
Embedded Systems Lab CSEE 4840 : Imagic Design Document

Abhilash Itharaju Nalini Vasudevan Vitaliy Shchupak Walter Dearing

Abstract

We have two goals for our project. The basic goal is
to read the contents of SD card, using the SD Card
reader on the DE2 board, decode and display all the
JPEG images in it on the screen one after the other as
a slideshow using the onboard VGA DAC. The next
and more aggressive goal once this is achieved is to
have effects in the slide show like fading, bouncing
etc.

1 Introduction

The basic idea is to have two peripherals, 1) to con-
trol the onboard SD card reader and 2) to control
the VGA DAC. The function of first peripheral is to
talk to SD card reader and to read things from it.
The other peripheral is to interact with VGA DAC
and provide it with the proper signals (pixel data,
H SYNC, V SYNC, BLANKING). The main function
of the software is to initialize and control the periph-
erals and also to decode the JPEG image once it is
read from the SD card. The top level idea is to have
two memory locations. One is where the program sits
(SDRAM) and the other (SRAM) is where the image
buffer is kept so that the video peripheral can read
from it.

2 Hardware Design

The hardware is broken into four main components:

1. SDRAM

2. VGA Peripheral

3. SD Card Controller

4. Nios II System

The four main components communicate over the
Avalon Bus. The clock signal used is 50 MHz. The
image is stored on the SD Card. The Nios II processor
reads in this image and decompresses it. It then sends

Figure 1: Block Diagram of Imagic



the image to the VGA peripheral. The VGA periph-
eral stores the data sent from the NIOS into SRAM.
The VGA peripheral then reads the SRAM every 25
MHz for a new pixel to display on the screen.

Because each component of the system can be treated
as a black box, each item will be discussed in detail
separately.

2.1 Interface with MMC/SD Card

We will be communicating with the MMC/SD Card in
the SPI mode. Since SD Card is backward compatible
with MMC card, the interface is the same. This is how
we can make the NIOS-II processor talk to the MMC
card.

The following figure shows how the FPGA is con-
nected to the SD Card slot.

Figure 2: FPGA Connection to the SD Card Slot

For the SPI mode we need all the 4 pins.

2.1.1 SPI Commands

Communications between the microcontroller and the
MMC are initiated by different commands sent from
the FPGA. All commands are 6 bytes long and are
transmitted MSB first.

The following are the list of commands that can be
sent to the MMC Card.

CRC CALCULATION

The CRC bit calculation is performed:

Figure 3: SPI Commands

Figure 4: FPGA Connection to the SD Card Slot

2



7 bit CRC Calculation: G(x) = x7 + x3 + 1
M(x) = (start bit) x39 + (second bit) x38+ ...+ (last
bit before CRC) x0
CRC[6..0] = Remainder[(M(x) x7)/G(x)]

RESPONSE FORMAT R1

This response token is sent by the card after every
command with the exception of SEND STATUS com-
mands. It is 1 byte long; the MSB is always set to zero
and the other bits are error indications. A 1 signals
an error.

Here is the timing of various commands and responses:

Figure 5: Command and Response when card is not
busy

Figure 6: Command and Response when card is busy

Figure 7: Card response to command from host

CLOCK CONTROL
The SPI bus clock signal can be used by the SPI host
to set the cards to energy saving mode or to control
data flow (to avoid under-run or over-run conditions)
on the bus. The host is allowed to change the clock
frequency or stop it altogether. There are a few re-
strictions the SPI host must follow:

• The bus frequency can be changed at any time,
but only up to the maximum data transfer fre-
quency, defined by the MultiMediaCards.

• It is an obvious requirement that the clock must
be running for the MultiMediaCard to output

Figure 8: Data read command and response

data or response tokens. After the last SPI bus
transaction, the host is required to provide 8
clock cycles for the card to complete the opera-
tion before shutting down the clock. During this
8-clock period, the state of the CS signal is irrele-
vant. It can be asserted or de-asserted. SPI BUS
TRANSACTIONS

Here is a list of the various SPI bus transactions:

• A command/response sequence. Eight clocks
must be output after the card response end bit.
The CS signal can be asserted or de-asserted dur-
ing these 8 clocks.

• A read data transaction. Eight clocks must be
output after the end bit of the last data block.

• A write data transaction. Eight clocks must be
output after the end bit of the last data block.

• A write data transaction. Eight clocks must be
output after the CRC status token.

• The host is allowed to stop the clock of a BUSY
card. The MultiMediaCard will complete the
programming operation regardless of the host
clock. However, the host must provide a clock
edge for the card to turn off its BUSY signal.
Without a clock edge, the MultiMediaCard (un-
less previously disconnected by deasserting the
CS signal) will force the DataOut line LOW and
hold it there.

2.1.2 MODE SELECTION

The MultiMediaCards SPI mode is the mode used for
this Application Note. All transactions described in
this Application Note are based on the SPI mode. The
MultiMediaCard wakes up in the MultiMedia- Card
mode. It will enter SPI mode if the CS signal (pin1 of
the MMC) is asserted LOW during the reception of

3



the Reset command (CMD0). If the card is in Mul-
tiMediaCard mode, it will not respond to SPI-based
commands.

If SPI mode is requested, the card will switch to SPI
mode and respond with the SPI mode R1 response.
To return to the MultiMediaCard mode, power cycle
the card. In SPI mode, the MultiMediaCard protocol
state machine is not observed. MultiMediaCard com-
mands supported in SPI mode are always available.
Since the card defaults to MultiMediaCard mode af-
ter a power cycle, Pin 1 (CS) must be pulled LOW and
CMD0 (followed by a valid CRC byte) must be sent
on the CMD (DataIn, Pin 2) line for the card to enter
SPI mode. In SPI mode, CRC checking is disabled
by default. However, since the card always powers up
in MultiMediaCard mode, CMD0 must be followed
by a valid CRC byte (even though the command is
sent using the SPI structure). Once the card enters
SPI mode, CRCs are disabled by default. CMD0 is a
static command and always generates the same 7-bit
CRC of 4Ah. Adding the 1 end bit (bit 0) to the CRC
creates a CRC byte of 95h. The following hexadecimal
sequence can be used to send CMD0 in all situations
for SPI mode, since the CRC byte (although required)
is ignored once in SPI mode. The entire CMD0 ap-
pears as: 40 00 00 00 00 95 (hexadecimal).

CMD0 is a static command and always generates the
same 7-bit CRC of 4Ah. Adding the 1 end bit (bit 0)
to the CRC creates a CRC byte of 95h. The following
hexadecimal sequence can be used to send CMD0 in
all situations for SPI mode, since the CRC byte (al-
though required) is ignored once in SPI mode. The
entire CMD0 appears as: 40 00 00 00 00 95 (hexadec-
imal).

RESET SEQUENCE

The initialization command is described in the
following sequence:

1. Send 80 clocks to start bus communication

2. Assert nCS LOW

3. Send CMD0

4. Send 8 clocks for delay

5. Wait for a valid response

6. If there is no response, back to step 4

7. Send 8 clocks of delay

8. Send CMD1

9. Send 8 clocks of delay

10. Wait for valid response

11. Send 8 clocks of delay

12. Repeat from step 9 until the response shows
READY.

It will take a large number of cycles for CMD1 to finish
its sequence. After every power cycle, the MMC will
be in Idle state (not active), the Idle bit in its response
will be 1 if using CMD13 (SEND STATUS) to check
the status. Once the CMD1 process is finished, the
Idle bit in the response is cleared. Only after MMC is
fully up from Idle mode to Active, can it be read and
written.

DATA READ

The SPI mode supports single block read op-
erations only. Upon reception of a valid Read
command, the card will respond with a Response
token followed by a Data token in the length defined
by a previous SET BLOCK LENGTH command.
The start address can be any byte address in the
valid address range of the card. Every block however,
must be contained in a single physical card sector.
After the Data Read command is sent from FPGA
to the card, the FPGA will need to monitor the data
stream input and wait for Data Token 0xFE. Since
the response start bit 0 can happen any time in the
clock stream, its necessary to use software to align
the bytes being read.

2.1.3 Implementation

Right now, there is peripheral for each of the pins.
So, there are four peripherals in total connected to
the NIOS-II processor. Everything else is software
controlled. Each of the pins is either set high or low
by the software directly and that is how the above
interface protocol is followed.

2.2 SDRAM

The original plan was to use the SRAM to store the
picture and the C code used to retrieve the image
from the SD Card and decompress the image. While
in development, it was realized early on that the C
code needed for the project was going to be bigger

4



than expected. Therefore, the decision was made to
use the SDRAM to store the C code, so that the code
size would not be an issue. The SRAM would still be
used to store the image.

The SDRAM was setup using the tutorial supplied
by Altera [1]. The directions were straight forward.
The setup specifies to instantiate the SDRAM con-
troller in the SOPC builder when building the NIOS
II System. The next step was to connect the SDRAM
chip to the top level VHDL file, so that the SDRAM
controller could be connected to the SDRAM. Us-
ing the top level design file and pin assignment file
from Lab3, the only thing that had to be done was
route the SDRAM to the NIOS II system in the cor-
responding port map. Most of the pin assignments
were straightforward; however, the clock needed one
special step. Because there may be potential clock
skew between the SDRAM and NIOS system due to
the physical characteristics of the board, a phase-lock
loop is needed to so that the SDRAM clock signal
leads the NIOS II System by 3 nano-seconds. Again,
using the tutorial, this was straight forward. A sepa-
rate phase locked loop component was produced that
took the 50 Mhz clock as an input and returned the
clock signal that could be routed to the SDRAM.

2.3 VGA Peripheral

The VGA peripheral is responsible for controlling the
VGA(using the VGA controller) and is also respon-
sible for reading/writing the SRAM. The peripheral
accepts data from the NIOS system. The NIOS II
System can write four different types of data to the
peripheral. The VGA peripheral distinguishes the dif-
ferent type of data by what address the NIOS II writes
to. Currently there are five bits to use for the address.

Address Written
To

Data Type

0x00 Data for SRAM
0x01 Address to write to in SRAM
0x02 Address to write to in SRAM
0x03 Picture Width
0x04 Picture Length

Table 1: Specifying data to the VGA Peripheral

As already indicated, the VGA peripheral has sole
control of the SRAM. The first thing that the NIOS
system will send is the picture width and length. This

will be stored in registers (using VHDL SIGNAL), so
that it can be used later. Next the NIOS will send
the first address that should be written in the SRAM.
This data will also be latched to be used later. Fi-
nally the NIOS will send the first data value. This
data will be written to the SRAM at whatever ad-
dress was previously specified. The NIOS will then
continuously send SRAM addresses then SRAM data
until the entire image is written to SRAM.

The data sent from the NIOS II system is a 15 bit
value that is used to specify one pixel point. The VGA
controller expects RGB values where 9 bits specify
each color. To save space, only five bits are used for
each color. The bottom four bits are set to zero and
the upper five bits of each color is specified as:

Figure 9: Block Diagram of Imagic

The image is arranged in the SRAM as follows:

Figure 10: SRAM Layout

There is 512K available in the SRAM. Therefore 256K
pixels can be stored in the SRAM. Therefore approx
a 546 x 408 size image can fit into SRAM max. The
image will be centered and the rest of the screen will
be blackened out.

The timing between the SRAM and VGA is of par-
ticular interest. Three timing diagrams are impor-
tant when designing the timing diagram needed for

5



Imagic: the timing constraints needed to read from
the SRAM[2], the timing constraints needed to write
to the SRAM[2], and the timing constraints needed to
force the slave-write transfer to stall one cycle[3].

Figure 11: Timing constraints when reading from the
SRAM

Figure 12: Timing constraints when writing to the
SRAM

There are a few signals to consider when discussing
the interaction between the VGA peripheral, the
Avalon bus, and the SRAM:

• avs s1 clk : 50 MHz clock

• Clk : 25 MHz clock (split from 50 Mhz clock)

• ADDRESS TO SRAM : When writing, what ad-
dress data should be written. When reading,
what address should be output from SRAM.

• RAM READ ADDR : What address should be
output from SRAM.

Figure 13: Timing constraints to force the slave write
to stall

• RAM WRITE ADDR : What address should be
written to SRAM.

• WRITEENABLE TO SRAM : Indicates when
the SRAM should write data to SRAM.

• WRITEDATA TO SRAM : Image Data to be
written to SRAM

• avs s1 write = ’1’ : Signal received through
Avalon protocol the master (NIOS II) wants to
send the VGA slave data.

• avs s1 chipselect : Specifies the NIOS II is select-
ing the VGA peripheral for I/O

• avs s1 writedata : Data received from NIOS pro-
cessor that is to be written to SRAM.

• avs s1 address : Indicates what type of data is
being received from NIOS

• avs s1 waitrequest : Used to stall the Avalon in-
terconnect when the VGA peripheral is not ready
to retrieve and right data to the SRAM.

• READDATA FROM SRAM : Pixel Point read
from SRAM

• IMAGE RED : Internal SIGNAL used to store
RED component of VGA signal

• IMAGE GREEN : Internal SIGNAL used to
store GREEN component of VGA signal

• IMAGE BLUE : Internal SIGNAL used to store
BLUE component of VGA signal

Using these guidelines and variables, basic compo-
nents of the algorithm can be constructed.

The first thing that will be described is how the ad-
dress that specifies what data should be read from

6



the SRAM is controlled. A register (VHDL SIGNAL)
is created named RAM READ ADDR. This signal is
18 bits and initialized to zero. This variable is incre-
mented every time a pixel from the image is read from
SRAM. So every time the VGA peripheral displays a
pixel in the rectangle defined by the width and height
of the image, the RAM READ ADDR variable will
be incremented. This ensures that the VGA periph-
eral reads a new value from the SRAM every 25 MHz.
Once the VGA controller reaches the bottom right
pixel (the end of the screen), the RAM READ ADDR
variable is reset to zero, so that the start of the image
can be read. This works because the image is stored
continuously in SRAM.

Next the way the SRAM is read/written is described,

if avs_s1_clkevent and avs_s1_clk = 1
if clk = 1 -- Read Data

WRITEENABLE_TO_SRAM <= ’1’;
-- Tell SRAM to output data

-- NOTE: This also commits SRAM
data that may have been
specified during WRITE phase

ADDRESS_TO_SRAM <= RAM_ADDR;
-- Specify what address to output

else -- Write Data
if avs_s1_chipselect = 1 and avs_s1_write = ’1’
then

if avs_s1_address = "00000" then
-- Data Type

ADDRESS_TO_SRAM <= RAM_WRITE_ADDR;
--Tell SRAM where to write

WRITEDATA_TO_SRAM <= avs_s1_writedata;
-- Write Data

WRITEENABLE_TO_SRAM <= ’0’;
-- Tell SRAM to write data

elsif avs_s1_address = "00001" then
-- Address Type

RAM_WRITE_ADDR <= avs_s1_writedata;
-- Grab SRAM write ADDR

elsif avs_s1_address = "00011" then
-- Width Type

IMAGE_HEND <= avs_s1_writedata;
-- Grab Image Width

elsif avs_s1_address = "00100" then
-- Height Type

IMAGE_VEND <= avs_s1_writedata;
-- Grab Image Height
elsif avs_s1_clk’event and avs_s1_clk = ’0’ then

if clk = ’1’ then - Latch data from SRAM
IMAGE_RED <= READDATA_FROM_SRAM(14 downto 10);
IMAGE_GREEN <= READDATA_FROM_SRAM(9 downto 5);

IMAGE_BLUE <= READDATA_FROM_SRAM(4 downto 0);
avs_s1_waitrequest <= 0;

-- Indicate that we can write data to
SRAM next cycle

else clk = 0
avs_s1_waitrequest <= 1;

-- Indicate that we cant write data
to the SRAN next cycle and we need
to stall.

Many aspects of this algorithm need to be analyzed.
First it should be noted that avs s1 clkevent is used
to control when this code is evaluated. Also note that
both the rising s1 clk edge and the falling avs s1 clk
edge are important. This is the 50 MHz clock. Next,
notice that clk is used to control what action is being
performed on the SRAM. If clk is = 1, then the SRAM
will be read from. If clk = 0, then the SRAM can
be written do (if desired). Clk is the 25 MHz clock.
Therefore, there are for distinct states available:

1. Rising edge of avs s1 clk and Clk = 1

2. Falling edge of avs s1 clk and Clk = 1

3. Rising edge of avs s1 clk and Clk = 0

4. Falling edge of avs s1 clk and Clk = 0

Now for a more detailed analysis of the read cycle
(when clk = 1).

Figure 14: Read Cycle

Notes on Diagram:

7



• A : Output to the SRAM the address of the pixel
point is to be read from the SRAM.

• B : Raise Write Enable Signal, since this is the
read phase. This will cause SRAM to output
data.

• C : As specified by the timing diagram from the
SRAM datasheet [2], valid data will be output
from the SRAM after 10 ns. At this point it
has been 10ns since a valid address was supplied.
Therefore, the data from the SRAM is latched
and fed into the appropriate IMAGE RED, IM-
AGE GREEN, and IMAGE BLUE registers.

• D : During the next rising avs s1 clk edge, the
VGA peripheral will be able to write the SRAM,
so there is no need to raise the wait request signal.

• E : The RAM ADDR and WRITEN-
ABLE TO SRAM values may change, since
this is now the write phase.

Now for a more detailed analysis of the write cycle
(when clk = 0).

Figure 15: Write Cycle

Notes on Diagram:

• A : If chipselect signal and write signal is high,
then the NIOS is writing data to VGA peripheral.

• B : This is used to distinguish what type of data
is being sent to VGA peripheral. In this case its
0x00, so therefore its a pixel value to be written
to the SRAM

• C : Set SRAM address that the pixel should be
written to.

• D : Set WRITEENABLE TO SRAM to indicate
that data should be written to SRAM.

• E : Write the pixel value to the SRAM. This is
the value received over Avalon bus.

• F : During the next rising avs s1 clk edge, the
VGA peripheral will not be able to write the
SRAM, so tell the Avalon interface to wait one
clock cycle by raising the wait request signal.

• H : As specified by the timing diagram from the
SRAM datasheet [2], the address for the SRAM
can change immediately after valid data is writ-
ten to the SRAM

• G : As specified by the timing diagram from the
SRAM datasheet [2], the address and data must
be valid for 10 ns before the data can be written
to SRAM. At point H it has been 10 ns since
there were valid address and data. Also note
that the start of the read cycle will ALWAYS
raise WRITEENABLE TO SRAM, so the data
is guaranteed to be written to the SRAM.

• I : As specified by the timing diagram from the
SRAM datasheet [2], the data for the SRAM can
change immediately after valid data is written to
the SRAM. This is let float, since the SRAM chip
should be able to drive the data bus with its own
data during the read phase.

Note that the timing diagram is not produced for
the cases where the image width, image height, and
SRAM write address are received from NIOS are pro-
duced, because these are simplified cases of the timing
diagram above. Once the data is received from the
Avalon bus, the data is immediately latched. It still
occurs only during the write phase.

Some other considerations are the signals that have
not been discussed regarding the SRAM chip. These
pins are hard coded to the following values:

SRAM_UB_N <= ’0’;
SRAM_LB_N <= ’0’;
SRAM_CE_N <= ’0’;
SRAM_OE_N <= ’0’;

8



This will specify that the SRAM is always enabled,
will always output data during the read phase, and
every read/write will be a full word.

It has been described how to read and write an image
to SRAM. Once the data is available for display, it is
a trivial task to display it. Using the video display lab
(lab 3) as a template, only minor modifications have
to be made to display the image. Namely, instead
of a constant color the RBG values will be updated
every 25 MHz. Also, instead of a constant height or
width for the rectangle, the height and width are now
variable. Every other detail (involving syncs, porches,
etc.) are exactly the same as lab3 and dont require
any modification.

3 Software Design

3.1 Reading the FAT File system

The code to read the file system is an altered and
simplified version of the FAT module that is part of
FreeDos32.

The first 512 bytes of the SD card make up the BIOS
Parameter Block, which contains the volume infor-
mation, type of FAT (FAT16 is most common for re-
movable media), location of root directory, location of
the FAT table, as well as other information. Files on
the disk are broken up into chunks of Clusters (2048
bytes), which contain 8 Sectors (512 bytes) each. The
File Allocation Table contains the linked list of all
Clusters that make up a complete file.

Since we are only interested in reading JPG files on
the file system, we only implement the read function-
ality, and ignore Long File Names (we only read the
Short File names in MSDOS 8.3 format). The root
directory is read from the file system, and the JPEG
files are retrieved. The functions that are used for our
purpose are:

• fat init() initialized the file system. Returns
pointer to the file system structure.

• fat nextfile() opens the next file in the root direc-
tory, returns the filename (8.3 format), file size,
and pointer to access the file, or -1 when end of
directory is reached.

• fat read() reads the next n bytes from the given
file pointer and fills a given buffer with its con-
tents

3.2 JPEG Decoding

A JPEG image consists of a number of 8*8 pixel data
block units known as Minimum Coded Unit or the
MCU. The unit is converted to its frequency domain
using Discrete Cosine Transform. The high frequency
components are filtered. The low pass filter is charac-
terized by the Quantization Tables which determines
the quality and the compression ratio of the JPEG
image. Finally the JPEG decoder is coded using Huff-
man codes to allow more frequent values to be stored
as shorter codes.

Figure 16: JPEG Decoding

The jpeg decoder is the inverse process. The 8*8 unit
of information is retrieved from the encoded data.
The coded data is decoded using the Huffmans algo-
rithm using the data provided in the Huffman tables.
The frequency components can be extracted using the
quantization table. The result is a zig-zag (ZZ) vec-
tor which is reordered into an 8x8 block Finally, the
inverse discrete cosine transform (IDCT) is applied
to the frequency domain to get back the 8*8 MCU
blocks.

The JPEG decoder will call the fat nextfile() function
and get a character array as input. It then outputs the
image in raster format, and the corresponding RGB
values are fed to the vga raster component.

References

[1] Using the SDRAM Memory on Alteras DE2
Board.

[2] 256K x 16 High Speed Asynchronous CMOS
Static RAM With 3.3V Supply: Reference Man-
ual

[3] Avalon Memory-Mapped Interface Specification

[4] Wikipedia - File Allocation Table

9



[5] FreeDOS-32: FAT file system driver project page
from SourceForge

[6] J. Jones, JPEG Decoder Design, Sr. Design Doc-
ument EE175WS00-11, Electrical Engineering
Dept., University of California, Riverside, CA,
2000

[7] Jun Li, Interfacing a MultiMediaCard to the
LH79520 System-On-Chip

[8] Engineer-to-Engineer Note Interfacing MultiMe-
diaCard with ADSP-2126x SHARC Processors

10


