Plug-In Manager. Turn on the Generate Clearbox body (for EDA tools
only) option. This option is only for certain megafunctions. If this option
does not appear, then clear box models are not supported for the selected
megafunction. Turning on this option causes the MegaWizard Plug-In
Manager to generate a synthesizable clear box netlist instead of the
megafunction wrapper file described in “Black Box Methodology” on
page 14–14.

Using MegaWizard Plug-In Manager-generated Verilog HDL Files for
Clear Box Megafunction Instantiation
If you check the <output file>_inst.v option on the last page of the wizard,
the MegaWizard Plug-In Manager generates a Verilog HDL instantiation
template file for use in your Synplify design. This file can help you
instantiate the megafunction clear box netlist file, <output file>.v, in your
top-level design. Include the megafunction clear box netlist file in your
Amplify Physical Optimizer project and the information gets passed to
the Quartus II software in the Amplify Physical Optimizer-generated
VQM output file.

Using MegaWizard Plug-In Manager-generated VHDL Files for Clear
Box Megafunction Instantiation
If you check the <output file>.cmp and <output file>_inst.vhd options on
the last page of the wizard, the MegaWizard Plug-In Manager generates
a VHDL component declaration file and a VHDL instantiation template
file for use in your design. These files help to instantiate the megafunction
clear box netlist file, <output file>.vhd, in your top-level design. Include

14–14 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

the megafunction clear box netlist file in your Amplify Physical
Optimizer project and the information gets passed to the Quartus II
software in the Amplify Physical Optimizer-generated VQM output file.

Black Box Methodology

The MegaWizard Plug-In Manager-generated wrapper file is referred to
as a black-box methodology because the megafunction is treated as a
“black box” in the Amplify Physical Optimizer software. The black box
wrapper file is generated by default in the MegaWizard Plug-In
Manager and is available for all megafunctions.

The black-box methodology does not allow the synthesis tool any
visibility into the function module thus not taking full advantage of the
synthesis tool's timing driven optimization. For better timing
optimization, especially if the black box does not have registered inputs
and outputs, add timing models to black boxes.

f For more information on instantiating MegaWizard Plug-In Manager
modules or black boxes, refer to the Synplicity Synplify & SynplifyPro
Support chapter in volume 1 of the Quartus II Handbook.

Conclusion Physical synthesis uses improved delay estimation to optimize critical
paths. The Amplify Physical Optimizer software uses the hierarchical
structure of logic and interconnect in Altera devices so that designers can
direct a critical path to be placed into several well-defined blocks. The
Amplify Physical Optimizer-to-Quartus II software flow is one of the
steps to solving the problem of achieving timing closure through physical
synthesis.

Altera Corporation 14–15
November 2006 Preliminary

Conclusion

Document
Revision History

Table 14–2 shows the revision history for this document.

Table 14–2. Document Revision History

Data &
Document

Version
Changes Made Summary of Changes

November 2006
v6.1.0

Added revision history to this chapter.

May 2006
v6.0.0

Minor updates for the Quartus II software version
6.0.0.

October 2005
v5.1.0

Chapter 14 was formerly Chapter 12 in version 5.0.

May 2005
v5.0.0

Chapter 12 was formerly Chapter 11 in version 4.2.

Dec. 2004 v1.1 ● Chapter 11 was formerly Chapter 12.
● Updates to tables and figures.
● New functionality in the Quartus II software

version 4.2

Feb. 2004 v1.0 Initial release.

14–16 Altera Corporation
Preliminary November 2006

Quartus II Handbook, Volume 2

	Quartus II Version 6.1 Handbook Volume 2: Design Implementation & Optimization
	Contents
	Chapter Revision Dates
	About this Handbook
	How to Contact Altera
	Third-Party Software Product Information
	Typographic Conventions

	Section I. Scripting & Constraint Entry
	1. Assignment Editor
	Introduction
	Using the Assignment Editor
	Category, Node Filter, Information & Edit Bars
	Category Bar
	Node Filter Bar
	Information Bar
	Edit Bar

	Viewing & Saving Assignments in the Assignment Editor

	Assignment Editor Features
	Using the Enhanced Spreadsheet Interface
	Dynamic Syntax Checking
	Node Filter Bar
	Using Assignment Groups
	Customizable Columns
	Tcl Interface

	Assigning Pin Locations Using the Assignment Editor
	Creating Timing Constraints Using the Assignment Editor
	Exporting & Importing Assignments
	Exporting Assignments
	Exporting Pin Assignments
	Importing Assignments

	Conclusion
	Document Revision History

	2. Command-Line Scripting
	Introduction
	The Benefits of Command-Line Executables
	Introductory Example
	Command-Line Executables
	Command-Line Scripting Help
	Command-Line Option Details
	Option Precedence

	Design Flow
	Compilation with quartus_sh --flow
	Text-Based Report Files
	Makefile Implementation

	Command-Line Scripting Examples
	Create a Project & Apply Constraints
	Check Design File Syntax
	Create a Project & Synthesize a Netlist Using Netlist Optimizations
	Archive & Restore Projects
	Perform I/O Assignment Analysis
	Update Memory Contents without Recompiling
	Fit a Design as Quickly as Possible
	Fit a Design Using Multiple Seeds
	The QFlow Script

	Document Revision History

	3. Tcl Scripting
	Introduction
	What is Tcl?

	Quartus II Tcl Packages
	Loading Packages

	Quartus II Tcl API Help
	Executables Supporting Tcl
	Command-Line Options: -t, -s & --tcl_eval
	Run a Tcl Script
	Interactive Shell Mode
	Evaluate as Tcl

	Using the Quartus II Tcl Console Window

	End-to-End Design Flows
	Creating Projects & Making Assignments
	HardCopy Device Design
	EDA Tool Assignments
	Using LogicLock Regions

	Compiling Designs
	The flow Package

	Reporting
	Creating CSV Files for Excel
	Short Option Names

	Timing Analysis
	Classic Timing Analysis
	Advanced Classic Timing Analysis

	TimeQuest Timing Analysis
	TimeQuest Scripting

	Automating Script Execution
	Making the Assignment
	Script Execution
	Execution Example
	Controlling Processing
	Displaying Messages

	Other Scripting Features
	Natural Bus Naming
	Using Collection Commands
	The foreach_in_collection Command
	The get_collection_size Command

	Using the post_message Command
	Accessing Command-Line Arguments
	Using the cmdline Package

	Using the Quartus II Tcl Shell in Interactive Mode
	Quartus II Legacy Tcl Support
	Tcl Scripting Basics
	Hello World Example
	Variables
	Substitutions
	Variable Value Substitution
	Nested Command Substitution
	Backlash Substitution

	Arithmetic
	Lists
	Arrays
	Control Structures
	Procedures
	File I/O
	Syntax & Comments
	References

	Document Revision History

	4. Managing Quartus II Projects
	Introduction
	Creating a New Project
	Using Revisions With Your Design
	Creating & Deleting Revisions
	Creating a Revision
	Delete a Revision

	Comparing Revisions

	Creating Different Versions of Your Design
	Archiving Projects with the Quartus II Archive Project Feature
	Archive a Project
	Restore an Archived Project

	Version- Compatible Databases
	Migrate to a New Version
	Save the Database in a Version-Compatible Format

	Quartus II Project Platform Migration
	Filenames & Hierarchy
	Relative Paths
	Specifying Libraries
	Specifying User Libraries
	Specifying Global Libraries

	Search Path Precedence Rules
	Quartus II-Generated Files for Third-Party EDA Tools
	Migrating Database Files

	Working with Messages
	Messages Window
	Hiding Messages

	Message Suppression
	Message Suppression Methods
	Details & Limitations
	Message Suppression Manager
	Suppressible Messages
	Suppression Rules
	Suppressed Messages

	Quartus II Settings File
	Format Preservation

	Quartus II Default Settings File
	Scripting Support
	Managing Revisions
	Creating Revisions
	Setting the Current Revision
	Getting a List of Revisions
	Deleting Revisions

	Archiving Projects with a Tcl Command or at the Command Prompt
	Restoring Archived Projects
	Importing & Exporting Version-Compatible Databases
	Specifying Libraries Using Scripts

	Conclusion
	Document Revision History

	Section II. I/O & PCB Tools
	5. I/O Management
	Introduction
	I/O Planning Overview
	Understanding Altera FPGA Pin Terminology
	Package Pins
	Pads
	I/O Banks
	VREF Groups

	Importing & Exporting Pin Assignments
	Comma Separated Value File
	Quartus II Settings Files
	Tcl Script
	FPGA Xchange File
	Pin-Out File

	Creating Pin-Related Assignments
	Assignment Editor
	Assigning Pin Locations Using the Assignment Editor
	Setting Pin Locations From the Device Pin Number List
	Setting Pin Locations from the Design Signal Name List

	Tcl Scripts
	Timing Closure Floorplan
	Synthesis Attributes
	chip_pin & useioff
	altera_attribute

	Using the Pin Planner
	Groups List
	All Pins List
	Pad View
	Package View
	Using the Pin Finder to Find Compatible Pin Locations
	Creating Reserved Pin Assignments
	Creating Pin Location Assignments
	Assigning Locations for Unassigned Pins
	Assigning a Location for Differential Pins
	Assigning an Unassigned Pin to a Pin Location
	Error Checking Capability

	Changing Pin Locations
	Show I/O Banks
	Show VREF Groups
	Show Edges
	Show DQ/DQS Pins
	Displaying & Accepting Fitter Placements

	Early I/O Planning Using the Pin Planner
	Create a Megafunction or IP MegaCore Variation from the Pin Planner
	Import a Megafunction or IP MegaCore Variation from the Pin Planner
	Create a Top-Level Netlist for I/O Analysis
	Configure Megafunctions for Creating a Top-Level Design File
	Create a Top-Level Design File

	Using I/O Assignment Analysis to Validate Pin Assignments
	I/O Assignment Analysis Design Flows
	Design Flow without Design Files
	Design Flow with Design Files
	Using Output Enable Group Logic Option Assignments with I/O Assignment Analysis

	Inputs for I/O Assignment Analysis
	Generating a Mapped Netlist
	Creating Pin-Related Assignments
	Reserving Pins
	Location Assignments
	Suggested & Partial Placement

	Understanding the I/O Assignment Analysis Report & Messages
	Scripting Support
	Running the I/O Assignment Analysis
	Tcl Command
	Command Prompt

	Generating a Mapped Netlist
	Tcl Command
	Command Prompt

	Reserving Pins
	Location Assignments

	Incorporating PCB Design Tools
	Advanced I/O Timing
	Default I/O Timing & Power with Capacitive Loading
	Enabling & Configuring Advanced I/O Timing
	Define Overall Board Trace Models
	Customize the Board Trace Model in the Pin Planner
	Create Signal Integrity Result Reports

	Conclusion
	Document Revision History

	6. Mentor Graphics PCB Design Tools Support
	Introduction
	FPGA-to-PCB Design Flow
	Setting Up the Quartus II Software
	Generating Pin-Out Files
	Generating FPGA Xchange Files
	Creating a Backup Quartus II Settings File

	FPGA-to-Board Integration with the I/O Designer Software
	I/O Designer Database Wizard
	Updating Pin Assignments from the Quartus II Software
	Sending Pin Assignment Changes to the Quartus II Software
	Protecting Assignments in the Quartus II Software

	Generating Symbols for the DxDesigner Software
	Setting Up the I/O Designer Software to Work with the DxDesigner Software
	Create Symbols with the Symbol Wizard
	Export Symbols to the DxDesigner Software

	Scripting Support

	FPGA-to-Board Integration with the DxDesigner Software
	DxDesigner Project Settings
	DxDesigner Symbol Wizard

	Conclusion
	Document Revision History

	7. Cadence PCB Design Tools Support
	Introduction
	Product Comparison
	FPGA-to-PCB Design Flow
	Setting Up the Quartus II Software
	Generating Pin-Out Files

	FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software
	Symbol Creation
	Allegro PCB Librarian Part Developer
	Import and Export Wizard
	Edit & Fracture Symbol
	Update FPGA Symbol

	Instantiating the Symbol in the Cadence Allegro Design Entry HDL Software

	FPGA-to-Board Integration with Allegro Design Entry CIS
	Allegro Design Entry CIS Project Creation
	Generate Part
	Split Part
	Instantiate Symbol in Design Entry CIS Schematic
	Altera Libraries for Design Entry CIS

	Conclusion
	Document Revision History

	Section III. Area, Timing & Power Optimization
	8. Area & Timing Optimization
	Introduction
	Optimization Process Stages

	Design Space Explorer
	Optimization Advisors
	Initial Compilation
	Device Setting
	Smart Compilation Setting
	Partitions & Floorplan Assignments for Incremental Compilation
	Timing Requirement Settings
	Timing Constraint Check-Report Unconstrained Paths

	Optimize Hold Timing
	Optimize Fast Corner Timing
	Asynchronous Control Signal Recovery/Removal Analysis
	Fitter Effort Setting
	I/O Assignments
	Early Timing Estimation
	Design Assistant

	Design Analysis
	Error & Warning Messages
	Ignored Timing Assignments
	Resource Utilization
	I/O Timing (Including tPD)
	fMAX Timing
	Tips for Analyzing Failing Paths
	Tips for Analyzing Failing Clock Paths that Cross Clock Domains

	Global Routing Resources
	Compilation Time

	Resource Utilization Optimization Techniques (LUT-Based Devices)
	Resolving Resource Utilization Issues Summary
	I/O Pin Utilization or Placement
	Use I/O Assignment Analysis
	Modify Pin Assignments or Choose a Larger Package

	Logic Utilization or Placement
	Use Register Packing
	Remove Fitter Constraints
	Perform WYSIWYG Resynthesis with Balanced or Area Setting
	Optimize Synthesis for Area, Not Speed
	Change State Machine Encoding
	Flatten the Hierarchy During Synthesis
	Restructure Multiplexers
	Retarget Memory Blocks
	Retarget or Balance DSP Blocks
	Optimize Source Code
	Use a Larger Device

	Routing
	Set Auto Register Packing to Auto
	Set Fitter Aggressive Routability Optimizations to Always
	Increase Placement Effort Multiplier
	Increase Router Effort Multiplier
	Remove Fitter Constraints
	Set Maximum Router Optimization Level
	Optimize Synthesis for Area, Not Speed
	Optimize Source Code
	Use a Larger Device

	I/O Timing Optimization Techniques (LUT-Based Devices)
	Improving Setup & Clock-to-Output Times Summary
	Timing-Driven Compilation
	Fast Input, Output & Output Enable Registers
	Programmable Delays
	Use PLLs to Shift Clock Edges
	Use Fast Regional Clocks in Stratix Devices & Regional Clocks in Stratix II Devices
	Change How Hold Times are Optimized for MAX II Devices

	fMAX Timing Optimization Techniques (LUT-Based Devices)
	Improving fMAX Summary
	Synthesis Netlist Optimizations & Physical Synthesis Optimizations
	Turn Off Extra-Effort Power Optimization Settings
	Optimize Synthesis for Speed, Not Area
	Flatten the Hierarchy During Synthesis
	Set the Synthesis Effort to High
	Change State Machine Encoding
	Duplicate Logic for Fan-Out Control
	Prevent Shift Register Inference
	Use Other Synthesis Options Available in Your Synthesis Tool
	Fitter Seed
	Optimize Source Code
	LogicLock Assignments
	Hierarchy Assignments
	Path Assignments

	Location Assignments & Back-Annotation
	Custom Regions
	Back-Annotation & Manual Placement
	Optimizing Placement for Stratix, Stratix II & Cyclone II Devices
	Optimizing Placement for Cyclone Devices
	Optimizing Placement for Mercury, APEX II & APEX 20KE/C Devices

	Resource Utilization Optimization Techniques (Macrocell- Based CPLDs)
	Use Dedicated Inputs for Global Control Signals
	Reserve Device Resources
	Pin Assignment Guidelines & Procedures
	Control Signal Pin Assignments
	Output Enable Pin Assignments
	Estimate Fan-In When Assigning Output Pins
	Outputs Using Parallel Expander Pin Assignments

	Resolving Resource Utilization Problems
	Resolving Macrocell Usage Issues
	Resolving Routing Issues
	Using LCELL Buffers to Reduce Required Resources

	Timing Optimization Techniques (Macrocell- Based CPLDs)
	Improving Setup Time
	Improving Clock-to-Output Time
	Improving Propagation Delay (tPD)
	Improving Maximum Frequency (fMAX)
	Optimizing Source Code-Pipelining for Complex Register Logic

	Compilation- Time Optimization Techniques
	Incremental Compilation
	Reduce Synthesis Time & Synthesis Netlist Optimization Time
	Synthesis Netlist Optimizations

	Check Early Timing Estimation before Fitting
	Reduce Placement Time
	Fitter Effort Setting
	Placement Effort Multiplier Settings
	Final Placement Optimization Levels
	Physical Synthesis Effort Settings
	Limit to One Fitting Attempt
	Preserving Placement, Incremental Compilation, & LogicLock Regions

	Reduce Routing Time
	Identify Routing Congestion in the Timing Closure Floorplan
	Router Effort Multiplier Setting
	Preserve Routing Incremental Compilation & LogicLock Regions

	Use Multiple Processors for Multi-Threaded Compilation

	Scripting Support
	Initial Compilation Settings
	Resource Utilization Optimization Techniques (LUT-Based Devices)
	I/O Timing Optimization Techniques (LUT-Based Devices)
	fMAX Timing Optimization Techniques (LUT-Based Devices)
	Duplicate Logic for Fan-Out Control

	Conclusion
	Document Revision History

	9. Power Optimization
	Introduction
	Power Dissipation
	Design Space Explorer
	Power-Driven Compilation
	Power-Driven Synthesis
	Power-Driven Synthesis Experiment for Stratix II Devices
	Power-Driven Fitter
	Power-Driven Fitter Experiment for Stratix II Devices

	Recommended Flow for Power-Driven Compilation
	Area-Driven Synthesis
	Area-Driven Synthesis Experiment for Stratix II Devices
	Area-Driven Synthesis Experiment for Cyclone II Devices

	Gate-Level Register Retiming
	Gate-Level Register Retiming Experiment for Stratix II Devices
	Gate-Level Register Retiming Experiment for Cyclone II Devices

	Design Guidelines
	Clock Power Management
	LAB-Wide Clock Enable Example

	Reducing Memory Power Consumption
	Memory Power Reduction Example

	Pipelining & Retiming
	Pipelining Experiment for Stratix II Devices
	Pipelining Experiment for Cyclone II Devices

	Architectural Optimization
	Architectural Optimization Experiment for Stratix II Devices
	Architectural Optimization Experiment for Cyclone II

	I/O Power Guidelines
	Power Optimization Advisor
	Power Optimization Advisor Example

	Conclusion

	Document Revision History

	10. Timing Closure Floorplan
	Introduction
	Invoking the Timing Closure Floorplan Editor
	Design Analysis Using the Timing Closure Floorplan
	Timing Closure Floorplan Views
	Field View
	Other Views

	Viewing Assignments
	Viewing Critical Paths
	Physical Timing Estimates
	LogicLock Region Connectivity
	Viewing Routing Congestion

	Conclusion
	Document Revision History

	11. Netlist Optimizations & Physical Synthesis
	Introduction
	Synthesis Netlist Optimizations
	WYSIWYG Primitive Resynthesis
	Gate-Level Register Retiming
	Allow Register Retiming to Trade-Off tSU/tCO with fMAX

	Preserving Synthesis Netlist Optimization Results

	Physical Synthesis Optimizations
	Automatic Asynchronous Signal Pipelining
	Physical Synthesis for Combinational Logic
	Physical Synthesis for Registers-Register Duplication
	Physical Synthesis for Registers-Register Retiming
	Preserving Your Physical Synthesis Results

	Applying Netlist Optimization Options
	Scripting Support
	Synthesis Netlist Optimizations
	Physical Synthesis Optimizations
	Incremental Compilation
	Back-Annotating Assignments

	Conclusion
	Document Revision History

	12. Design Space Explorer
	Introduction
	DSE Concepts
	Exploration Space & Exploration Point
	Seed & Seed Sweeping

	DSE Exploration

	General Description
	Timing Analyzer Support

	DSE Flow
	DSE Support for Altera Device Families
	DSE Project Settings
	Setting Up the DSE Work Environment
	Specifying the Revision
	Setting the Initial Seed
	Restructuring LogicLock Regions
	Search for Best Performance, Search for Best Area Options, or Search for Lowest Power Option
	Advanced Search Option

	Quartus II Integrated Synthesis

	Performing an Advanced Search in Design Space Explorer
	Exploration Space
	Seed Sweep
	Extra Effort Spaces
	Physical Synthesis Spaces
	Retiming Space
	Area Optimization Space
	Custom Space
	Signature Mode

	Optimization Goal
	Quality of Fit (QoF)
	Search Method

	DSE Flow Options
	Create a Revision from a DSE Point
	Stop If Zero Failing Paths are Achieved
	Continue Exploration Even If Base Compilation Fails
	Run Quartus II PowerPlay Power Analyzer During Exploration
	Archive All Compilations
	Stop Flow After Time
	Save Exploration Space to File
	Ignore SignalTap & SignalProbe Settings
	Skip Base Analysis & Compilation If Possible
	Lower Priority of Compilation Threads
	DSE Configuration File

	DSE Advanced Information
	Computer Load Sharing in DSE Using Distributed Exploration
	Distributed DSE Using LSF Resources
	Distributed DSE Using a Quartus II Master Process

	Concurrent Local Compilations
	Creating Custom Spaces for DSE
	DESIGNSPACE Tag
	POINT Tag
	PARAM Tag
	Simple Custom Space
	Custom Space XML Schema

	Document Revision History

	13. LogicLock Design Methodology
	Introduction
	Improving Design Performance

	The Quartus II LogicLock Methodology
	Preserving Timing Results Using the LogicLock Flow
	Designing with the LogicLock Feature
	Creating LogicLock Regions
	LogicLock Regions Window
	Timing Closure Floorplan Editor
	Design Hierarchy

	Timing Closure Floorplan View
	LogicLock Region Properties
	Hierarchical (Parent and/or Child) LogicLock Regions
	Assigning LogicLock Region Content
	Using Drag & Drop to Place Logic

	Excluded Resources
	Tcl Scripts
	Importing and Exporting LogicLock Regions
	Export the Module
	Atom Netlist Design Information
	Placement Information
	Routing Information
	Exporting the Routing Constraint File and Atom Netlist

	Import the Module
	Importing the Routing Constraints File and the Atom Netlist File
	Import the Assignments

	Compile & Verify the Top-Level Design

	Additional Quartus II LogicLock Design Features
	Tooltips
	Repair Branch
	Reserve LogicLock Region
	Prevent Assignment to LogicLock Regions Option
	LogicLock Regions Connectivity
	Rubber Banding
	Show Critical Paths
	Show Connection Count
	Analysis & Synthesis Resource Utilization by Entity
	Path-Based Assignments
	Quartus II Revisions Feature
	LogicLock Assignment Precedence
	LogicLock Regions Versus Soft LogicLock Regions
	Virtual Pins

	LogicLock Restrictions
	Constraint Priority
	Placing LogicLock Regions
	Placing Memory, Pins & Other Device Features into LogicLock Regions

	Back-Annotating Routing Information
	Exporting Back-Annotated Routing in LogicLock Regions
	Importing Back-Annotated Routing in LogicLock Regions

	Scripting Support
	Initializing & Uninitializing a LogicLock Region
	Creating or Modifying LogicLock Regions
	Obtaining LogicLock Region Properties
	Assigning LogicLock Region Content
	Prevent Further Netlist Optimization
	Save a Node-level Netlist for the Entire Design into a Persistent Source File (.vqm)
	Exporting LogicLock Regions
	Importing LogicLock Regions
	Setting LogicLock Assignment Priority
	Assigning Virtual Pins
	Back-Annotating LogicLock Regions

	Conclusion
	Document Revision History

	14. Synplicity Amplify Physical Synthesis Support
	Introduction
	Software Requirements
	Amplify Physical Synthesis Concepts
	Amplify-to- Quartus II Flow
	Initial Pass: No Physical Constraints
	Create New Implementations

	Iterative Passes: Optimizing the Critical Paths

	Using the Amplify Physical Optimizer Floorplans
	Multiplexers
	Independent Paths
	Feedback Paths
	Starting & Ending Points
	Utilization
	Detailed Floorplans
	Forward Annotating Amplify Physical Optimizer Constraints into the Quartus II Software
	Altera Megafunctions Using the MegaWizard Plug-In Manager with the Amplify Software
	Clear Box Methodology
	Using MegaWizard Plug-In Manager-generated Verilog HDL Files for Clear Box Megafunction Instantiation
	Using MegaWizard Plug-In Manager-generated VHDL Files for Clear Box Megafunction Instantiation

	Black Box Methodology

	Conclusion
	Document Revision History

