
R

Processor IP
User Guide

June 2003

Processor IP User Guide www.xilinx.com June 2003
1-800-255-7778

http://www.xilinx.com

June 2003 www.xilinx.com Processor IP User Guide
1-800-255-7778

“Xilinx” and the Xilinx logo shown above are registered trademarks of Xilinx, Inc. Any rights not expressly granted herein are reserved.

CoolRunner, RocketChips, Rocket IP, Spartan, StateBENCH, StateCAD, Virtex, XACT, XC2064, XC3090, XC4005, and XC5210 are
registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

ACE Controller, ACE Flash, A.K.A. Speed, Alliance Series, AllianceCORE, Bencher, ChipScope, Configurable Logic Cell, CORE Generator,
CoreLINX, Dual Block, EZTag, Fast CLK, Fast CONNECT, Fast FLASH, FastMap, Fast Zero Power, Foundation, Gigabit Speeds...and
Beyond!, HardWire, HDL Bencher, IRL, J Drive, JBits, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroBlaze, MicroVia,
MultiLINX, NanoBlaze, PicoBlaze, PLUSASM, PowerGuide, PowerMaze, QPro, Real-PCI, RocketIO, SelectIO, SelectRAM, SelectRAM+,
Silicon Xpresso, Smartguide, Smart-IP, SmartSearch, SMARTswitch, System ACE, Testbench In A Minute, TrueMap, UIM, VectorMaze,
VersaBlock, VersaRing, Virtex-II Pro, Virtex-II EasyPath, Wave Table, WebFITTER, WebPACK, WebPOWERED, XABEL, XACT-
Floorplanner, XACT-Performance, XACTstep Advanced, XACTstep Foundry, XAM, XAPP, X-BLOX +, XC designated products, XChecker,
XDM, XEPLD, Xilinx Foundation Series, Xilinx XDTV, Xinfo, XSI, XtremeDSP and ZERO+ are trademarks of Xilinx, Inc.

The Programmable Logic Company is a service mark of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown herein; nor does it convey
any license under its patents, copyrights, or maskwork rights or any rights of others. Xilinx, Inc. reserves the right to make changes, at any
time, in order to improve reliability, function or design and to supply the best product possible. Xilinx, Inc. will not assume responsibility for
the use of any circuitry described herein other than circuitry entirely embodied in its products. Xilinx provides any design, code, or
information shown or described herein "as is." By providing the design, code, or information as one possible implementation of a feature,
application, or standard, Xilinx makes no representation that such implementation is free from any claims of infringement. You are
responsible for obtaining any rights you may require for your implementation. Xilinx expressly disclaims any warranty whatsoever with
respect to the adequacy of any such implementation, including but not limited to any warranties or representations that the implementation
is free from claims of infringement, as well as any implied warranties of merchantability or fitness for a particular purpose. Xilinx, Inc. devices
and products are protected under U.S. Patents. Other U.S. and foreign patents pending. Xilinx, Inc. does not represent that devices shown
or products described herein are free from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to
correct any errors contained herein or to advise any user of this text of any correction if such be made. Xilinx, Inc. will not assume any liability
for the accuracy or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in such applications without
the written consent of the appropriate Xilinx officer is prohibited.

The contents of this manual are owned and copyrighted by Xilinx. Copyright 1994-2003 Xilinx, Inc. All Rights Reserved. Except as stated
herein, none of the material may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form
or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent
of Xilinx. Any unauthorized use of any material contained in this manual may violate copyright laws, trademark laws, the laws of privacy and
publicity, and communications regulations and statutes.

R

http://www.xilinx.com

Processor IP User Guide www.xilinx.com June 2003
1-800-255-7778

Processor IP User Guide
June 2003

The following table shows the revision history for this document..

Version Revision

August
2002

1.0 Initial Xilinx release for EDK 3.1

October
2002

1.1 Add memory and peripheral cores

November
2002

1.2 Release for EDK 3.1 Service Pack 2

January
2003

1.3 Release for EDK 3.1 Service Pack 3

March
2003

1.4 Release for EDK 3.2

June
2003

1.5 Release for EDK 3.2 Service Pack 2

http://www.xilinx.com

Processor IP User Guide www.xilinx.com v
June 2003 1-800-255-7778

R

Preface

About This Manual

The Processor IP Reference Guide supports the Embedded systems Design Kit (EDK) for
MicroBlaze™ and Virtex-II Pro™.

Note: For more information, refer to the Embedded Software Tools Reference Guide and PowerPC
405 Processor Reference Guide.

Manual Contents
This manual contains the following sections:

“Part I: Embedded Processor IP”

• Chapter 1: “OPB Usage in FPGAs”

• Chapter 2: “PLB Usage in Xilinx FPGAs”

• Chapter 3: “Bus Infrastructure Cores”

♦ “On-Chip Peripheral Bus v2.0 with OPB Arbiter (v1.10a)”

♦ “On-Chip Peripheral Bus v2.0 with OPB Arbiter (v1.10b)”

♦ “OPB to PLB Bridge (v1.00a)”

♦ “OPB to PLB Bridge (v1.00b)”

♦ “OPB to OPB Bridge (Lite Version)”

♦ “OPB to DCR Bridge Specification”

♦ “Processor Local Bus (PLB) v3.4”

♦ “PLB to OPB Bridge (v1.00a)”

♦ “PLB to OPB Bridge (v1.00b)”

♦ “Device Control Register Bus (DCR) v2.9”

♦ “Processor System Reset Module”

♦ “Local Memory Bus (LMB) v1.0”

♦ “OPB Arbiter” (v1.02c)“

♦ “Fast Simplex Link Channel (FSL) v1.0”

• Chapter 4: “IPIF”

♦ “OPB IPIF Architecture”

- “OPB IPIF Slave Attachment”

- “OPB IPIF Master Attachment”

- “OPB IPIF Address Decode”

- “OPB IPIF Interrupt”

http://www.xilinx.com

vi www.xilinx.com Processor IP User Guide
1-800-255-7778 June 2003

R

- “OPB IP Interface Packet FIFO”

- “Direct Memory Access and Scatter Gather”

• Chapter 5: “Memory Interface Cores”

♦ “LMB Block RAM (BRAM) Interface Controller”

♦ “Dual LMB Block RAM (BRAM) Interface Controller”

♦ “OPB External Memory Controller (EMC) (v1.00d)”

♦ “OPB External Memory Controller (EMC) (v1.10a)”

♦ “OPB Synchronous DRAM (SDRAM) Controller”

♦ “OPB Block RAM (BRAM) Interface Controller”

♦ “OPB Block RAM Interface Controller (OPB_BRAM_IF_CNTLR)”

♦ “OPB Double Data Rate (DDR) Synchronous DRAM (SDRAM) Controller”

♦ “OPB SYSACE (System ACE) Interface Controller”

♦ “PLB External Memory Controller (EMC) Design Specification (v1.00d)”

♦ “PLB External Memory Controller (EMC) Design Specification (v1.10a)”

♦ “PLB Synchronous DRAM (SDRAM) Controller”

♦ “PLB Block RAM (BRAM) Interface Controller”

♦ “PLB Double Data Rate (DDR) Synchronous DRAM (SDRAM) Controller”

♦ “DDR Clock Module Reference Core”

♦ “Instruction Side OCM Block RAM (ISBRAM) Interface Controller”

♦ “Data Side OCM Block RAM (DSBRAM) Interface Controller”

♦ “Block RAM (BRAM) Block”

♦ “OPB ZBT Controller Design Specification”

• Chapter 6: “Peripheral Cores”

♦ “OPB Interrupt Controller (v1.00b)”

♦ “OPB Interrupt Controller (v1.00c)”

♦ “OPB 16550 UART”

♦ “OPB 16450 UART”

♦ “OPB UART Lite”

♦ “OPB JTAG_UART”

♦ “OPB IIC Bus Interface”

♦ “OPB Serial Peripheral Interface (SPI)”

♦ “OPB IPIF/LogiCore v3 PCI Core Bridge”

♦ “OPB Ethernet Media Access Controller (EMAC) (v1.00j)”

♦ “OPB Ethernet Media Access Controller (EMAC) (v1.00k)”

♦ “OPB Ethernet Media Access Controller (EMAC) (v1.00m)”

♦ “OPB Ethernet Lite Media Access Controller”

♦ “OPB Asynchronous Transfer Mode Controller (OPB_ATMC) (v1.00b)”

♦ “OPB Asynchronous Transfer Mode Controller (OPB_ATMC) (v2.00a)”

♦ “OPB HDLC Interface” (single channel v1.00b)

♦ “OPB Timebase WDT”

http://www.xilinx.com

Processor IP User Guide www.xilinx.com vii
June 2003 1-800-255-7778

R

♦ “OPB Timer/Counter”

♦ “OPB General Purpose Input/Output (GPIO)”

♦ “Microprocessor Debug Module (MDM)”

♦ “OPB Central DMA Controller”

♦ “Channel FIFO”

♦ “Fixed Interval Timer (FIT)”

♦ “MII to RMII Design Specification”

♦ “PLB 1-Gigabit Ethernet Media Access Controller (MAC) With DMA”

♦ “PLB 1-Gigabit Ethernet Media Access Controller (MAC)”

♦ “PLB 16550 UART (v1.00b)”

♦ “PLB 16550 UART (v1.00c)”

♦ “PLB 16450 UART (v1.00b)”

♦ “PLB 16450 UART (v1.00c)”

♦ “PLB RapidIO LVDS Design”

♦ “PLB Asynchronous Transfer Mode Controller (PLB_ATMC)”

♦ “DCR Interrupt Controller Specification (v1.00a)”

♦ “DCR Interrupt Controller Specification (v1.00b)”

“Part II: Software”

• Chapter 7: “Device Driver Programmer Guide”

• Chapter 8: “Tornado 2.0 BSP User Guide”

• Chapter 9: “Device Driver Summary”

• Chapter 10: “Automatic Generation of Tornado 2.x (VxWorks 5.x) Board Support
Packages”

http://www.xilinx.com

viii www.xilinx.com Processor IP User Guide
1-800-255-7778 June 2003

R

This page left intentionally blank

http://www.xilinx.com

Processor IP User Guide www.xilinx.com ix
June 2003 1-800-255-7778

R

Part I: Embedded Processor IP

This section contains information on the following:

Chapter 1, “OPB Usage in FPGAs”

Chapter 2, “PLB Usage in Xilinx FPGAs”

Chapter 3, “Bus Infrastructure Cores”

Chapter 4, “IPIF”

Chapter 5, “Memory Interface Cores”

Chapter 6, “Peripheral Cores”

http://www.xilinx.com

x www.xilinx.com Processor IP User Guide
1-800-255-7778 June 2003

R

http://www.xilinx.com

June 2003 www.xilinx.com 1
Processor IP User Guide 1-800-255-7778

R

Chapter 1

OPB Usage in FPGAs

Overview
This chapter includes the following sections:

Xilinx OPB Usage

Legacy OPB Devices

OPB Usage Notes

OPB Comparison

Revision History

For detailed information on the IBM OPB, refer to IBM’s On-Chip Peripheral Bus,
Architecture Specifications, Version 2.1: OpbBus.pdf

The OPB is one element of IBM’s CoreConnect architecture, and is a general-purpose
synchronous bus designed for easy connection of on-chip peripheral devices. The OPB
includes the following features:

• 32-bit or 64-bit data bus
• Up to 64-bit address
• Supports 8-bit, 16-bit, 32-bit, and 64-bit slaves
• Supports 32-bit and 64-bit masters
• Dynamic bus sizing with byte, halfword, fullword, and doubleword transfers
• Optional Byte Enable support
• Distributed multiplexer bus instead of 3-state drivers
• Single cycle transfers between OPB master and OPB slaves (not including arbitration)
• Support for sequential address protocol
• 16-cycle bus time-out (provided by arbiter)
• Slave time-out suppress capability
• Support for multiple OPB bus masters
• Support for bus parking
• Support for bus locking
• Support for slave-requested retry
• Bus arbitration overlapped with last cycle of bus transfers

The OPB is a full-featured bus architecture with many features that increase bus
performance. You can use most of these features effectively in the FPGA architecture.
However, some features can result in the inefficient use of FPGA resources or can lower
system clock rates. Consequently, Xilinx uses an efficient subset of the OPB for Xilinx-
developed OPB devices. However, because of the flexible nature of FPGAs, you can also
implement systems utilizing OPB devices that are fully OPB V2.1 compliant.

http://www.xilinx.com
http://www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/9A7AFA74DAD200D087256AB30005F0C8/$file/OpbBus.pdf
http://www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/9A7AFA74DAD200D087256AB30005F0C8/$file/OpbBus.pdf

2 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

Xilinx OPB Usage

OPB Options

Legacy Devices
Previous to OPB v2.0, there was a single signaling protocol for OPB data transfers. This
protocol (which is also present in OPB v2.0 and later specifications) supports dynamic bus
sizing through the use of transfer qualifiers and acknowledge signals. The transfer
qualifiers denote the size of the transfer initiated by the master, and the acknowledge
signals indicate the size of the transfer from the slave. Devices that support this type of
dynamic bus sizing are called legacy devices.

Byte-enable Devices
Starting with OPB v2.0, IBM introduced an optional, alternate transfer protocol based on
Byte Enables. In the byte-enable architecture, each byte lane of the data bus has an
associated byte enable signal. For each transfer, the byte enable signals indicate which byte
lanes have valid data. This eliminates the need for separate transfer qualifiers that indicate
the transfer size since all size information is contained in the byte enable signals. The byte-
enable architecture does not permit dynamic bus sizing, since there is only one
acknowledge signal for each transfer. The OPB v2.0 specification (and later) allows you to
build systems that are legacy-only, byte-enable only, or mixed. Devices that only support
the byte-enable signaling are called byte-enable devices.

OPB V2.0 Devices
Devices that support both byte-enable signaling and legacy signaling are called OPB v2.0
devices. Systems that have both legacy signaling and byte-enable signaling can perform
dynamic bus sizing. Note that legacy devices do not support byte-enable transfers.

Xilinx OPB Devices
These various transfer protocols have several implications for Xilinx OPB device
implementations.

Conversion Cycles
Dynamic bus sizing (as supported by legacy devices) results in conversion cycles, which are
extra transfer cycles that re-transfer data when the master-initiated transfer is larger than
the slave response. For example, in a legacy system, if a master writes a 32-bit word to a
slave, and the 8-bit device slave responds that it only accepted 8-bits of the transfer, then
the master must perform three additional conversion cycles to transfer all of the data to the
slave. Generating conversion cycles requires more logic, increases the complexity of the
master, and is not an efficient use of FPGA resources. The byte-enable architecture
provides a simple alternative to this problem, and is easier to implement in an FPGA.

Write Mirroring and Read Steering
Another consequence of supporting devices smaller than the bus size is write mirroring and
read steering. In the OPB specification, devices smaller than the bus size are always left-
justified (aligned toward the most significant side of the bus) so that the byte lanes
associated with the smaller devices are easily determined. For example, a byte-wide
peripheral is always located on the most-significant byte of the bus. The peripheral writes
and reads data using this byte-lane. You can simplify the design of OPB masters by using
a byte-enable only, no-write-mirroring architecture. A small degree of added complexity is
required for peripherals that are smaller than the bus size if OPB masters do not mirror
data.

http://www.xilinx.com

June 2003 www.xilinx.com 3
Processor IP User Guide 1-800-255-7778

R

Ideal FPGA Implementation of OPB-based System
The ideal FPGA implementation of an OPB-based system has the following features:

• Requires no conversion cycles
• Uses only the byte-enable architecture as specified in the OPB specification
• Does not require masters to mirror write data

These characteristics help determine how Xilinx-developed OPB devices are implemented.
The detailed specifications that describe how the OPB is used in Xilinx intellectual
property are provided in the next section.

Specifications for OPB Usage in Xilinx-developed OPB Devices
Xilinx-developed OPB devices adhere to the following OPB usage rules:

• The width of the OPB data buses and address buses is 32 bits. Some peripherals may
parameterize these widths, but currently only 32-bit buses are supported. Peripherals
smaller than 32-bits can be attached to the OPB with a corresponding restriction in
addressing. For example, an 8-bit peripheral at base address A can be attached to byte
lane 0, but can only be addressed at A, A+4, A+8, and so on.

• All OPB devices (masters and slaves) are byte-enable devices. These devices do not
support the legacy data transfer signals and therefore do not support dynamic bus
sizing. OPB masters do not mirror data to unused byte lanes. See Figure 1-1 for the
byte lane usage for aligned transfers.

• All OPB devices (masters and slaves) are required to output logic zero when inactive.
This eliminates the need for the Mn_DBusEn and Sln_DBusEn signals external to the
master or slave. The enable function is still implemented within the device.

• To obtain better timing in the FPGA implementation of the OPB, the OPB_timeout
signal is registered. This means that all slaves must assert Sl_xferAck or Sl_retry on or
before the rising edge of the 16th clock cycle after the assertion of OPB_select. If an
OPB slave wishes to assert Sl_toutSup, Sl_toutSup must be asserted on or before the
rising edge of the 15th clock after the assertion of OPB_select.

• The byte-enables and the least-significant address bits are driven by all masters and
contain consistent information. Examples of byte lane usage for aligned transfers are
shown in the following figure:

Figure 1-1: Byte lane usage for aligned transfers

0:7

8:15

16:23

24:31

Data Bus

Mn_ABus(30:31) = "00",
Mn_BE = "1111"

0:7

8:15

16:23

24:31

Data Bus

Mn_ABus(30:31) = "00",
Mn_BE = "1100"

0:7

8:15

16:23

24:31

Data Bus

Mn_ABus(30:31) = "10",
Mn_BE = "0011"

0:7

8:15

16:23

24:31

Data Bus

Mn_ABus(30:31) = "00",
Mn_BE = "1000"

0:7

8:15

16:23

24:31

Data Bus

Mn_ABus(30:31) = "01",
Mn_BE = "0100"

0:7

8:15

16:23

24:31

Data Bus

Mn_ABus(30:31) = "10",
Mn_BE = "0010"

0:7

8:15

16:23

24:31

Data Bus

Mn_ABus(30:31) = "11",
Mn_BE = "0001"

word transfer halfword transfer halfword transfer byte transfer

byte transfer byte transfer byte transfer

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

http://www.xilinx.com

4 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

• All OPB slave devices that require a continuous address space (use of all byte lanes)
will implement an attachment to the OPB bus that is as wide as the OPB data width,
regardless of device width. This eliminates the need for left justification on the OPB
bus and eliminates the need for masters to mirror write data.

As an example, consider an 8-bit memory device that must be addressed at
consecutive byte addresses being attached to a 32-bit OPB. The 8-bit memory device
must implement a 32-bit wide attachment to the OPB; in the bus attachment, data is
steered from the proper byte lane into the 8-bit device for writes, and from the 8-bit
device onto the proper byte lane for reads.

The simplest way to accomplish this is with a multiplexer for steering the writes, and
a connection from the 8-bit device to all byte lanes (essentially mirroring to all byte
lanes) for reads.

• By convention, registers in all OPB slave devices are aligned to word boundaries
(lowest two address bits are "00"), regardless of the size of the data in the register or
the size of the peripheral.

• Master and Slave I/O: OPB masters adhere to the signal set shown in Table 1-1. OPB
slaves adhere to the signal set shown in Table 1-2. Devices that are both master and
slave adhere to the signal set shown in Table 1-3. Page numbers referenced in the
tables apply to both the OPB V2.0 specification and the OPB V2.1 specification, both
from IBM. All signals shown must be present, except for the one signal shown as
optional (<Master>_DBus[0:31] for devices that are both master and slave). No
additional signals for OPB interconnection may be added. The naming convention is
as follows: <Master> represents a master name or acronym that starts with an upper-
case letter, <Slave> represents a slave name or acronym that starts with an upper-case
letter. <nOPB> represents an OPB identifier (for masters or slaves with more than
OPB attachment) and must start with an uppercase letter and end with upper-case
"OPB". For devices with a single OPB attachment, the <nOPB> identifier should
default to "OPB" (for example, OPB_ABus). All other parts of the signal name must be
referenced exactly as shown (including case).

Table 1-1: Summary of OPB master-only I/O

Signal I/O Description
Page

(in Ref. 1)

<nOPB>_Clk I OPB Clock

<nOPB>_Rst I OPB Reset

<Master>_ABus[0:31] O Master address bus OPB-11

<Master>_BE[0:3] O Master byte enables OPB-16

<Master>_busLock O Master buslock OPB-9

<Master>_DBus[0:31] O Master write data bus OPB-13

<Master>_request O Master bus request OPB-8

<Master>_RNW O Master read, not write OPB-12

<Master>_select O Master select OPB-12

<Master>_seqAddr O Master sequential address OPB-13

<nOPB>_DBus[0:31] I OPB read data bus OPB-13

<nOPB>_errAck I OPB error acknowledge OPB-15

<nOPB>_MGrant I OPB bus grant OPB-9

http://www.xilinx.com

June 2003 www.xilinx.com 5
Processor IP User Guide 1-800-255-7778

R

<nOPB>_retry I OPB bus cycle retry OPB-10

<nOPB>_timeout I OPB timeout error OPB-10

<nOPB>_xferAck I OPB transfer acknowledge OPB-14

Table 1-1: Summary of OPB master-only I/O <Italic>(Continued)

Signal I/O Description
Page

(in Ref. 1)

Table 1-2: Summary of OPB Slave-only I/O

Signal I/O Description
Page

(in Ref. 1)

<nOPB>_Clk I OPB Clock

<nOPB>_Rst I OPB Reset

<Slave>_DBus[0:31] O Slave data bus OPB-11

<Slave>_errAck O Slave error acknowledge OPB-15

<Slave>_retry O Slave retry OPB-10

<Slave>_toutSup O Slave timeout suppress OPB-15

<Slave>_xferAck O Slave transfer acknowledge OPB-14

<nOPB>_ABus[0:31] I OPB address bus OPB-11

<nOPB>_BE I OPB byte enable OPB-16

<nOPB>_DBus[0:31] I OPB data bus OPB-13

<nOPB>_RNW I OPB read/not write OPB-12

<nOPB>_select I OPB select OPB-12

<nOPB>_seqAddr I OPB sequential address OPB-13

Table 1-3: Summary of OPB Master/Slave Device I/O

Signal I/O Description
Page

(in Ref. 1)

<nOPB>_Clk I OPB Clock

<nOPB>_Rst I OPB Reset

<Master>_ABus[0:31] O Master address bus OPB-11

<Master>_BE[0:3] O Master byte enables OPB-16

<Master>_busLock O Master buslock OPB-9

<Master>_DBus[0:31] O Master write data bus (optional) OPB-13

<Master>_request O Master bus request OPB-8

<Master>_RNW O Master read, not write OPB-12

<Master>_select O Master select OPB-12

<Master>_seqAddr O Master sequential address OPB-13

<nOPB>_DBus[0:31] I OPB read data bus OPB-13

http://www.xilinx.com

6 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

Additional Notes on Signal Sets
• Xilinx-developed OPB devices do not support dynamic bus sizing and consequently

do not use the following legacy signals: Mn_dwXfer, Mn_fwXfer, Mn_hwXfer,
Sln_dwAck, Sln_fwAck, and Sln_hwAck.

• Since Xilinx-developed OPB devices are byte-enable only, the Mn_beXfer and
Sln_beAck signals are not required and so are not used.

• The signals required for masters and slaves are separate from the signals present in
the OPB interconnect. The OPB interconnect (the OR gates and other logic required to
connect OPB devices) supports the full OPB V2.1 specification (i.e. all signals are
present). Thus the OPB interconnect does not limit a design to byte-enable devices
and supports designs in which a mix of byte-enable, legacy, and OPB V2.0 devices are
present. The bus interconnect does not limit the use of any feature of the V2.1
specification.

Legacy OPB Devices
Although byte-enable devices are the preferred and most efficient OPB devices in Xilinx
devices, some designs may also use legacy OPB devices or fully V2.0 compliant devices.
However, a legacy device cannot communicate directly with a byte-enable device because
they use different signal sets. An interface layer between the byte-enable device and the
legacy device is required. This interface is called the Byte Enable Interface (BEIF) device.

<nOPB>_errAck I OPB error acknowledge OPB-15

<nOPB>_MGrant I OPB bus grant OPB-9

<nOPB>_retry I OPB bus cycle retry OPB-10

<nOPB>_timeout I OPB timeout error OPB-10

<nOPB>_xferAck I OPB transfer acknowledge OPB-14

<Slave>_DBus[0:31] O Slave data bus (may optionally function as
master write data bus if <Master>_DBus
not present)

OPB-11

<Slave>_errAck O Slave error acknowledge OPB-15

<Slave>_retry O Slave retry OPB-10

<Slave>_toutSup O Slave timeout suppress OPB-15

<Slave>_xferAck O Slave transfer acknowledge OPB-14

<nOPB>_ABus[0:31] I OPB address bus OPB-11

<nOPB>_BE I OPB byte enable OPB-16

<nOPB>_RNW I OPB read/not write OPB-12

<nOPB>_select I OPB select OPB-12

<nOPB>_seqAddr I OPB sequential address OPB-13

Table 1-3: Summary of OPB Master/Slave Device I/O <Italic>(Continued)

Signal I/O Description
Page

(in Ref. 1)

http://www.xilinx.com

June 2003 www.xilinx.com 7
Processor IP User Guide 1-800-255-7778

R

Mixed Systems
The system shown in the following figure represents a design with a mix of byte-enable,
legacy, and OPB V2.0 devices. The BEIF device converts the legacy-type signals to byte-
enable-type signals and vice versa.

The BEIF device contains the following logic, not all of which must be used in all
situations:

• Signal translation for byte-enable device to legacy device transfers: <Master>_BE is
translated to the appropriate <Master>_hwXfer, <Master>_fwXfer, and
<Master>_dwXfer. <nOPB>_BE is translated to the appropriate <nOPB>_hwXfer,
<nOPB>_fwXfer, and <nOPB>_dwXfer. <Slave>_hwXfer, <Slave>_fwXfer, and
<Slave>_dwXfer are translated to <Slave>_xferAck. <nOPB>_hwXfer,
<nOPB>_fwXfer, and <nOPB>_dwXfer are translated to <nOPB>_xferAck. The
correct lower address bits are also generated.

• Signal translation for legacy device to byte-enable device transfers: <Master>_hwXfer,
<Master>_fwXfer, and <Master>_dwXfer are translated to <Master>_BE .
<nOPB>_hwXfer, <nOPB>_fwXfer, and <nOPB>_dwXfer are translated to
<nOPB>_BE . <Slave>_xferAck is translated to <Slave>_hwXfer, <Slave>_fwXfer,
and <Slave>_dwXfer. <nOPB>_xferAck is translated to <nOPB>_hwXfer,
<nOPB>_fwXfer, and <nOPB>_dwXfer.

• Mirroring and steering logic.
• Conversion cycle generator for byte-enable device to legacy device transfers.

With this architecture, systems that do not require full V2.1 features (for example, systems
that contain only Xilinx IP) do not need to instantiate the BEIF and hence optimally use the
available FPGA resources. Systems that require legacy or OPB V2.0 devices must
instantiate the BEIF, although the most costly part of the BEIF (the conversion cycle
generator) only needs to be instantiated if conversion cycles are possible (not all slaves will
cause generation of conversion cycles).

Figure 1-2: OPB Interconnect with Mixed Device Types

OPB V2.0
Slave

OPB V2.0
Master

Legacy
Master

Legacy
Slave

OPB Bus
Monitor or BFM

(test only)

Byte-Enable
Master2

Byte-Enable
Master1

Byte-Enable
Slave1

Byte-Enable
Slave2

PLB-to-OPB
Bridge

OPB Arbiter

BEIF BEIF BEIF BEIF BEIF

OPB

http://www.xilinx.com

8 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

OPB Usage Notes
The following are general notes on OPB usage that apply primarily to mixed systems:

• Conversion cycles are only required when a master generates a transfer request to a
slave that is larger than the slave’s width and the slave is capable of indicating that it
accepted a smaller transfer than the master requested hence requiring with a
conversion cycle.

• Byte-enable masters cannot directly generate conversion cycles. They require a
conversion cycle generator in the Byte Enable Interface (BEIF) device. This is because
byte-enable masters do not receive any size information in the acknowledge from the
slave.

• Byte-enable slaves cannot cause generation of conversion cycles. A consequence of
this is that any master accessing a byte-enable slave can only transfer data up to the
size of the slave. Transfers larger than the slave size will result in either 1) no response
from the slave (time-out), 2) an errAck from the slave, or 3) lost data; the actual result
depends on how the decode and acknowledge logic is implemented in the slave.

• Conversion cycle generator logic in the BEIF is required only for byte-enable device to
legacy/OPB V2.0 device transfers.

• Write mirroring and read steering in the V2.1 specification is based on left-justified
peripherals. A more complex slave attachment can be used instead of left justification.

OPB Comparison
Table 1-4 illustrates the major embedded processor bus architectures used in Xilinx FPGAs
and lists some of their characteristics. Each bus has different capabilities in terms of data
transfer rates, multi-master capability, and data bursting. The use of a particular bus is
dictated by the processor used, the data bandwidth required in the application, and
availability of peripherals. The OPB is a general-purpose peripheral bus that can be
effectively used in many design situations.

PLB - Processor Local Bus (IBM). PLB Reference

OPB - On-chip Peripheral Bus (IBM). OPB Reference

OCM - On-chip Memory interface (IBM). OCM Reference

LMB - Local Memory Bus (Xilinx). MicroBlaze Processor Reference Guide

DCR - Device Control Register bus (IBM). DCR Reference

Table 1-4: Comparison of buses used in Xilinx Embedded Processor Systems

Feature
CoreConnect Buses Other Buses

PLB OPB DCR OCM LMB

Processor family PPC405 PPC405,
MicroBlaze

PPC405 PPC405 MicroBlaze

Data bus width 64 32 32 32 32

Address bus width 32 32 10 32 32

Clock rate, MHz (max)1 100 125 125 375 125

Masters (max) 16 16 1 1 1

Masters (typical) 2-8 2-8 1 1 1

Slaves (max) limited only by hardware resources 1 1

Slaves (typical) 2-6 2-8 1-8 1 1

Data rate (peak)2 1600 MB/s 500 MB/s 500 MB/s 500 MB/s 500 MB/s

http://www.xilinx.com
http://www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/8BA965C773B2E0ED87256AB20082CC9F/$file/64bitPlbBus.pdf
http://www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/9A7AFA74DAD200D087256AB30005F0C8/$file/OpbBus.pdf
http://www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/D060DB54BD4DC4F2872569D2004A30D6/$file/405_um.pdf
http://www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/EA0DB87B2BB3702587256AB30006DD12/$file/DcrBus.pdf

June 2003 www.xilinx.com 9
Processor IP User Guide 1-800-255-7778

R

Revision History
The following table shows the revision history for this document.

Data rate (typical)3 533 MB/s4 167 MB/s5 100 MB/s8 333 MB/s6 333 MB/s7

Concurrent read/write Yes No No No No

Address pipelining Yes No No No No

Bus locking Yes Yes No No No

Retry Yes Yes No No No

Timeout Yes Yes No No No

Fixed burst Yes No No No No

Variable burst Yes No No No No

Cache fill Yes No No No No

Target word first Yes No No No No

FPGA resource usage High Medium Low Low Low

Compiler support for load/store Yes Yes No Yes Yes

Notes:
1. Maximum clock rates are estimates and are presented for comparison only. The actual maximum clock rate for each bus

is dependent on device family, device speed grade, design complexity, and other factors.
2. Peak data rate is the maximum theoretical data transfer rate at the clock rate shown for each bus.
3. The typical data rates are intended to illustrate data rates that are representative of actual system configurations. The

typical data is highly dependent on the application software and system hardware configuration.
4. Assumes primarily cache-line fills, minimal read/write concurrency (66.7% bus utilization).
5. Assumes minimal use of sequential address capabilities and 3 clock cycles per OPB transfer.
6. The OCM controller operates at the PPC405 core clock rate, but its data transfer rate is limited by the access time of the

on-chip memory. The typical data rate assumes 66.7% bus utilization.
7. Assumes 66.7% bus utilization.
8. Assumes DCR operates at same clock rate as PLB and each DCR access requires 5 clock cycles. The number of clock

cycles per DCR transfer is dependent on how many DCR devices are present in the system. Each additional DCR device
adds latency to all DCR transfers.

Table 1-4: Comparison of buses used in Xilinx Embedded Processor Systems <Italic>(Continued)

Feature
CoreConnect Buses Other Buses

PLB OPB DCR OCM LMB

Date Version Revision

10/17/01 1.0 Initial Xilinx version.

10/19/01 1.1 Minor editorial changes. Added links to bus references.

12/10/01 1.2 Changed Figure 2 and other minor edits.

3/20/02 1.3 Updated for MDK 2.2

http://www.xilinx.com

10 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

http://www.xilinx.com

June 2003 www.xilinx.com 11
Processor IP User Guide 1-800-255-7778

R

Chapter 2

PLB Usage in Xilinx FPGAs

Summary
This chapter describes how to use the IBM Processor Local Bus (PLB) in Xilinx FPGAs, and
provides guidelines and simplifications for efficient FPGA implementations, and the set of
signals used in Xilinx-developed PLB devices.

This chapter includes the following sections:

Xilinx PLB Usage

PLB Comparison

Revision History

Overview
For detailed information on the IBM PLB, refer to IBM’s 64-bit Processor Local Bus,
Architecture Specifications, Version 3.5.

The PLB is one element of IBM’s CoreConnect architecture, and is a high-performance
synchronous bus designed for connection of processors to high-performance peripheral
devices. The PLB includes the following features (from 64-bit Processor Local Bus,
Architecture Specifications):

• Overlapping of read and write transfers allows two data transfers per clock cycle for
maximum bus utilization.

• Decoupled address and data buses support split-bus transaction capability for
improved bandwidth.

• Address pipelining reduces overall bus latency by allowing the latency associated
with a new request to be overlapped with an ongoing data transfer in the same
direction.

• Late master request abort capability reduces latency associated with aborted requests.
• Hidden (overlapped) bus request/grant protocol reduces arbitration latency.
• Bus architecture supports sixteen masters and any number of slave devices.
• Four levels of request priority for each master allow PLB implementations with

various arbitration schemes.
• Bus arbitration-locking mechanism allows for master-driven atomic operations.
• Support for 16-, 32-, and 64-byte line data transfers.
• Read word address capability allows slave devices to fetch line data in any order (that

is, target word-first or sequential).
• Sequential burst protocol allows byte, halfword, and word burst data transfers in

either direction.
• Guarded and unguarded memory transfers allow a slave device to enable or disable

the pre-fetching of instructions or data.

http://www.xilinx.com

12 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

The PLB is a full-featured bus architecture with many features that increase bus
performance. Most of these features map well to the FPGA architecture, however, some
can result in the inefficient use of FPGA resources or can lower system clock rates.
Consequently, Xilinx uses an efficient subset of the PLB for Xilinx-developed PLB devices.
However, because of the flexible nature of FPGAs, you can also implement systems
utilizing PLB devices that are fully PLB V3.5 compliant.

Xilinx PLB Usage

Dynamic Bus Sizing
Dynamic bus sizing is a PLB architectural feature that allows a designer to mix 32 and 64-
bit devices on the same 64-bit PLB. A master provides a master size signal,
<Master>_MSize[0:1], that describes the data width of the master initiating a transaction.
Slaves provide a similar signal, Sl_Mn_SSize(0:1), with the address acknowledge that
describes the data width of the slave that is responding to the transaction. While dynamic
bus sizing is a useful architectural feature, its use in FPGAs can result in inefficient
implementations of PLB masters.

Conversion Cycles
Dynamic bus sizing results in conversion cycles, which are extra transfer cycles that re-
transfer data when the master-initiated transfer is larger than the slave response. For
example, if a master writes a 64-bit word to a slave, and the 32-bit device slave responds
with a slave size of 32-bits, then the master must perform an additional conversion cycle to
transfer all of the data to the slave. Generating conversion cycles requires more logic,
increases the complexity of the master, and is typically not an efficient use of FPGA
resources.

Write Mirroring and Read Steering
Another consequence of supporting devices smaller than the bus size is write mirroring and
read steering. In the PLB specification, devices smaller than the bus size are always left-
justified (aligned toward the most significant side of the bus) so that the byte lanes
associated with the smaller devices are easily determined. For example, a word-wide
peripheral is always located on the most-significant word of the 64-bit bus. The peripheral
writes and reads data using only the four most significant byte lanes. You can simplify the
design of PLB masters by using an architecture that requires no write mirroring and
transfers data based on which byte enables are active. A small degree of added complexity
is required in the bus attachment for peripherals that are smaller than the bus size if PLB
masters do not mirror data. This additional logic is built into the parameterizable slave
attachment in each Xilinx peripheral.

Xilinx PLB Devices

Ideal FPGA Implementation of PLB-based System
The ideal FPGA implementation of a PLB-based system has the following features:

• Requires no conversion cycles
• Does not require masters to mirror write data

These characteristics help determine how Xilinx-developed PLB devices are implemented.
The detailed specifications that describe how the PLB is used in Xilinx intellectual property
are provided in the next section.

Specifications for PLB Usage in Xilinx-developed PLB Devices
Xilinx-developed PLB devices adhere to the following PLB usage rules:

http://www.xilinx.com

June 2003 www.xilinx.com 13
Processor IP User Guide 1-800-255-7778

R

• The width of the PLB data buses is 64 bits and the width of address buses is 32 bits.
Note that some peripherals may parameterize these widths, but currently only 64-bit
data buses are supported. Peripherals that are smaller than 64-bits can be attached to
the PLB with a corresponding restriction in addressing. For example, a 32-bit
peripheral at base address A can be attached to byte lanes 0 – 4, but word-wide
accesses can only be addressed at A, A+8, A+16, etc.

• PLB masters are not required to support dynamic bus sizing. PLB masters are not
required to mirror data to unused byte lanes. See Figure 2-1 and Figure 2-2 for the
byte lane usage for aligned transfers. PLB Masters are required to correctly drive the
<Master>_MSize[0:1] signals. PLB slaves are required to correctly drive the
<Slave>_SSize[0:1] signals for PLB masters that do provide conversion cycles (such as
the PowerPC 405).

• All PLB slaves are required to output logic zero when they are inactive.
• The byte-enables and the least-significant address bits are driven by all masters and

contain consistent information. Examples of byte lane usage for aligned transfers are
shown in Figure 2-1 and Figure 2-2.

Figure 2-1: Byte lane usage for aligned doubleword, word, and halfword transfers

0:7 0:7 0:7 0:7

32:39

40:47

48:55

56:63

8:15

16:23

24:31

32:39

40:47

48:55

56:63

32:39

40:47

48:55

56:63

32:39

40:47

48:55

56:63

0:7

8:15

16:23

24:31

Data Bus

Mn_ABus(29:31) = "000",
Mn_BE = "11111111"

0:7

8:15

16:23

24:31

Data Bus

Mn_ABus(29:31) = "000",
Mn_BE = "11110000"

0:7

8:15

16:23

24:31

Data Bus

Mn_ABus(29:31) = "100",
Mn_BE = "00001111"

doubleword transfer word transfer word transfer

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

32:39

40:47

48:55

56:63

32:39

40:47

48:55

56:63

32:39

40:47

48:55

56:63

8:15

16:23

24:31

Data Bus

Mn_ABus(29:31) = "000",
Mn_BE = "11000000"

8:15

16:23

24:31

Data Bus

Mn_ABus(29:31) = "010",
Mn_BE = "00110000"

8:15

16:23

24:31

Data Bus

Mn_ABus(29:31) = "100",
Mn_BE = "00001100"

Data Bus

Mn_ABus(29:31) = "110",
Mn_BE = "00000011"

halfword transfer halfword transfer halfword transfer halfword transfer

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

http://www.xilinx.com

14 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

• All PLB slave devices that require a continuous address space (i.e. use of all byte
lanes) will implement an attachment to the PLB bus that is as wide as the PLB data
width, regardless of device width. This eliminates the need for left justification on the
PLB bus and eliminates the need for masters to mirror write data. As an example,
consider a 32-bit memory device that must be addressed at consecutive byte
addresses being attached to a 64-bit PLB. The 32-bit memory device must implement a
64-bit wide attachment to the PLB; in the bus attachment, data is steered from the
proper byte lanes into the 32-bit device for writes, and from the 32-bit device onto the
proper byte lanes for reads.

• By convention, registers in all PLB slave devices are aligned to word boundaries
(lowest two address bits are "00"), regardless of the size of the data in the register or
the size of the peripheral.

• Master and Slave I/O: PLB masters adhere to the signal set shown in Table 2-1. PLB
slaves adhere to the signal set shown in Table 2-2. Page numbers referenced in the
tables apply to the PLB V3.5 specification from IBM. All signals shown must be
present. No additional signals for PLB interconnection may be added. The naming
convention is as follows: <Master> represents a master name or acronym that starts
with an upper-case letter, <Slave> represents a slave name or acronym that starts with
an upper-case letter. <nPLB> represents an PLB identifier (for masters or slaves with
more than one PLB attachment) and must start with an uppercase letter and end with
upper-case "PLB". For devices with a single PLB attachment, the <nPLB> identifier

Figure 2-2: Byte lane usage for byte transfers

0:7 0:7 0:7 0:7

32:39

40:47

48:55

56:63

8:15

16:23

24:31

32:39

40:47

48:55

56:63

32:39

40:47

48:55

56:63

32:39

40:47

48:55

56:63

32:39

40:47

48:55

56:63

0:7

8:15

16:23

24:31

Data Bus

Mn_ABus(29:31) = "000",
Mn_BE = "10000000"

0:7

8:15

16:23

24:31

Data Bus

Mn_ABus(29:31) = "001",
Mn_BE = "01000000"

0:7

8:15

16:23

24:31

Data Bus

Mn_ABus(29:31) = "010",
Mn_BE = "00100000"

0:7

8:15

16:23

24:31

Data Bus

Mn_ABus(29:31) = "011",
Mn_BE = "00010000"

byte transfer byte transfer byte transfer byte transfer

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

32:39

40:47

48:55

56:63

32:39

40:47

48:55

56:63

32:39

40:47

48:55

56:63

8:15

16:23

24:31

Data Bus

Mn_ABus(29:31) = "100",
Mn_BE = "00001000"

8:15

16:23

24:31

Data Bus

Mn_ABus(29:31) = "101",
Mn_BE = "00000100"

8:15

16:23

24:31

Data Bus

Mn_ABus(29:31) = "110",
Mn_BE = "00000010"

Data Bus

Mn_ABus(29:31) = "111",
Mn_BE = "00000001"

byte transfer byte transfer byte transfer byte transfer

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

http://www.xilinx.com

June 2003 www.xilinx.com 15
Processor IP User Guide 1-800-255-7778

R

should default to "PLB" (for example, PLB_ABus). All other parts of the signal name
must be referenced exactly as shown (including case).

Table 2-1: Summary of PLB Master-only I/O

Signal I/O Description
Page

(in Ref. 1)

<nPLB>_Clk I PLB Clock (SYS_plbClk) PLB-11

<nPLB>_Rst I PLB Reset (SYS_plbReset) PLB-11

<Master>_abort O Master abort bus request indicator PLB-19

<Master>_ABus[0:31] O Master address bus PLB-27

<Master>_BE[0:7] O Master byte enables PLB-21

<Master>_busLock O Master buslock PLB-13

<Master>_compress O Master compressed data transfer
indicator

PLB-25

<Master>_guarded O Master guarded transfer indicator PLB-26

<Master>_lockErr O Master lock error indicator PLB-27

<Master>_MSize[0:1] O Master data bus size PLB-40

<Master>_ordered O Master synchronize transfer
indicator

PLB-26

<Master>_priority[0:1] O Master request priority PLB-12

<Master>_rdBurst O Master burst read transfer
indicator

PLB-34

<Master>_request O Master request PLB-12

<Master>_RNW O Master read/not write PLB-21

<Master>_size[0:3] O Master transfer size PLB-24

<Master>_type[0:2] O Master transfer type PLB-25

<Master>_wrBurst O Master burst write transfer
indicator

PLB-29

<Master>_wrDBus[0:63] O Master write data bus PLB-28

<nPLB>_<Master>_Busy I PLB master slave busy indicator PLB-36

<nPLB>_<Master>_Err I PLB master slave error indicator PLB-37

<nPLB>_<Master>_WrBTerm I PLB master terminate write burst
indicator

PLB-30

<nPLB>_<Master>_WrDAck I PLB master write data
acknowledge

PLB-29

<nPLB>_<Master>AddrAck I PLB master address acknowledge PLB-18

<nPLB>_<Master>RdBTerm I PLB master terminate read burst
indicator

PLB-36

<nPLB>_<Master>RdDAck I PLB master read data
acknowledge

PLB-33

http://www.xilinx.com

16 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

<nPLB>_<Master>RdDBus[0:63] I PLB master read data bus PLB-31

<nPLB>_<Master>RdWdAddr[0:3] I PLB master read word address PLB-32

<nPLB>_<Master>Rearbitrate I PLB master bus re-arbitrate
indicator

PLB-19

<nPLB>_<Master>SSize[0:1] I PLB slave data bus size PLB-40

Table 2-2: Summary of PLB Slave-only I/O

Signal I/O Description
Page

(in Ref. 1)

<nPLB>_Clk I PLB Clock (SYS_plbClk) PLB-11

<nPLB>_Reset I PLB Reset (SYS_plbReset) PLB-11

<Slave>_addrAck O Slave address acknowledge PLB-18

<Slave>_MBusy[0:3] O Slave busy indicator PLB-36

<Slave>_MErr[0:3] O Slave error indicator PLB-37

<Slave>_rdBTerm O Slave terminate read burst transfer PLB-36

<Slave>_rdComp O Slave read transfer complete
indicator

PLB-34

<Slave>_rdDAck O Slave read data acknowledge PLB-33

<Slave>_rdDBus[0:63] O Slave read data bus PLB-31

<Slave>_rdWdAddr[0:3] O Slave read word address PLB-32

<Slave>_rearbitrate O Slave re-arbitrate bus indicator PLB-19

<Slave>_SSize[0:1] O Slave data bus size PLB-40

<Slave>_wait O Slave wait indicator PLB-18

<Slave>_wrBTerm O Slave terminate write burst transfer PLB-30

<Slave>_wrComp O Slave write transfer complete
indicator

PLB-29

<Slave>_wrDAck O Slave write data acknowledge PLB-29

<nPLB>_abort I PLB abort request indicator PLB-19

<nPLB>_ABus[0:31] I PLB address bus PLB-27

<nPLB>_BE[0:7] I PLB byte enables PLB-21

<nPLB>_busLock I PLB bus lock PLB-13

<nPLB>_compress I PLB compressed data transfer
indicator

PLB-25

<nPLB>_guarded I PLB guarded transfer indicator PLB-26

<nPLB>_lockErr I PLB lock error indicator PLB-27

<nPLB>_masterID[0:1] I PLB current master identifier PLB-20

Table 2-1: Summary of PLB Master-only I/O <Italic>(Continued)

Signal I/O Description
Page

(in Ref. 1)

http://www.xilinx.com

June 2003 www.xilinx.com 17
Processor IP User Guide 1-800-255-7778

R

PLB Comparison
Table 2-3 illustrates the major embedded processor bus architectures used in Xilinx FPGAs
and lists some of their characteristics. Each bus has different capabilities in terms of data
transfer rates, multi-master capability, and data bursting. The use of a particular bus is
dictated by the processor used, the data bandwidth required in the application, and
availability of peripherals. The PLB is a high-performance local bus that can be effectively
used in many design situations.

PLB - Processor Local Bus (IBM). PLB Reference

OPB - On-chip Peripheral Bus (IBM). OPB Reference

OCM - On-chip Memory interface (IBM). OCM Reference

DCR - Device Control Register bus (IBM). DCR Reference

<nPLB>_MSize[0:1] I PLB master data bus size PLB-40

<nPLB>_ordered I PLB synchronize transfer indicator PLB-26

<nPLB>_PAValid I PLB primary address valid indicator PLB-13

<nPLB>_pendPri[0:1] I PLB pending request priority PLB-20

<nPLB>_pendReq I PLB pending bus request indicator PLB-20

<nPLB>_rdBurst I PLB burst read transfer indicator PLB-34

<nPLB>_rdPrim I PLB secondary to primary read
request indicator

PLB-36

<nPLB>_reqPri[0:1] I PLB current request priority PLB-20

<nPLB>_RNW I PLB read/not write PLB-21

<nPLB>_SAValid I PLB secondary address valid
indicator

PLB-16

<nPLB>_size[0:3] I PLB transfer size PLB-24

<nPLB>_type[0:2] I PLB transfer type PLB-25

<nPLB>_wrBurst I PLB burst write transfer indicator PLB-29

<nPLB>_wrDBus[0:63] I PLB write data bus PLB-28

<nPLB>_wrPrim I PLB secondary to primary write
request indicator

PLB-31

Table 2-2: Summary of PLB Slave-only I/O <Italic>(Continued)

Signal I/O Description
Page

(in Ref. 1)

http://www.xilinx.com
http://www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/8BA965C773B2E0ED87256AB20082CC9F/$file/64bitPlbBus.pdf
http://www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/9A7AFA74DAD200D087256AB30005F0C8/$file/OpbBus.pdf
http://www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/D060DB54BD4DC4F2872569D2004A30D6/$file/405_um.pdf
http://www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/EA0DB87B2BB3702587256AB30006DD12/$file/DcrBus.pdf

18 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

Table 2-3: Comparison of buses used in Xilinx embedded processor systems

Feature
CoreConnect Buses Other Buses

PLB OPB DCR OCM LMB

Processor family PPC405 PPC405,
MicroBlaze

PPC405 PPC405 MicroBlaze

Data bus width 64 32 32 32 32

Address bus width 32 32 10 32 32

Clock rate, MHz (max)1 100 125 125 375 125

Masters (max) 16 16 1 1 1

Masters (typical) 2-8 2-8 1 1 1

Slaves (max) limited only by hardware resources 1 1

Slaves (typical) 2-6 2-8 1-8 1 1

Data rate (MB/s, peak)2 1600 500 500 500 500

Data rate (MB/s, typical)3 5334 1675 1008 3336 3337

Concurrent read/write Yes No No No No

Address pipelining Yes No No No No

Bus locking Yes Yes No No No

Retry Yes Yes No No No

Timeout Yes Yes No No No

Fixed burst Yes No No No No

Variable burst Yes No No No No

Cache fill Yes No No No No

Target word first Yes No No No No

FPGA resource usage High Medium Low Low Low

Compiler support for load/store Yes Yes No Yes Yes

Notes:
1. Maximum clock rates are estimates and are presented for comparison only. The actual maximum clock rate for each bus is

dependent on device family, device speed grade, design complexity, and other factors.
2. Peak data rate is the maximum theoretical data transfer rate at the clock rate shown for each bus.
3. The typical data rates are intended to illustrate data rates that are representative of actual system configurations. The

typical data is highly dependent on the application software and system hardware configuration.
4. Assumes primarily cache-line fills, minimal read/write concurrency (66.7% bus utilization).
5. Assumes minimal use of sequential address capabilities and 3 clock cycles per OPB transfer.
6. The OCM controller operates at the PPC405 core clock rate, but its data transfer rate is limited by the access time of the on-

chip memory. The typical data rate assumes 66.7% bus utilization.
7. Assumes 66.7% bus utilization.
8. Assumes DCR operates at same clock rate as PLB and each DCR access requires 5 clock cycles. The number of clock cycles

per DCR transfer is dependent on how many DCR devices are present in the system. Each additional DCR device adds
latency to all DCR transfers.

http://www.xilinx.com

June 2003 www.xilinx.com 19
Processor IP User Guide 1-800-255-7778

R

Revision History
The following table shows the revision history for this document.

Date Version Revision

5/8/02 1.0 Initial Xilinx version.

http://www.xilinx.com

20 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

http://www.xilinx.com

June 2003 www.xilinx.com 21
Processor IP User Guide 1-800-255-7778

R

Chapter 3

Bus Infrastructure Cores

This section of the User Guide contains information on the following bus infrastructure
cores:

On-Chip Peripheral Bus v2.0 with OPB Arbiter (v1.10a)

On-Chip Peripheral Bus v2.0 with OPB Arbiter (v1.10b)

OPB to PLB Bridge (v1.00a)

OPB to PLB Bridge (v1.00b)

OPB to OPB Bridge (Lite Version)

OPB to DCR Bridge Specification

Processor Local Bus (PLB) v3.4

PLB to OPB Bridge (v1.00a)

PLB to OPB Bridge (v1.00b)

Device Control Register Bus (DCR) v2.9

Processor System Reset Module

Local Memory Bus (LMB) v1.0

OPB Arbiter (v1.02c)

Fast Simplex Link Channel (FSL) v1.0

http://www.xilinx.com

Product Overview www.xilinx.com 22
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
The OPB_V20 module is used as the OPB interconnect for
Xilinx FPGA based embedded processor systems. The bus
interconnect in the OPB v2.0 specification is a distributed
multiplexer implemented as an “and” function in the master
or slave driving the bus and an OR to combine the drivers
into a single bus.

The OPB_V20 module assumes the AND, or enable func-
tion is within the master or slave and provides the OR func-
tion to combine the various bus signals.

Features
The features of the OPB_V20 are:

• Includes parameterized OPB Arbiter

• Includes parameterized I/O signals to support and
number of masters or slaves

• Includes all signals present in the OPB v2.0
Specification except the DMA handshake signals

• The OR structure can be implemented using only LUTs
or a combination of LUTs and fast carry to reduce the
number of LUTs in the OR interconnect

• Includes a 16-clock Power-on OPB Bus Reset and
parameter for high or low external bus reset

• Includes input for reset from Watchdog Timer

• Option to split the read and write OPB date busses for
optimal FPGA routing and resource utilization.

The OPB_V20 includes an OPB Arbiter that incorporates
the features contained in the IBM On-chip Peripheral Bus
Arbiter Core manual (version 1.5) for 32-bit implementation.
This manual is referenced throughout this document and is
considered the authoritative specification. Any differences
between the IBM OPB Arbiter implementation and the Xilinx
OPB Arbiter implementation are explained in the Specifica-
tion Exceptions section of this data sheet.

The Xilinx OPB Arbiter design allows you to tailor the OPB
Arbiter to suit your application by setting certain parameters
to enable/disable features.

In some cases, setting these parameters may cause the Xil-
inx OPB Arbiter design to deviate slightly from the IBM OPB
Arbiter specification. These parameters are described in the
OPB_V20 Design Parameters section of this data sheet..

0

On-Chip Peripheral Bus v2.0 with
OPB Arbiter (v1.10a)

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II, Virtex,
Virtex E, Spartan™ II

Version of Core opb_v20 v1.10a

Resources Used

Min Max

I/O 46 436

LUTs 80 666

FFs 5 145

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet.

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 23
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
The OPB_V20 module is used as the OPB interconnect for
Xilinx FPGA based embedded processor systems. The bus
interconnect in the OPB v2.0 specification is a distributed
multiplexer implemented as an “and” function in the master
or slave driving the bus and an OR to combine the drivers
into a single bus.

The OPB_V20 module assumes the AND, or enable func-
tion is within the master or slave and provides the OR func-
tion to combine the various bus signals.

Features
• Includes parameterized OPB Arbiter

• Includes parameterized I/O signals to support and
number of masters or slaves

• Includes all signals present in the OPB v2.0
Specification except the DMA handshake signals

• The OR structure can be implemented using only LUTs
or a combination of LUTs and fast carry to reduce the
number of LUTs in the OR interconnect

• Includes a 16-clock Power-on OPB Bus Reset and
parameter for high or low external bus reset

• Includes input for reset from Watchdog Timer

• Option to split the read and write OPB date busses for
optimal FPGA routing and resource utilization.

The OPB_V20 includes an OPB Arbiter that incorporates
the features contained in the IBM On-chip Peripheral Bus
Arbiter Core manual (version 1.5) for 32-bit implementation.
This manual is referenced throughout this document and is
considered the authoritative specification. Any differences
between the IBM OPB Arbiter implementation and the Xilinx
OPB Arbiter implementation are explained in the Specifica-
tion Exceptions section of this data sheet.

The Xilinx OPB Arbiter design allows you to tailor the OPB
Arbiter to suit your application by setting certain parameters
to enable/disable features.

In some cases, setting these parameters may cause the Xil-
inx OPB Arbiter design to deviate slightly from the IBM OPB
Arbiter specification. These parameters are described in the
OPB_V20 Design Parameters section of this data sheet.

0

On-Chip Peripheral Bus v2.0 with
OPB Arbiter (v1.10b)

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II, Virtex,
Virtex E, Spartan™ II

Version of Core opb_v20 v1.10b

Resources Used

Min Max

Slices 46 436

LUTs 81 668

FFs 5 145

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 24
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
The On-Chip Peripheral Bus (OPB) to Processor Local Bus
(PLB) Bridge module translates OPB transactions into PLB
transactions. It functions as a slave on the OPB side and a
master on the PLB side. Access to the control register and
bus error status registers is user selectable from either the
OPB or an optional DCR interface. The OPB to PLB Bridge
is necessary in systems where an OPB master device, such
as a DMA engine or an OPB based coprocessor, requires
access to PLB devices (i.e. high speed memory devices).

The Xilinx OPB to PLB Bridge design allows customers to
tailor the bridge to suit their application by setting certain
parameters to enable / disable features. The parameteriz-
able features of the design are discussed in this data sheet.
Differences between the IBM OPB to PLB Bridge imple-
mentation and the Xilinx OPB to PLB Bridge implementa-
tion are also highlighted and explained.

The OPB to PLB Bridge, when convenient, is referred to as
the Bridge In (BGI), and the PLB to OPB Bridge is referred
to as the Bridge Out (BGO). This terminology reflects a PLB
centric convention of data flowing “in from” and “out to” the
peripheral bus, respectively. This is only a naming conven-
tion and in no way restricts the use of these bridges in alter-
native processor / bus configurations.

Features
• 64-bit PLB Master interface

- Communicates with 32- or 64-bit PLB slaves

- Non-burst transfers of 1 to 8 bytes

• 32-bit OPB Slave interface with byte enable transfers
Note Does not support dynamic bus sizing or non-byte
enable transactions

- Decodes up to 4 separate address ranges

- PLB and OPB clocks can have a 1:1, 2:1, 3:1, or
4:1 synchronous relationship (OPB clock
frequency must be less than or equal to the PLB
clock frequency)

- Asserts BGI_opbRetry if bridge is busy with a PLB
transaction and a new OPB request is received.

• Bus Error Status Register (BESR) and Bus Error
Address Register (BEAR) provide bus error status, and
Bridge Control Register (BCR) provides bridge control
funtions

- Parameterizable selection between DCR or OPB
Slave interface, which provides access to BESR,
BEAR, and BCR

• Edge-type interrupt generated when a bus error is
detected

0

OPB to PLB Bridge (v1.00a)

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro, Virtex II, Virtex,
Virtex E, Spartan II

Version of Core opb2plb_bridge v1.00a

Resources Used

Min Max

I/O 373 373

LUTs 456 533

FFs 664 669

Block RAMs 2 0

Provided with Core

Documentation Click here to view this data sheet

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx
Implementation Tools

5.1i or later

Verification N/A

Simulation ModelSim 5.6e or later

Synthesis XST & Synplify (state machines)

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 25
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
The On-Chip Peripheral Bus (OPB) to Processor Local Bus
(PLB) Bridge module translates OPB transactions into PLB
transactions. It functions as a slave on the OPB side and a
master on the PLB side. Access to the control register and
bus error status registers is user selectable from either the
OPB or an optional DCR interface. The OPB to PLB Bridge
is necessary in systems where an OPB master device, such
as a DMA engine or an OPB based coprocessor, that
requires access to PLB devices (i.e. high speed memory
devices, etc.).

The Xilinx OPB to PLB Bridge design allows customers to
tailor the bridge to suit their application by setting certain
parameters to enable / disable features. The parameteriz-
able features of the design are discussed in this data sheet.
Differences between the IBM OPB to PLB Bridge imple-
mentation and the Xilinx OPB to PLB Bridge implementa-
tion are also highlighted and explained.

In subsequent sections, the OPB to PLB Bridge, when con-
venient, is referred to as the Bridge In (BGI), and the PLB to
OPB Bridge is referred to as the Bridge Out (BGO). This ter-
minology reflects a PLB centric convention of data flowing
“in from” and “out to” the peripheral bus, respectively. How-
ever, this is only a naming convention and in no way restricts
the use of these bridges in alternative processor / bus con-
figurations.

Features
The Xilinx OPB to PLB Bridge is a soft IP core with the fol-
lowing features:

• 64-bit PLB Master interface

- Communicates with 32- or 64-bit PLB slaves

- Non-burst transfers of 1 to 8 bytes

- Burst transfers, including word and double-word
bursts of fixed lengths, up to 16 words of data

- Cacheline transactions of 4, 8, and 16 words

• Translates OPB sequential accesses (bursts) to either
cacheline or fixed length PLB burst transfers

- Performing only single beat and cacheline
transactions reduces system logic utilization and
improves timing through PLB slave IP simplification
· Target word first order supported when cache-

line transactions selected

0

OPB to PLB Bridge (v1.00b)

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II, VirtexE,
Virtex, Spartan™ II

Version of Core opb2plb_bridge v1.00b

Resources Used

Min Max

I/O 390 390

LUTs 821 875

FFs 887 949

Block RAMs 2 2

Provided with Core

Documentation Click here to view this data sheet.

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx
Implementation Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST & Synplify (state machines)

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

OPB to PLB Bridge (v1.00b)

26 www.xilinx.com Product Overview
1-800-255-7778

- PLB burst transfers yield better bus cycle efficiency but may increase logic utilization and degrade timing in the
system

• 32-bit OPB Slave interface with byte enable transfer
Note: Does not support dynamic bus sizing or non-byte enable transactions

- Decodes up to four separate address ranges

- PLB and OPB clocks can have a 1:1, 2:1, 3:1, or 4:1 synchronous relationship (OPB clock frequency must be less
than or equal to the PLB clock frequency)

- Asserts BGI_opbRetry if bridge is busy with a PLB transaction and a new OPB request is received.

• Bus Error Status Register (BESR) and Bus Error Address Register (BEAR) provide bus error status, and Bridge
Control Register (BCR) provides bridge control functions

- Parameterizable selection between DCR or OPB Slave interface, which provides access to BESR, BEAR, and
BCR

• Posted write buffer and read prefetch buffer 16 words deep

• Edge-type interrupt generated when bus error detected

http://www.xilinx.com

Product Overview www.xilinx.com 27
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This document provides the design specification for the
OPB to OPB Lite Bridge. The OPB to OPB Lite Bridge is
used to connect two OPB buses. The bridge has one mas-
ter port and one slave port. Two bridges may be used
together to support full bus mastership in both directions.

Features
• Provides a bridge between two OPB V2.0 buses

• Connections for one master-side bus and one
slave-side bus

• Parameterized data bus widths

• Simple transaction forwarding reduces LUT count

• Requires the two OPB buses to be on the same clock
and the same size

• No support for data buffering or posted writes.

0

OPB to OPB Bridge (Lite Version)

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II

Version of Core opb_opb_lite v1.00a

Resources Used

Min Max

Slices 21 26

LUTs 22 30

FFs 27 27

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet.

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 28
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
The OPB to DCR Bridge translates transactions received on
its OPB slave interface into DCR master operations. Its
design utilizes an Intellectual Property InterFace (IPIF)
module to abstract OPB transactions into a simple SRAM
style protocol that is easier to design with.

The main advantage of using the bridge instead of the CPU
to control the DCR bus is that it provides a memory mapped
interface that may be preferable to the use of special move
to/move from DCR instructions.

Since the bridge typically runs at a slower clock frequency
than the CPU, its timing requirements are also less strin-
gent. The OPB to DCR Bridge implements a simple and
flexible method for communicating with DCR devices.

Features
• 32-bit DCR master with a 10-bit DCR address bus

• Memory-mapped interface from OPB to DCR, no
special instructions required

• Increased timing flexibility in typical systems where the
OPB clock is slower than the CPU clock

• Allows master devices other than the CPU to access
the DCR bus

• Provides a mechanism where CoreConnect systems
without a CPU can support DCR devices

0

OPB to DCR Bridge Specification

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II

Version of Core opb2dcr_bridge v1.01a

Resources Used

Min Max

Slices 87 89

LUTs 42 44

FFs 131 131

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet.

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 29
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
The Xilinx 64-bit Processor Local Bus (PLB) consists of a
bus control unit, a watchdog timer, and separate address,
write, and read data path units with a a three-cylcle only
arbitration feature. It contains a DCR slave interface to pro-
vide access to its bus error status registers. It also contains
a power-up reset circuit to ensure a PLB reset is generated
if no external reset has been provided.

The IBM Processor Local Bus (PLB) 64-Bit Architecture
Specification and the IBM Processor Local Bus (PLB) 64-Bit
Arbiter Core User’s Manual are referenced throughout this
document. Differences between the IBM PLB Arbiter and
the Xilinx PLB are highlighted and explained in Specification
Exceptions.

Features
• PLB arbitration support for up to 16 masters

- Number of PLB masters is configurable via a
design parameter

• PLB address and data steering support for up to 16
masters

• 64-bit and/or 32-bit support for masters and slaves

• PLB address pipelining

• Three-cycle arbitration

• Four levels of dynamic master request priority

• PLB watchdog timer

• PLB architecture compliant

• Complete PLB Bus structure provided

- Up to 16 slaves supported
· Number of PLB slaves configurable via a

design parameter

- No external or gates required for PLB slave input
signals

• PLB Reset circuit

- PLB Reset generated synchronously to the PLB
clock upon power up if no external reset is provided

- PLB Reset generated synchronously from external
reset when external reset provided
· Active state of external reset selectable via a

design parameter

0

Processor Local Bus (PLB) v3.4

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II, Virtex,
Virtex E, Spartan™ II

Version of Core plb_v34 v1.01a

Resources Used

Min Max

Slice 194 1616

LUTs 263 2533

FFs 57 482

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet.

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 30
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
The Processor Local Bus (PLB) to On-chip Peripheral Bus
(OPB) Bridge translates PLB transactions into OPB trans-
actions. It functions as a slave on the PLB side and a master
on the OPB side. It contains a DCR slave interface to pro-
vide access to its bus error status registers. The PLB to
OPB bridge is necessary in systems where a PLB master
device requires access to OPB peripherals.

The Xilinx PLB to OPB Bridge design allows customers to
tailor the bridge to suit their application by setting certain
parameters to enable/disable features. The
parameterizable features of the design are discussed in this
data sheet. Differences between the IBM PLB to OPB
Bridge implementation and the Xilinx PLB to OPB Bridge
implementation are also highlighted and explained.

Features
• PLB Slave interface

- 32-bit or 64-bit PLB (configurable via the
C_PLB_DWIDTH design parameter)

- PLB slave width same as PLB bus width

- Decodes up to four separate address ranges

- Programmable lower and upper address
boundaries for each range

- Communicates with 32- or 64-bit PLB masters

- Non-burst transfers of 1-8 bytes

- Burst transfers, including word and double-word
bursts of fixed or variable lengths, up to depth of
burst buffer (16)

- Limited support for byte, half-word, quad-word and
octal-word bursts to maintain PLB compliance

- Cacheline transactions of 4, 8, and 16 words

- Support for burst transactions can be eliminated
via a design parameter
· save device resources by only supporting sin-

gle beat, 4, 8, or 16 word line transfers

- Supports up to 16 PLB masters (number of PLB
masters configurable via a design parameter)

• OPB Master interface with byte enable transfers
Note:Does not support dynamic bus sizing without additional
glue logic

- Data width configurable via a design parameter

• PLB and OPB clocks can have a 1:1, 1:2, 1:3, 1:4
synchronous relationship

• Bus Error Address Registers (BEAR) and Bus Error
Status Registers (BESR) to report errors

- DCR Slave interface provides access to
BEAR/BESR

- BEAR, BESR, and DCR interface can be removed
from the design via a design parameter

• 16-deep posted write buffer and read pre-fetch buffer

• Edge-type interrupt generated when bus error detected

0

PLB to OPB Bridge (v1.00a)

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts
Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II, Virtex,
Virtex E, Spartan™ II

Version of Core plb2opb_bridge v1.00a

Resources Used

Min Max

Slices 515 835

LUTs 531 826

FFs 384 630

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation Template N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 31
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
The Processor Local Bus (PLB) to On-chip Peripheral Bus
(OPB) Bridge translates PLB transactions into OPB trans-
actions. It functions as a slave on the PLB side and a master
on the OPB side. It contains a DCR slave interface to pro-
vide access to its bus error status registers. The PLB to
OPB bridge is necessary in systems where a PLB master
device requires access to OPB peripherals.

The Xilinx PLB to OPB Bridge design allows customers to
tailor the bridge to suit their application by setting certain
parameters to enable/disable features. The
parameterizable features of the design are discussed in this
data sheet. Differences between the IBM PLB to OPB
Bridge implementation and the Xilinx PLB to OPB Bridge
implementation are also highlighted and explained.

Features
• PLB Slave interface

- 32-bit or 64-bit PLB (configurable via the
C_PLB_DWIDTH design parameter)

- PLB slave width same as PLB bus width

- Decodes up to four separate address ranges

- Programmable lower and upper address
boundaries for each range

- Communicates with 32- or 64-bit PLB masters

- Non-burst transfers of 1-8 bytes

- Burst transfers, including word and double-word
bursts of fixed or variable lengths, up to depth of
burst buffer (16)

- Limited support for byte, half-word, quad-word and
octal-word bursts to maintain PLB compliance

- Cacheline transactions of 4, 8, and 16 words

- Support for burst transactions can be eliminated
via a design parameter
· save device resources by only supporting sin-

gle beat, 4, 8, or 16 word line transfers

- Supports up to 16 PLB masters (number of PLB
masters configurable via a design parameter)

• OPB Master interface with byte enable transfers
Note:Does not support dynamic bus sizing without additional
glue logic

- Data width configurable via a design parameter

• PLB and OPB clocks can have a 1:1, 1:2, 1:3, 1:4
synchronous relationship

• Bus Error Address Registers (BEAR) and Bus Error
Status Registers (BESR) to report errors

- DCR Slave interface provides access to
BEAR/BESR

- BEAR, BESR, and DCR interface can be removed
from the design via a design parameter

• 16-deep posted write buffer and read pre-fetch buffer

• Edge-type interrupt generated when bus error detected

0

PLB to OPB Bridge (v1.00b)

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts
Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II, Virtex,
Virtex E, Spartan™ II

Version of Core plb2opb_bridge v1.00b

Resources Used

Min Max

Slices 412 662

LUTs 499 787

FFs 355 620

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet.

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation Template N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 32
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
The Xilinx 32-Bit Device Control Register Bus (DCR) pro-
vides the DCR bus structure as described in the IBM 32-Bit
Device Control Register Bus (DCR) Architecture Specifica-
tion to allow easy connection of the DCR Master to the DCR
slaves. It provides the daisy-chain for the DCR data bus and
the OR gate for the DCR acknowledge signals from the
DCR slaves.

Features
The Xilinx DCR is a soft IP core designed for Xilinx FPGAs.
These are the features:

• DCR connections for one DCR master and a variable
number of DCR slaves, which are configurable via
design parameter

• Daisy-chain connections for the DCR data bus

• Required OR function of the DCR slaves’ acknowledge
signal

0

Device Control Register Bus
(DCR) v2.9

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II, Virtex,
Virtex E, Spartan™ II

Version of Core dcr_v29 v1.00a

Resources Used

Min Max

Slices 0 4

LUTs 0 5

FFs 0 0

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 33
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This specification defines the architecture and interface
requirements for this module.

The Xilinx Processor System Reset Module design allows
the customer to tailor the design to suit their application by
setting certain parameters to enable/disable features. The
parameterizable features of the design are discussed in this
data sheet.

Features
• Asynchronous external reset input is synchronized with

clock

• Asynchronous auxiliary external reset input is
synchronized with clock

• Both the external and auxiliary reset inputs are
selectable active high or active low

• Selectable minimum pulse width for reset inputs to be
recognized

• Selectable load equalizing

• DCM Locked input

• Power On Reset generation

• Sequencing of reset signals coming out of reset:

- First - bus structures come out of reset
· PLB and OPB Arbiter and bridges for example

- Second - Peripheral(s) come out of reset 16 clocks
later
· UART, SPI, IIC for example

- Third - the CPU(s) come out of reset 16 clocks
after the peripherals

0

Processor System Reset Module

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II, Virtex E,
Virtex, Spartan™ II, Spartan IIE

Version of Core proc_sys_reset v1.00a

Resources Used

Min Max

I/O 1 2

LUTs 37 57

FFs 52 82

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet.

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

Alliance Tool Suite

Verification N/A

Simulation N/A

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 34
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
The LMB_V10 module is used as the LMB interconnect for
Xilinx FPGA based embedded processor systems. The
LMB is a fast, local bus for connecting MicroBlaze instruc-
tion and data ports to high-speed peripherals, primarily
on-chip block RAM (BRAM).

Features
• Efficient, single master bus (requires no arbiter)

• Separate read and write data buses

• Low FPGA resource utilization

• 125 MHz operation

0

Local Memory Bus (LMB) v1.0

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II, Virtex,
Virtex E, Spartan™ II

Version of Core lmb_v10 v1.00a

Resources Used

Min Max

I/O

LUTs

FFs

Block RAMs

Provided with Core

Documentation Click here to view this data sheet.

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 35
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
The On-Chip Peripheral Bus (OPB) Arbiter design
described in this document incorporates the features con-
tained in the IBM On-chip Peripheral Bus Arbiter Core man-
ual (version 1.5) for 32-bit implementation, which is
referenced throughout this document and is considered the
authoritative specification. Any differences between the IBM
OPB Arbiter implementation and the Xilinx OPB Arbiter
implementation are explained in the Specification Excep-
tions section of this data sheet.

The Xilinx OPB Arbiter design allows you to tailor the OPB
Arbiter to suit your application by setting certain parameters
to enable/disable features. In some cases, setting these
parameters may cause the Xilinx OPB Arbiter design to
deviate slightly from the IBM OPB Arbiter specification.
These parameters are described in the OPB Arbiter Design
Parameters section.

Features
The OPB Arbiter is a soft IP core designed for Xilinx FPGAs
and contains the following features:

• Optional OPB slave interface (included in design via a
design parameter)

• OPB Arbitration

- arbitrates between 1–16 OPB Masters (the number
of masters is parameterizable)

- arbitration priorities among masters programmable
via register write

- priority arbitration mode configurable via a design
parameter
· Fixed priority arbitration with processor access

to read/write Priority Registers
· Dynamic priority arbitration implementing a

true least recent used (LRU) algorithm

• Two bus parking modes selectable via Control Register
write:

- park on selected OPB master (specified in Control
Register)

- park on last OPB master granted OPB access

• Watchdog timer asserts the OPB time-out signal if a
slave response is not detected within 16 clock cycles

• Registered or combinational Grant outputs
configurable via a design parameter

0

OPB Arbiter

Click here to view this data sheet
0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex™-II, Virtex-II Pro™

Version of Core opb_arbiter v1.02c

Resources Used

Min Max

I/O 4 904

LUTs 6 252

FFs 4 1477

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet.

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 36
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This document provides the design specification for the Fast
Simplex Link Channel v1.0. The FSL_V20 module is used
as the FSL interconnect for Xilinx FPGA based embedded
processor systems. The FSL is a fast uni-directional
point-to-point communication channel.

Features
• Uni-directional point-to-point communication

• Unshared non-arbitrated communication mechanism

• Control and Data communication support

• FIFO based communication

• Configurable depth FIFO

• Configurable data path size

• 600 MHz standalone operation

• The FSL bus is driven by one master and drives one
slave.

0

Fast Simplex Link Channel (FSL)
v1.0

Click here to view this data sheet 0 0 Product Overview

Core Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II,
Spartan™ II, Spartan II E

Version of Core fsl_v20 v1.00b

Resources Used

Min Max

Slices 26 26

LUTs 43 43

FFs 6 6

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs N/A

Design Tool Requirements

Xilinx Implementation
Tools

ISE 5.2i or higher

Verification N/A

Simulation ModelSim SE/EE 5.6e or higher

Synthesis XST

Support

Support provided by Xilinx, Inc.

http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com

June 2003 www.xilinx.com 37
Processor IP User Guide 1-800-255-7778

R

Chapter 4

IPIF

This section of the User Guide contains information on the following:

OPB IPIF Architecture

OPB IPIF Slave Attachment

OPB IPIF Master Attachment

OPB IPIF Address Decode

OPB IPIF Interrupt

OPB IP Interface Packet FIFO

Direct Memory Access and Scatter Gather

http://www.xilinx.com

Product Overview www.xilinx.com 38
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This document provides the architecture for the OPB IPIF, a
module that facilitates the connection of Xilinx or customer
IP modules to the IBM On-Chip Peripheral Bus (OPB). The
OPB is part of IBM’s CoreConnectTM family of data buses
and associated infrastructure. CoreConnect is intended for
use in system-on-a-chip environments, including Xilinx Vir-
tex™-II Pro FPGAs with embedded PowerPC hard proces-
sors and FPGAs using the MicroBlaze soft processor.

An Intellectual Property solution, referred to herein as an IP,
is a function targeted for implementation in a Xilinx FPGA.
Figure 1 of this data sheet shows the OPB IPIF positioned
between the OPB and the IP. The interface seen by the IP is
called the IP Interconnect (IPIC for short). The combination
of the IPIF and the IP is called a device (or in some circles,
a peripheral).

In addition to facilitating OPB attachment, the IPIF provides
additional optional services. These services, FIFOs, DMA,
Scatter Gather (automated DMA), software reset, interrupt
support and OPB bus-master access, are placed in the IPIF
to standardize functionality that is common to many IPs and
to reduce IP development effort. Figure 1 is a device which
uses all IPIF protocols and services.

In most of the IPIF modules, the Read and Write FIFOs,
DMA/SG, Interrupt Control and the Reset block, attach to
the IPIC inside the IPIF and utilize the register and/or SRAM
interfaces and take advantage of the centralized address
decoding.

These modules are essentially on the same footing as the
IP in terms of how they are interfaced to the OPB. The
“glue” in the figure represents a small number of non-IPIC
connections between modules.

At the other end of the spectrum, Figure 2 shows a device
using a near minimal set of IPIF features. In this case, the
IPIF does nothing more than provide OPB access to some
IP registers. Between these extremes are various other pos-
sibilities for devices that use other combinations of IPIF fea-
tures.

0

OPB IPIF Architecture

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

N/A

Version of Core opb_ipif_arch v1.23e

Resources Used

Min Max

I/O N/A N/A

LUTs N/A N/A

FFs N/A N/A

Block RAMs N/A N/A

Provided with Core

Documentation Click here to view this data sheet

Design File Formats N/A

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs N/A

Design Tool Requirements

Xilinx Implementation
Tools

N/A

Verification N/A

Simulation N/A

Synthesis N/A

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

OPB IPIF Architecture

Product Overview www.xilinx.com 39
1-800-255-7778

Features
The IPIF is a parametric soft IP core designed for Xilinx FPGAs and contains the capabilities and features summarized
below.

• Synchronous operation

• Hardware and optional software reset

• Freeze signal (requests graceful stop of IP and IPIF to facilitate debug under serious system failure; keeps interrupts
from “piling up”)

• Slave Interface:

- FPGA friendly protocol meeting requirements of most new and legacy IP
· Separate Address, Data-In, and Data-Out Buses
· Transaction Qualification: Read Req, Write Req, Byte Enable, Burst
· Transaction Response: Read Ack, Write Ack, Error, Retry, Timeout Suppression

- Register Interface (optional)
· Per register address decodes
· Separate read and write enables for decoded register addresses
· Doesn’t need the address

- SRAM Interface—for IP with SRAM-like interface (optional)
· Block-address decode
· Single enable (read or write) for the decoded block address
· Uses the address

- Support for burst transactions (optional)

• Interrupt Support (optional):

- Parameterizeable: Select the required features

- Captures up to 32 interrupt events from the IP

- Device Interrupt Source Controller (ISC) in the IPIF is at top of a hierarchy of ISCs
· Optional
· Hierarchical structure can be eliminated by user parameter when all interrupt events are from the IP, leaving

only the device-global interrupt enable function of the device ISC

- IP ISC
· IP may pass in one or more interrupt events which are latched, enabled, and cleared in the IP ISC, which

passes its interrupt-active condition to the device ISC

- IP Interrupt condition option
· When the IPIF is configured without interrupt support, the IP may latch, enable and clear interrupts itself and

pass the interrupt condition directly to the system interrupt controller

- IPIF ISCs, as needed, feed additional interrupt-active conditions to the device ISC
· E.g., one ISC for each DMA channel

• Master Interface (optional):

- Parameterizeable: Select the required features

- Bus Address

- Local Address (allows master general access to local resources)
· In lieu of dedicated in and out master data paths, the local address allows the slave-mode data paths and

address decoding to be leveraged for master operations
· Advantageous for devices with addresses that are accessed by remote OPB masters and by a local master
· Cooperation between the Slave Attachment and the Master Attachment used to complete master operations

- Single and burst transactions

- Transaction Qualification: Read Req, Write Req, Byte Enable, Burst, Bus Lock

- Transaction Response: separate Read and Write Acks, Transaction ack, Error, Retry, Timeout

• Write Packet FIFO (optional)

- Parameterizeable: Select the required features

- BRAM based

http://www.xilinx.com

OPB IPIF Architecture

40 www.xilinx.com Product Overview
1-800-255-7778

- Packet support: Data reads by IP can be provisional until explicitly committed:
· Mark command sets a a reference point for uncommitted reads
· Restore command discards uncommitted reads; data is reread starting at the mark
· Release command commits uncommitted reads
· Useful, for example, in protocols that require retransmission
· Interrupt when uncommitted reads empty the entire contents of the FIFO (indicates that the FIFO is too small

for the application)

- Written from the OPB via IPIF-internal connection to the IPIC

- Status can be read from the OPB

- Read by IP via request/acknowledge protocol

- Dedicated Data Path to the IP

- IP Status flags: Empty, Almost Empty (one occupied), Occupancy Count

- Optional Module Identification Register

• Read FIFO (optional):

- Parameterizeable: Select the required features

- BRAM based

- Packet support: Data writes by IP can be provisional until explicitly committed:
· Mark command sets a a reference point for uncommitted writes
· Restore command discards uncommitted writes; data is re-written starting at the mark
· Release command commits uncommitted writes
· Useful, for example, in protocols that discard data on error conditions or address misses
· Interrupt when uncommitted writes fill the entire contents of the FIFO (indicates that the FIFO is too small for

the application)

- Read from the OPB via IPIF-internal connection to the IPIC

- Status can be read from the OPB

- Written by IP via request/acknowledge protocol

- Dedicated Data Path from the IP

- IP Status flags: Full, Almost Full (one vacant), Vacancy Count
· Mark command sets a a reference point for uncommitted writes
· Restore command discards uncommitted writes; data is re-written starting at the mark
· Release command commits uncommitted writes
· Useful, for example, in protocols that discard data on error conditions or address misses
· Interrupt when uncommitted writes fill the entire contents of the FIFO (indicates that the FIFO is too small for

the application)

- Optional Module Identification Register

• DMA/Scatter Gather (optional):

- Parameterizeable: Select the required features

- Up to Two DMA channels may be included

- Optional scatter gather capability for channels

- Optional packet capability for SG channels

- Optional interrupt coalescing for packet SG channels (number of packets per interrupt is software selectable; time
wait bound gives packets guaranteed timely visibility)

- Optional Module Identification Register

- Attaches to IPIC internal to the IPIF

- Uses an IPIF-internal master interface

http://www.xilinx.com

Product Overview www.xilinx.com 41
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This document provides the specification for the OPB IPIF
Slave Attachment. The OPB IPIF Slave Attachment is a
sub-module of the OPB IPIF. The OPB IPIF is a module for
attaching an Intellectual Property, or IP Core, to the
IBM-defined On-Chip Peripheral Bus.

The environment for the Slave Attachment is shown in
Figure 1. The IP Core and service blocks inside the IPIF use
a set of signals and protocols called the IP Interconnect (or
IPIC). The Slave Attachment serves a bridging function
between the OPB and the bus-transaction part IPIC.

The Slave Attachment responds to OPB transactions when
the device is addressed as a slave. The Slave Attachment
translates the OPB transaction into a corresponding IPIC
transaction and then responds to the OPB master.

Figure 1 shows additional detail of the Slave and Master
Attachments, including the signal groups attached to each.
The essential role of the Slave Attachment as a converter
from the OPB bus protocol to the IPIC protocol is apparent.
(See Figure 7 for additional detail.)

A role in execution of locally initiated master transactions is
also indicated by the "cooperation" signals between the
Master Attachment and the Slave Attachment. The motiva-
tion for this role is that a master/slave device commonly has
some registers that are accessed in both slave and master
modes.

Since a data path must exist from the registers to the OPB
for slave access, this data path (and other infrastructure)
can be reused for master operation. The IPIF-resident DMA
and Scatter Gather services operate as masters and take
ample advantage of this reuse of infrastructure.

Features
• Protocol translation from OPB transactions to IPIC

transactions.

• Optional support for slave-mode OPB sequential
address (burst) transactions.

• Optional cooperation with the Master Attachment for
master operation.

0

OPB IPIF Slave Attachment

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

N/A

Version of Core opb_ipif_slave_
attachment

v1.23e

Resources Used

Min Max

I/O N/A N/A

LUTs N/A N/A

FFs N/A N/A

Block RAMs N/A N/A

Provided with Core

Documentation Click here to view this data sheet

Design File Formats N/A

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs N/A

Design Tool Requirements

Xilinx
Implementation
Tools

N/A

Verification N/A

Simulation N/A

Synthesis N/A

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 42
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This document provides the specification for the OPB IPIF
Master Attachment, which is a sub-module of the OPB IPIF.

Figure 1 of this data sheet shows the Master Attachment in
context and Figure 2 shows more detail of the Master
Attachment and its closely affiliated module, the Slave
Attachment. Inclusion of the Master Attachment in an IPIF
system is optional, needed only if the device operates as an
OPB master.

There are two points from which master operations may be
initiated within a device. One is the attached IP core. The
other is the DMA engine inside the IPIF. Either of these
masters may be present or absent. If both are absent, the
Master Attachment is not included in the device’s IPIF.

The Master Attachment handles the address, transaction
qualifier and response signals but relies upon the coopera-
tion of the Slave Attachment to move data. For systems that
have addresses that are sources and sinks for both slave
and master transactions, this results in reuse of the
slave-mode infrastructure and a resource savings.

The IP Core and service blocks inside the IPIF use a set of
signals and protocols called the IP Interconnect (or IPIC).
The Master Attachment translates the IP Interconnect mas-
ter transaction into a corresponding OPB master transac-
tion. As OPB transfers complete, the Master Attachment
generates the IPIC response signals.

Features
• Protocol translation from IPIC master transactions to

OPB master transactions.

• Reuses existing slave-mode data paths and other
infrastructure through cooperation with the Slave
Attachment.

• Single and burst master transactions supported;
singles are a limiting case of bursts.

• Optimized retry mode.

0

OPB IPIF Master Attachment

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

N/A

Version of Core opb_ipif_master
_attachment

v1.23a

Resources Used

Min Max

I/O N/A N/A

LUTs N/A N/A

FFs N/A N/A

Block RAMs N/A N/A

Provided with Core

Documentation Click here to view this data sheet

Design File Formats N/A

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs N/A

Design Tool Requirements

Xilinx
Implementation
Tools

N/A

Verification N/A

Simulation N/A

Synthesis N/A

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 43
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
Address decoding is a service performed by the IPIF. The
service supplies to the IP core a set of individual register
decodes, simplifying register interfacing in the core, and/or
an address-block decode, simplifying interfacing to an
SRAM-like device. The service is also utilized by IPIF-resi-
dent blocks such as the Read and Write FIFOs, the
DMA[SG] controller, the Interrupt Source Controller, and the
Reset Controller.

Features
• Supports the following superset of optional address

ranges:

- IP core register block

- IP core address block (SRAM)

- Write FIFO
· Register block for CSRs
· Address block for data

- Read FIFO
· Register block for CSRs
· Address block for data

- DMA[SG] address block

- Device Interrupt Source Controller register block

- Reset/MIR register block

• Address ranges not needed in a system as not
implemented

• Device-select signal allows the part of the address
common to all address ranges to be decoded by
external logic

0

OPB IPIF Address Decode

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

N/A

Version of Core opb_ipif_address
_decode

v1.23e

Resources Used

Min Max

I/O N/A N/A

LUTs N/A N/A

FFs N/A N/A

Block RAMs N/A N/A

Provided with Core

Documentation Click here to view this data sheet

Design File Formats N/A

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs N/A

Design Tool Requirements

Xilinx
Implementation
Tools

N/A

Verification N/A

Simulation N/A

Synthesis N/A

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 44
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
The OPB IPIF function has a requirement to collect all inter-
nal interrupts within a peripheral device and coalesce those
interrupts through masking and ’ORing’ into a single inter-
rupt output that is sent to the microprocessor system Inter-
rupt Controller (ITNC).

The IPIF Interrupt module, therefore, provides interrupt sup-
port logic for a user IP (connected to the IPIF) and internal
IPIF interrupt source functions (DMA/SG, PFIFOs, etc.).
The interrupt hierarchy of an OPB device is shown in
Figure 1 of this data sheet.

The IPIF Interrupt module incorporates two main functions:
the Device Interrupt Source Controller (ISC) and the IP ISC.
Each ISC function collects multiple interrupt inputs and out-
puts a single interrupt.

Features
The IPIF Interrupt module is incorporated in the standard
OPB IPIF block designed for Xilinx FPGAs and contains
these features:

• IP Interrupt Source Controller Function

- Parameterized number of interrupts needed by IP

- Provides both Interrupt Status Register (ISR) and
Interrupt Enable Register (IER) functions for the
user IP connecting to the IPIF
· Registers are OPB accessible via the IPIF

Local Bus Interface

• Device Interrupt Source Controller Function

- Device ISC omission through input parameter
programming

- Parameterized number of local IPIF generated
interrupt sources

- Provides both Interrupt Status Register (ISR) and
Interrupt Enable Register (IER) functions for the
Device level interrupts
· Registers are OPB accessible via the IPIF

Local Bus Interface.

- Selectable Priority Encoder function on asserted
and enabled interrupts
· Global Enable/Disable for final interrupt output

to the System Interrupt Controller.

0

OPB IPIF Interrupt

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

N/A

Version of Core opb_ipif_interrupt v1.00b

Resources Used

Min Max

I/O N/A N/A

LUTs N/A N/A

FFs N/A N/A

Block RAMs N/A N/A

Provided with Core

Documentation Click here to view this data sheet

Design File Formats N/A

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs N/A

Design Tool Requirements

Xilinx Implementation
Tools

N/A

Verification N/A

Simulation N/A

Synthesis N/A

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 45
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This specification defines the First In First Out memory
design incorporating packet data support (PFIFO). The
PFIFO resides within the Xilinx Intellectual Property Inter-
face (IPIF) module which interfaces to a host bus structure
such as the IBM OPB. The FIFOs primarily utilize Virtex
BRAM elements as the basic data storage medium.

FIFO depths of 16 words or less may optionally utilize
SRL16 elements as the memory medium. The memory is
coupled with surrounding counters and logic that are neces-
sary for the functional requirements.

These requirements include interfaces to the IP, interfaces
to the Direct Memory Access/ Scatter Gather (DMA/SG)
interface, and to the IPIF Local Bus protocol.

The PFIFO is used as a data buffering agent between the IP
function and a Bus Master such as a DMA/SG Engine (see
Figure 1). The basic operation of the module is a FIFO
buffer. Data can be shuttled in and out of the module without
the need for the accessing agent to provide successive
memory addresses. Data is stored and read in a First In
First Out (FIFO) sequence. However, the PFIFO to IP inter-
face has been enhanced with additional packet manage-
ment controls that facilitate packet retransmission or receive
packet discard functionality necessary for efficient operation
of some IP protocols (such as Ethernet).

The IPIF accesses the PFIFO module as a simple memory
mapped "FIFO" interface and memory mapped registers.

A PFIFO module is instantiated within the IPIF framework
and consists of two different types: a Write PFIFO
(WrPFIFO) and a Read PFIFO (RdPFIFO). The WrPFIFO is
the intermediate storage medium for data from the Host Bus
to the IP.

The RdPFIFO is used to buffer data from the IP that needs
to be sent to the Host Bus. Both Packet FIFO designs utilize
a single synchronous clock domain for the input and output
sides of the modules. This simplifies the design and
reduces LUT count as compared to an asynchronous dual
clock implementation.

0

OPB IP Interface Packet FIFO

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

N/A

Version of Core opb_pfifo v1.23e

Resources Used

Min Max

I/O N/A N/A

LUTs N/A N/A

FFs N/A N/A

Block RAMs N/A N/A

Provided with Core

Documentation Click here to view this data sheet

Design File Formats N/A

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs N/A

Design Tool Requirements

Xilinx Implementation
Tools

N/A

Verification N/A

Simulation N/A

Synthesis N/A

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

46 www.xilinx.com Product Overview
1-800-255-7778

Features
• Two independent functions are provided: the Read PFIFO (for host bus receive data buffering) and the Write PFIFO (for

host bus transmit data buffering).

• The PFIFO design adheres to IPSPEC035 OPB IPIF Architectural Specification.

• User controlled features that include parameters for:

- Setting FIFO data width

- Setting FIFO data depth (words)

- Inclusion/Omission of Packet mode support

- Setting IPIF Data Bus width

- Inclusion/Omission of Vacancy calculation for write port

- Selecting Target FPGA family type

- Inclusion/Omission of Module Identification Register

• "FIFO like" status outputs of AlmostFull, Full, AlmostEmpty, and Empty in addition to true ’Occupancy’ and ’Vacancy’
outputs. Host bus interface provides applicable status as a read accessible Status Register

• Write and Read Ports synchronized to a common clock source (synchronous operation)

• IPIF Local Bus Read access to Occupancy count on the Read PFIFO and the Vacancy count of the Write FIFO

The PFIFO modules can be reset from either an external reset input signal or a software initiated write to the Reset Register
port.

http://www.xilinx.com

Product Overview www.xilinx.com 47
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
Many soft IP input/output peripheral devices in Xilinx prod-
ucts with embedded or attached processors require the
automation facilities of Direct Memory Access and Scatter
Gather. This is a specification for such facilities.

DMA[SG] Controller Overview

Definitions
Direct memory access (DMA) allows for a bounded number
of sequential data transfers to take place between regions in
the address space (typically between memory and an I/O
device) without processor management of individual trans-
fers. The processor sets up the DMA operation by specify-
ing the number accesses and the source and destination
addresses.

Scatter gather (SG) allows a sequence of DMA operations
to be pre-specified by software and performed automatically
without further processor intervention. The processor pre-
pares the DMA operations in a system of buffers and their
associated Buffer Descriptors. The SG automation hard-
ware processes the Buffer Descriptors and performs the
DMA operations specified therein through activation of the
DMA hardware.

Often it is useful to consider that one or more DMA opera-
tions combine to compose a higher-level unit of data. An
example of such a unit is a packet or frame1 of data in a
communications protocol. This specification addresses
issues associated with the handling of packets and allows
packets to be distributed across one or more buffers.

0

Direct Memory Access and
Scatter Gather

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

N/A

Version of Core opb_ipif_dma_sg v1.23e

Resources Used

Min Max

I/O N/A N/A

LUTs N/A N/A

FFs N/A N/A

Block RAMs N/A N/A

Provided with Core

Documentation Click here to view this data sheet

Design File Formats N/A

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs N/A

Design Tool Requirements

Xilinx Implementation
Tools

N/A

Verification N/A

Simulation N/A

Synthesis N/A

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

48 www.xilinx.com Product Overview
1-800-255-7778

http://www.xilinx.com

June 2003 www.xilinx.com 49
Processor IP User Guide 1-800-255-7778

R

Chapter 5

Memory Interface Cores

This section of the reference guide contains information on the following memory interface
cores:

LMB Block RAM (BRAM) Interface Controller

Dual LMB Block RAM (BRAM) Interface Controller

OPB External Memory Controller (EMC) (v1.00d)

OPB External Memory Controller (EMC) (v1.10a)

OPB Synchronous DRAM (SDRAM) Controller

OPB Block RAM (BRAM) Interface Controller

OPB Block RAM Interface Controller (OPB_BRAM_IF_CNTLR)

OPB Double Data Rate (DDR) Synchronous DRAM (SDRAM) Controller

OPB SYSACE (System ACE) Interface Controller

PLB External Memory Controller (EMC) Design Specification (v1.00d)

PLB External Memory Controller (EMC) Design Specification (v1.10a)

PLB Synchronous DRAM (SDRAM) Controller

PLB Block RAM (BRAM) Interface Controller

PLB Double Data Rate (DDR) Synchronous DRAM (SDRAM) Controller

DDR Clock Module Reference Core

Instruction Side OCM Block RAM (ISBRAM) Interface Controller

Data Side OCM Block RAM (DSBRAM) Interface Controller

Block RAM (BRAM) Block

OPB ZBT Controller Design Specification

http://www.xilinx.com

Product Overview www.xilinx.com 50
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This document provides the design specification for the
LMB (Local Memory Bus) Block Ram (BRAM) Interface
Controller.

The LMB BRAM Interface Controller is a module that
attaches to one LMB.

This controller supports the LMB v1.0 bus protocol and
byte-enable architecture. Any access size up to the width of
the LMB data bus is permitted. The LMB BRAM Interface
Controller is the interface between the LMB and the
bram_block peripheral. A BRAM memory subsystem con-
sists of the controller along with the actual BRAM compo-
nents that are included in the bram_block peripheral.
System Generator for Processors automatically adds the
bram_block when a bram interface controller is instantiated.
If the text-based Microprocessor Hardware Specification
(MHS) file is used for design entry, then the bram controller
and bram_block must both be explicitly instantiated.

Features
• LMB v1.0 bus interfaces with byte enable support

• Used in conjunction with bram_block peripheral to
provide fast BRAM memory solution for MicroBlaze™

ILMB and DLMB ports.

• Supports byte, half-word, and word transfers.

• Supports Virtex™, Virtex-E, Spartan™-II, Virtex-II and
Virtex-II Pro™ BRAM

0

LMB Block RAM (BRAM)
Interface Controller

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro, Virtex II

Version of Core lmb_bram_if_cntlr v1.00a

Resources Used

Min Max

Slices 3 3

LUTs 6 6

FFs 2 2

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 51
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This document provides the design specification for the
Dual LMB (Local Memory Bus) Block Ram (BRAM) Inter-
face Controller. The Dual LMB BRAM Interface Controller is
a module that attaches to two LMBs (Local Memory Buses).

This controller supports the LMB V1.0 bus protocol and
byte-enable architecture. Any access size up to the width of
the LMB data bus is permitted. The LMB BRAM Interface
Controller is the interface between the LMB and the
bram_block peripheral. A BRAM memory subsystem con-
sists of the controller along with the actual BRAM compo-
nents that are included in the bram_block peripheral.
System Generator for Processors automatically adds the
bram_block when a bram interface controller is instantiated.
If the text-based Microprocessor Hardware Specification
(MHS) file is used for design entry, then the bram controller
and bram_block must both be explicitly instantiated.

Features
• Two LMB V1.0 bus interfaces with byte enable support

• Used in conjunction with bram_block peripheral to
provide fast BRAM memory solution for MicroBlaze
ILMB and DLMB ports

• Utilizes dual port features of BRAM

• Supports byte, half-word, and word transfers

• Supports Virtex™, Virtex-E, Spartan™-II, Virtex-II, and
Virtex-II Pro™ BRAM

0

Dual LMB Block RAM (BRAM)
Interface Controller

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro, Virtex II

Version of Core lmb_lmb_bram_
if_cntlr

v1.00a

Resources Used

Min Max

Slices 3 3

LUTs 6 6

FFs 2 2

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 52
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This specification defines the architecture and interface
requirements for the EMC. This module supports data
transfers between the On-Chip Peripheral Bus (OPB) and
external synchronous and asynchronous memory devices.

Example synchronous devices for use with this controller
are the synchronous Integrated Device Technology, Inc.
IDT71V546 SRAM with ZBT™ Feature. Example asynchro-
nous devices include the IDT71V416S SRAM and Intel
28F128J3A StrataFlash Memory.

The Xilinx EMC design allows the customer to tailor the
EMC to suit their application by setting certain parameters
to enable/disable features.

Features
The EMC is a soft IP core designed for Xilinx FPGAs:

• Parameterized for up to a total of eight memory
(Synchronous/Asynchronous) banks

- Separate base addresses and address range for
each bank of memory

• Separate Control Register for each bank of memory to
control memory mode

• OPB V2.0 bus interface with byte-enable support

• Memory width is independent of OPB bus width
(memory width must be less than or equal to OPB bus
width)

- Supports memory widths of 32 bits, 16 bits, or 8
bits

- Memory width can vary by bank

• Parameterizable memory data-width/bus data-width
matching

- Multiple memory cycles will be performed when the
memory width is less than the OPB bus width to
provide full utilization of the OPB bus

- Data-width matching can be enabled separately for
each memory bank

• Configurable wait states for read, write, read in page,
read recovery before write, and write recovery before
read

- Optional faster access for in-page read accesses
(page size 8 bytes)

0

OPB External Memory Controller
(EMC) (v1.10a)

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II, Virtex,
Virtex E, Spartan™ II

Version of Core opb_emc v1.10a

Resources Used

Min Max

Slices 193 385

LUTs 216 362

FFs 239 534

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet.

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 53
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This specification defines the architecture and interface
requirements for the EMC. This module supports data
transfers between the On-Chip Peripheral Bus (OPB) and
external synchronous and asynchronous memory devices.

Example synchronous devices for use with this controller
are the synchronous Integrated Device Technology, Inc.
IDT71V546 SRAM with ZBT™ Feature. Example asynchro-
nous devices include the IDT71V416S SRAM and Intel
28F128J3A StrataFlash Memory.

The Xilinx EMC design allows the customer to tailor the
EMC to suit their application by setting certain parameters
to enable/disable features.

Features
The EMC is a soft IP core designed for Xilinx FPGAs:

• Parameterized for up to a total of eight memory
(Synchronous/Asynchronous) banks

- Separate base addresses and address range for
each bank of memory

• Separate Control Register for each bank of memory to
control memory mode

• OPB v2.0 bus interface with byte-enable support

• Supports 32-bit, 16-bit, and 8-bit bus interfaces

• Supports memory width of 32-bits, 16 bits, or 8 bits

• Memory width is independent of OPB bus width
(memory width must be less than or equal to OPB bus
width)

• Configurable wait states for read, write, read in page,
read recovery before write, and write recovery before
read

• Optional faster access for in-page read accesses (page
size 8 bytes)

• System clock frequency of up to 133 MHz

0

OPB External Memory Controller
(EMC) (v1.00d)

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II, Virtex,
Virtex E, Spartan™ II

Version of Core opb_emc v1.00d

Resources Used

Min Max

Slice 163 194

LUTs 188 219

FFs 186 217

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 54
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
The Xilinx OPB SDRAM controller provides a SDRAM con-
troller that connects to the OPB bus and provides the con-
trol interface for SDRAMs. It is assumed that the reader is
familiar with SDRAMs and the IBM PowerPC.

Features
The Xilinx SDRAM Controller is a soft IP core designed for
Xilinx FPGAs and contains the following features:

• OPB interface

• Performs device initialization sequence upon power-up
and reset conditions

• Performs auto-refresh cycles

• Supports single-beat and burst transactions

• Supports target-word first cache-line transactions

• Supports cacheline latencies of 2 or 3 set by a design
parameter

• Supports various SDRAM data widths set by a design
parameter

0

OPB Synchronous DRAM
(SDRAM) Controller

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II, Virtex,
Virtex E, Spartan™ II

Version of Core SDRAM v1.00c

Resources Used

Min Max

Slices 222 246

LUTs 239 252

FFs 212 245

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 55
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
The OPB BRAM Interface Controller is a module that
attaches to the OPB (On-chip Peripheral Bus).

This controller supports the OPB v2.0 byte enable architec-
ture. Any access size up to the width of the OPB data bus is
permitted. The OPB BRAM Interface Controller is the inter-
face between the OPB and the bram_block peripheral. A
BRAM memory subsystem consists of the controller along
with the actual BRAM components that are included in the
bram_block peripheral. System Generator for Processors
automatically adds the bram_block when a bram interface
controller is instantiated. If the text-based Microprocessor
Hardware Specification (MHS) file is used for design entry,
then the bram controller and bram_block must both be
explicitly instantiated.

Features
• OPB v2.0 bus interface with byte-enable support

• Used in conjunction with bram_block peripheral to
provide total BRAM memory solution

• Supports a wide range of memory sizes

• Handles byte, half-word, word and double word
transfers

- Single cacheline bursts

• Handles Virtex™, Virtex-E, Spartan™-II, Virtex-II and
Virtex-II Pro™ BRAM

0

OPB Block RAM (BRAM)
Interface Controller

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex, Virtex-E, Spartan-II,
Virtex-II and Virtex-II Pro

Version of Core opb_bram_if_cntlr v1.00a

Resources Used

Min Max

Slices 42 42

LUTs 61 61

FFs 55 55

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet.

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 56
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This document provides the design specification for the
Block Ram (BRAM) Controller Interface Controller. The
OPB_BRAM Interface Controller is a module that attaches
to the OPB (On-chip Peripheral Bus).

Features
• OPB v2.0 bus interface with byte-enable support

• Used in conjunction with bram_block peripheral to
provide total BRAM memory solution.

• Supports a wide range of memory sizes.

• Handles byte, half-word, word and double word
transfers

- Single cacheline bursts

• Handles Virtex™, Virtex-E, Spartan™-II, Virtex-II and
Virtex-II Pro™ BRAM

This controller supports the OPB v2.0 byte enable architec-
ture. Any access size up to the width of the OPB data bus is
permitted. The OPB BRAM Interface Controller is the inter-
face between the OPB and the bram_block peripheral. A
BRAM memory subsystem consists of the controller along
with the actual BRAM components that are included in the
bram_block peripheral. System Generator for Processors
automatically adds the bram_block when a bram interface
controller is instantiated. If the text-based Microprocessor
Hardware Specification (MHS) file is used for design entry,
then the bram controller and bram_block must both be
explicitly instantiated.

0

OPB Block RAM Interface
Controller
(OPB_BRAM_IF_CNTLR)

Click here to view this data sheet 0 0 Product Overview

Core Facts

Core Specifics

Supported Device
Family

Virtex, Virtex-E, Spartan-II,
Virtex-II and Virtex-II Pro

Version of Core opb_bram_if_cntlr v2.00a

Resources Used

Min Max

Slices 21 22

LUTs 9 39

FFs 37 2

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs N/A

Design Tool Requirements

Xilinx Implementation
Tools

ISE 5.2i or higher

Verification N/A

Simulation ModelSim SE/EE 5.5e or higher

Synthesis XST

Support

Support provided by Xilinx, Inc.

http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com

Product Overview www.xilinx.com 57
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
The Xilinx OPB DDR SDRAM controller for Virtex™-II and
Virtex™-II Pro FPGAs provides a DDR SDRAM controller
thta connects to the OPB bus and provides the control inter-
face for DDR SDRAMs. It is assumed that the reader is
familiar with DDR SDRAMs and the IBM PowerPC.

Features
The Xilinx DDR SDRAM Controller is a soft IP core
designed for Xilinx FPGAs and contains the following fea-
tures:

• OPB interface

• Performs device initialization sequence upon power-up
and reset conditions

• Performs auto-refresh cycles

• Supports single-beat and burst transactions

• Supports target-word first cache-line transactions

• Supports cacheline latencies of 2 or 3 set by a design
parameter

• Supports various DDR data widths set by a design
parameter

0

OPB Double Data Rate (DDR)
Synchronous DRAM (SDRAM)
Controller

Click here to view this data sheet
0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II, Virtex,
Virtex E, Spartan™ II

Version of Core DDR v1.00b

Resources Used

Min Max

Slices 278 314

LUTs 352 371

FFs 250 307

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 58
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
The OPB System ACE Interface Controller is a module that
attaches to the OPB (On-chip Peripheral Bus).

This controller supports the OPB v2.0 byte enable architec-
ture. Any access size up to the width of the OPB data bus is
permitted. The OPB System ACE Interface Controller is the
interface between the OPB and the System ACE Compact-
Flash solution peripheral.

Features
• OPB v2.0 bus interface with byte-enable support

• Used in conjunction with System ACE CompactFlash
Solution to provide a System ACE memory solution

• System ACE Microprocessor Interface (MPU)

- Read/Write from or to a CompactFlash device

- MPU provides a clock for proper synchronization

- Must comply with System ACE timing

• ACE Flash (Xilinx-supplied Flash Cards)

- Densities of 128 MBits and 256 MBits

- CompactFlash Type 1 form factor
· Supports any standard CompactFlash module,

or IBM mIcrodrives up to 8 Gbits, all with the
same form factor.

• Handles byte, half-word, and word transfers

• Supported in Virtex™, Virtex-E, Spartan™-II, Virtex-II
and Virtex-II Pro™

0

OPB SYSACE (System ACE)
Interface Controller

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro, Virtex II, Virtex,
Virtex E, Spartan II

Version of Core opb_sysace v1.00a

Resources Used

Min Max

Slices 154 171

LUTs 112 102

FFs 240 280

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 59
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This specification defines the architecture and interface
requirements for the EMC. This module supports data
transfers between the Processor Local Bus (PLB) and
external synchronous and asynchronous memory devices.
Example synchronous devices for use with this controller
are the synchronous Integrated Device Technology, Inc.
IDT71V546 SRAM with ZBT™ Feature.

Example asynchronous devices include the IDT71V416S
SRAM, Intel 28F128J3A StrataFlash Memory and Xilinx’s
System ACE™ Devices. The EMC module is organized to be
a PLB slave-only device, which differs from the IBM EBC
specification.

The Xilinx EMC design allows the customer to tailor the
EMC to suit their application by setting certain parameters
to enable/disable features.

Features
The EMC is a soft IP core designed for Xilinx FPGAs:

• Parameterized for up to a total of eight memory
(Synchronous/Asynchronous) banks

- Separate base addresses and address range for
each bank of memory

• Separate Control Register for each bank of memory to
control memory mode

• Supports the following PLB transactions:

- Single beat read/write transfers

- In-line burst for 4,8,16 word cacheline read/write
transfers

• Memory width independent of PLB bus width (memory
width must be less than or equal to PLB bus width)

• Supports memory widths of 64 bits, 32 bits, 16 bits, or
8 bits

• Configurable wait states for read, write, read in page,
read recovery before write, and write recovery before
read

• Optional faster access for in-page read accesses (page
size 8 bytes)

• System clock frequency of up to 133 MHz

0

PLB External Memory Controller
(EMC) Design Specification
(v1.00d)

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II, Virtex,
Virtex E, Spartan™ II

Version of Core plb_emc v1.00d

Resources Used

Min Max

Slices 342 376

LUTs 425 455

FFs 329 360

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet.

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 60
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This specification defines the architecture and interface
requirements for the EMC. This module supports data
transfers between the Processor Local Bus (PLB) and
external synchronous and asynchronous memory devices.

Example synchronous devices for use with this controller
are the synchronous Integrated Device Technology, Inc.
IDT71V546 SRAM with ZBT™ Feature. Example asynchro-
nous devices include the IDT71V416S SRAM and Intel
28F128J3A StrataFlash Memory. The Xilinx EMC design
allows the customer to tailor the EMC to suit their applica-
tion by setting certain parameters to enable/disable fea-
tures.

Features
The EMC is a soft IP core designed for Xilinx FPGAs:

• Parameterized for up to a total of eight memory
(Synchronous/Asynchronous) banks

- Separate base addresses and address range for
each bank of memory

• Separate Control Register for each bank of memory to
control memory mode

• Supports the following PLB transactions:

- Single beat read/write transfers

- In-line burst for 4,8,16 word cacheline read/write
transfers

• Memory width independent of PLB bus width (memory
width must be less than or equal to PLB bus width)

- Supports memory widths of 64 bits, 32 bits, 16 bits,
or 8 bits, which can vary by bank

• Parameterizable memory data-width/bus data-width
matching

- Multiple memory cycles are performed when the
memory width is less than thePLB bus width to
provide full utilization of the PLB bus

- Data-width matching can be enabled separately for
each memory bank

• Configurable wait states for read, write, read in page,
read recovery before write, and write recovery before
read

- Optional faster access for in-page read accesses
(page size 8 bytes)

0

PLB External Memory Controller
(EMC) Design Specification
(v1.10a)

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II, Virtex,
Virtex E, Spartan™ II

Version of Core plb_emc v1.10a

Resources Used

Min Max

Slices 348 863

LUTs 366 920

FFs 465 1112

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet.

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 61
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
The Xilinx PLB SDRAM controller provides a SDRAM con-
troller which connects to the PLB bus and provides the con-
trol interface for SDRAMs. It is assumed that the reader is
familiar with SDRAMs and the IBM PowerPC™.

Features
The Xilinx SDRAM Controller is a soft IP core designed for
Xilinx FPGAs and contains the following features:

• PLB interface

• Performs device initialization sequence upon power-up
and reset conditions

• Performs auto-refresh cycles

• Supports single-beat and burst transactions

• Supports target-word first cache-line transactions

• Supports cacheline latencies of 2 or 3 set by a design
parameter

• Supports various SDRAM data widths set by a design
parameter

0

PLB Synchronous DRAM
(SDRAM) Controller

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II, Virtex,
Virtex E, Spartan™ II

Version of Core SDRAM v1.00c

Resources Used

Min Max

Slices 368 622

LUTs 340 665

FFs 408 660

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet.

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/a

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 62
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
he PLB BRAM Interface Controller is a module that attaches
to the PLB (Processor Local Bus).

This controller supports the PLB v3.4 byte enable architec-
ture. Any access size up to the width of the PLB data bus is
permitted. The PLB BRAM Interface Controller is the inter-
face between the PLB and the bram_block peripheral. A
BRAM memory subsystem consists of the controller along
with the actual BRAM components that are included in the
bram_block peripheral. System Generator for Processors
automatically adds the bram_block when a bram interface
controller is instantiated. If the text-based Microprocessor
Hardware Specification (MHS) file is used for design entry,
then the bram controller and bram_block must both be
explicitly instantiated.

Features
• PLB v3.4 bus interface with byte_enable support

• Used in conjunction with bram_block peripheral to
provide total BRAM memory solution

• Supports a wide range of memory sizes

• Handles byte, half-word, word and double word
transfers

- Single cacheline bursts

• Handles Virtex™, Virtex-E, Spartan™-II, Virtex-II and
Virtex-II Pro™ BRAM

0

PLB Block RAM (BRAM) Interface
Controller

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro, Virtex II, Virtex,
Virtex E, Spartan II

Version of Core plb_bram_if_cntlr v1.00a

Resources Used

Min Max

Slices 181 181

LUTs 204 204

FFs 223 223

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 63
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
The Xilinx PLB DDR SDRAM controller for Virtex™-II and
Virtex-II Pro™ FPGAs provides a DDR SDRAM controller
that connects to the PLB bus and provides the control inter-
face for DDR SDRAMs. It is assumed that the reader is
familiar with DDR SDRAMs and the IBM PowerPC.

Features
he Xilinx DDR SDRAM Controller is a soft IP core designed
for Xilinx FPGAs and contains the following features:

• PLB interface

• Performs device initialization sequence upon power-up
and reset conditions

• Performs auto-refresh cycles

• Supports single-beat and burst transactions

• Supports target-word first cache-line transactions

• Supports cacheline latencies of 2 or 3 set by a design
parameter

0

PLB Double Data Rate (DDR)
Synchronous DRAM (SDRAM)
Controller

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro, Virtex II, Virtex,
Virtex E, Spartan™ II

Version of Core DDR v1.00b

Resources Used

Min Max

Slices 509 861

LUTs 602 977

FFs 477 919

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

PLB Double Data Rate (DDR) Synchronous DRAM (SDRAM) Controller

64 www.xilinx.com Product Overview
1-800-255-7778

http://www.xilinx.com

Product Overview www.xilinx.com 65
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
The DDR Clock Module Reference core, targeted for the
Virtex™-II Pro FPGAs, provides a clocking solution for
embedded processor designs that make use of a Dual Data
Rate (DDR) memory controller and external DDR memory.
The reference core provides the clocks required to support
the DDR memory as well as basic system clocks for the
PPC405 CPU, the PLB bus, and the OPB bus.

This DDR Clock Module is also suitable for use with the
ML300 Development Board. The default configuration pro-
vides a 300 MHz CPU clock, a 100 MHz PLB clock, and a
100 MHz OPB clock. The clock module uses three Digital
Clock Managers (DCMs) to provide the correct clock fre-
quency multiplication and phase shifts for the CPU, bus,
and DDR clocks.

Features
• Provides clock multiplication for PPC405

• Provides clock multiplication and phase shifting for
DDR clocks

• Provides clock multiplication for PLB bus and OPB bus

• Provides clocking solution for systems using DDR on
the ML300 Development Board

• Supports PLB and OPB clock rate of 100 MHz, and
PPC405 clock rate of 300 MHz

0

DDR Clock Module Reference
Core

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex™-II, Virtex-II Pro™

Version of Core ddr_clock_
module_ref

v1.00a

Resources Used

Min Max

Slices

LUTs 2 2

FFs

Block RAMs

Provided with Core

Documentation Click here to view this data sheet

Design File Formats MHS, VHDL

Constraints File None

Verification None

Instantiation
Template

None

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

EDK 3.1 or later
ISE 4.2.03i or later

Verification ModelSim PE 5.4e

Simulation ModelSim PE 5.4e

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 66
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This document provides the design specification for the
Instruction Side OCM Block RAM (ISBRAM) Interface Con-
troller. The ISBRAM Interface Controller is a module that
connects the PowerPC™ 405 to BRAM blocks.

This controller supports the ISOCM port of PowerPC405.
PowerPC 405 fetches two instructions per cycle from a
64-bit ISOCM read-only port. The ISBRAM controller con-
nects this instruction fetch port to one port of the BRAM
memory (Port B). PowerPC 405 can also write to the
ISBRAM using the DCR registers ISINIT and ISFILL
through a 32-bit write-only port. The ISBRAM controller
connects the DCR write port to the other port of the BRAM
memory (Port A). The Instruction Side OCM BRAM Inter-
face Controller is the interface between the ISOCM and the
bram_block peripheral. The ISBRAM memory subsystem
consists of the controller along with the actual BRAM com-
ponents that are included in the bram_block peripheral.

Features
• Used in conjunction with bram_block peripheral to

provide a deterministic ISBRAM memory solution for
PowerPC405

• Utilizes dual port features of BRAM

• Supports byte, half-word, and word transfers

• Supports Virtex-II Pro BRAM

0

Instruction Side OCM Block RAM
(ISBRAM) Interface Controller

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II

Version of Core isbram_if_cntlr v1.00a

Resources Used

Min Max

Slices 0 0

LUTs 0 0

FFs 0 0

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet.

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 67
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
The DSBRAM Interface Controller is a module that con-
nects the PowerPC™ 405 to BRAM blocks.

This controller supports the DSOCM port of PowerPC405.
The swidth of the data bus is 32bits. The Data Side OCM
BRAM Interface Controller is the interface between the
DSOCM and the bram_block peripheral. The DSBRAM
memory subsystem consists of the controller along with the
actual BRAM components that are included in the
bram_block peripheral.

Features
• Used in conjunction with bram_block peripheral to

provide a deterministic DSBRAM memory solution for
PowerPC405.

• Utilizes dual port features of BRAM

• Supports byte, half-word, and word transfers

• Supports Virtex-II Pro™ BRAM

0

Data Side OCM Block RAM
(DSBRAM) Interface Controller

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro, Virtex II

Version of Core dsbram_if_cntlr v1.00a

Resources Used

Min Max

Slices 0 0

LUTs 0 0

FFs 0 0

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 68
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
The BRAM Block is a parameterizable memory module that
attaches to a variety of BRAM Interface Controllers.

Features
• Uses from 4 to 64 dual-port BRAMs to provide memory

sizes from 2KB to 128KB

• Both Port A and Port B of the memory block can be
connected to independent BRAM Interface Controllers.

• When used in conjunction with BRAM Interface
Controllers, provides fast internal memory for LMB
(Local Memory Bus), OPB (On-chip Peripheral Bus),
PLB (Processor Local Bus), and OCM (On-Chip
Memory).

• Supports PowerPC™ and MicroBlaze™ systems

• Supports byte, half-word, word, and doubleword
transfers

• Supports Virtex™, Virtex-E, Spartan™-II, Virtex-II and
Virtex-II Pro™ BRAM

0

Block RAM (BRAM) Block

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro, Virtex II

Version of Core bram_block v1.00a

Resources Used

Min Max

Slices N/A N/A

LUTs N/A N/A

FFs N/A N/A

Block RAMs 4 64

Provided with Core

Documentation Click here to view this data sheet

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

April 2003 www.xilinx.com 69
Processor IP User Guide 1-800-255-7778

R

Chapter 6

Peripheral Cores

This section of the User Guide contains information on the following peripheral cores:

OPB Interrupt Controller (v1.00b)

OPB Interrupt Controller (v1.00c)

OPB 16550 UART

OPB 16450 UART

OPB UART Lite

OPB JTAG_UART

OPB IIC Bus Interface

OPB Serial Peripheral Interface (SPI)

OPB IPIF/LogiCore v3 PCI Core Bridge

OPB Ethernet Media Access Controller (EMAC) (v1.00j)

OPB Ethernet Media Access Controller (EMAC) (v1.00k)

OPB Ethernet Media Access Controller (EMAC) (v1.00m)

OPB Ethernet Lite Media Access Controller

OPB Asynchronous Transfer Mode Controller (OPB_ATMC) (v1.00b)

OPB Asynchronous Transfer Mode Controller (OPB_ATMC) (v2.00a)

OPB HDLC Interface

OPB Timebase WDT

OPB Timer/Counter

OPB General Purpose Input/Output (GPIO)

Microprocessor Debug Module (MDM)

OPB Central DMA Controller

Channel FIFO

Fixed Interval Timer (FIT)

MII to RMII Design Specification

PLB 1-Gigabit Ethernet Media Access Controller (MAC) With DMA

PLB 1-Gigabit Ethernet Media Access Controller (MAC)

PLB 16550 UART (v1.00b)

PLB 16550 UART (v1.00c)

PLB 16450 UART (v1.00b)

http://www.xilinx.com

70 www.xilinx.com April 2003
1-800-255-7778 Processor IP User Guide

R

PLB 16450 UART (v1.00c)

PLB RapidIO LVDS Design

PLB Asynchronous Transfer Mode Controller (PLB_ATMC)

DCR Interrupt Controller Specification (v1.00a)

DCR Interrupt Controller Specification (v1.00b)

http://www.xilinx.com

Product Overview www.xilinx.com 71
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This document describes the specifications for a ZBT con-
troller core for the On-chip Peripheral Bus (OPB).

The ZBT Memory Controller is a 32-bit peripheral that
attaches to the OPB.

Features
• OPB v2.0 bus interface with byte-enable support

• Supports 32-bit bus interfaces

• Supports memory width of 32-bits

Operation
The OPB ZBT Controller provides an interface between the
OPB and external ZBT memories. The controller supports
OPB data bus widths of 32bits, and memory subsystem
widths of 32 bits. This controller supports the OPB V2.0
byte enable architecture.

0

OPB ZBT Controller Design
Specification

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Version of Core opb_zbt_controller v1.00a

Resources Used

Min Max

I/O

LUTs

FFs

Block RAMs

Provided with Core

Documentation Click here to view this data sheet

Design File Formats

Constraints File

Verification

Instantiation
Template

Reference Designs

Design Tool Requirements

Xilinx Implementation
Tools

Verification

Simulation

Synthesis

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 72
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
An Interrupt Controller is composed of a bus-centric wrap-
per containing the IntC core and a bus interface. The IntC
core is a simple, parameterized interrupt controller that,
along with the appropriate bus interface, attaches to either
the OPB (On-chip Peripheral Bus) or DCR (Device Control
Register) Bus. It can be used in embedded PowerPC sys-
tems (Virtex-II Pro™ devices), and in MicroBlaze™ soft pro-
cessor systems. There are two versions of the Simple
Interrupt Controller:

• OPB IntC (OPB interface)

• DCR IntC (DCR interface)

In this document, IntC and Simple IntC are used inter-
changeably to refer to functionality or interface signals com-
mon to all variations of the Simple Interrupt Controller.
However, when it is necessary to make a distinction, the
interrupt controller is referred to as OPB IntC or DCR IntC.

Features
• Modular design provides a core interrupt controller

functionality instantiated within a bus interface design
(currently OPB and DCR buses are supported)

• OPB v2.0 bus interface with byte-enable support (IBM
SA-14-2528-01 64-bit On-chip Peripheral Bus
Architecture Specifications, v2.0)

• Supports data bus widths of 8-bits, 16-bits, or 32-bits
for OPB interface

• Number of interrupt inputs configurable up to the width
of data bus

• Easily cascaded to provide additional interrupt inputs

• Interrupt Enable Register for selectively disabling
individual interrupt inputs

• Master Enable Register for disabling interrupt request
output

• Each input is configurable for edge or level sensitivity;
edge sensitivity can be configured for rising or falling;
level sensitivity can be active-high or -low

• Automatic edge synchronization when inputs are
configured for edge sensitivity

• Output interrupt request pin is configurable for edge or
level generation — edge generation configurable for
rising or falling; level generation configurable for
active-high or -low

0

OPB Interrupt Controller (v1.00b)

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro, Virtex™ II, Virtex,
Virtex E, Spartan™ II

Version of Core opb_intc v1.00b

Resources Used

Min Max

I/O 55 116

LUTs 42 395

FFs 63 342

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet.

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 73
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
An Interrupt Controller is composed of a bus-centric wrap-
per containing the IntC core and a bus interface. The IntC
core is a simple, parameterized interrupt controller that,
along with the appropriate bus interface, attaches to either
the OPB (On-chip Peripheral Bus) or DCR (Device Control
Register) Bus. It can be used in embedded PowerPC sys-
tems (Virtex-II Pro™ devices), and in MicroBlaze™ soft pro-
cessor systems. There are two versions of the Simple
Interrupt Controller:

• OPB IntC (OPB interface)

• DCR IntC (DCR interface)

In this document, IntC and Simple IntC are used inter-
changeably to refer to functionality or interface signals com-
mon to all variations of the Simple Interrupt Controller.
However, when it is necessary to make a distinction, the
interrupt controller is referred to as OPB IntC or DCR IntC.

Features
• Modular design provides a core interrupt controller

functionality instantiated within a bus interface design
(currently OPB and DCR buses are supported)

• OPB v2.0 bus interface with byte-enable support (IBM
SA-14-2528-01 64-bit On-chip Peripheral Bus
Architecture Specifications, Version 2.0)

• Supports data bus widths of 8-bits, 16-bits, or 32-bits
for OPB interface

• Number of interrupt inputs configurable up to the width
of data bus

• Easily cascaded to provide additional interrupt inputs

• Interrupt Enable Register for selectively disabling
individual interrupt inputs

• Master Enable Register for disabling interrupt request
output

• Each input is configurable for edge or level sensitivity;
edge sensitivity can be configured for rising or falling;
level sensitivity can be active-high or -low

• Automatic edge synchronization when inputs are
configured for edge sensitivity

• Output interrupt request pin is configurable for edge or
level generation — edge generation configurable for
rising or falling; level generation configurable for
active-high or -low

0

OPB Interrupt Controller (v1.00c)

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro, Virtex™ II, Virtex,
Virtex E, Spartan™ II

Version of Core opb_intc v1.00c

Resources Used

Min Max

I/O 55 116

LUTs 42 395

FFs 63 342

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 74
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This document provides the specification for the OPB Uni-
versal Asynchronous Receiver/Transmitter (UART) Intellec-
tual Property (IP).

The UART described in this document has been designed
incorporating features described in National Semiconductor
PC16550D UART with FIFOs data sheet (June, 1995),
(http://www.national.com/pf/PC/PC16550D.html).

The National Semiconductor PC16550D data sheet is refer-
enced throughout this document and should be used as the
authoritative specification. Differences between the
National Semiconductor implementation and the OPB
UART Point Design implementation are highlighted and
explained in this data sheet.

Features
• Hardware and software register compatible with all

standard 16450 and 16550 UARTs

• Implements all standard serial interface protocols

- 5, 6, 7, or 8 bits per character

- Odd, Even, or no parity detection and generation

- 1, 1.5, or 2 stop bit detection and generation

- Internal baud rate generator and separate receiver
clock input

- Modem control functions

- False start bit detection and recovery

- Prioritized transmit, receive, line status, and
modem control interrupts

- Line break detection and generation

- Internal loop back diagnostic functionality

- Independent 16 word transmit and receive FIFOs

• Registers

- Receiver Buffer Register (Read Only)

- Transmitter Holding Register (Write Only)

- Interrupt Enable Register

- Interrupt Identification Register (Read Only)

- FIFO Control Register (Read/Write)

- Line Control and Line Status Registers

- Modem Control and Modem Status Registers

- Scratch Register

- Divisor Latch (least and more significant byte)

• System clock frequency of 100 MHz

0

OPB 16550 UART

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II

Version of Core opb_uart16550 v1.00c

Resources Used

Min Max

Slices 442 442

LUTs 534 534

FFs 401 401

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet.

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 75
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This document provides the specification for the OPB Uni-
versal Asynchronous Receiver/Transmitter (UART) Intellec-
tual Property (IP).

The UART described in this document has been designed
incorporating the features described in National Semicon-
ductor PC16550D UART with FIFOs data sheet (June,
1995), (http://www.national.com/pf/PC/PC16550D.html).

The National Semiconductor PC16550D data sheet is refer-
enced throughout this document and should be used as the
authoritative specification. Differences between the
National Semiconductor implementation and the OPB
UART Point Design implementation are highlighted and
explained in this data sheet.

Features
• Hardware and software register compatible with all

standard 16450 UARTs

• Implements all standard serial interface protocols

- 5, 6, 7, or 8 bits per character

- Odd, Even, or no parity detection and generation

- 1, 1.5, or 2 stop bit detection and generation

- Internal baud rate generator and separate receiver
clock input

- Modem control functions

- False start bit detection and recovery

- Prioritized transmit, receive, line status, and
modem control interrupts

- Line break detection and generation

- Internal loop back diagnostic functionality

• Registers

- Receiver Buffer Register (Read Only)

- Transmitter Holding Register (Write Only)

- Interrupt Enable Register

- Interrupt Identification Register (Read Only)

- Line Control and Line Status Registers

- Modem Control and Modem Status Registers

- Scratch Register

- Divisor Latch (least and more significant byte)

• System clock frequency of 100 MHz

0

OPB 16450 UART

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II

Version of Core opb_uart16450 v1.00c

Resources Used

Min Max

Slices 341 341

LUTs 357 357

FFs 347 347

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet.

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 76
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This document describes the specifications for a UART core
for the On-Chip Peripheral Bus (OPB). The UART Lite is a
module that attaches to the OPB.

Features
• OPB v2.0 bus interface with byte-enable support

• Supports 8-bit bus interfaces

• One transmit and one receive channel (full duplex)

• 16-character transmit FIFO and 16-character receive
FIFO

• Number of databits in a character is configurable (5-8)

• Parity; can be configured for odd or even

• Configurable baud rate

0

OPB UART Lite

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II

Version of Core opb_uartlite v1.00b

Resources Used

Min Max

Slices N/A N/A

LUTs 88 108

FFs 48 57

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet.

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 77
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This document describes the specifications for a
JTAG_UART core for the On-Chip Peripheral Bus (OPB).
The JTAG_UART is a module that attaches to the OPB.

Features
• Mimics UART functionality to MicroBlaze but sends

data over JTAG

• OPB v2.0 bus interface with byte-enable support

• Supports 8-bit bus interfaces

• One transmit and one receive channel (full duplex)

• 16-character transmit FIFO and 16-character receive
FIFO

• Requires xmd or xmdterm to run on host for JTAG
communication

• Able to reset system and MicroBlaze™

• Able to assert break signals to MicroBlaze

0

OPB JTAG_UART

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II

Version of Core opb_jtag_uart v1.00b

Resources Used

Min Max

Slices 57 57

LUTs 86 86

FFs 70 70

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet.

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 78
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This specification defines the architecture and interface
requirements for this module. This includes registers that
must be initialized for proper operation. This module
supports all features, except high speed mode, of the
Philips I2C bus, v2.1, release January 2000. See the
Specification Exceptions of this data sheet for more details.

The Xilinx IIC design allows the customer to tailor the IIC to
suit their application by setting certain parameters to
enable/disable features. The parameterizable features of
the design are discussed in IIC Design Parameters section
of this data sheet.

Features
The IIC bus interface is a soft IP core designed for Xilinx
FPGAs and contains these features:

• Master or Slave operation

• Multi-master operation

• Software selectable acknowledge bit

• Arbitration lost interrupt with automatic mode switching
from Master to Slave

• Calling address identification interrupt with automatic
mode switching from Master to Slave

• START and STOP signal generation/detection

• Repeated START signal generation

• Acknowledge bit generation/detection

• Bus busy detection

• Fast Mode 400 KHz operation or Standard Mode 100
KHz

• 7 Bit or 10 Bit addressing

• General Call Enable or Disable

• Transmit and Receive FIFOs - 16 bytes deep

• Throttling

0

OPB IIC Bus Interface

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II, VirtexE,
Virtex, Spartan™ II, Spartan IIE

Version of Core opb_iic v1.01a

Resources Used

Min Max

I/O 2 2

LUTs 404 425

FFs 272 280

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet.

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs N/A

Design Tool Requirements

Xilinx Implementation
Tools

Alliance

Verification N/A

Simulation N/A

Synthesis XST

Support

Support provided by Xilinx, Inc.

http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com

Product Overview www.xilinx.com 79
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This document presents specifications for the VHDL imple-
mentation of the Motorola Serial Peripheral Interface (SPI)
in a Xilinx FPGA. The original specifications closely fol-
lowed the Motorola M68HC11-Rev. 4.0 Reference Manual,
and this document emphasizes the M68HC-11 specifica-
tions. The design, however, was enhanced with a number of
exceptions and enhancements as described in this docu-
ment. The default mode of operation has been changed to a
manual slave select operation (not included in the
M68HC11 specification).

The Serial Peripheral Interface (SPI) is a full-duplex, syn-
chronous channel that supports a four-wire interface
(receive, transmit, clock, and slave select) between one
master and one slave. The original specifications followed
closely Motorola’s M68HC11-Rev. 4.0 Reference Manual.

There are differences from the 68HC11 specification that
should be reviewed when utilizing this SPI Assembly, see
the Specification Exceptions section of this data sheet.

The Version B specification has extended functionality,
including a manual slave select mode. This mode allows
you to manually control the slave select line directly by the
data written to the slave select register.

This allows transfers of an arbitrary number of bytes without
toggling the slave select line until all bytes are transferred.
In this mode, you must toggle the slave select by writing the
appropriate data to the slave select register. The manual
slave select mode is the default mode of operation.

This parameterized module permits additional slaves with
automatic generation of the required decoding of the indi-
vidual slave select outputs by the master. Additional mas-
ters can be added as well; however, means to detect all
possible conflicts are not implemented with this interface
standard, but rather require the software to arbitrate bus
control in order to eliminate conflicts.

At this time only SPI slave devices are allowed off-chip. This
is an artifact of software master control arbitration which can
not be guaranteed if off-chip masters were allowed and is
due to issues with asynchronous external clocks as well.
Essentially any number of internal slave and master SPI
devices is allowed. The actual number is limited by the per-
formance that is desired.

0

OPB Serial Peripheral Interface
(SPI)

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II, VirtexE,
Virtex, Spartan™ II, Spartan IIE

Version of Core opb_spi v1.00b

Resources Used

Min Max

I/O N/A N/A

LUTs N/A N/A

FFs N/A N/A

Block RAMs N/A N/A

Provided with Core

Documentation Click here to view this data sheet.

Design File Formats VHDL

Constraints File None

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

OPB Serial Peripheral Interface (SPI)

80 www.xilinx.com Product Overview
1-800-255-7778

Features
• Four signal interface (MOSI, MISO, SCK, and SS)-- SS bit for each slave on the SPI bus

• Three signal in/out (in, out, 3-state) for implementing 3-state SPI device in/outs to support multi-master configuration
within the FPGA

• Full-duplex operation

• Works with N times 8-bit data characters in default configuration. The default mode implements manual control of the
SS output via data written to the slave select register which appears directly on the SS output when the master is
enabled. This mode can be used only with external slave devices. In addition, an optional operation where the SS
output is toggled automatically with each 8-bit character transfer by the master device internal state machine can be
selected via a bit in the command register for SPI master devices.

• Supports back-to-back character transmission and reception

• Master and slave SPI modes supported

• Multi-master environment supported (implemented with 3-state drivers and requires software arbitration for possible
conflict)

• Multi-slave environment supported (automatic generation of additional master slave select signals)

• Continuous transfer mode for automatic scanning of a peripheral

• Supports maximum clock rates of up to one-half the OPB clock rate in both master and slave modes when both SPI
devices are in the same FPGA part (routing constraints of SPI bus signals must be incorporated in map/par process).
In anticipation of remote master operation, slaves operation supports one-fourth the OPB clock rate (artifact of
asynchronous SCK clock relative to the OPB clock which requires clock synchronization).

• Parameterizable baud rate generator

• Programmable clock phase and polarity

• External ports (selected via a parameter) for off-chip slave interconnects (off-chip masters not supported)

• Optional transmit and receive FIFOs (implemented as a pair only)

• Local loopback capability for testing

The Xilinx SPI design allows you to tailor the SPI Assembly to suit your application by setting certain parameters to enable
or disable features. The parameterizable features of the design are discussed in the SPI Configuration Parameters section
of this data sheet.

The basic SPI device consists of a register module and the SPI module. Optional FIFOs and support are discussed in a later
section. The register block includes all memory mapped registers (as shown in Figure 1) and resides on the Xilinx OPB.

As shown in Figure 3, the SPI module consists of transmitter and receiver sections, a parameterized baud rate generator
(BRG) and a control unit. The registers are an 8-bit status register, an 8-bit control register, an N-bit slave select register and
a pair of 8-bit transmit/receiver registers.

In the 68HC11 implementation, the transmit register is transparent to the shift register and the receive register is double buff-
ered with the shift register. In this implementation without FIFOs, both the transmit and receive register are double buffered.

Hardware prevents data transfer from the transmit buffer to the shift register while an SPI transfer is in progress, conse-
quently, the write collision error described in the MC68HC11 Reference Manual can not occur and the WCOL flag is not sup-
ported.

All registers are accessed directly from the Xilinx OPB which is a subset of IBM’s 64-bit OPB utilizing byte enables (see
IBM’s 64-Bit On-Chip Peripheral Bus document for details). As shown in Figure 1, optional FIFOs can be implemented on
both receive and transmit paths.

http://www.xilinx.com

Product Overview www.xilinx.com 81
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
The OPB IPIF/LogiCORE PCI64 v3.0 bridge design
described in this document bridges between the OPB IPIF
(On-Chip Peripheral Bus Intellectual Property InterFace)
and the Xilinx LogiCORE PCI64 Interface v3.0 core to pro-
vide full bridge functionality between the Xilinx 32-bit OPB
and a 32-bit V2.2 compliant PCI (Peripheral Component
Interconnect) bus. This bridge is referred to as the IPIF/V3
bridge in this document.

The Xilinx OPB is a 32-bit bus that is a subset of the IBM
OPB that is described in 64-Bit On-Chip Peripheral Bus
Architecture Specifications v2.0. Details of bridging
between a PCI bus and the v3 protocol that interfaces with
the OPB IPIF/V3 bridge described herein is described in
detail in the LogiCORE PCI64 Interface v3.0 Interface Data
Sheet and Xilinx The Real-PCI Design Guide v3.0.

Host bridge functionality (often called North bridge) is
implemented in this release. Configuration read and write
PCI commands can be performed from the OPB-side of the
bridge. the OPB IPIF/V3PCI core bridge will only support
the 32-bit PCI bus.

Not all commands supported by the v3 core are supported.
Details of exceptions are explained in the following section.

The Xilinx IPIF/V3 PCI core bridge design has parameters
that allow customers to configure the IPIF/V3 PCI core
bridge to suit their application. The parameterizable fea-
tures of the design are discussed in the OPB PCI Bus Inter-
face Parameters section of this data sheet.

Features
• OPB and PCI clocks are required to be a global buffer

• 33/66 MHz, 32-bit PCI buses

• Utilizes the SRAM interface of the OPB IPIF for PCI
data transfers

• Includes a master IP module for PCI initiator
transactions, which follows the protocol for interfacing
with the master attachment

• Full bridge functionality

- OPB Master read and write of a remote PCI target
(both single and burst))

- PCI Initiator read and write to a remote OPB slave
(both single and multiple)

• Supports all PCI commands supported by the v3 core
with the following exceptions:

- The interrupt acknowledge command will be
supported in future releases of the core and will be
only for OPB masters to execute the command
while being ignored when executed by a remote
PCI agent.

0

OPB IPIF/LogiCore v3 PCI Core
Bridge

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II, VirtexE,
Virtex, Spartan™ II, Spartan IIE

Version of Core opb_pci v1.00b

Resources Used

Min Max

I/O 48 49

LUTs 3050 3950

FFs 1470 1850

Block RAMs 2 20

Provided with Core

Documentation Click here to view this data sheet

Design File Formats VDHL

Constraints File None

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST & Synplify (state machines)

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

OPB IPIF/LogiCore v3 PCI Core Bridge

82 www.xilinx.com Product Overview
1-800-255-7778

- The special cycle command will be supported in future releases of the core.

- I/O read and I/O write commands are supported only for OPB master read and writes of PCI I/O space as
designated by its associated memory designator bits of the generics. All memory space on the OPB-side is
designated as memory space in the PCI sense, hence, I/O commands can not be used to access memory on the
OPB-side.

- Configuration read and writes are supported (including self-configuration transactions) only when upper word
address lines are utilized for IDSel lines. The configuration read and write commands are automatically executed
by writing to the configuration data port register. Data in the configuration address port register and the
configuration bus number/subordinate bus number register is used in execution of the configuration transaction per
PCI 2.2 specification.

- Memory read line command is not supported mainly because the OPB does not have direct support of this type of
line wrapping.

- Memory write invalidate is not supported where the v3 core is a target because the low utility of having memory on
the OPB side with a cached counterpart and memory controller on the PCI side of the bridge. The v3 core does not
support this command when it is an initiator.

• Programmable enabling of the bridge feature to inhibit one or any number of the four transfer types when an error is
detected.

• Supports up to 6 OPB devices with unique memory OPB memory space

- Each device has the following generics: OPB BAR, length, prefetchability, Big Endian to Little Endian translate, and
offset for mapping OPB address space to PCI address space.

• Supports up to 3 PCI devices with unique memory PCI memory space. The v3 core supports up to 3 PCI BAR.

- Each device has the following generics: PCI BAR, length, prefetchability, memory designator, Little Endian to Big
Endian translate, and offset for mapping PCI address space to OPB address space

• Registers include

- Interrupt and interrupt enable registers at different hierarchal levels

- Reset

- Prefetch override

- Bridge and v3 Core Transaction Status

- Inhibit Transfers on Error

- OPB Mst Address Definition

- OPB Mst Read and Write Addresses

• Address range decode for supported BAR, length, and prefetch operation

• OPB-side Interrupts include

- OPB Master Read SERR and PERR

- OPB Master Read Target Abort

- OPB Master Write SERR and PERR

- OPB Master Write Target Abort

- OPB Master Abort Write

- OPB Master Write Retry and Retry Disconnect

- OPB Master Write Retry Timeout

- OPB Master Write Range

- PCI Initiator Read and Write SERR

• Asynchronous FIFOs with backup capability

• Synchronization circuits for signals that cross time-domain boundaries

• PCI and OPB clocks can be totally independent

• Responding to the PCI latency timer

• Completing posted operations prior to initiating new operations

http://www.xilinx.com

Product Overview www.xilinx.com 83
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This document provides the design specification for the
10/100 Mbs Ethernet Media Access Controller (EMAC).
The EMAC incorporates the applicable features described
in IEEE Std. 802.3 MII interface specification. The IEEE Std.
802.3 MII interface specification is referenced throughout
this document and should be used as the authoritative
specification. Differences between the IEEE Std. 802.3 MII
interface specification and the Xilinx EMAC implementation
are highlighted and explained in the Specification
Exceptions section of this data sheet.

The EMAC Interface design is a soft intellectual property
(IP) core designed for implementation in a Virtex-E, Vir-
tex-II, Spartan-II, Spartan-IIE, or Virtex-II Pro FPGA. It sup-
ports the IEEE Std. 802.3 Media Independent Interface
(MII) to industry standard Physical Layer (PHY) devices and
communicates to a processor via an IBM On-Chip Periph-
eral Bus (OPB) interface. The design provides a 10 Mega-
bits per second (Mbps) and 100 Mbps (also known as Fast
Ethernet) EMAC Interface. This design includes many of the
functions and the flexibility found in dedicated Ethernet con-
troller devices currently on the market.

The Xilinx EMAC design allows the customer to tailor the
EMAC to suit their application by setting certain parameters
to enable/disable features. The parameterizable features of
the design are discussed in EMAC Design Parameters.

The EMAC is comprised of two IP blocks as shown in
Figure 1: The IP Interface (IPIF) block is a subset of OPB
bus interface features chosen from the full set of IPIF fea-
tures to most efficiently couple the second block, the EMAC
core, to the OPB processor bus for this packet1 based inter-
face (this combined entity is referred to as a device).
Although there are separate specifications for the IPIF
design, this specification addresses the specific implemen-
tation required for the EMAC design.

EMAC Endianess
Please note that the EMAC is designed as a big endian
device (bit 0 is the most significant bit and is shown on the
left of a group of bits).

The 4-bit transmit and receive data interface to the external
PHY is little endian (bit 3 is the most significant bit and
appears on the left of the bus). The MII management inter-
face to the PHY is serial with the most significant bit of a
field being transmitted first.

0

OPB Ethernet Media Access
Controller (EMAC) (v1.00j)

Click here to view this data sheet 0 0 Product Overview

1. IEEE Std. 802.3 uses the terms Frame and Packet inter-
changeably when referring to the Ethernet unit of transmission;
this specification does likewise

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II, Virtex,
Virtex E, Spartan™ II, Spartan IIE

Version of Core opb_ethernet v1.00j

Resources Used

Min Max

I/O 179 179

LUTs 1998 3642

FFs 1528 2215

Block RAMs 2 8

Provided with Core

Documentation Click here to view this data sheet

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com

OPB Ethernet Media Access Controller (EMAC) (v1.00j)

84 www.xilinx.com Product Overview
1-800-255-7778

Features
• 32-bit OPB master and slave interfaces

• Memory mapped direct I/O interface to registers and FIFOs as well as DMA and Scatter/Gather DMA capabilities for
low processor and bus utilization

• Media Independent Interface (MII) for connection to external 10/100 Mbps PHY transceivers

- IEEE 802.3-compliant MII

- Supports auto-negotiable and non auto-negotiable PHYs

- Supports 10BASE-T and 100BASE-TX/FX IEEE 802.3 compliant MII PHYs at full or half duplex

• Independent internal 2K byte TX and RX FIFOs for holding data for more than one packet

• 16 entry deep FIFOs for the Transmit Length, Receive Length, and Transmit Status registers to support multiple packet
operation

• CSMA/CD compliant operation at 10 Mbps and 100 Mbps in half duplex mode

• Programmable PHY reset signal

• Internal loop-back capability

• Supports unicast, multicast, and broadcast transmit and receive modes as well as promiscuous address receive mode

• Supports a "Freeze" (graceful halt) mode based on input signal assertion to assist with emulator based software
development

• Provides auto or manual source address field insertion or overwrite for transmission

• Provides auto or manual pad and Frame Check Sequence (FCS) field insertion

• Provides auto pad and FCS field stripping on receive

• Processes received pause packets

• Supports reception of longer VLAN type frames

• Supports MII management control writes and reads with MII PHYs

• Programmable interframe gap

• Provides counters and interrupts for many error conditions

http://www.xilinx.com

Product Overview www.xilinx.com 85
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This document provides the design specification for the
10/100 Mbs Ethernet Media Access Controller (EMAC).
The EMAC incorporates the applicable features described
in IEEE Std. 802.3 MII interface specification. The IEEE Std.
802.3 MII interface specification is referenced throughout
this document and should be used as the authoritative
specification. Differences between the IEEE Std. 802.3 MII
interface specification and the Xilinx EMAC implementation
are highlighted and explained in the Specification
Exceptions section of this data sheet.

The EMAC Interface design is a soft intellectual property
(IP) core designed for implementation in a Virtex-E, Vir-
tex-II, Spartan-II, Spartan-IIE, or Virtex-II Pro FPGA. It sup-
ports the IEEE Std. 802.3 Media Independent Interface
(MII) to industry standard Physical Layer (PHY) devices and
communicates to a processor via an IBM On-Chip Periph-
eral Bus (OPB) interface. The design provides a 10 Mega-
bits per second (Mbps) and 100 Mbps (also known as Fast
Ethernet) EMAC Interface. This design includes many of the
functions and the flexibility found in dedicated Ethernet con-
troller devices currently on the market.

The Xilinx EMAC design allows the customer to tailor the
EMAC to suit their application by setting certain parameters
to enable/disable features. The parameterizable features of
the design are discussed in EMAC Design Parameters.

The EMAC is comprised of two IP blocks as shown in
Figure 1: The IP Interface (IPIF) block is a subset of OPB
bus interface features chosen from the full set of IPIF fea-
tures to most efficiently couple the second block, the EMAC
core, to the OPB processor bus for this packet1 based inter-
face (this combined entity is referred to as a device).
Although there are separate specifications for the IPIF
design, this specification addresses the specific implemen-
tation required for the EMAC design.

EMAC Endianess
Please note that the EMAC is designed as a big endian
device (bit 0 is the most significant bit and is shown on the
left of a group of bits).

The 4-bit transmit and receive data interface to the external
PHY is little endian (bit 3 is the most significant bit and
appears on the left of the bus). The MII management inter-
face to the PHY is serial with the most significant bit of a
field being transmitted first.

0

OPB Ethernet Media Access
Controller (EMAC) (v1.00k)

Click here to view this data sheet 0 0 Product Overview

1. IEEE Std. 802.3 uses the terms Frame and Packet interchange-
ably when referring to the Ethernet unit of transmission; this
specification does likewise

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II, Virtex,
Virtex E, Spartan™ II, Spartan IIE

Version of Core opb_ethernet v1.00k

Resources Used

Min Max

I/O 179 179

LUTs 2018 3688

FFs 1557 2228

Block RAMs 2 16

Provided with Core

Documentation Click here to view this data sheet

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com

OPB Ethernet Media Access Controller (EMAC) (v1.00k)

86 www.xilinx.com Product Overview
1-800-255-7778

Features
• 32-bit OPB master and slave interfaces

• Memory mapped direct I/O interface to registers and FIFOs as well as DMA and Scatter/Gather DMA capabilities for
low processor and bus utilization

• Media Independent Interface (MII) for connection to external 10/100 Mbps PHY transceivers

- IEEE 802.3-compliant MII

- Supports auto-negotiable and non auto-negotiable PHYs

- Supports 10BASE-T and 100BASE-TX/FX IEEE 802.3 compliant MII PHYs at full or half duplex

• Independent internal 2K byte TX and RX FIFOs for holding data for more than one packet

• 16 entry deep FIFOs for the Transmit Length, Receive Length, and Transmit Status registers to support multiple packet
operation

• CSMA/CD compliant operation at 10 Mbps and 100 Mbps in half duplex mode

• Programmable PHY reset signal

• Internal loop-back capability

• Supports unicast, multicast, and broadcast transmit and receive modes as well as promiscuous address receive mode

• Supports a "Freeze" (graceful halt) mode based on input signal assertion to assist with emulator based software
development

• Provides auto or manual source address field insertion or overwrite for transmission

• Provides auto or manual pad and Frame Check Sequence (FCS) field insertion

• Provides auto pad and FCS field stripping on receive

• Processes received pause packets

• Supports reception of longer VLAN type frames

• Supports MII management control writes and reads with MII PHYs

• Programmable interframe gap

• Provides counters and interrupts for many error conditions

http://www.xilinx.com

Product Overview www.xilinx.com 87
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This document provides the design specification for the
10/100 Mbs Ethernet Media Access Controller (EMAC).
The EMAC incorporates the applicable features described
in IEEE Std. 802.3 MII interface specification. The IEEE Std.
802.3 MII interface specification is referenced throughout
this document and should be used as the authoritative
specification. Differences between the IEEE Std. 802.3 MII
interface specification and the Xilinx EMAC implementation
are highlighted and explained in the Specification
Exceptions section of this data sheet.

The EMAC Interface design is a soft intellectual property
(IP) core designed for implementation in a Virtex-E, Vir-
tex-II, Spartan-II, Spartan-IIE, or Virtex-II Pro FPGA. It sup-
ports the IEEE Std. 802.3 Media Independent Interface
(MII) to industry standard Physical Layer (PHY) devices and
communicates to a processor via an IBM On-Chip Periph-
eral Bus (OPB) interface. The design provides a 10 Mega-
bits per second (Mbps) and 100 Mbps (also known as Fast
Ethernet) EMAC Interface. This design includes many of the
functions and the flexibility found in dedicated Ethernet con-
troller devices currently on the market.

The Xilinx EMAC design allows the customer to tailor the
EMAC to suit their application by setting certain parameters
to enable/disable features. The parameterizable features of
the design are discussed in EMAC Design Parameters.

The EMAC is comprised of two IP blocks as shown in
Figure 1: The IP Interface (IPIF) block is a subset of OPB
bus interface features chosen from the full set of IPIF fea-
tures to most efficiently couple the second block, the EMAC
core, to the OPB processor bus for this packet1 based inter-
face (this combined entity is referred to as a device).
Although there are separate specifications for the IPIF
design, this specification addresses the specific implemen-
tation required for the EMAC design.

EMAC Endianess
Please note that the EMAC is designed as a big endian
device (bit 0 is the most significant bit and is shown on the
left of a group of bits).

The 4-bit transmit and receive data interface to the external
PHY is little endian (bit 3 is the most significant bit and
appears on the left of the bus). The MII management inter-
face to the PHY is serial with the most significant bit of a
field being transmitted first.

0

OPB Ethernet Media Access
Controller (EMAC) (v1.00m)

Click here to view this data sheet 0 0 Product Overview

1. IEEE Std. 802.3 uses the terms Frame and Packet interchange-
ably when referring to the Ethernet unit of transmission; this
specification does likewise

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II, Virtex,
Virtex E, Spartan™ II, Spartan IIE

Version of Core opb_ethernet v1.00m

Resources Used

Min Max

I/O 179 179

LUTs 2018 3688

FFs 1557 2228

Block RAMs 2 16

Provided with Core

Documentation Click here to view this data sheet

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com

OPB Ethernet Media Access Controller (EMAC) (v1.00m)

88 www.xilinx.com Product Overview
1-800-255-7778

Features
The EMAC is a soft IP core designed for Xilinx FPGAs and contains the following features:

• 32-bit OPB master and slave interfaces

• Memory mapped direct I/O interface to registers and FIFOs as well as simple DMA and Scatter/Gather DMA
capabilities for low processor and bus utilization

• Media Independent Interface (MII) for connection to external 10/100 Mbps PHY transceivers

- IEEE 802.3-compliant MII

- Supports auto-negotiable and non auto-negotiable PHYs

- Supports 10BASE-T and 100BASE-TX/FX IEEE 802.3 compliant MII PHYs at full or half duplex

• Independent internal 2K, 4K, 8K, 16K, or 32K byte TX and RX FIFOs for holding data for more than one packet. 2K byte
depth is sufficient for normal 1518 maximum byte packets but 4K byte depth provides better throughput.

• 16, 32, or 64 entry deep FIFOs for the Transmit Length, Receive Length, and Transmit Status registers to support
multiple packet operation.

• CSMA/CD compliant operation at 10 Mbps and 100 Mbps in half duplex mode

• Programmable PHY reset signal

• Internal loop-back capability

• Supports unicast, multicast, and broadcast transmit and receive modes as well as promiscuous address receive mode

• Supports a "Freeze" (graceful halt) mode based on input signal assertion to assist with emulator based software
development

• Provides auto or manual source address field insertion or overwrite for transmission

• Provides auto or manual pad and Frame Check Sequence (FCS) field insertion

• Provides auto pad and FCS field stripping on receive

• Processes received pause packets

• Supports reception of longer VLAN type frames

• Supports MII management control writes and reads with MII PHYs

• Programmable interframe gap

• Provides counters and interrupts for many error conditions

http://www.xilinx.com

Product Overview www.xilinx.com 89
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
The Ethernet Lite MAC described in this document
designed incorporating the applicable features described in
IEEE Std. 802.3 MII interface specification, which should be
used as the authoritative specification. Differences between
the IEEE Std. 802.3 MII interface specification and the Xilinx
EMAC Lite implementation are highlighted and explained in
the Specification Exceptions section.

The EMAC Interface design is a soft intellectual property
(IP) core designed for implementation in a Virtex™-E, Vir-
tex-II, Spartan™-II, Spartan-IIE or Virtex™-II Pro FPGA.

The EMAC Lite supports the IEEE Std. 802.3 Media Inde-
pendent Interface (MII) to industry standard Physical Layer
(PHY) devices and communicates to a processor via an
IBM On-Chip Peripheral Bus (OPB) interface. The design
provides a 10 Megabits per second (Mbps) and 100 Mbps
(also known as Fast Ethernet) Interface. The goal is to pro-
vide the minimal functions necessary to provide an Ethernet
interface with the least resources used.

The Ethernet Lite MAC is comprised of two IP blocks: The
IP Interface (IPIF) block is a subset of OPB bus interface
features chosen from the full set of IPIF features to most
efficiently couple the second block, the Ethernet Lite MAC
core, to the OPB processor bus for this packet based inter-
face (this combined entity is referred to as a device).

Although there are separate specifications for the IPIF
design, this specification addresses the implementation
required for the Ethernet Lite MAC design.

Features
• 32-bit OPB slave interface

• Memory mapped direct I/O interface to the transmit and
receive data dual port memory

• Media Independent Interface (MII) for connection to
external 10/100 Mbps PHY transceivers

- IEEE 802.3-compliant MII

- Supports auto-negotiable and non auto-negotiable
PHYs

- Supports 10BASE-T and 100BASE-TX/FX IEEE
802.3 compliant MII PHYs at full or half duplex

• Independent internal 2K byte TX and RX dual port
memory for holding data for one packet each

• CSMA/CD compliant operation at 10 Mbps and 100
Mbps in half duplex mode

• Supports unicast, and broadcast transmit and receive
modes

• Provides auto Frame Check Sequence (FCS) field
insertion on transmit and validation on receive

0

OPB Ethernet Lite Media Access
Controller

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro, Virtex II, Virtex,
Virtex E, Spartan II, Spartain IIE

Version of Core opb_ethernetlite v1.00a

Resources Used

Min Max

I/O 124 124

LUTs 494 610

FFs 293 362

Block RAMs 2 8

Provided with Core

Documentation Click here to view this data sheet

Design File Formats N/A

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs N/A

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 90
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
The OPB_ATMC Design described in this document is
designed to incorporate the features defined in UTOPIA
Level 2, v1.0, af-phy-0039.000, written by the ATM Forum
Technical Committee, June, 1995.

The UTOPIA Level 2, v1.0 document is referenced through-
out this document and is the authoritative specification. Dif-
ferences between the UTOPIA Level 2, v1.0 document and
the Xilinx OPB_ATMC Design implementation are high-
lighted and explained in the Specification Exceptions sec-
tion of this data sheet.

Features
• UTOPIA Level 2 master or slave interface

• UTOPIA interface data path of 8 or 16 bits

• Interface throughput up to 622 Mbps (OC12)

• Single channel VPI/VCI service and checking in
received cells

• Header error check (HEC) generation and checking

• Parity generation and checking

• IP interface frequency of 10 MHz to 40 MHz

• System operating frequency upt to 125 MHz through
OPB interface

• OPB interface including register, FIFO, DMA, and
scatter gather capabilities

• Statistics gathering of short cells, long cells, unknown
VPI/VCI, parity errors, and HEC errors

• Selectively prepend headers to transmit cells

• Selectively pass entire received cells or payloads only

• Selectively transfer 48 byte ATM payloads only

• Loop back test mode

• Auto processing or discard of short received cells,
parity errored cells, unknown VPI/VCI, or HEC errored
cells

0

OPB Asynchronous Transfer
Mode Controller (OPB_ATMC)
(v1.00b)

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II

Version of Core opb_atmc v1.00b

Resources Used

Min Max

I/O 36 52

LUTs 1700 3300

FFs 1350 2150

Block RAMs 2 2

Provided with Core

Documentation Click here to view this data sheet.

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 91
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
The OPB_ATMC Design described in this document is
designed to incorporate the features defined in UTOPIA
Level 2, v1.0, af-phy-0039.000, written by the ATM Forum
Technical Committee, June, 1995.

The UTOPIA Level 2, v1.0 document is referenced through-
out this document and is the authoritative specification. Dif-
ferences between the UTOPIA Level 2, v1.0 document and
the Xilinx OPB_ATMC Design implementation are high-
lighted and explained in the Specification Exceptions sec-
tion of this data sheet.

Features
• UTOPIA Level 2 master or slave interface

• UTOPIA interface data path of 8 or 16 bits

• Interface throughput up to 622 Mbps (OC12)

• Single channel VPI/VCI service and checking in
received cells

• Header error check (HEC) generation and checking

• Parity generation and checking

• IP interface frequency of 10 MHz to 40 MHz

• System operating frequency upt to 125 MHz through
OPB interface

• OPB interface including register, FIFO, DMA, and
scatter gather capabilities

• Statistics gathering of short cells, long cells, unknown
VPI/VCI, parity errors, and HEC errors

• Selectively prepend headers to transmit cells

• Selectively pass entire received cells or payloads only

• Selectively transfer 48 byte ATM payloads only

• Loop back test mode

• Auto processing or discard of short received cells,
parity errored cells, unknown VPI/VCI, or HEC errored
cells

0

OPB Asynchronous Transfer
Mode Controller (OPB_ATMC)
(v2.00a)

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II

Version of Core opb_atmc v2.00a

Resources Used

Min Max

I/O 36 52

LUTs 1500 3000

FFs 1300 2000

Block RAMs 2 2

Provided with Core

Documentation Click here to view this data sheet.

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 92
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This document provides the design specification for the
OPB High Level Data Link Control (HDLC) Interface Intel-
lectual Property (IP) solution. It defines the architecture and
interface requirements to this module. This includes regis-
ters the user must initialize for proper operation. This mod-
ule is compatible with {ITU Q.921}. See the Specification
Exceptions of this data sheet.

The Xilinx HDLC design allows the customer to tailor the
HDLC to suit their application by setting certain parameters
to enable/disable features. The parameterizable features of
the design are discussed in HDLC Design Parameters.

Features
• Support for a single independent full duplex HDLC

channel

• Receive memory buffer of selectable depth

• Transmit FIFO of selectable depth

• Selectable 8/16 bit address receive address detection

• Selectable receive frame address discard

• Selectable receive broadcast address detection.
Broadcast address = 0xFF

• Selectable 16 bit (CRC-CCITT) or 32 bit (CRC-32)
frame check sequence

• 16 bit CRC error counter

• 16 bit Aborted frame counter

• Multiple Interrupts including:

- Rx FCS error interrupt

- Rx frame alignment error interrupt

- FIFO overrun/underrun interrupts

- Interrupt generated when either error counter rolls
over

• Tx frame abort control

• Memory mapped direct I/O interface to registers and
FIFOs as well as DMA and Scatter/Gather DMA
capabilities for low processor and bus utilization.

• 16 entry deep FIFOs for the Transmit Length, Receive
Length, Transmit Status and Receive Status registers
to support multiple packet operation.

• Flag sharing between back to back frames

0

OPB HDLC Interface

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II™ Pro, Virtex™ II, VirtexE,
Virtex, Spartan™ II, Spartan IIE

Version of Core opb_hdlc v1.00b

Resources Used

Min Max

I/O 6 6

LUTs 472 2388

FFs 445 1413

Block RAMs 0 2

Provided with Core

Documentation Click here to view this data sheet.

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs N/A

Design Tool Requirements

Xilinx Implementation
Tools

Design Manager

Verification N/A

Simulation N/A

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 93
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This document describes the specifications for a 32-bit
free-running timebase and watchdog timer core for the
On-Chip Peripheral Bus (OPB). The TimeBase WatchDog
Timer (TBWDT) is a 32-bit peripheral that attaches to the
OPB

Features
• OPB V2.0 bus interface with byte-enable support

• Supports 32-bit, 16-bit, and 8-bit bus interfaces

• Watchdog timer (WDT) with selectable timeout period
and interrupt

• Configurable WDT enable: enable-once or
enable-disable

• One 32-bit free-running timebase counter with rollover
interrupt

0

OPB Timebase WDT

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II

Version of Core opb_timebase_wdt v1.00a

Resources Used

Min Max

Slices N/A N/A

LUTs 63 63

FFs 111 111

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet.

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx
Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 94
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This document describes the specifications for the General
Purpose Input/Output (GPIO) core for the On-Chip Periph-
eral Bus (OPB) bus. The GPIO is a 32-bit peripheral that
attaches to the OPB.

Features
• OPB v2.0 bus interface with byte-enable support

• Supports 32-bit, 16-bit, and 8-bit bus interfaces

• Each GPIO bit dynamically programmable as input or
output

• Number of GPIO bits configurable up to size of data
bus interface

• Can be configured as inputs-only to reduce resource
utilization

0

OPB General Purpose
Input/Output (GPIO)

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II

Version of Core opb_gpio v1.00a

Resources Used

Min Max

Slices 22 104

LUTs 8 49

FFs 31 193

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet.

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 95
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This document describes the specifications for a
timer/counter core for the On-Chip Peripheral Bus (OPB).

The TC (Timer/Counter) is a 32-bit timer module that
attaches to the OPB.

Features
• OPB v2.0 bus interface with byte-enable support

• Supports 32-bit bus interface

• Two programmable interval timers with interrupt, event
generation, and event capture capabilities

• Configurable counter width

• One Pulse Width Modulation (PWM) output

• Freeze input for halting counters during software debug

0

OPB Timer/Counter

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II

Version of Core opb_timer v1.00b

Resources Used

Min Max

Slices 99 200

LUTs 99 275

FFs 105 266

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet.

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 96
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This document provides the design specification for the
Microblaze™ Debug Module (MDM). The MDM core
enables JTAG based debugging of one or more MicroBlaze
processors.

Features
• Support for JTAG based software debug tools

• Support for debugging a configurable number of
MicroBlaze processors

• Support for synchronized control of multiple processors
- stop and single step

• Support for a JTAG based UART with an OPB interface

• Based on BSCAN logic in Xilinx FPGAs.

0

Microprocessor Debug Module
(MDM)

Click here to view this data sheet 0 0 Product Overview

Core Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, VIrtex™ II, Virtex,
Virtex E, Spartan™ II, Spartan II E

Version of Core opb_mdm v1.00c

Resources Used

Min Max

Slices 67 163

LUTs 45 283

FFs 79 167

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs N/A

Design Tool Requirements

Xilinx Implementation
Tools

ISE 5.2i or higher

Verification N/A

Simulation ModelSim SE/EE 5.6e or higher

Synthesis XST

Support

Support provided by Xilinx, Inc.

http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com

Product Overview www.xilinx.com 97
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
The OPB Central DMA Controller provides simple Direct
Memory Access (DMA) services for peripherals and mem-
ory devices on the OPB bus. The controller moves a pro-
grammable quantity of data from a source address to a
destination address without processor intervention.

Features
• Provides a single physical channel of Direct Memory

Access between a source address and a destination
address.

• Provides programmable registers for transfer length,
source address, destination address, and dataword
size.

• Addresses may be set up as incrementing or
non-incrementing (for supporting keyhole type memory
devices))

• Byte, halfword, and word data sizes supported.

• Provides fast internal data buffer to support OPB burst
transfers

0

OPB Central DMA Controller

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II, Virtex,
Virtex E, Spartan™ II

Version of Core opb_central_dma v1.00a

Resources Used

Min Max

Slices 180 208

LUTs 296 346

FFs 271 282

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet.

Design File
Formats

Constraints File

Verification

Instantiation
Template

Reference
Designs

Design Tool Requirements

Xilinx
Implementation
Tools

Verification

Simulation

Synthesis

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 98
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
CFIFO contains separate write (transmit) and read (receive)
FIFO designs called WFIFO and RFIFO, respectively.
WFIFO and RFIFO can be used together or separately, and
both are built from common functional elements such as
special low level counter circuitry and compare functions. A
CFIFO is intended to reside within other cores which require
a multichannel FIFO capability, such as an HDLC transmit-
ter / receiver. CFIFO does not contain a host bus interface,
instead relying on core instantiatiation to provide interface.
FIFOs utilize Virtex BRAM elements as data storage
medium. CFIFO design incorporates special purpose
counters, state machines, and logic necessary to imple-
ment functional requirements of a channelized FIFO.

Features
• Two independent channel FIFO components provided:

Read CFIFO (for host bus receive data buffering) and
Write CFIFO (for host bus transmit data buffering).

• User controlled features include parameters for:

- Setting the number of channels

- Setting FIFO data depth.

- Setting FIFO data width.

- Setting independent fixed length burst sizes for
each side of a CFIFO. Setting size to zero removes
burst transfer support logic from side and disables
bursts for side of CFIFO.

- Selecting target FPGA family type.

• "FIFO like" status outputs on communications interface
side of HalfFull, AlmostFull, and Full for Read Channel
FIFO, and HalfEmpty, AlmostEmpty, and Empty for
Write Channel FIFO, in addition to true ’Occupancy’
(Write Channel FIFO) and ’Vacancy’ (Read Channel
FIFO) outputs.

• A Tag field input to Write CFIFO is stored in memory
array on every write data transfer. This field is user
definable and is intended to provide a mechanism for
indicating which byte within a word is last valid byte in a
packet.

• Write and Read Ports on each CFIFO are
synchronized to a common clock source (synchronous
operation).

0

Channel FIFO

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II, VirtexE,
Virtex, Spartan™ 3, Spartan IIE

Version of Core channel_fifo v1.00a

Resources Used

Min Max

I/O

LUTs 199 345

FFs 61 96

Block RAMs 18 36

Provided with Core

Documentation Click here to view this data sheet.

Design File Formats VHDL

Constraints File UCF

Verification VHDL Testbench

Instantiation
Template

VHDL Wrapper

Reference Designs N/A

Design Tool Requirements

Xilinx Implementation
Tools

ISE 5.1 or later

Verification ModelSim PE 5.6d

Simulation ModelSim PE 5.6d

Synthesis XST

Support

Support provided by Xilinx, Inc.

http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com

Product Overview www.xilinx.com 99
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This document describes the specifications for a core for
fixed interval interrupts. The fit_timer core is a peripheral
that generates a strobe signal at fixed intervals and is not
attached to any bus.

Features
• Configurable number of clock cycles between strobes

• Configurable inaccuracy in clock intervals between
strobes

0

Fixed Interval Timer (FIT)

Click here to view this data sheet 0 0 Product Overview

Core Facts

Core Specifics

Supported Device
Family

Virtex II Pro, Virtex II

Version of Core fit_timer v1.00a

Resources Used

Min Max

Slices 6 11

LUTs 6 19

FFs 10 19

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs N/A

Design Tool Requirements

Xilinx Implementation
Tools

ISE 5.2i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or higher

Synthesis XST

Support

Support provided by Xilinx, Inc.

http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com

Fixed Interval Timer (FIT)

100 www.xilinx.com Product Overview
1-800-255-7778

http://www.xilinx.com

Product Overview www.xilinx.com 101
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
The MII_to_RMII design described in this document
provides the Reduced Media Independent Interface
between ethernet PHYs and Xilinx ethernet cores such as
the OPB_Ethernet. The OPB_Ethernet provides the
traditional Media Independent Interface (MII) that requires
sixteen signals to communicate with an Ethernet PHY. The
MII_to_RMII accepts the sixteen signal MII interface and
provides a six signal interface to an RMII compliant PHY.
Additionally, a fixed 50 MHz reference clock synchronizes
the MII_to_RMII with both interfaces. This MII_to_RMII
follows the specification defined by the RMII Consortium
found on the internet site
http://broadband.spirentcom.com/technology/chipsolutions/
rmii_1_2.pdf.

The Xilinx MII_to_RMII design allows the customer to tailor
their application by setting certain parameters to enable or
disable features.

Features
The MII_to_RMII is a soft IP core designed for Xilinx FPGAs
and contains the following features:

• MII Interface

• RMII Interface

• Parameters to select fixed 10 or 100 Mbit per second
throughput

• Parameter to allow auto detection of receive throughput
(transmit side always fixed)

• A fixed clock frequency of 50 MHz.

0

MII to RMII Design Specification

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported
Device Family

Spartan-3, Virtex-II, Virtex-II Pro

Version of Core mmi_to_rmii v1.00a

Resources Used

Min Max

I/O 25 25

LUTs 16 145

FFs 20 146

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet

Design File
Formats

VHDL

Constraints File UCF

Verification VHDL Testbench

Instantiation
Template

VHDL Wrapper

Reference
Designs

None

Design Tool Requirements

Xilinx
Implementation
Tools

5.2i or later

Verification ModelSim PE 5.5e or later

Simulation ModelSim PE 5.5e or later

Synthesis Synplify Pro 7.1

Support

Support provided by Xilinx, Inc.

http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com

Product Overview www.xilinx.com 102
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This document provides the design specification for the 1
Gbs Ethernet Media Access Controller (GEMAC) with DMA.
The GEMAC described in this document has been designed
incorporating the applicable features described in IEEE Std.
802.3-2000. Differences between that specification and the
Xilinx GEMAC implementation are highlighted and
explained in the Specification Exceptions section.

The GEMAC Interface design is a soft intellectual property
(IP) core designed for implementation in a Virtex™-II, or Vir-
tex-II Pro™ FPGA. The GEMAC supports the IEEE Std.
802.3 Gigabit Media Independent Interface (GMII) to indus-
try standard Physical Layer (PHY) devices for full and half
duplex applications.

For full duplex designs in Virtex-II or Virtex-II Pro devices,
including the optional Physical Coding Sublayer (PCS) func-
tion allows the GEMAC to support the standard Ten Bit
Interface (TBI) to external PHY devices. For full duplex
designs in Virtex-II Pro devices, including the optional Phys-
ical Media Attachment (PMA) function with the PCS func-
tion allows the GEMAC to take advantage of the built-in
Multi-Gigabit Transceivers (MGT) for a greatly reduced sig-
nal count SerDes interface to external transceivers. This
option greatly reduces routing complexity in the Printed Wir-
ing Board (PWB).

The GEMAC communicates to a processor via a 64 bit IBM
Processor Local Bus (PLB) interface. The design provides a
1 Gigabit per second (Gbps) full or half duplex Ethernet
Interface. The Xilinx GEMAC design allows the customer to
tailor the GEMAC to suit their application by setting certain
parameters to enable/disable features. The parameteriz-
able features of the design are discussed in GEMAC Design
Parameters.

The GEMAC is comprised of two, three, or four IP blocks as
shown in Figure 1: The IP Interface (IPIF) block is a subset
of PLB bus interface features chosen from the full set of IPIF
features to most efficiently couple the second block, the
GEMAC core, to the PLB processor bus for this packet
based interface. The optional third (PCS) and fourth (PMA)
blocks provide flexibility for connection to external Ethernet
physical layer devices. This combined entity is referred to as
a device. Although there are separate specifications for the
IPIF design, this specification addresses the specific imple-
mentation required for the GEMAC design.

0

PLB 1-Gigabit Ethernet Media
Access Controller (MAC) With
DMA

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II, Virtex

Version of Core plb_gemac v1.00a

Resources Used

Min Max

I/O 457 474

LUTs 3879 5356

FFs 3494 3438

Block RAMs 8 38

Provided with Core

Documentation Click here to view this data sheet

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

PLB 1-Gigabit Ethernet Media Access Controller (MAC) With DMA

Product Overview www.xilinx.com 103
1-800-255-7778

Features
The GEMAC is a soft IP core designed for Xilinx FPGAs and contains the following features:

• 64-bit PLB master and slave interfaces.

• Memory mapped direct I/O interface to registers and FIFOs as well as simple DMA and Scatter/Gather DMA
capabilities for low processor and bus utilization.

• Optional Media Independent Interface Management (MIIM) for access to PHY transceiver registers

• GMII interface to external PHY devices

• Optional full duplex PCS function with Ten Bit Interface (TBI) to external PHY devices.

• Option full duplex PCS/PMA functions with SerDes interface to external transceiver devices for reduced signal count

• Independent internal 2K, 4K, 8K, 16K, or 32K byte TX and RX FIFOs for holding data for more than one packet (2K
byte depth is sufficient for normal 1518 maximum byte packets but 4K byte depth provides better throughput. 16K or
32K byte depth is required for Jumbo frames up to 9K bytes long)

• 16 entry deep FIFOs for the Transmit Length, Receive Length, and Transmit Status registers to support multiple packet
operation

• CSMA/CD compliant operation in half duplex mode with automatic storage and retransmission of packet data for
transmit collisions

• Filtering of "bad" receive packets to reduce processor bus utilization

• Programmable PHY reset signal

• Auto pad and Frame Check Sequence (FCS) field insertion or pass through on transmit

• Auto source address field insertion, overwrite, or pass through on transmit

• Auto pad and FCS field stripping or pass through on receive

• Processes transmission and reception of Pause frames for flow control

• Supports receive and transmit of longer VLAN type frames

• Programmable interframe gap

• Provides interrupts for many error and status conditions

• Optional support of jumbo frames up to 9K bytes in length

• Optional statistics gathering

• Unicast, Broadcast, Multicast (up to 16 addresses stored), and Promiscuous address recognition modes for receive
packets for flexibility and to reduce processor bus utilization

• Supports carrier extension and frame bursting as needed for half-duplex mode

http://www.xilinx.com

PLB 1-Gigabit Ethernet Media Access Controller (MAC) With DMA

104 www.xilinx.com Product Overview
1-800-255-7778

http://www.xilinx.com

Product Overview www.xilinx.com 105
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This document provides the design specification for the 1
Gbs Ethernet Media Access Controller (GEMAC) with DMA.
The GEMAC described in this document has been designed
incorporating the applicable features described in IEEE Std.
802.3-2000. Differences between that specification and the
Xilinx GEMAC implementation are highlighted and
explained in the Specification Exceptions section.

The GEMAC Interface design is a soft intellectual property
(IP) core designed for implementation in a Virtex-II or
Virtex-II Pro FPGA. The GEMAC supports the IEEE Std.
802.3 Gigabit Media Independent Interface (GMII) to
industry standard Physical Layer (PHY) devices for full
duplex only applications.

For designs in Virtex-II or Virtex-II Pro devices, including the
optional Physical Coding Sublayer (PCS) function allows
the GEMAC to support the standard Ten Bit Interface (TBI)
to external PHY devices. For designs in Virtex-II Pro
devices, including the optional Physical Media Attachment
(PMA) function with the PCS function allows the GEMAC to
take advantage of the built-in Multi-Gigabit Transceivers
(MGT) for a greatly reduced signal count SerDes interface
to external transceivers. This option greatly reduces routing
complexity in the Printed Wiring Board (PWB).

The GEMAC communicates to a processor via a 64-bit IBM
Processor Local Bus (PLB) interface, which provides a 1
Gigabit per second full duplex only Ethernet Interface.

The Xilinx GEMAC design allows the customer to tailor the
GEMAC to suit their application by setting certain
parameters to enable/disable features. The
parameterizable features of the design are discussed in this
data sheet.

The GEMAC is comprised of two, three, or four IP blocks as
shown in Figure 1: The IP Interface (IPIF) block is a subset
of PLB bus interface features chosen from the full set of IPIF
features to most efficiently couple the second block, the
GEMAC core, to the PLB processor bus for this packet
based interface. The optional third (PCS) and fourth (PMA)
blocks provide flexibility for connection to external Ethernet
physical layer devices. This combined entity is referred to as
a device. Although there are separate specifications for the
IPIF design, this specification addresses the specific
implementation required for the GEMAC design.

0

PLB 1-Gigabit Ethernet Media
Access Controller (MAC)

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II

Version of Core plb_gemac v1.00b

Resources Used

Min Max

I/O

LUTs

FFs

Block RAMs

Provided with Core

Documentation Click here to view this data sheet

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

PLB 1-Gigabit Ethernet Media Access Controller (MAC)

106 www.xilinx.com Product Overview
1-800-255-7778

GEMAC Endianess
Please note that the GEMAC is designed as a big endian device (bit 0 is the most significant bit and is shown on the left of
a group of bits).

The 8-bit GMII transmit and receive data interface to the external PHY is little endian (bit 7 is the most significant bit and
appears on the left of the bus). The MII management interface to the PHY is serial with the most significant bit of a field being
transmitted first.

Features
The GEMAC is a soft IP core designed for Xilinx FPGAs and contains the following features:

• 64-bit PLB master and slave interfaces.

• Memory mapped direct I/O interface to registers and FIFOs as well as Simple DMA and Scatter/Gather DMA
capabilities for low processor and bus utilization..

• Optional Media Independent Interface Management (MIIM) for access to PHY transceiver registers

• GMII interface to external PHY devices

• Optional PCS function with Ten Bit Interface (TBI) to external PHY devices.

• Option PCS/PMA functions with SerDes interface to external transceiver devices for reduced signal count

• Independent internal 2K, 4K, 8K, 16K, or 32K byte TX and RX FIFOs for holding data for more than one packet (2K
byte depth is sufficient for normal 1518 maximum byte packets but 4K byte depth provides better throughput. 16K or
32K byte depth is required for Jumbo frames up to 9K bytes long)

• 16 entry deep FIFOs for the Transmit Length, Receive Length, and Transmit Status registers to support multiple packet
operation

• Filtering of "bad" receive packets to reduce processor bus utilization

• Programmable PHY reset signal

• Auto pad and Frame Check Sequence (FCS) field insertion or pass through on transmit

• Auto pad and FCS field stripping or pass through on receive

• Processes transmission and reception of Pause frames for flow control

• Supports receive and transmit of longer VLAN type frames

• Programmable interframe gap

• Provides interrupts for many error and status conditions

• Optional support of jumbo frames up to 9K bytes in length

• No receive destination address validation. All properly formed packets are accepted.

http://www.xilinx.com

Product Overview www.xilinx.com 107
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This document provides the specification for the PLB Uni-
versal Asynchronous Receiver/Transmitter (UART) Intellec-
tual Property (IP).

The UART described in this document has been designed
incorporating the features described in National Semicon-
ductor PC16550D UART with FIFOs data sheet (June,
1995), (http://www.national.com/pf/PC/PC16550D.html).

The National Semiconductor PC16550D data sheet is refer-
enced throughout this document and should be used as the
authoritative specification. Differences between the
National Semiconductor implementation and the OPB
UART Point Design implementation are highlighted and
explained in this data sheet.

Features
• Hardware and software register compatible with all

standard 16450 and 16450 UARTs

• Implements all standard serial interface protocols

- 5, 6, 7, or 8 bits per character

- Odd, Even, or no parity detection and generation

- 1, 1.5, or 2 stop bit detection and generation

- Internal baud rate generator and separate receiver
clock input

- Modem control functions

- False start bit detection and recovery

- Prioritized transmit, receive, line status, and
modem control interrupts

- Line break detection and generation

- Internal loop back diagnostic functionality

- Independent 16 word transmit and receive FIFOs

• Registers

- Receiver Buffer Register (Read Only)

- Transmitter Holding Register (Write Only)

- Interrupt Enable Register

- Interrupt Identification Register (Read Only)

- FIFO Control Register (Read/Write)

- Line Control and Line Status Registers

- Modem Control and Modem Status Registers

- Scratch Register

- Divisor Latch (least and more significant byte)

• System clock frequency of 100 MHz

0

PLB 16550 UART (v1.00b)

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II

Version of Core plb_uart16550 v1.00b

Resources Used

Min Max

I/O 538 538

LUTs 650 650

FFs 463 463

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet.

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.national.com/pf/PC/PC16550D.html
http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 108
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This document provides the specification for the PLB Uni-
versal Asynchronous Receiver/Transmitter (UART) Intellec-
tual Property (IP).

The UART described in this document has been designed
incorporating the features described in National Semicon-
ductor PC16550D UART with FIFOs data sheet (June,
1995), (http://www.national.com/pf/PC/PC16550D.html).

The National Semiconductor PC16550D data sheet is refer-
enced throughout this document and should be used as the
authoritative specification. Differences between the
National Semiconductor implementation and the OPB
UART Point Design implementation are highlighted and
explained in this data sheet.

Features
• Hardware and software register compatible with all

standard 16450 and 16450 UARTs

• Implements all standard serial interface protocols

- 5, 6, 7, or 8 bits per character

- Odd, Even, or no parity detection and generation

- 1, 1.5, or 2 stop bit detection and generation

- Internal baud rate generator and separate receiver
clock input

- Modem control functions

- False start bit detection and recovery

- Prioritized transmit, receive, line status, and
modem control interrupts

- Line break detection and generation

- Internal loop back diagnostic functionality

- Independent 16 word transmit and receive FIFOs

• Registers

- Receiver Buffer Register (Read Only)

- Transmitter Holding Register (Write Only)

- Interrupt Enable Register

- Interrupt Identification Register (Read Only)

- FIFO Control Register (Read/Write)

- Line Control and Line Status Registers

- Modem Control and Modem Status Registers

- Scratch Register

- Divisor Latch (least and more significant byte)

• System clock frequency of 100 MHz

0

PLB 16550 UART (v1.00c)

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II

Version of Core plb_uart16550 v1.00c

Resources Used

Min Max

Slices 538 538

LUTs 650 650

FFs 463 463

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet.

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.national.com/pf/PC/PC16550D.html
http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 109
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This document provides the specification for the PLB Uni-
versal Asynchronous Receiver/Transmitter (UART) Intellec-
tual Property (IP).

The UART described in this document has been designed
incorporating the features described in National Semicon-
ductor PC16550D UART with FIFOs data sheet (June,
1995), (http://www.national.com/pf/PC/PC16550D.html).

The National Semiconductor PC16550D data sheet is refer-
enced throughout this document and should be used as the
authoritative specification. Differences between the
National Semiconductor implementation and the OPB
UART Point Design implementation are highlighted and
explained in this data sheet.

Features
• Hardware and software register compatible with all

standard 16450 UARTs

• Implements all standard serial interface protocols

- 5, 6, 7, or 8 bits per character

- Odd, Even, or no parity detection and generation

- 1, 1.5, or 2 stop bit detection and generation

- Internal baud rate generator and separate receiver
clock input

- Modem control functions

- False start bit detection and recovery

- Prioritized transmit, receive, line status, and
modem control interrupts

- Line break detection and generation

- Internal loop back diagnostic functionality

• Registers

- Receiver Buffer Register (Read Only)

- Transmitter Holding Register (Write Only)

- Interrupt Enable Register

- Interrupt Identification Register (Read Only)

- Line Control and Line Status Registers

- Modem Control and Modem Status Registers

- Scratch Register

- Divisor Latch (least and more significant byte)

• System clock frequency of 100 MHz

0

PLB 16450 UART (v1.00b)

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II

Version of Core plb_uart16450 v1.00b

Resources Used

Min Max

Slices 432 432

LUTs 487 487

FFs 410 410

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet.

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http://www.national.com/pf/PC/PC16550D.html
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 110
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This document provides the specification for the PLB Uni-
versal Asynchronous Receiver/Transmitter (UART) Intellec-
tual Property (IP).

The UART described in this document has been designed
incorporating the features described in National Semicon-
ductor PC16550D UART with FIFOs data sheet (June,
1995), (http://www.national.com/pf/PC/PC16550D.html).

The National Semiconductor PC16550D data sheet is refer-
enced throughout this document and should be used as the
authoritative specification. Differences between the
National Semiconductor implementation and the OPB
UART Point Design implementation are highlighted and
explained in this data sheet.

Features
• Hardware and software register compatible with all

standard 16450 UARTs

• Implements all standard serial interface protocols

- 5, 6, 7, or 8 bits per character

- Odd, Even, or no parity detection and generation

- 1, 1.5, or 2 stop bit detection and generation

- Internal baud rate generator and separate receiver
clock input

- Modem control functions

- False start bit detection and recovery

- Prioritized transmit, receive, line status, and
modem control interrupts

- Line break detection and generation

- Internal loop back diagnostic functionality

• Registers

- Receiver Buffer Register (Read Only)

- Transmitter Holding Register (Write Only)

- Interrupt Enable Register

- Interrupt Identification Register (Read Only)

- Line Control and Line Status Registers

- Modem Control and Modem Status Registers

- Scratch Register

- Divisor Latch (least and more significant byte)

• System clock frequency of 100 MHz

0

PLB 16450 UART (v1.00c)

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II

Version of Core plb_uart16450 v1.00c

Resources Used

Min Max

Slices 432 432

LUTs 487 487

FFs 410 410

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet.

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http://www.national.com/pf/PC/PC16550D.html
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 111
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This document presents the design specification for the Xil-
inx PLB RapidIO™ LVDS Intellectual Property (IP) solution.
This LogiCORE™ module provides an interface between the
IBM® CoreConnect™ Processor Local Bus (PLB) and an
LVDS based RapidIO interface standard.

The PLB RapidIO LVDS design provides an interface
between the PPC405 (via PLB CoreConnect Bus) and a
RapidIO protocol network. The physical interface to the
RapidIO bus uses the 8 bit LVDS standard.

Features
The PLB RapidIO LVDS is a soft IP core designed for Xilinx
FPGAs incorporating PPC405 and MicroBlaze processing
elements. The design provides the following features:

• Front end Interface to the IBM CoreConnect PLB Bus

- Supports PLB signaling per the IBM 64-Bit
Processor Local Bus, Architectural Specification

- Integrates easily with the Xilinx Platform Studio for
PPC405 System Development.

- 64 bit wide data transfers

- 512x64 Tx and Rx Packet Buffers (Up to 8
maximally sized packets can be queued for Tx and
Rx)

- PLB Cacheline and Burst Transfer Interface
Support with Packet Buffers.

- Parameterized System Address Block.

• Back end Interface to RapidIO Bus.

- Incorporates Xilinx RapidIO Physical Layer
· Supports RapidIO Physical Layer 8/16

LP-LVDS Interconnect Specification v1.1.
· 8-bit LVDS PHY (TX and Rx functions)
· 500 MBytes/sec Peak Transfer Rate at the

PHY Tx and Rx ports.

• Processor Accessible Registers

- Interrupt Enable and Status Registers

- S/W Reset/MIR Register

- RapidIO PHY Link Status Register

- RapidIO PHY Management Register Set

• System Interrupt Support

- Tx and Rx Flow Control Interrupts

- Programmable Enables/Disables.

- Interrupt Status Registers can support S/W Polled
Mode control flow in place of Interrupt Control Flow

• PLB System clock frequency up to 100 MHz

0

PLB RapidIO LVDS Design

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II,

Version of Core plb_rapidio_lvds v1.00a

Resources Used

Min Max

I/O 40 40

LUTs 5849 6138

FFs 2960 3089

Block RAMs 4 4

Provided with Core

Documentation Click here to view this data sheet.

Design File Formats VHDL

Constraints File Example UCF

Verification N/A

Instantiation
Template

None

Reference Designs None

Design Tool Requirements

Xilinx
Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 112
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
This document provides the specification for the
PLB_ATMC IP, which includes an asynchronous transfer
mode controller with a UTOPIA Level 2 or UTOPIA Level 3
interface.

The PLB_ATMC Design described in this document is
designed to incorporate the features defined in UTOPIA
Level 2, Version 1.0, af-phy-0039.000, written by the ATM
Forum Technical Committee, June, 1995 or in UTOPIA
Level 3 Physical Layer Interface, af-phy-0136.000, written
by the ATM Forum Technical Committee, November, 1999.

The UTOPIA Level 2 and 3 documents are referenced
throughout this document and are the authoritative specifi-
cations. Differences between these documents and the Xil-
inx PLB_ATMC Design implementation are highlighted and
explained in Specification Exceptions.

Features
The PLB_ATMC Design is a soft IP core designed for Xilinx
FPGAs and contains the following features:

• UTOPIA Level 2 or UTOPIA Level 3

• UTOPIA master or slave interface for either level

• UTOPIA interface data path of 8 or 16 bits for level 2;
and 8, 16 or 32 bits for level 3

• Interface throughput up to 622 Mbps (OC12) for 16 bit
UTOPIA Level 2; and up to 2.4 Gbps (OC48) for 32 bit
UTOPIA Level 3

• Single channel VPI/VCI service and checking in
received cells

• Header error check (HEC) generation and checking

• Parity generation and checking

• IP interface frequency of 10 MHz to 100 MHz

• System operating frequency up to 100 MHz through
PLB interface

• PLB interface including register and FIFO capabilities

• Statistics gathering of errored cells

• Selectively prepend headers to transmit cells

• Selectively pass entire received cells or payloads only

• Selectively transfer 48 byte ATM payloads only

• Loop back test mode

• Auto processing or discard of errored cells

0

PLB Asynchronous Transfer
Mode Controller (PLB_ATMC)

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II

Version of Core plb_atmc v1.00a

Resources Used

Min Max

I/O 36 84

LUTs 1500 4000

FFs 1300 2600

Block RAMs 2 4

Provided with Core

Documentation Click here to view this data sheet.

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 113
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
A DCR Interrupt Controller is composed of a bus-centric
wrapper containing the IntC core and a bus interface. The
IntC core is a simple, parameterized interrupt controller that,
along with the appropriate bus interface, attaches to either
the OPB (On-chip Peripheral Bus) or the DCR (Device Con-
trol Register) Bus.

It can be used in either embedded PowerPC systems (Vir-
tex-II Pro devices), or in MicroBlaze™ soft processor sys-
tems. There are two versions of the DCR Interrupt
Controller, one with an OPB interface, called OPB IntC, and
another with a DCR interface called DCR IntC.

In this document, IntC and DCR IntC are used interchange-
ably to refer to functionality or interface signals common to
all variations of the DCR Interrupt Controller. When the dis-
cussion switches to a bus centric version, the interrupt con-
troller is referred to as OPB IntC or DCR IntC.

Features
• Modular design provides a core interrupt controller

functionality instantiated within a bus interface design
(currently the OPB and DCR buses are supported)

• OPB v2.0 bus interface with byte-enable support (IBM
SA-14-2528-01 64-bit On-Chip Peripheral Bus
Architecture Specifications, v2.0)

• DCR v2.0 bus interface (IBM SA-14-2525-00 32-bit
Device Control Register Bus Architecture
Specifications, v2.9)

• Supports data bus widths of 8-bits, 16-bits, or 32-bits
for OPB interface, and 32-bits for DCR interface

• Number of interrupt inputs is configurable up to the
width of the data bus

• Interrupt controllers can be easily cascaded to provide
additional interrupt inputs

• Interrupt Enable Register for selectively disabling
individual interrupt inputs

• Master Enable Register for disabling the interrupt
request output

• Each input is configurable for edge or level
sensitivity—edge sensitivity can be configured for
rising or falling; level sensitivity can be active-high or
-low

• Automatic edge synchronization when inputs are

configured for edge sensitivity

• Output interrupt request pin configurable for edge or
level generation—edge generation configurable for
rising or falling; level generation configurable for
active-high or -low

0

DCR Interrupt Controller
Specification (v1.00a)

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II, Virtex,
Virtex E, Spartan™ II

Version of Core dcr_intc v1.00a

Resources Used

Min Max

I/O 70 70

LUTs 41 73

FFs 18 198

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet.

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Product Overview www.xilinx.com 114
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction
A DCR Interrupt Controller is composed of a bus-centric
wrapper containing the IntC core and a bus interface. The
IntC core is a simple, parameterized interrupt controller that,
along with the appropriate bus interface, attaches to either
the OPB (On-chip Peripheral Bus) or the DCR (Device Con-
trol Register) Bus.

It can be used in either embedded PowerPC systems (Vir-
tex-II Pro devices), or in MicroBlaze™ soft processor sys-
tems. There are two versions of the DCR Interrupt
Controller, one with an OPB interface, called OPB IntC, and
another with a DCR interface called DCR IntC.

In this document IntC and DCR IntC are used interchange-
ably to refer to functionality or interface signals that are
common to all variations of the DCR Interrupt Controller.
When the discussion switches to a bus centric version, then
the interrupt controller will be referred to as OPB IntC or
DCR IntC.

Features
• Modular design provides core interrupt controller

functionality instantiated within a bus interface design
(currently OPB and DCR buses supported)

• DCR v2.0 bus interface (IBM SA-14-2525-00 32-bit
DCR Bus Architecture Specifications, v2.9)

• Supports data bus width of 32-bits for DCR interface

• Number of interrupt inputs is configurable up to the
width of the data bus

• Interrupt controllers can be easily cascaded to provide
additional interrupt inputs

• Interrupt Enable Register for selectively disabling
individual interrupt inputs

• Master Enable Register for disabling the interrupt
request output

• Each input is configurable for edge or level sensitivity;
edge sensitivity can be configured for rising or falling;
level sensitivity can be active-high or -low

• Automatic edge synchronization when inputs are
configured for edge sensitivity

• Output interrupt request pin is configurable for edge or
level generation — edge generation configurable for
rising or falling; level generation configurable for
active-high or -low

0

DCR Interrupt Controller
Specification (v1.00b)

Click here to view this data sheet 0 0 Product Overview

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex II Pro™, Virtex™ II, Virtex,
Virtex E, Spartan™ II

Version of Core dcr_intc v1.00b

Resources Used

Min Max

I/O 76 107

LUTs 71 424

FFs 55 334

Block RAMs 0 0

Provided with Core

Documentation Click here to view this data sheet.

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation
Template

N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

DCR Interrupt Controller Specification (v1.00b)

Product Overview www.xilinx.com 115
1-800-255-7778

http://www.xilinx.com

DCR Interrupt Controller Specification (v1.00b)

116 www.xilinx.com Product Overview
1-800-255-7778

http://www.xilinx.com

Processor IP User Guide www.xilinx.com 117
June 2003 1-800-255-7778

R

Part II: Software

This section contains information on the following:

Chapter 7 , “Device Driver Programmer Guide”

Chapter 8, “Tornado 2.0 BSP User Guide”

Chapter 9, “Device Driver Summary”

Chapter 10, “Automatic Generation of Tornado 2.x (VxWorks 5.x) Board Support
Packages”

http://www.xilinx.com

118 www.xilinx.com Processor IP User Guide
1-800-255-7778 June 2003

R

http://www.xilinx.com

June 2003 www.xilinx.com 119
Processor IP User Guide 1-800-255-7778

R

Chapter 7

Device Driver Programmer Guide

Overview
This document describes the Xilinx device driver environment, and includes information
on the following:

• Design and implementation details for using the drivers
• Device driver architecture
• Application Programmer Interface (API) conventions
• Scheme for configuring the drivers to work with reconfigurable hardware devices
• Infrastructure that is common to all device drivers.

Goals and Objectives
The Xilinx device drivers are designed to meet the following goals and objectives:

• Provide maximum portability

The device drivers are provided as ANSI C source code. ANSI C was chosen to
maximize portability across processors and development tools. Source code is
provided both to aid customers in debugging their applications as well as allow
customers to modify or optimize the device driver if necessary.

A layered device driver architecture additionally separates device communication
from processor and Real Time Operating System (RTOS) dependencies, thus providing
portability of core device driver functionality across processors and operating systems.

• Support FPGA configurability

Since FPGA-based devices can be parameterized to provide varying functionality, the
device drivers must support this varying functionality. The configurability of device
drivers should be supported at compile-time and at run-time. Run-time
configurability provides the flexibility needed for future dynamic system
reconfiguration.

In addition, a device driver supports multiple instances of the device without code
duplication for each instance, while at the same time managing unique characteristics
on a per instance basis.

• Support simple and complex use cases

Device drivers are needed for simple tasks such as board bring-up and testing, as well
as complex embedded system applications. A layered device driver architecture
provides both simple device drivers with minimal memory footprints and more
robust, full-featured device drivers with larger memory footprints.

• Ease of use and maintenance

Xilinx makes use of coding standards and provides well-documented source code in
order to give developers (i.e., customers and internal development) a consistent view

http://www.xilinx.com

120 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

of source code that is easy to understand and maintain. In addition, the API for all
device drivers is consistent to provide customers a similar look and feel between
drivers.

Device Driver Architecture
The architecture of the device drivers is designed as a layered architecture as shown in the
following figure. The layered architecture accommodates the many use cases of device
drivers while at the same time providing portability across operating systems, toolsets,
and processors. The layered architecture provides seamless integration with an RTOS
(Layer 2), high-level device drivers that are full-featured and portable across operating
systems and processors (Layer 1), and low-level drivers for simple use cases (Layer 0). The
following paragraphs describe each of the layers. The user can choose to use any and all
layers.

Figure 7-1: Layered Architecture

Layer 2, RTOS Adaptation
This layer consists of adapters for device drivers. An adapter converts a Layer 1 device
driver interface to an interface that matches the requirements of the device driver scheme
for an RTOS. Unique adapters may be necessary for each RTOS. Adapters typically have
the following characteristics.

• Communicates directly to the RTOS and the Layer 1, high-level driver.
• References functions and identifiers specific to the RTOS. This layer is therefore not

portable across operating systems.
• Can use memory management
• Can use RTOS services such as threading, inter-task communication, etc.
• Can be simple or complex depending on the RTOS interface and requirements for the

device driver

Layer 1, High Level Drivers
This layer consists of high level device drivers . They are implemented as macros and
functions and are designed to allow a developer to utilize all features of a device. These
high-level drivers are independent of operating system and processor, making them
highly portable. They typically have the following characteristics.

• Consistent and high-level (abstract) API that gives the user an "out-of-the-box"
solution

• No RTOS or processor dependencies, making them highly portable
• Run-time error checking such as assertion of input arguments. Also provides the

ability to compile away asserts.

Layer 2, RTOS Adaptation

Layer 1, High Level Drivers

 Layer 0, Low Level Drivers

http://www.xilinx.com

June 2003 www.xilinx.com 121
Processor IP User Guide 1-800-255-7778

R

• Comprehensive support of device features
• Abstract API that isolates the API from hardware device changes
• Supports device configuration parameters to handle FPGA-based parameterization of

hardware devices.
• Supports multiple instances of a device while managing unique characteristics on a

per instance basis.
• Polled and interrupt driven I/O
• Non-blocking function calls to aid complex applications
• May have a large memory footprint
• Typically provides buffer interfaces for data transfers as opposed to byte interfaces.

This makes the API easier to use for complex applications.
• Does not communicate directly to Layer 2 adapters or application software. Utilizes

asynchronous callbacks for upward communication.

Layer 0, Low Level Drivers
This layer consists of low level device drivers. They are implemented as macros and
functions and are designed to allow a developer to create a small system, typically for
internal memory of an FPGA. They typically have the following characteristics.

• Simple, low-level API
• Small memory footprint
• Little to no error checking is performed
• Supports primary device features only
• Minimal abstraction such that the API typically matches the device registers. The API

is therefore less isolated from hardware device changes.
• No support of device configuration parameters
• Supports multiple instances of a device with base address input to the API
• None or minimal state is maintained
• Polled I/O only
• Blocking functions for simple use cases
• Typically provides byte interfaces but can provide buffer interfaces for packet-based

devices.

Object-Oriented Device Drivers
In addition to the layered architecture, it is important that the user understand the
underlying design of the device drivers. The device drivers are designed using an object-
oriented methodology. The methodology is based upon components and is described in
the following paragraphs. This approach pertains particularly to the Layer 1, high-level
device drivers.

Component Definition
A component is a logical partition of the software which provides a functionality similar to
one or more classes in C++. Each component provides a set of functions that operate on the
internal data of the component. In general, components are not allowed access to the data
of other components. A device driver is typically designed as a single component. A
component may consist of one or more files.

Component Implementation
The component contains data variables which define the set of values that instances of that
type can hold and a set of functions that operate on those data variables. Components must
utilize the functions of other components in order to access the data of other components,

http://www.xilinx.com

122 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

rather than accessing component data directly. Components provide data abstraction and
encapsulation by gathering the state of an object and the functions that operate on that
object into a single unit and by denying direct access to its data members.

Component Data Variables
The primary mechanism for implementing a component in C is the structure. The data
variables for a component are grouped in a single structure such that instances of the
component each have their own data. The structure and the prototypes for all component
functions are declared in the header file which is shared between the implementing
component and other components which utilize it. A pointer to this structure, referred to
as the instance pointer, is passed into each function of the component which operates on
the instance data.

Component Interface
Each component has a set of functions which are collectively referred to as the component
interface. Every function of a component which operates on the instance data utilizes a
pointer, named InstancePtr, to an instance of a component as the first argument. This
argument emulates the this pointer in C++ and allows the component function to
manipulate the instance data.

Component Instance
An instance of a component is created when a variable is created using the component data
type. An instance of a component maps to each physical hardware device. Each instance
may have unique characteristics such as it’s memory mapped address and specific device
capabilities.

Component Example
The following code example illustrates a device driver component.

/* the device component data type */

typedef struct
{
 Xuint32 BaseAddress; /* component data variables */
 Xuint32 IsReady;
 Xuint32 IsStarted;
} XDevice;

/* create an instance of a device */

XDevice DeviceInstance;

/* device component interfaces */

XStatus XDevice_Initialize(XDevice *InstancePtr, Xuint16 DeviceId);
XStatus XDevice_Start(XDevice *InstancePtr);

API and Naming Conventions

External Identifiers
External identifiers are defined as those items that are accessible to all other components in
the system (global) and include functions, constants, typedefs, and variables.

An ’X’ is prepended to each Xilinx external so it does not pollute the global name space,
thus reducing the risk of a name conflict with application code. The names of externals are
based upon the component in which they exist. The component name is prepended to each

http://www.xilinx.com

June 2003 www.xilinx.com 123
Processor IP User Guide 1-800-255-7778

R

external name. An underscore character always separates the component name from the
variable or function name.

External Name Pattern:

X<component name>_VariableName;
X<component name>_FunctionName(ArgumentType Argument)
X<component name>_TypeName;

Constants are typically defined as all uppercase and prefixed with an abbreviation of the
component name. For example, a component named XUartLite (for the UART Lite device
driver) would have constants that begin with XUL_, and a component named XEmac (for
the Ethernet 10/100 device driver) would have constants that begin with XEM_. The
abbreviation utilizes the first three uppercase letters of the component name, or the first
three letters if there are only two uppercase letters in the component name.

File Naming Conventions
The file naming convention utilizes long file names and is not limited to 8 characters as
imposed by the older versions of the DOS operating system.

Component Based Source File Names
Source file names are based upon the name of the component implemented within the
source files such that the contents of the source file are obvious from the file name. All file
names must begin with the lowercase letter "x" to differentiate Xilinx source files. File
extensions .h and .c are utilized to distinguish between header source files and
implementation source files.

Implementation Source Files (*.c)
The C source files contain the implementation of a component. A component is typically
contained in multiple source files to allow parts of the component to be user selectable.

Source File Naming Pattern:

x<component name>.c main source file
x<component name>_functionality.c secondary source file

Header Source Files (*.h)
The header files contain the interfaces for a component. There will always be external
interfaces which is what an application that utilizes the component invokes.

• The external interfaces for the high level drivers (Layer 1) are contained in a header
file with the file name format x<component name>.h.

• The external interfaces for the low level drivers (Layer 0) are contained in a header file
with the file name format x<component name>_l.h.

In the case of multiple C source files which implement the class, there may also be a header
file which contains internal interfaces for the class. The internal interfaces allow the
functions within each source file to access functions in the another source file.

• The internal interfaces are contained in a header file with the file name format
x<component name>_i.h.

Device Driver Layers
Layer 1 and Layer 0 device drivers (i.e., high-level and low-level drivers) are typically
bundled together in a directory. The Layer 0 device driver files are named x<component
name>_l.h and x<component name>_l.c. The "_l" indicates low-level driver. Layer 2 RTOS
adapter files include the word "adapter" in the file name, such as x<component
name>_adapter.h and x<component name>_adapter.c. These are typically stored in a different
directory name (e.g., one specific to the RTOS) than the device driver files.

http://www.xilinx.com

124 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

Example File Names
The following source file names illustrates an example which is complex enough to utilize
multiple C source files.

xuartns550.c Main implementation file
xuartns550_intr.c Secondary implementation file for interrupt
handling
xuartns550.h High level external interfaces header file
xuartns550_i.h Internal identifiers header file
xuartns550_l.h Low level external interfaces header file
xuartns550_l.c Low level implementation file
xuartns550_g.c Generated file controlling parameterized
instances

and,

xuartns550_sio_adapter.c VxWorks Serial I/O (SIO) adapter

High Level Device Driver API
High level device drivers are designed to have an API which includes a standard API
together with functions that may be unique to that device. The standard API provides a
consistent interface for Xilinx drivers such that the effort to use multiple device drivers is
minimized. An example API follows.

Standard Device Driver API

Initialize

This function initializes an instance of a device driver. Initialization must be performed
before the instance is used. Initialization includes mapping a device to a memory-mapped
address and initialization of data structures. It maps the instance of the device driver to a
physical hardware device. The user is responsible for allocating an instance variable using
the driver’s data type, and passing a pointer to this variable to this and all other API
functions.

Reset

This function resets the device driver and device with which it is associated. This function
is provided to allow recovery from exception conditions. This function resets the device
and device driver to a state equivalent to after the Initialize() function has been called.

SelfTest

This function performs a self-test on the device driver and device with which it is
associated. The self-test verifies that the device and device driver are functional.

Optional Functions
Each of the following functions may be provided by device drivers.

Start

This function is provided to start the device driver. Starting a device driver typically
enables the device and enables interrupts. This function, when provided, must be called
prior to other data or event processing functions.

Stop

This function is provided to stop the device driver. Stopping a device driver typically
disables the device and disables interrupts.

http://www.xilinx.com

June 2003 www.xilinx.com 125
Processor IP User Guide 1-800-255-7778

R

GetStats

This function gets the statistics for the device and/or device driver.

ClearStats

This function clears the statistics for the device and/or device driver.

InterruptHandler

This function is provided for interrupt processing when the device must handle interrupts.
It does not save or restore context. The user is expected to connect this interrupt handler to
their system interrupt controller. Most drivers will also provide hooks, or callbacks, for the
user to be notified of asynchronous events during interrupt processing (e.g., received data
or device errors).

Configuration Parameters
Standard device driver API functions (of Layer 1, high-level drivers) such as Initialize()
and Start() require basic information about the device such as where it exists in the system
memory map or how many instances of the device there are. In addition, the hardware
features of the device may change because of the ability to reconfigure the hardware within
the FPGA. Other parts of the system such as the operating system or application may need
to know which interrupt vector the device is attached to. For each device driver, this type
of information is distributed across two files: xparameters.h and x<component name>_g.c.

Typically, these files are automatically generated by a system generation tool based on
what the user has included in their system. However, these files can be hand coded to
support internal development and integration activities. Note that the low-level drivers of
Layer 0 do not require or make use of the configuration information defined in these two
files. Other than the memory-mapped location of the device, the low-level drivers are
typically fixed in the hardware features they support.

xparameters.h
This source file centralizes basic configuration constants for all drivers within the system.
Browsing this file gives the user an overall view of the system architecture. The device
drivers and Board Support Package (BSP) utilize the information contained here to
configure the system at runtime. The amount of configuration information varies by
device, but at a minimum the following items should be defined for each device:

- Number of device instances

- Device ID for each instance

A Device ID uniquely identifies each hardware device which maps to a device driver.
A Device ID is used during initialization to perform the mapping of a device driver to
a hardware device. Device IDs are typically assigned either by the user or by a system
generation tool. It is currently defined as a 16-bit unsigned integer.

- Device base address for each instance

- Device interrupt assignment for each instance if interrupts can be generated.

File Format and Naming Conventions
Every device must have the following constant defined indicating how many instances of
that device are present in the system (note that <component name> does not include the
preceding "X"):

XPAR_X<component name>_NUM_INSTANCES

Each device instance will then have multiple, unique constants defined. The names of the
constants typically match the hardware configuration parameters, but can also include
other constants. For example, each device instance has a unique device identifier

http://www.xilinx.com

126 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

(DEVICE_ID), the base address of the device’s registers (BASEADDR), and the end
address of the device’s registers (HIGHADDR).

XPAR_<component name>_<component instance>_DEVICE_ID
XPAR_<component name>_<component instance>_BASEADDR
XPAR_<component name>_<component instance>_HIGHADDR

<component instance> is typically a number between 0 and (XPAR_X<component
name>_NUM_INSTANCES - 1). Note that the system generation tools may create these
constants with a different convention than described here. Other device specific constants
are defined as needed:

XPAR_<component name>_<component instance>_<item description>

When the device specific constant applies to all instances of the device:

XPAR_<component name>_<item description>

For devices that can generate interrupts, a separate section within xparameters.h is used to
store interrupt vector information. While the device driver implementation files do not
utilize this information, their RTOS adapters, BSP files, or user application code will
require them to be defined in order to connect, enable, and disable interrupts from that
device. The naming convention of these constants varies whether an interrupt controller is
part of the system or the device hooks directly into the processor.

For the case where an interrupt controller is considered external and part of the system, the
naming convention is as follows:

XPAR_INTC_<instance>_<component name>_<component instance>_VEC_ID

Where INTC is the name of the interrupt controller component, <instance> is the
component instance of the INTC, <component name> and <component instance> is the
name and instance number of the component connected to the controller. Of course
XPAR_INTC must have the other required constants DEVICE_ID, BASEADDR, etc. This
convention supports single and cascaded interrupt controller architectures.

For the case where an interrupt controller is considered internal to a processor, the naming
convention changes:

XPAR_<proc name>_<component name>_<component instance>_VEC_ID

Where <proc name> is the name of the processor.

x<component name>_g.c
The header file x<component name>.h defines the type of a configuration structure. The type
will contain all of the configuration information necessary for an instance of the device.
The format of the data type is as follows:

typedef struct
{
 Xuint16 DeviceID;
 Xuint32 BaseAddress;

 /* Other device dependent data attributes */

} X<component name>_Config;

The implementation file x<component name>_g.c defines an array of structures of
X<component name>_Config type. Each element of the array represents an instance of the
device, and contains most of the per-instance XPAR constants from xparameters.h.

Example
To help illustrate the relationships between these configuration files, an example is
presented that contains a single interrupt controller whose component name is INTC and

http://www.xilinx.com

June 2003 www.xilinx.com 127
Processor IP User Guide 1-800-255-7778

R

a single UART whose component name is (UART). Only xintc.h and xintc_g.c are
illustrated, but xuart.h and xuart_g.c would be very similar.

xparameters.h

/* Constants for INTC */
XPAR_INTC_NUM_INSTANCES 1
XPAR_INTC_0_DEVICE_ID 21
XPAR_INTC_0_BASEADDR 0xA0000100

/* Interrupt vector assignments for this instance */
XPAR_INTC_0_UART_0_VEC_ID 0

/* Constants for UART */
XPAR_UART_NUM_INSTANCES 1
XPAR_UART_0_DEVICE_ID 2
XPAR_UART_0_BASEADDR 0xB0001000

xintc.h

typedef struct
{
 Xuint16 DeviceID;
 Xuint32 BaseAddress;

} XIntc_Config;

xintc_g.c

static XintcConfig[XPAR_INTC_NUM_INSTANCES] =
{
{

XPAR_INTC_0_DEVICE_ID,
XPAR_INTC_0_BASEADDR,

}
}

Common Driver Infrastructure

Source Code Documentation
The comments in the device driver source code contain doxygen tags for javadoc-style
documentation. Doxygen is a javadoc-like tool that works on C language source code. These
tags typically start with "@" and provide a means to automatically generate HTML-based
documentation for the device drivers. The HTML documentation contains a detailed
description of the API for each device driver.

Driver Versions
Some device drivers may have multiple versions. Device drivers are usually versioned
when the API changes, either due to a significant hardware change or simply restructuring
of the device driver code. The version of a device driver is only indicated within the
comment block of a device driver file. A modification history exists at the top of each file
and contains the version of the driver. An example of a device driver version is "1.00b",
where 1 is the major revision, 00 is the minor revision, and b is a subminor revision. The
hardware device and its device driver must match major and minor revisions in order to be
compatible.

Currently, the user is not allowed to link two versions of the same device driver into their
application. The versions of a device driver use the same function and file names, thereby
preventing them from being linked into the same link image. As multiple versions of

http://www.xilinx.com

128 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

drivers are supported, the version name will be included in the driver file names, as in
x<component>_v1_00_a.c.

Primitive Data Types
The primitive data types provided by C are minimized by the device drivers because they
are not guaranteed to be the same size across processor architectures. Data types which are
size specific are utilized to provide portability and are contained in the header file
xbasic_types.h.

Device I/O
The method by which I/O devices are accessed varies between processor architectures. In
order for the device drivers to be portable, this difference is isolated such that the driver for
a device will work for many microprocessor architectures with minimal changes. A device
I/O component, XIo, in xio.c and xio.h source files, contains functions and/or macros
which provide access to the device I/O and are utilized for portability.

Error Handling
Errors that occur within device drivers are propagated to the application. Errors can be
divided into two classes, synchronous and asynchronous. Synchronous errors are those
that are returned from function calls (either as return status or as a parameter), so
propagation of the error occurs when the function returns. Asynchronous errors are those
that occur during an asynchronous event, such as an interrupt and are handled through
callback functions.

Return Status
In order to indicate an error condition, functions which include error processing return a
status which indicates success or an error condition. Any other return values for such
functions are returned as parameters. Error codes are standardized in a 32-bit word and
the definitions are contained in the file xstatus.h.

Asserts
Asserts are utilized in the device drivers to allow better debugging capabilities. Asserts are
used to test each input argument into a function. Asserts are also used to ensure that the
component instance has been initialized.

Asserts may be turned off by defining the symbol NDEBUG before the inclusion of the
header file xbasic_types.h.

The assert macro is defined in xbasic_types.h and calls the function XAssert when an assert
condition fails. This function is designed to allow a debugger to set breakpoints to check
for assert conditions when the assert macro is not connected to any form of I/O.

The XAssert function calls a user defined function and then enters an endless loop. A user
may change the default behavior of asserts such that an assert condition which fails does
return to the user by changing the initial value of the variable XWaitInAssert to XFALSE in
xbasic_types.c. A user defined function may be defined by initializing the variable
XAssertCallbackRoutine to the function in xbasic_types.c.

Communication with the Application
Communication from an application to a device driver is implemented utilizing standard
function calls. Asynchronous communication from a device driver to an application is
accomplished with callbacks using C function pointers. It should be noted that callback
functions are called from an interrupt context in many drivers. The application function
called by the asynchronous callback must minimize processing to communicate to the
application thread of control.

http://www.xilinx.com

June 2003 www.xilinx.com 129
Processor IP User Guide 1-800-255-7778

R

Reentrancy and Thread Safety
The device drivers are designed to be reentrant, but may not be thread-safe due to shared
resources.

Interrupt Management
The device drivers use device-specific interrupt management rather than processor-
specific interrupt management.

Multi-threading & Dynamic Memory Management
The device drivers are designed without the use of mult-threading and dynamic memory
management. This is expected to be accomplished by the application or by an RTOS
adapter.

Cache & MMU Management
The device drivers are designed without the use of cache and MMU management. This is
expected to be accomplished by the application or by an RTOS adapter.

Revision History
The following table shows the revision history for this document.

Date Version Revision

06/28/02 1.0 Xilinx initial release.

7/02/02 1.1 Made IP Spec # conditional text and removed ML reference.

http://www.xilinx.com

130 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

http://www.xilinx.com

June 2003 www.xilinx.com 131
Processor IP User Guide 1-800-255-7778

R

Chapter 8

Tornado 2.0 BSP User Guide

General Overview
The purpose of this document is to provide an introduction to the Tornado 2.0 BSP as
implemented in BSPs generated by the EDK and on handcoded BSPs implemented on
selected Virtex-II Pro reference boards. The first part of this document goes over general
design priciples and APIs utilized. The second part goes over specific BSPs details for the
ML300 and Insight MDFG456 reference boards.

The addition of the Chip Support Package (CSP) into a Tornado 2.0 BSP is a unique
challenge because of the nature of how easily hardware is added and removed from the
FPGA using System Build Generator and how difficult it is to accommodate this feature
into a Tornado 2.0 BSP. The CSP is a part of the BSP in that it provides the software drivers
for hardware IP utilized by the BSP and application code. The CSP is designed to be
primarily operating system independent so in many respects it is segregated and
independently configured from the BSP.

The reader is expected to have a working knowledge in these areas:

- Tornado 2.0 BSPs
- "C" programming language

Requirements

Tornado 2.0.2
The user should have Wind River Tornado 2.0.2 installed on their PC with the PPC405
libraries.

Patches required that can be found at Wind River’s Windsurf technical support web site:

• SPR67953 Cumulative patch
• DosFs 2.0 DOS file system support

SingleStep (XE)
The XE stands for Xilinx Edition. This version of the SingleStep debugger is Virtex-II Pro
aware. This debugger works in concert with the VisionProbe debugger pod.

Installation
Copy the entire BSP source tree to $WIND_BASE\config\<bspname> and perform the
following operations from the DOS command-line:

C:\> make clean
C:\> make release

When this process finishes, a new project is placed at:

$WIND_BASE\proj\<bspname>_vx.

http://www.xilinx.com

132 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

As an alternative to this procedure, the Tornado project facility can be used to create a
bootable application using the given BSP as the basis BSP. When creating a project in this
way, the BSP can be located anywhere. See Project Facility documentation from Wind
River.

Files and Directories
While the root directory of the BSP can be placed anywhere, it is typically located at
$WIND_BASE/target/config/<bspname>. The Tornado Project component of the BSP
is located at $WIND_BASE/target/proj/<bspname>_vx.

The project component of the BSP is required if it will be configured/compiled with the
Tornado Project Facility IDE. Normally, the Project Facility is utilized during application
development and trivial BSP tweaks. The non-project component (also referred to as the
command-line Tornado 1.0.1 BSP) is utilized during BSP development. Note that the
methods of configuring and building the BSP differ greatly between the Project and
command-line methods. See Tornado documentation for more information.

The CSP adds a directory structure not usually seen with Tornado 2.0 BSPs. It has been
added to segregate BSP files from the CSP.

The following directories make up BSPs:

config/<bspname>

The traditional directory for Tornado 2.0 BSPs. Contains BSP library source code and the
command-line makefile.

config/<bspname>/net
Contains Tornado Project "configlette" network source code that overrides configlettes
located at $WIND_BASE/target/config/comps/src/net.

config/<bspname>/ace
Contains the bitstream and compact flash image which in itself contains the bootrom and
other sample VxWorks ace and elf images.

config/<bspname>/ip_csp
The base directory for the CSP.

config/<bspname>/ip_csp/xsrc
Contains source code for the CSP.

proj/<bspname>_vx

The base directory for a Tornado project. All files here are maintained by the Project
Facility.

proj/<bspname>_vx/<build spec>
A build specification maintained by the Project Facility. There is typically a "default" build
spec here unless removed by the developer. Other build specifications can be added by the
developer.

CSP Driver Organization
This section briefly discusses how the CSP is compiled and linked and eventually used by
Tornado makefiles to include into the VxWorks image.

CSP drivers are implemented in "C" and can be distributed among several source files
unlike traditional VxWorks drivers which consist of single "C" header and implementation
files.

There are up to three components for CSP drivers:

• Driver source inclusion.

http://www.xilinx.com

June 2003 www.xilinx.com 133
Processor IP User Guide 1-800-255-7778

R

• OS independent implementation
• OS dependent implementation (optional).
"Driver source inclusion" refers to how CSP drivers are compiled. For every CSP driver,
there is a file named ip_<dev>_<version>.c. This file #include’s each CSP driver
source file(s) (*.c) for the given device.

This process is analogous to how VxWorks’ sysLib.c #include’s source for Wind River
supplied drivers. The reason why CSP files are not simply #include’d in sysLib.c like the
rest of the drivers is due to namespace conflicts and maintainability issues. If all CSP files
were part of a single compilation unit, static functions and data are no longer private. This
places restrictions on the CSP device drivers and would negate their operating system
independence.

The OS independent part of the driver is designed for use with any operating system or
any processor. It provides an API that utilizes the functionality of the underlying
hardware. The OS dependent part of the driver adapts the driver for use with VxWorks.
Such examples are SIO drivers for serial ports, or END drivers for ethernet adapters. Not
all drivers require the OS dependent drivers, nor is it required to include the OS dependent
portion of the driver in the CSP build.

Configuration
These BSPs are configured just like any other Tornado 2.0 BSP. There is not much
configurability to CSP drivers since the IP hardware has been pre-configured in most cases
by System Build Generator. The only configuration available generally is whether the
driver is included in the CSP at all. How to go about including/excluding drivers depends
on whether the Project facility or the command-line method is being used to perform the
configuration activities.

Note that simply by including a CSP device driver does not mean that driver will be
automatically utilized. Most CSP drivers with VxWorks adapters have initialization code.
In some cases the user may be required to add the proper driver initialization function calls
to the BSP.

Command-Line
A set of constants (one for each driver) are defined in config/ML300/ip_config.h and
follow the format:

#define INCLUDE_<XDRIVER>

This file is included near the top of config/ML300/config.h. By default all drivers are
included in the build. To exclude a driver, add the following line in config.h after the
#include "ip_config.h" statement.

#undef INCLUDE_<XDRIVER>

This will prevent the driver from being compiled and linked into the build. To re-instate
the driver, remove the #undef line from config.h. Some care is required for certain
drivers. For example, Ethernet may require that a DMA driver be present. Undefining the
DMA driver will cause the build to fail.

Project Facility
The Project Facility is part of the Tornado IDE. It is a GUI driven environment. To
add/delete CSP drivers, go to the VxWorks pane in the workspace window (see figure
below). Then add/delete driver components under IP_CSP just as you would with any
other VxWorks component.

http://www.xilinx.com

134 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

Figure 8-1: Project Facility GUI Configuration

Note that whatever configuration has been specified in ip_config.h and config.h will
be overridden by the project facility.

These BSPs follow the standard Tornado conventions when it comes to creating VxWorks
images. Refer to Tornado documentation on how to make a VxWorks image. The next
section discusses extensions made to the build process.

Building VxWorks

Command-Line BSP Build Extensions
The CSP is compiled/linked with the same toolchain VxWorks is built with. Minor
additions to the Makefile were required to help Tornado find the location of CSP source
code files.

Project BSP Build Extensions
There are no extensions to the Project build.

http://www.xilinx.com

June 2003 www.xilinx.com 135
Processor IP User Guide 1-800-255-7778

R

Bootup Sequence
There are many variations of VxWorks images with some based in RAM, some in ROM.
Depending on board design, not all these images are supported. The following list
discusses various image types:

• ROM compressed images - These images begin execution in ROM and decompress
the BSP image into RAM, then transfer control to the decompressed image in RAM.
This image type is not compatible with SystemACE because SystemACE doesn’t
know the image is compressed and will dutifully place it in RAM at an address that
will be overwritten by the decompression algorithm when it begins. It may be
possible to get this type of image to work if modifications are made to the standard
Tornado makefiles to handle this scenario.

• RAM based images - These images are loaded into RAM by a bootloader, SystemACE,
or an emulator. These images are fully supported.

• ROM based images - These images begin execution in ROM, copy themselves to RAM
then transfer execution to RAM. In designs with SystemACE as the bootloader, the
image is automatically copied to RAM. The handcoded BSP examples short-circuit the
VxWorks copy operation so that the copy does not occur again after control is
transferred to RAM by SystemACE (see romInit.s).

• ROM resident images - These images begin execution in ROM, copy the data section
to RAM, and execution remains in ROM. In systems with only a SystemACE, this
image is not supported. Theoretically BRAM could be used as a ROM, however, the
current Virtex-II Pro parts being used in evaluation boards do not have the capacity to
store a VxWorks image which could range in size from 200KB to over 700KB.

"vxWorks" Boot Sequence
This image is meant to be downloaded to the target RAM space. Once downloaded, the
processor is setup to begin execution at function _sysInit (implemented in sysALib.s).
Most of the time, the device performing the download will do this automatically as it can
extract the entry point from the image.

1. _sysInit : Low level initialization. Since this image is copied to RAM, the device that
downloaded the image may have to perform manual system initialization to make
RAM operational. When completed, this function will setup the initial stack and
invoke the first "C" function usrInit().

2. usrInit() : Performs pre-kernel initialization. Invokes sysHwInit() implemented
in sysLib.c to place the HW in a quiescent state. When completed, this function will
call kernelInit() to bring up the VxWorks kernel. This function will in turn invoke
usrRoot() as the first task.

3. usrRoot() : Performs post-kernel initialization. Hooks up the system clock,
initializes the TCP/IP stack, etc. Invokes sysHwInit2() implemented in sysLib.c
to attach and enable HW interrupts. When complete, usrRoot() invokes user
application startup code usrAppInit() if so configured in the BSP.

"bootrom_uncmp" Boot Sequence using SystemACE
This image is ROM based but in reality it is linked to execute out of RAM addresses. While
executing from ROM, this image uses relative addressing to perform tasks before jumping
to RAM. This image behaves differently than a traditional bootrom_uncmp due to the fact
it is already in RAM when control is passed to it (via System ACE).

1. Power on. System ACE loads the bitstream into the FPGA then loads the bootrom
image into RAM and passes control to assembly language function _romInit located
in romInit.s.

http://www.xilinx.com

136 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

2. _romInit : Traditionally this function would perform board level initialization then
call romInit() which would copy the VxWorks image to RAM. Since the image is
already in RAM, this function simply jumps to assembly function _sysInit.

3. Follows steps 1, 2 & 3 of the "vxWorks" bootup sequence.

Difference Between Command-Line & Project BSPs
Functions usrInit(), usrRoot(), and romStart() as explained in the boot sequence
steps above are implemented by Tornado. In command line BSPs, these functions are
defined in source code located at $WIND_BASE/target/config/all. In Project BSPs,
the Project Facility generates this code in the user’s project directory.

Functions _sysInit, _romInit, sysHwInit(), and sysHwInit2() are implemented
by the BSP with various source code files in config/<bspname>. These functions are
utilized on both the command-line and project BSPs.

System ACE
The System ACE controller is a device that provides a way to store multiple FPGA
bitstream loads. These loads are stored in a DOS FAT formatted compact flash (CF) device
and downloaded by the System ACE controller into the FPGA when the system is powered
up. Additionally, these bitstreams can contain a software load that is downloaded to RAM
after the FPGA’s IP cores have been programmed. Since a DOS filesystem is used, regular
files can be accessed from the CF as well. Such files include VxWorks ELF images,
application code & data, and script files.

BSPs equipped with the EDK System ACE core and drivers utilize the controller in two
ways. First as a boot device and second as an external storage device. Together these
features provide a very flexible storage mechanism.

DOS File System
When being used as a file storage device, the BSP will mount the CF as a DOS FAT disk
partition using Wind River’s DosFs2.0 add-on. To get the required VxWorks libraries into
the image, the following packages must be #define’d in config.h or by the Project
Facility:

• INCLUDE_DOSFS_MAIN
• INCLUDE_DOSFS_FAT
• INCLUDE_DISK_CACHE
• INCLUDE_DISK_PART
• INCLUDE_DOSFS_DIR_FIXED
• INCLUDE_DOSFS_DIR_VFAT
• INCLUDE_CBIO

Mounting the DOS FAT File System
Programatically, an application can mount the file system using the following API calls:

FILE *fp;

sysSystemAceInitFS();
if (sysSystemAceMount("/cf0", 1) != OK)
{
 /* handle error */
}

fp = fopen("/cf0/myfile.dat","r");
 .
 .

http://www.xilinx.com

June 2003 www.xilinx.com 137
Processor IP User Guide 1-800-255-7778

R

Automounting the DOS FAT File System
To automatically mount the System ACE as a file system at boot time,
INCLUDE_XSYSACE_AUTOMOUNT must be defined. In the Project facility, this is defined by
enabling the automount feature in the System ACE folder. When defined, two more
constants are utilized to mount the compact flash device: SYSACE_AUTOMOUNT_POINT
and SYSACE_AUTOMOUNT_PARTITION. In the Project facility, these constants can be set by
editing the System ACE properties folder. This relieves the application from having to
initialize and mount the DOS File system. Note that this works only for Project builds.
Command line builds require that the application invoke sysSystemAceInitFS() and
sysSystemAceMount(). These functions are described in the Board API section below.

Bootroms
The bootrom is a scaled down VxWorks image that operates in much the same way a PC
BIOS does. Its primary job is to find and boot a full VxWorks image. The full VxWorks
image may reside on disk, in flash memory, or on some host via the Ethernet. The bootrom
must be compiled in such a way that it has the ability to retrieve the full image. If the image
is retrieved on the Ethernet, then the bootrom must have the TCP/IP stack compiled in, if
the image is on disk, then the bootrom must have disk access support compiled in, etc. The
bootroms do little else than retrieve and start the full image and maintain a bootline. The
bootline is a text string that set certain user characteristics such as the target’s IP address if
using Ethernet and the file path to the VxWorks image to boot.

Bootroms are not a requirement. They are typically used in a development environment.

Creating Bootroms
At a command shell in the <bspname> directory, issue the following command:

make bootrom_uncmp

to create an uncompressed bootrom image (required for SystemACE), or

make bootrom

to create a compressed image suitable for placing in a flash memory array.

Bootrom Display
Upon cycling power, if the bootroms are working correctly, output similar to the following
should be seen on the console serial port:

 VxWorks System Boot

Copyright 1984-1998 Wind River Systems, Inc.

CPU: ML300 VirtexII Pro PPC405 Rev D
Version: 5.4.2
BSP version: 1.2/0
Creation date: July 26 2002, 12:51:32

Press any key to stop auto-boot...
 3

[VxWorks Boot]:

Typing the "help" at this prompt lists the available commands.

http://www.xilinx.com

138 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

Bootline
The bootline is a text string that defines user servicable characteristics such as the IP
address of the target board and how to find a vxWorks image to boot. The bootline is
maintained at runtime by the bootrom and is typically kept in some non-volatile
(NVRAM) storage area of the system such as an EEPROM or flash memory. If there is no
NVRAM, or an error occurs reading it, then the bootline is hard-coded with
DEFAULT_BOOT_LINE defined in the BSP’s config.h source code file. In brand new
systems where NVRAM has not been initialized, then the bootline may be gibberish.

The bootline can be changed if the auto-boot countdown sequence is interrupted by
entering a character on the console serial port. The "c" command can then be used to
interactively edit the bootline. Enter "p" to view the bootline. On a non-bootrom image,
you can still change the bootline by entering the bootChange command at a host or target
shell prompt.

The following list goes over the meanings of the bootline fields:

- boot device : Device to boot from. This could be Ethernet, or a local disk. Note
that when changing the bootline, the unit number may be shown appended to
this field ("xemac0" or "sysace=10) when prompting for the new boot device. This
number can be ignored.

- processor number : Always 0 with single processor systems.
- host name : Name as needed.
- file name : The VxWorks image to boot.
- inet on ethernet (e) : The IP internet address of the target. If there is no

network interface, then this field can be left blank.
- host inet (h) : The IP internet address of the host. If there is no network

interface, then this field can be left blank.
- user (u) : Username for host file system access. Pick whatever name suites you.

Your ftp server must be setup to allow this user access to the host file system.
- ftp password (pw) : Password for host file system access. Pick whatever

name suites you. Your ftp server must be setup to allow this user access to the
host file system.

- flags (f) : For a list of options, enter the "help" command at the [VxWorks
Boot]: prompt.

- target name (tn) : Name as needed. Set per network requirements.
- other (o) : This field is useful when you have a non-Ethernet device as the

boot device. When this is the case, VxWorks will not start the network when it
boots. Specifiying an Ethernet device here will enable that device at boot time
with the network parameters specified in the other bootline fields.

- inet on backplane (b) : Typically left blank if the target system is not on a
VME or PCI backplane.

- gateway inet (g) : Enter an IP address here if you have to go through a
gateway to reach the host computer. Otherwise leave blank.

- startup script (s) : Path to a file on the host computer containing shell
commands to execute once bootup is complete. Leave blank if not using a script.
Examples:
 SystemACE resident script: /cf0/vxworks/scripts/myscript.txt
 Host resident script: c:/temp/myscript.txt

Booting from SystemACE
If the target system has a SystemACE and the Xilinx EDK drivers are being used, then
SystemACE can be setup as the boot device.

The "boot device" field of the bootline is specified using the following syntax:

http://www.xilinx.com

June 2003 www.xilinx.com 139
Processor IP User Guide 1-800-255-7778

R

 sysace=<partition number>

where <partition number> is the partition to boot from. Normally, this value is set to
1, but some CF devices do not have a partition table and are formatted as if they were a
large floppy disk. In this case, specify 0 as the partition number. Failure to get the partition
number correct will lead to errors being reported by VxWork’s dosFS libraries when the
drive is mounted.

The "file name" field of the bootline is set depending on how the System ACE is to boot the
system. There are two boot methods:

1. Boot from a regular file. This is similar to network booting in that the vxWorks image
resides in the SystemACE compact flash storage device instead of the host file system.
The compact flash device is a DOS FAT file system partition. Simply build vxWorks
using the Tornado tools then copy the resulting image file to the compact flash device
using a USB card reader or similar tool. Then specify that file in the "file name" field of
the boot rom.

The "file name" must have the following syntax:

 /cf0/<path/to/vxWorks/image>

where cf0 is the mount point. <path/to/vxWorks/image> should provide the
complete path to the VxWorks image to boot. When being specified in this way, the
bootrom will mount the drive as a FAT formatted disk, load the file into memory and
begin execution.
Boot from an ace file. The ace file can contain HW only, SW only, or HW + SW. When
booting from an ace file with HW, the FPGA is reprogrammed. If the ace file contains
SW, then it is loaded into the memory, the processor’s PC is set to the entry point and
released to begin fetching instructions. This boot method is flexible in that a totally
different HW profile can be "booted" from a VxWorks bootrom. ace files are created
with the Xilinx ISI tools and is beyond the scope of this manual.

The "file name" must have the following syntax:

 cfgaddr[x]

where [X] is a number between 0 and 7 that corresponds to one of the configuration
directories specified in the XILINX.SYS file resident in the root directory of the
compact flash device. If [X] is omitted, then the default configuration is used. The
default configuration is typically selected by a rotary switch mounted somewhere on
the evaluation board. The bootrom will trigger a JTAG download of the ace file pointed
to by the specified config address. There should be only a single file with an .ace
extension in the selected configuration directory.

In either boot scenario, if you want an Ethernet device started when the downloaded
VxWorks starts, then modify the "other" field of the bootline to contain the name of the
network device.

Booting from an EMAC
If the target system has an EMAC core and Xilinx EDK drivers are being used, then use the
following information to boot from this device.

In the "boot device" field, use "xemac". If there is a single EMAC, then set the "unit number"
to 0.

Bootline Examples
The following example boots from the ethernet using the Xilinx "xemac" as the boot device.
The image booted is on the host file system on drive C.

http://www.xilinx.com

140 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

boot device : xemac
unit number : 0
processor number : 0
host name : host
file name : c:/tornado/target/config/ML300/vxWorks
inet on ethernet (e) : 192.168.0.2
host inet (h) : 192.168.0.1
user (u) : xemhost
ftp password (pw) : whatever
flags (f) : 0x0
target name (tn) : vxtarget
other (o) :

The following example boots from a file resident on the first partition of the SystemACE’s
compact flash device. If the file booted from /cf0/vxworks/images/vxWorks utilizes
the network, then the "xemac" device is initialized.

boot device : sysace=1
unit number : 0
processor number : 0
host name : host
file name : /cf0/vxworks/images/vxWorks
inet on ethernet (e) : 192.168.0.2
host inet (h) : 192.168.0.1
user (u) : xemhost
ftp password (pw) : whatever
flags (f) : 0x0
target name (tn) : vxtarget
other (o) : xemac

The following example boots from an ace file resident on the first partition of the
SystemACE’s compact flash device. The location of the ace file is set by XILINX.SYS
located in the root directory of the compact flash device. If the ace file contains a VxWorks
SW image that utilizes the network, then the "xemac" device is initialized for that image.

boot device : sysace=1
unit number : 0
processor number : 0
host name : host
file name : cfgaddr2
inet on ethernet (e) : 192.168.0.2
host inet (h) : 192.168.0.1
user (u) : xemhost
ftp password (pw) : whatever
flags (f) : 0x0
target name (tn) : vxtarget
other (o) : xemac

Caches
The instruction and data caches are managed by VxWorks proprietary libraries. They are
enabled by modifying the following constants in config.h or by using the Tornado
Project facility to change the constants of the same name:

• INCLUDE_CACHE_SUPPORT - If #define’d, the VxWorks cache libraries are linked
into the image. If caching is not desired, then #undef this constant.

• USER_I_CACHE_ENABLE - If #define’d, VxWorks will enable the instruction cache
at boottime. Requires INCLUDE_CACHE_SUPPORT be #define’d to have any effect.

• USER_D_CACHE_ENABLE - If #define’d, VxWorks will enable the data cache at
boottime. Requires INCLUDE_CACHE_SUPPORT be #define’d to have any effect.

http://www.xilinx.com

June 2003 www.xilinx.com 141
Processor IP User Guide 1-800-255-7778

R

MMU
If the MMU is enabled, then the cache control discussed in the previous section may not
have any effect. The MMU is managed by VxWorks proprietary libraries but the initial
setup is defined in the BSP. To enable the MMU, the constant INCLUDE_MMU_BASIC
should be #define’d in config.h or by using the Project Facility. The constant
USER_D_MMU_ENABLE and USER_I_MMU_ENABLE control whether the instruction
and/or data MMU is utilized.

VxWorks initializes the MMU based on data in the sysPhysMemDesc structure defined in
sysCache.c. Amongst other things, this table configures memory areas with the
following attributes:

• Whether instruction execution is allowed.
• Whether data writes are allowed
• Instruction & data cacheability attributes.
• Translation offsets used to form virtual addresses.
The PPC405 is capable of other attributes including zone protection, however, Wind River
documentation is rather deficient in this area and it is unclear whether the basic MMU
package supports them. An add-on is available from Wind River for advanced MMU
operations.

When VxWorks initializes the MMU, it takes the definitions from sysPhysMemDesc and
creates page table entries (PTEs) in RAM. Each PTE describes 4KB of memory area (even
though the processor is capable of representing up to 16MB per PTE) Beware that
specifying large areas of memory uses substantial amounts of RAM to store the PTEs. To
map 4MB of contiguous memory space takes 8KB of RAM to store the PTEs.

To increase performance with the VxWorks basic MMU package for the PPC405 processor,
it may be beneficial to not enable the instruction MMU and rely on the cache control
settings in the ICCR register. This strategy can dramatically reduce the number of page
faults while still keeping instructions in cache. The initial setting of the ICCR is defined in
the <bspname>.h header file.

Without the MMU enabled, the following rules apply to configuring memory access
attributes and caching:

• There is no address translation, all effective addresses are physical.
• Cache control granularity is 128MB.
• The guarded attribute applies only to speculative instruction fetches on the PPC405.

Exception Handling
There are two types of exceptions which are of importance to PPC405 BSPs. The first type
are internal exceptions such as machine check, illegal instruction, etc.. By default, the BSP
configures VxWorks to trap these types of exceptions. When one occurs, the offending task
is suspended and a descriptive message is displayed on the console. If the exception occurs
in interrupt context, VxWorks will warm-reboot itself and leave a message to be displayed
during the reboot. Note that if SystemACE resets the system then this message may not be
available. See Limitations, page 143.

The other type of exception are external asynchronous. The BSP initializes and handles
these exceptions which are the result of an active signal on the external or critical interrupt
pins of the processor.

With the provided example BSPs, there are two INTC IP devices within the FPGA, one
connected to the processor’s external interrupt and the other on the critical interrupt.
Functions in BSP source code file sysInterrupt.c are responsible for initializing these
two devices with the XIntc component driver and hooking them into VxWorks.

http://www.xilinx.com

142 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

External Interrupts
Most IP peripherals that can generate interrupts are attached to the INTC component
responsible for asserting the external interrupt processor exception. BSP initialization code
hooks control of this device into the VxWorks intLib library.

External interrupt vectors are defined in xparameters.h. <bspname.h> may translate
these vectors into SYS_<device>_VEC_ID to limit changes to BSP source code when
device names change. These constants are utilized when invoking the VxWorks intLib
functions. Example:

#include <intLib.h>

void foo(void)
{
 intEnable(SOME_DEVICE_VEC_ID);
}

Critical Interrupts
Since VxWorks does not define a critical interrupt API as it does for external interrupts, the
user must utilize the API defined in sysLibExtra.h. Functions sysIntCritConnect,
sysIntCritEnable, and sysIntCritDisable are designed to work identically to
those for the external interrupt defined by the VxWorks intLib.h library. Example:

#include "sysLibExtra.h"

void foo(void)
{
 sysIntCritEnable(SOME_CRITICAL_DEVICE_VEC_ID);
}

Deviations
This section sums up the differences between garden variety BSPs and the BSPs presented
in this document. The differences between the two fall roughly into key areas: CSP and
System ACE support.

1. The CSP contains drivers for Xilinx IP cores (see CSP Driver Organization, page 132)
To keep the BSP buildable while maintaining compatibility with the Tornado Project
facility, a set of files named ip_<driver>_<version>.c populate the BSP directory
that simply #include the source code from the CSP.

2. The location of the CSP relative to the BSP directory causes problems because the
command line and Project facility differ in how BSP files are found during
compilation. To address this issue, a key Project macro (BSP_DIR) is defined in the
BSP’s Makefile. Of all deviations, this one is the most dangerous because future
versions of Tornado may cause builds to fail. The Makefile contains more information
about this deviation.

3. System ACE, being a boot device and a DOS file system, has required that two
VxWorks source code files found in the Tornado distribution be changed. Wind River
allows BSP developers to change some source code files provided they follow set
guidelines. The two files that have been modified from their original version are
bootConfig.c and net/ usrNetBoot.c. These files exist in the BSP directory structure
and override the Tornado versions.
usrNetBoot.c, used only by Project Facility builds, required a 1 line of code change to
tell VxWorks that the System ACE device is a disk based system like IDE, SCSI, or
floppy drives. This change allows the BSP to properly process the "other" field of the
bootline (see Bootroms, page 137) when System ACE is the boot device. The "other"
field allows the selection of a network device when booting from a disk based system.
bootConfig.c, used only by bootroms builds, required extensive modifications to

http://www.xilinx.com

June 2003 www.xilinx.com 143
Processor IP User Guide 1-800-255-7778

R

support SystemACE as a boot device. These mods are bracketed by
INCLUDE_XSYSACE preprocessor ifdefs. Another mod enables the data cache when
ethernet frames are copied from fifos instead of DMA. This change greatly increases
the bootup times for the system but could cause problems if another device required
for booting utilizes DMA or requires some sort of special cache coherency in the first
128MB of address space.

Limitations
This section goes over what limitations these BSPs impose under certain circumstances
and the reasons why.

No WARM boots with SystemACE

When SystemACE is setup to download VxWorks images into RAM via JTAG, all boots are
cold. This is because the System ACE controller resets the processor whenever it performs
an ace download.

An effect of this could can cause exception messages generated by VxWorks to not be
printed to the console when the system is rebooted due to an exception in an ISR or a
kernel panic. See troubleshooting guide for tips to get at this exception message.

No Compressed Images with SystemACE

If a compressed image such as "bootrom" is converted to an ace file and placed in the
SystemACE’s compact flash for booting, results will be undetermined. This is because
System ACE cannot decompress data as it writes it to RAM.

Command line builds cannot initialize the network when System ACE is the
boot device
This requires that the application provide code to initialize the network. Project builds can
get around this because a modified net/usrNetBoot.c is provided in the BSP directory
(see Deviations, page 142). The equivalent file for command line builds is located at
$WIND_BASE/target/src/config/usrNetwork.c. The architecture of the command
line build prevents us from overriding this file with a copy in the BSP directory.

Fixing usrNetwork.c requires changing the following code in function usrNetInit():

if ((strncmp (params.bootDev, "scsi", 4) == 0) ||
 (strncmp (params.bootDev, "ide", 3) == 0) ||
 (strncmp (params.bootDev, "ata", 3) == 0) ||
 (strncmp (params.bootDev, "fd", 2) == 0) ||
 (strncmp (params.bootDev, "tffs", 4) == 0))

to

if ((strncmp (params.bootDev, "scsi", 4) == 0) ||
 (strncmp (params.bootDev, "ide", 3) == 0) ||
 (strncmp (params.bootDev, "ata", 3) == 0) ||
 (strncmp (params.bootDev, "fd", 2) == 0) ||
 (strncmp (params.bootDev, "sysace", 6) == 0) ||
 (strncmp (params.bootDev, "tffs", 4) == 0))

Edit this code at your own risk.

Reset Vector and SystemACE
On the PPC405 processor, the reset vector is at physical address 0xFFFFFFFC. There is a
short time window where the processor will attempt to fetch and execute the instruction at
this address while SystemACE processes the ace file. The processor needs to be given
something to do during this time even if it is a spin loop:

FFFFFFFC b .
If BRAM occupies this address range, then the designer who creates the bitstream should
place instructions here with the elf to BRAM utility found in the Xilinx ISI tools.

http://www.xilinx.com

144 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

ML300 Reference BSP
This handcoded BSP was created to complement the EDK example system for the ML300
reference board. It has been customized to work with hardware devices specific to the
board. The BSP has enough support to allow application development using the Tornado
tool chain.

This BSP directly supports the following hardware:

• 10/100 BaseT Ethernet
• RS-232 Serial ports (2)
• System ACE
• GPIO (LEDs & pushbutton switches)
• IIC (including EEPROM, temperature & power monitors)
• 128MB DDR RAM
• 32KB BRAM
• PPC405 built-in timers, instruction cache, data cache

The BSP utilizes drivers for the following EDK IP cores:

• EMAC Ethernet: END driver type
• 16550 UART on connector P107: SIO driver type on /tyco/0 (VxWorks console)
• 16550 UART on connector P106: SIO driver type on /tyco/1
• PLB to OPB bridge, PLB arbiter
• System ACE as a JTAG device
• System ACE as a block device for disk access (FAT32)
• INTC Interrupt controllers. 1 critical controller, 1 external controller

This BSP does not support the following hardware due to the lack of support in the IP
bitstream or from the lack of drivers:

• LCD Display
• PCI
• Parallel port
• PS2 ports
• USB ports
• Audio ports
• Fiber ports
• SPI

Installation
See Installation, page 131 for instruction on how to install this BSP.

Compact Flash & SystemACE
A compressed zipfile is provided in the ace subdirectory. This is a complete image
containing a bootrom and sample VxWorks images in ace and elf file formats. See the
README in the ace directory for more information.

To install this image, do the following:

1. Make a backup of your microdrive then erase all files from it.

2. Uncompress the ace/compactFlash.zip file to the microdrive.

3. Insert the microdrive into the compact flash slot on the ML300.

http://www.xilinx.com

June 2003 www.xilinx.com 145
Processor IP User Guide 1-800-255-7778

R

4. Connect a serial port cable to the P106 connector on the evaluation board. Default
comm settings are 115200, N, 8, 1.

5. Set the rotary switch on the ML300 to setting 6 and apply power. At this point, the
VxWorks bootrom should be running and writing to the console serial port.

6. Set the bootrom’s bootline per your requirements. See Bootroms, page 137 for more
information.

Setting Ethernet MAC Address
To verify your MAC address is correct perform the following steps:

1. Set the rotary switch associated with the VxWorks bootrom and reboot the ML300.

2. Interrupt the countdown sequence to get the [VxWorks Boot]: prompt.

3. Enter the "N" command (case sensitive). The current MAC will be displayed and you
will be prompted to enter a new MAC. The first three bytes of the MAC should be
000A35.

Press any key to stop auto-boot...
 1
[VxWorks Boot]: N
Current Ethernet Address is: 00:0a:35:00:03:20
Modify only the last 3 bytes (board unique portion) of Ethernet Address.
The first 3 bytes are fixed at manufacturer's default address block.
00- 00
0a- 0a
35- 35
00-

If the MAC is valid, then press return three times to accept the default. On new boards, the
address may be all FFs. If this is the case, enter the last three bytes that are assigned to the
board’s serial number. If you are not sure of the numbers, then enter return three times.
This will change the MAC to 00:0a:35:FF:FF:FF. This will provide you with a valid MAC
until the correct number is obtained. Boards with a MAC of all FFs will not be capable of
running the network stack. Multiple boards connected to the same network with the same
MAC will not work either.

Bootstrap Information
The default bitstream contains a bootstrap program that consists of a single instruction at
the processor’s reset vector which is in effect an endless loop, or while(1) in "C"
programming constructs. This loop keeps the processor from running amok until
SystemACE completes its download or an emulator connects to the target board. See Reset
Vector and SystemACE, page 143.

Memory Maps
Due to the nature of this evaluation board a full memory map is not given in this
document. The user is instead referenced to "C" source code header file xparameters.h.
This source file provides a memory map for all CSP devices. A partial map is given here.

Table 8-1: System Memory Map

Device Start (hex) End (hex) Size (bytes)

PLB DDR 00000000 07FFFFFF 128 MB

OPB Space 60000000 60010000 64 KB

BRAM FFFF8000 FFFFFFFF 32 KB

http://www.xilinx.com

146 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

RAM Memory Map
RAM device contains the VxWorks runtime image and heap space. ML300 follows
VxWorks conventions for RAM usage for PowerPC processors. Refer to Appendix F of the
VxWorks 5.4 Programmer’s Guide.

NVRAM Memory Map
NVRAM support is provided by a Microchip Technology 24LC32A EEPROM on the IIC
bus. This device provides 4KB of storage space. BSP source code file 24LC32aNvRam.c is
the driver for this device and provides the API interface required by VxWorks. The
primary BSP related objects stored in NVRAM are the bootline and the Ethernet MAC
address.

When there is no IIC bus support, the BSP will replace the EEPROM driver with
$WIND_BASE/src/drv/mem/nullNvRam.c which provides only function stubs so that
VxWorks will link. When this is the case, the default bootline is used (see config.h) and
the Ethernet MAC address defaults to: 00:0a:35:00:00:00.

* sysNvRamGet and sysNvRamSet are the VxWorks required NVRAM interface
functions. The interface they provide uses offsets relative to the bootline offset. Accessing
part offsets 0000..07FF requires an alternate interface.

Table 8-2: RAM Memory Map

Physical Address
Range (hex) Usage

00000000..000000FF (DDR) Unused & undefined

00000100..00002FFF (DDR) Interrupt Vector table

00003000..00010000 (DDR) VxWorks usage. Exception reason message and other
VxWorks constructs are at the bottom of this region. Initial stack is
set at the top of this range and grows downward. Once VxWorks
has switched to multi-tasking mode, this stack is no longer used.

00010000..00BFFFFF (DDR) RAM_LOW_ADRS. VxWorks image, interrupt stack, host
memory pool, and heap space.

00C00000..07DFFFFF (DDR) RAM_HIGH_ADRS. Two possible uses. (1) VxWorks
bootrom image and heap space. (2) VxWorks heap space.

07E00000..07EFFFFF (DDR) USER_RESERVED_MEM. This 1MB is used for network
data buffers and network DMA descriptor spaces.

07F00000..07FFFFFF (DDR) USER_RESERVED_MEM. This 1 MB is not used by BSP.
Available for application use

FFFF8000..FFFFFFFF (BRAM) Address FFFFFFFC contains reset vector.

Table 8-3: NVRAM Memory Map

Part Offset
Range (hex)

sysNvRamGet/Set
Offset Usage

0000..07FF N/A* Reserved for board level objects such as the
Ethernet MAC address

0800..08FF 0000..00FF Reserved for VxWorks bootline

0900..0FEF 0100..07EF Unused

0FF0..0FFF 07F0..07FF Reserved

http://www.xilinx.com

June 2003 www.xilinx.com 147
Processor IP User Guide 1-800-255-7778

R

Caches
The caches are configured by the following constants in ML300.h. These constants map to
the PPC cache control registers of the same name. See PPC405 documentation for further
information on these registers:

• ML300_ICCR_VAL - Initial contents of the ICCR register (instruction cacheability
attribute).

• ML300_DCCR_VAL - Initial contents of the DCCR register (data cacheability attribute).
• ML300_DCWR_VAL - Initial contents of the DCWR register (write back/through

attribute).
• ML300_SGR_VAL - Initial contents of the SGR register (guarded attribute).

External Interrupts
There are two INTC interrupt controller IP cores in the design. One is wired to the external
interrupt signal of the PPC405 and the other to the critical interrupt signal.

PLB/OPB bridges & arbiters are wired to the critical INTC instance. If these interrupt
sources are enabled and the PPC machine check interrupt is enabled then VxWorks may
reboot when an exception occurs. This is because the PLB/OPB bridge/arbiter will assert
their interrupt signal when they cannot complete a transaction to the INTC. This signal
will propogate to the PPC as a critical interrupt exception (vector 0x100). At the same time
the PPC will detect a bad bus cycle and generate a machine check exception (vector 0x200).
VxWorks will begin handling the first exception, but during this time the second exception
arrives. VxWorks architecturally does not allow this and will reboot the system when it
occurs.

It is not recommended to sysIntCritEnable() one of these interrupt sources. Instead,
use the VxWorks excHookAdd() function to use your own function perform custom
exception processing (after VxWorks finishes its own processing). Here, the hook function
can examine the bridges/arbiters and perform whatever task is required for the event.

IIC
There are several devices connected to the IIC bus with hardwired addresses. These
addresses are defined for the BSP in the ML300.h header file. The BSP provides a polled
interface to the IIC bus to access these devices. The interface includes a mutual exclusion
semaphore that can be used to prevent more than one task from accessing the bus at a time.
Before the operating system is up, the semaphore is not available and it is up to boot code
to sequence access to the bus. This should not be an issue since the system is single-
threaded at boot time and the only device accessed should be the NVRAM.

BSP file sysIic.c provides initialization, read/write primitives, and resource allocation
functions.

Table 8-4: Cache Map

Physical
Address

Range (hex)
I

Cache
D

Cache
Write

Back/Through Guarded

00000000..07F
FFFFF

Y Y Back N

F8000000..FFF
FFFFF

Y Y N/A N

everything
else

N N N/A N

http://www.xilinx.com

148 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

Board API
There are a handful of "board level" BSP functions not implemented by the CSP device
drivers. Prototypes for these functions are located in config/ML300/sysLibExtra.h.

This section will not go over CSP device driver functions. Instead the user is directed to the
appropriate ip_csp/xsrc/<device>.c file for documentation and usage.

Standard I/O
The BSP comes with stdin, stdout, and stderr directed through the UART on the P106
connector . The default UART baud rate is set to 115200, no parity, 8 data bits, and 1 stop
bit. The secondary UART on P107 is enabled and ready for application usage. It defaults to
19200 baud, no parity, 8 data bits, and 1 stop bit.

GPIO
Two instances of GPIO can be included in the BSP. The first instance controls the
momentary push button switches and their surrounding LEDs. The second controls the 32
GPIO lines on the J10 connector. Both instances require that INCLUDE_XGPIO constant be
defined. Each instance can be enabled or disabled with constants
INCLUDE_GPIO_LED_SWITCHES and INCLUDE_GPIO_TEST_PORT.

void sysLedOn(UINT32 mask)
Turns on LEDs in the mask. Bits set to one cause the associated LED to be illuminated. The
mask is built using constants GPIO_LED_DSxx defined in ML300.h where xx is the LED
number and DSxx is the LED label on the PCB. This function requires that both
INCLUDE_XGPIO and INCLUDE_GPIO_LED_SWITCHES be defined.

void sysLedOff(UINT32 mask)
Turns off LEDs in the mask. Bits set to one cause the associated LED to be turned off. The
mask is built using constants GPIO_LED_DSxx defined in ML300.h where xx is the LED
number and DSxx is the LED label on the PCB. This function requires that both
INCLUDE_XGPIO and INCLUDE_GPIO_LED_SWITCHES be defined.

UINT32 sysSwitchReadState(void)
Reads the state of all the push button switches. A mask is returned describing which
switches are closed (i.e. being pushed). The mask is decoded using constants
GPIO_SWITCH_SWxx defined in ML300.h where xx is the switch number and SWxx is the
switch label on the PCB. This function requires that both INCLUDE_XGPIO and
INCLUDE_GPIO_LED_SWITCHES be defined. Usage example:

UINT32 mask = sysSwitchReadState();

if (mask & GPIO_SWITCH_SW06)
{
 // handle switch 6 press
}

void sysGpioBankSetDataDirection(UINT32 mask)
Sets the output enable for the J10 32-bit GPIO header located adjacent to the LCD display.
Bits in the mask set to "1" are inputs, "0" are outputs.

void sysGpioBankWriteDiscretes(UINT32 data)
Writes to the 32-bit GPIO J10 header.

UINT32 sysGpioBankReadDiscretes(void)

Reads the state of the pins of the 32-bit GPIO J10 header.

http://www.xilinx.com

June 2003 www.xilinx.com 149
Processor IP User Guide 1-800-255-7778

R

void sysLedBusErrClear(UINT32 ledMask)
Turns the PLB & OPB bus error LEDs from red (bus error occurred) to green. This function
does not clear the error condition. Parameter ledMask is formed from or’ing together
GPIO_LED_BUSERR constants defined in ML300.h.

System ACE
These routines require that the INCLUDE_XSYSACE constant be defined.

STATUS sysSystemAceSetRebootAddr(unsigned configAddr)
Sets the reboot JTAG configuration address. This address is mapped to cfgaddr0..7 as
defined in XILINX.SYS in the root directory of the CF device. If this function is never
invoked, then the default address is used. The default address is the address selected by
the rotary switch. The given address will be rebooted if sysToMonitor() or reset() is
called.

The configAddr parameter range is 0..7 (i.e. cfgaddr0..7) or -1 to select the default
address.

Returns ERROR if configAddr is out of range, OK otherwise.

void sysSystemAceInitFS(void)

Initializes the required Wind River DosFs 2.0 libraries. Application code is not required to
call this function on a BSP built with the Project facility.

STATUS sysSystemAceMount(char* mountPoint, int partition)
Mount the compact flash as DOS file system volume. The mountpoint parameter is an
arbitrary string labeling the device. Once mounted, refer to this mountpoint in all file
accesses. The partition parameter specifies the partition to mount. If "0" is specified
then the boot device is assumed to not contain a partition table (i.e. it is treated like a floppy
disk).

Note: Before calling this routine, be sure to initialize the DOS file system with a call to
sysSystemAceInitFS().

Note: Application code is not required to call this function on a BSP built with the Project
facility with INCLUDE_XSYSACE_AUTOMOUNT defined.

Power & Temperature Monitor Functions
These functions require that INCLUDE_XIIC constant be defined.

void sysPowerMonCpuGet(int *v1_8, int *v2_5, int *v3_3, int *v5, int *v12)
This routine reads the two power monitor devices on the IIC bus to determine the current
voltage levels on the CPU board. All voltages are returned in units of milli-volts. If the
voltage cannot be read for any reason, then that voltage level is returned as
SYS_MEASUREMENT-_ERROR. Parameters are interpreted as follows: v1_8 = 1.8volt
source, etc..

void sysPowerMonIoGet(int *v1_8, int *v2_5, int *v3_3, int *v5, int *v12)

This routine reads the two power monitor devices on the IIC bus to determine the current
voltage levels on the IO board. All voltages are returned in units of milli-volts. If the
voltage cannot be read for any reason, then that voltage level is returned as
SYS_MEASUREMENT-_ERROR. Parameters are interpreted as follows: v1_8 = 1.8volt
source, etc..

void sysPowerMonShow(void)
Print the voltages from all power monitor sources to the console. If errors are encountered
while reading the voltage monitors, then "Err" is displayed next to the voltage. This
function requires INCLUDE_POWERMON_SHOW be defined in config.h or in the project
facility under development tool components -> show routines.

http://www.xilinx.com

150 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

void sysTemperatureMonGet(int *cpu, int *ambient)
This routine reads the two temperature sensing devices on the IIC bus to determine the
current temperature. If the temperature cannot be read for whatever reason, then that
temperature is returned as SYS_MEASUREMENT_ERROR. Temperature is returned in units
of deg C.

void sysPowerMonShow(void)

Print the temperature (in deg C) for the CPU and the ambient temperature. If errors are
encountered while reading the temperature monitors, then "Err" is displayed next to the
temperature. INCLUDE_TEMPERATUREMON_SHOW be defined in config.h or in the
project facility under development tool components -> show routines.

Miscellaneous Functions

void sysMsDelay(UINT32 delay)

Delay the specified number of milliseconds. The delay is implemented as a busy loop that
occupies the CPU. The delay can be pre-empted by a higher priority task or interrupts if
tasking/interrupts are enabled causing loss of delay precision.

void sysUsDelay(UINT32 delay)
Delay the specified number of microseconds. The delay is implemented as a busy loop that
occupies the CPU. The delay can be pre-empted by a higher priority task or interrupts if
tasking/interrupts are enabled causing loss of delay precision.

This function not accurate for delay times below 20us due to system overhead. The
overhead is more or less constant and can be negated by the use of SYS_US_DELAY_BIAS
defined in config.h. Use this constant to calibrate to your system’s needs. As delivered
with a 300 MHz CPU clock and a bias of -2, this function is accurate within +/-15% for a
20us delay. As the delay time increases, the accuracy increases.

void sysEepromWriteEnable(void)
Enables writes to the IIC EEPROM.

void sysEepromWriteDisable(void)
Disable writes to the IIC EEPROM.

Board Specific Options
This section discusses ML300 specific configuration options that can be set either in
config.h or in the Project GUI. Unless otherwise stated, these options can be set by
#define’ing or #undef’ing them in config.h or by defining them in the Project GUI in
the project workspace’s macros settings in the build tab.

http://www.xilinx.com

June 2003 www.xilinx.com 151
Processor IP User Guide 1-800-255-7778

R

.

Release History

Version 1.2/0 - September 26, 2002
First pre-release for Tornado 2.0. This is a beta release that does not include support for all
HW. Note that testing has been done on the ML3 evaluation board as opposed to the
ML300. In other words, this version of the BSP has never been run on the ML300 hardware.
The SEG IP bitstream is used for this load.

HW Supported

- 16550 UART on outside edge connector (VxWorks console)

Table 8-5: Custom BSP Options

Option Description

INCLUDE_XSYSACE_INSTALL_-RESET_VEC Controls whether reset code is placed the processor’s
reset vector address. This reset code will trigger
SystemACE to load the default configuration
bitstream.

INCLUDE_XSYSACE_AUTOMOUNT Controls whether the System ACE filesystem is
mounted at boot time using the next two SYSACE_
constants defined in this table. This constant affects
only Project builds.

SYSACE_AUTOMOUNT_POINT Default mount point used when INCLUDE_-
XSYSACE_AUTOMOUNT is defined in Project
builds.

SYSACE_AUTOMOUNT_PARTITION Default partition used when INCLUDE_XSYSACE_-
AUTOMOUNT is defined in Project builds.

INCLUDE_GPIO_LED_SWITCHES Controls whether GPIO support is present for the
switches on top of the board and the LED in close
proximity to those switches. If support is not
included, then functions sysLedOn, sysLedOff, and
sysSwitchReadState have no effect.

INCLUDE_GPIO_TEST_PORT Controls whether GPIO support is present for the J10
I/O connector port. If support is not included, then
sysGpioBank functions have no effect.

SYS_US_DELAY_BIAS Adds the specified number of microseconds to the
delay parameter in sysUsDelay(). This option can be
used to cancel out overhead.

INCLUDE_EMAC_PHY_RESET_-AT_BOOT Controls whether the Ethernet PHY is reset at boot
time. In the Project GUI, this is a parameter under the
emac component and can be found under hardware-
>peripherals->IP CSP-> Ethernet Core. Set to TRUE to
enable, FALSE to disable.

INCLUDE_POWERMON_SHOW Controls whether function sysPowerMonShow is
compiled into the BSP.

INCLUDE_TEMPERATUREMON_-SHOW Controls whether function sysTemperature-
MonShow is compiled into the BSP.

SYS_GPIO_SWITCH_DEBOUNCE_TICKS Sampling interval used by function
sysSwitchReadState() when attempting to debounce
switches. Units are in clock ticks.

http://www.xilinx.com

152 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

- EMAC Ethernet
- 16MB DDR RAM
- 32KB BRAM
- System ACE
- PPC Instruction cache

HW Not supported

- PPC Data cache
- PPC MMU
- PLB/OPB Bridge register access (no access to BEAR, BESR registers).
- LCD display
- PCI
- GPIO
- Parallel Port
- PS2 Ports

Usage Notes

1. Bootroms: The bootroms are integrated into the FPGA bitstream and downloaded by
System ACE at powerup and reset. There are two different types of bootroms stored in
the ace subdirectory. Each one uses serial port #1 as the console at 38400 baud, N,8,1.

top_vxboot.ace: This bootrom has a hardcoded bootline of
"sysace=1(0,0):/cf0/ vxworks/vxWorks.st". It will mount the compact flash
device using the MPU interface of the System ACE as an external DOS volume. The
given VxWorks image will be loaded and started. If a /vxworks directory is not in
your compact flash device then create one and place your vxWorks.st image there.
This bootrom has no network support.

top_vxbootnet.ace: This bootrom has a hardcoded bootline of

a. "xemac(0,0)host:c:/tornado/ target/config/ML300/vxWorks
h=192.168.0.1 e=192.168.0.2 u=xemhost pw=slurm". The network is
started and the vxWorks image is downloaded via ftp.

2. When using SystemACE as the boot device for bootroms, make sure macro
INCLUDE_NET_INIT is undefined and any macro that causes it to be defined such as
WDB_COMM_TYPE=WDB_COMM_END.

3. Reset vector issue. The PPC405 reset vector is at physical address FFFFFFFC. With
SystemACE at powerup, the processor will be prevented from executing an instruction
at this address in some cases. With a VxWorks bootrom in the bitstream, SystemACE
will load the FPGA IP cores, then the bootrom, place the PC at the bootrom entry point
romInit and release it to begin fetching instructions. So what happens when you
press the reset button? The answer is the processor will vector to FFFFFFFC and
something had better be there. The BSP can be configured to initialize this reset vector
with code to cause a System ACE jtag reboot. Defining
INCLUDE_XSYSACE_INSTALL_RESET_VEC will install this code but a better solution
would be to place something at the reset vector with Data2Bram in the Xilinx design
flow toolchain.

Errata

1. Since there is no NVRAM support, the bootline is hardcoded in the
DEFAULT_BOOT_LINE macro defined in config.h. The Ethernet MAC address is
hardcoded in sysNet.c.

2. Pressing the CPU reset button will not reset the system and reload the bootrom. Users
must press the System ACE reset button or place code in the BRAM at the end of the
memory map that triggers system ACE to reset itself.

http://www.xilinx.com

June 2003 www.xilinx.com 153
Processor IP User Guide 1-800-255-7778

R

3. Ethernet 100Base-T may have poor performance with some host computers. If this is
the case, then switch your host computer's ethernet adapter to 10Base-T.

4. When creating a Tornado Project using this BSP as the "basis BSP", ensure the data
cache is disabled. Go to the "enable caches" component of the memory folder and set
USER_D_CACHE_ENABLE to no value.

Version 1.2/1 - November 13, 2002
The first release using an EDK/platgen generated bitstream.

HW Supported

- 16550 UART on P107 (VxWorks console)
- 16550 UART on P106
- EMAC Ethernet
- 128MB DDR RAM
- 32KB BRAM
- PPC MMU & Instruction & Data caches
- PLB/OPB Bridge
- GPIO (LEDs & Switches)
- IIC including NVRAM, temperature & power monitors.

HW Not supported

- System ACE
- LCD Display
- PCI
- Parallel Port
- PS2 Ports
- USB Ports
- Audio Ports
- SPI

Usage Notes

At the time this document was updated, this BSP is largely untested on a real EDK/platgen
bitstream load.

Errata

1. System mode debugging through the END connection does not work.

2. Serial port usage as the WDB target connection does not work. Serial port polling
mode does not seem to work.

Version 1.2/2 - January 10, 2003
Tested using the EDK/platgen reference design bitstream ML300_ppc405_example.

New Features & Enhancements

1. Added support for SystemACE HW using 16-bit bus mode.

2. Added boot error logging to note where CSP driver errors were encountered at boot
time.

3. Added bus error LED clear functions.

4. Added EEPROM write protect functions.

5. BRAM is now data cached by default.

6. Changed push button switch debouncing to use taskDelay instead of busy loop.

http://www.xilinx.com

154 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

Bug Fixes

1. Moved implementation of sysDcrPlb functions to sysALib.s from sysPlbOpb.c
because these functions cannot be implemented in "C" due to the way the VxWorks
exception library works.

2. Corrected GPIO bitmasks and XPAR to SYS constants mappings in ML300.h.

3. Corrected NETWORK_MEMORY_SIZE constant definition. Previously, it had worked
correctly only with the default setting of USER_RESERVE_MEMORY.

4. Removed init code that by default enabled critical interrupts from the PLB arbiter and
PLB/OPB bridge. In some situations, this setup could cause VxWorks to reboot during
a bus error.

5. Fixed bug in intConnect that prevented the user from connecting an ISR to a source
that already had a connected ISR.

Usage Notes

1. Using the push button switches as interrupt sources requires a debouncing algorithm.
Otherwise an avalanche of interrupts will befall you due to the noisy signals present
on this board.

Errata

1. System mode debugging through the END connection does not work.

2. Serial port usage as the WDB target connection does not work. Serial port polling
mode does not seem to work.

3. Stubbed out LCD code. Functions left to stay compatible with ML300seg. At this time
there is no LCD HW IP Core for this particular LCD display in the EDK.

4. MMU induced instability. When MMU is enabled, have noted system stability
problems especially when using the host shell to download and run object code. The
BSP is shipped with the MMU disabled.

5. Errors accessing the IIC bus. On some occasions, the IIC bus has come up in an
inaccessible state. When this occurs, the BSP will use the default bootline and the
default MAC address.

ML300Seg Reference BSP
This handcoded BSP was created to complement the V2PDK example system for the
ML300 reference board. It has been customized to work with hardware devices specific to
the board. The BSP has enough support to allow application development using the
Tornado tool chain.

This BSP directly supports the following hardware:

• 10/100 BaseT Ethernet
• RS-232 Serial ports (2)
• System ACE
• LCD Display
• GPIO (LEDs & pushbutton switches)
• IIC (including EEPROM, temperature & power monitors)
• 128MB DDR RAM
• 32KB BRAM
• PPC405 built-in timers, instruction cache, data cache

http://www.xilinx.com

June 2003 www.xilinx.com 155
Processor IP User Guide 1-800-255-7778

R

The BSP utilizes drivers for the following IP cores:

• EMAC Ethernet: END driver type
• 16550 UART on connector P107: SIO driver type on /tyco/0 (VxWorks console)
• 16550 UART on connector P106: SIO driver type on /tyco/1
• PLB to OPB bridge, PLB arbiter
• System ACE as a JTAG device
• System ACE as a block device for disk access (FAT32)
• INTC Interrupt controllers. 1 critical controller, 1 external controller

This BSP does not support the following hardware due to the lack of driver support:

• PCI
• Parallel port
• PS2 ports
• USB ports
• Audio ports
• Fiber ports
• SPI

Installation
See Installation, page 131 for instruction on how to install this BSP.

Compact Flash & SystemACE
A compressed zipfile is provided in the ace subdirectory. This is a complete image
containing a bootrom and sample VxWorks images in ace and elf file formats. See the
README in the ace directory for more information.

To install this image, do the following:

1. Make a backup of your microdrive then erase all files from it.

2. Uncompress the ace/compactFlash.zip file to the microdrive.

3. Insert the microdrive into the compact flash slot on the ML300.

4. Connect a serial port cable to the P106 connector on the evaluation board. Default
comm settings are 115200, N, 8, 1.

5. Set the rotary switch on the ML300 to setting 6 and apply power. At this point, the
VxWorks bootrom should be running and writing to the console serial port.

6. Set the bootrom’s bootline per your requirements. See Bootroms, page 137 for more
information.

Setting Ethernet MAC Address
To verify your MAC address is correct perform the following steps:

1. Set the rotary switch associated with the VxWorks bootrom and reboot the ML300.

2. Interrupt the countdown sequence to get the [VxWorks Boot]: prompt.

3. Enter the "N" command (case sensitive). The current MAC will be displayed and you
will be prompted to enter a new MAC. The first three bytes of the MAC should be
000A35.

Press any key to stop auto-boot...
 1
[VxWorks Boot]: N

http://www.xilinx.com

156 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

Current Ethernet Address is: 00:0a:35:00:03:20
Modify only the last 3 bytes (board unique portion) of Ethernet Address.
The first 3 bytes are fixed at manufacturer's default address block.
00- 00
0a- 0a
35- 35
00-

If the MAC is valid, then press return three times to accept the default. On new boards, the
address may be all FFs. If this is the case, enter the last three bytes that are assigned to the
board’s serial number. If you are not sure of the numbers, then enter return three times.
This will change the MAC to 00:0a:35:FF:FF:FF. This will provide you with a valid MAC
until the correct number is obtained. Boards with a MAC of all FFs will not be capable of
running the network stack. Multiple boards connected to the same network with the same
MAC will not work either.

Bootstrap Information
The default bitstream contains a bootstrap program that consists of a single instruction at
the processor’s reset vector which is in effect an endless loop, or while(1) in "C"
programming constructs. This loop keeps the processor from running amok until
SystemACE completes its download or an emulator connects to the target board. See Reset
Vector and SystemACE, page 143.

Memory Maps
Due to the nature of this evaluation board a full memory map is not given in this
document. The user is instead referenced to "C" source code header file xparameters.h.
This source file provides a memory map for all CSP devices. A partial map is given here.

RAM Memory Map
RAM device contains the VxWorks runtime image and heap space. ML300Seg follows
VxWorks conventions for RAM usage for PowerPC processors. Refer to Appendix F of the
VxWorks 5.4 Programmer’s Guide.

Table 8-6: System Memory Map

Device Start (hex) End (hex) Size (bytes)

PLB DDR 00000000 07DFFFFF 126 MB

PLB LCD Frame Buffer 07E00000 07FFFFFF 2 MB

OPB Space 60000000 DFFFFFFF 2 GB

BRAM FFFF8000 FFFFFFFF 32 KB

Table 8-7: RAM Memory Map

Physical Address Range (hex) Usage

00000000..000000FF (DDR) Unused & undefined

00000100..00002FFF (DDR) Interrupt Vector table

00003000..00010000 (DDR) VxWorks usage. Exception reason message and other
VxWorks constructs are at the bottom of this region. Initial stack
is set at the top of this range and grows downward. Once
VxWorks has switched to multi-tasking mode, this stack is no
longer used.

http://www.xilinx.com

June 2003 www.xilinx.com 157
Processor IP User Guide 1-800-255-7778

R

NVRAM Memory Map
NVRAM support is provided by a Microchip Technology 24LC32A EEPROM on the IIC
bus. This device provides 4KB of storage space. BSP source code file 24LC32aNvRam.c is
the driver for this device and provides the API interface required by VxWorks. The
primary BSP related objects stored in NVRAM are the bootline and the Ethernet MAC
address.

When there is no IIC bus support, the BSP will replace the EEPROM driver with
$WIND_BASE/src/drv/mem/nullNvRam.c which provides only function stubs so that
VxWorks will link. When this is the case, the default bootline is used (see config.h) and
the Ethernet MAC address defaults to: 00:0a:35:00:00:00.

* sysNvRamGet and sysNvRamSet are the VxWorks required NVRAM interface
functions. The interface they provide uses offsets relative to the bootline offset. Accessing
part offsets 0000..07FF requires an alternate interface.

Caches
The caches are configured by the following constants in ML300.h. These constants map to
the PPC cache control registers of the same name. See PPC405 documentation for further
information on these registers:

• ML300_ICCR_VAL - Initial contents of the ICCR register (instruction cacheability
attribute).

• ML300_DCCR_VAL - Initial contents of the DCCR register (data cacheability attribute).
• ML300_DCWR_VAL - Initial contents of the DCWR register (write back/through

attribute).

00010000..00BFFFFF (DDR) RAM_LOW_ADRS. VxWorks image, interrupt stack,
host memory pool, and heap space.

00C00000..07BFFFFF (DDR) RAM_HIGH_ADRS. Two possible uses. (1) VxWorks
bootrom image and heap space. (2) VxWorks heap space.

07C00000..07CFFFFF (DDR) USER_RESERVED_MEM. This 1MB is used for network
data buffers and network DMA descriptor spaces.

07D00000..07DFFFFF (DDR) USER_RESERVED_MEM. This 1 MB is not used by BSP.
Available for application use

07E00000..07FFFFFF (DDR) LCD frame buffer

FFFF8000..FFFFFFFF (BRAM) Address FFFFFFFC contains reset vector.

Table 8-7: RAM Memory Map

Physical Address Range (hex) Usage

Table 8-8: NVRAM Memory Map

Part Offset
Range (hex)

sysNvRamGet/Set
Offset Usage

0000..07FF N/A* Reserved for board level objects such as the
Ethernet MAC address

0800..08FF 0000..00FF Reserved for VxWorks bootline

0900..0FEF 0100..07EF Unused

0FF0..0FFF 07F0..07FF Reserved

http://www.xilinx.com

158 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

• ML300_SGR_VAL - Initial contents of the SGR register (guarded attribute).

1 This region includes the LCD frame buffer on the ML300Seg. A data cache flush may be
required to complete writes to this buffer.

External Interrupts
There are two INTC interrupt controller IP cores in the design. One is wired to the external
interrupt signal of the PPC405 and the other to the critical interrupt signal.

PLB/OPB bridges & arbiters are wired to the critical INTC instance. If these interrupt
sources are enabled and the PPC machine check interrupt is enabled then VxWorks may
reboot when an exception occurs. This is because the PLB/OPB bridge/arbiter will assert
their interrupt signal when they cannot complete a transaction to the INTC. This signal
will propogate to the PPC as a critical interrupt exception (vector 0x100). At the same time
the PPC will detect a bad bus cycle and generate a machine check exception (vector 0x200).
VxWorks will begin handling the first exception, but during this time the second exception
arrives. VxWorks architecturally does not allow this and will reboot the system when it
occurs.

It is not recommended to sysIntCritEnable() one of these interrupt sources. Instead,
use the VxWorks excHookAdd() function to use your own function perform custom
exception processing (after VxWorks finishes its own processing). Here, the hook function
can examine the bridges/arbiters and perform whatever task is required for the event.

IIC
There are several devices connected to the IIC bus with hardwired addresses. These
addresses are defined for the BSP in the ML300.h header file. The BSP provides a polled
interface to the IIC bus to access these devices. The interface includes a mutual exclusion
semaphore that can be used to prevent more than one task from accessing the bus at a time.
Before the operating system is up, the semaphore is not available and it is up to boot code
to sequence access to the bus. This should not be an issue since the system is single-
threaded at boot time and the only device accessed should be the NVRAM.

BSP file sysIic.c provides initialization, read/write primitives, and resource allocation
functions.

Board API
There are a handful of "board level" BSP functions not implemented by the CSP device
drivers. Prototypes for these functions are located in config/ML300/sysLibExtra.h.

This section will not go over CSP device driver functions. Instead the user is directed to the
appropriate ip_csp/xsrc/<device>.c file for documentation and usage.

Standard I/O
The BSP comes with stdin, stdout, and stderr directed through the UART on the P106
connector . The default UART baud rate is set to 115200, no parity, 8 data bits, and 1 stop
bit. The secondary UART on P107 is enabled and ready for application usage. It defaults to
19200 baud, no parity, 8 data bits, and 1 stop bit.

Table 8-9: Cache Map

Physical Address Range (hex)
I

Cache
D

Cache
Write

Back/Through Guarded

00000000..07FFFFFF Y Y1 Back N

F8000000..FFFFFFFF Y Y N/A N

everything else N N N/A N

http://www.xilinx.com

June 2003 www.xilinx.com 159
Processor IP User Guide 1-800-255-7778

R

GPIO
Two instances of GPIO can be included in the BSP. The first instance controls the
momentary push button switches and their surrounding LEDs. The second controls the 32
GPIO lines on the J10 connector. Both instances require that INCLUDE_XGPIO constant be
defined. Each instance can be enabled or disabled with constants
INCLUDE_GPIO_LED_SWITCHES and INCLUDE_GPIO_TEST_PORT.

void sysLedOn(UINT32 mask)
Turns on LEDs in the mask. Bits set to one cause the associated LED to be illuminated. The
mask is built using constants GPIO_LED_DSxx defined in ML300.h where xx is the LED
number and DSxx is the LED label on the PCB. This function requires that both
INCLUDE_XGPIO and INCLUDE_GPIO_LED_SWITCHES be defined.

void sysLedOff(UINT32 mask)

Turns off LEDs in the mask. Bits set to one cause the associated LED to be turned off. The
mask is built using constants GPIO_LED_DSxx defined in ML300.h where xx is the LED
number and DSxx is the LED label on the PCB. This function requires that both
INCLUDE_XGPIO and INCLUDE_GPIO_LED_SWITCHES be defined.

UINT32 sysSwitchReadState(void)
Reads the state of all the push button switches. A mask is returned describing which
switches are closed (i.e. being pushed). The mask is decoded using constants
GPIO_SWITCH_SWxx defined in ML300.h where xx is the switch number and SWxx is the
switch label on the PCB. This function requires that both INCLUDE_XGPIO and
INCLUDE_GPIO_LED_SWITCHES be defined. Usage example:

UINT32 mask = sysSwitchReadState();

if (mask & GPIO_SWITCH_SW06)
{
 // handle switch 6 press
}

void sysGpioBankSetDataDirection(UINT32 mask)
Sets the output enable for the J10 32-bit GPIO header located adjacent to the LCD display.
Bits in the mask set to "1" are outputs, "0" are inputs.

void sysGpioBankWriteDiscretes(UINT32 data)

Writes to the 32-bit GPIO J10 header.

UINT32 sysGpioBankReadDiscretes(void)
Reads the state of the pins of the 32-bit GPIO J10 header.

System ACE
These routines require that the INCLUDE_XSYSACE constant be defined.

STATUS sysSystemAceSetRebootAddr(unsigned configAddr)

Sets the reboot JTAG configuration address. This address is mapped to cfgaddr0..7 as
defined in XILINX.SYS in the root directory of the CF device. If this function is never
invoked, then the default address is used. The default address is the address selected by
the rotary switch. The given address will be rebooted if sysToMonitor() or reset() is
called.

The configAddr parameter range is 0..7 (i.e. cfgaddr0..7) or -1 to select the default
address.

Returns ERROR if configAddr is out of range, OK otherwise.

http://www.xilinx.com

160 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

void sysSystemAceInitFS(void)
Initializes the required Wind River DosFs 2.0 libraries. Application code is not required to
call this function on a BSP built with the Project facility.

STATUS sysSystemAceMount(char* mountPoint, int partition)

Mount the compact flash as DOS file system volume. The mountpoint parameter is an
arbitrary string labeling the device. Once mounted, refer to this mountpoint in all file
accesses. The partition parameter specifies the partition to mount. If "0" is specified
then the boot device is assumed to not contain a partition table (i.e. it is treated like a floppy
disk).

Note: Before calling this routine, be sure to initialize the DOS file system with a call to
sysSystemAceInitFS().

Note: Application code is not required to call this function on a BSP built with the Project
facility with INCLUDE_XSYSACE_AUTOMOUNT defined.

LCD
These functions perform very basic operations useful for verifying the LCD is working. A
more substantial library will be required if, say, someone wanted to port Quake. Screen
geometry is defined in ML300.h with the constants LCD_COLS, LCD_ROWS, and
LCD_ROW_ALIGNMENT.

void sysLcdSetColor(UINT32 rgb)

Set the entire display to the color encoded by the rgb parameter. The rgb parameter is
encoded as follows: 0x00RRGGB where RR is the red component, GG is the green
component, and RR is the red component. A value of 0x00000000 is black, 0x00FFFFFF is
white.

void sysLcdDisplayColorBars(void)
Writes a test display to the LCD screen that includes 8 bars in the top half of the display and
a 256 grey-scale pattern in the lower half of the display.

void sysLcdSetPixels(int row, int col, unsigned numPixels, UINT32 rgb)
Starting at row and column, write the RGB encoded value to consecutive pixels as they
exist in the LCD's frame buffer. This is basically a horizontal line draw function. If
numPixels is large enough, then the RGB color continues onto the next row. See
sysLcdSetColor described above for information on the rgb parameter.

STATUS sysLcdSetBrightness(unsigned char value)
This routine sets the brightness level of the LCD display. Valid range is 0..255 with 0 being
the dimmest setting. This setting is persistent in that the LCD keeps this setting even
through power cycles.

Returns ERROR if unable to communicate with device, OK otherwise.

STATUS sysLcdGetBrightness(unsigned char *value)
This routine retrieves the brightness level of the LCD display. Valid returned range is 0..255
with 0 being the dimmest setting.

Returns ERROR if unable to communicate with device, OK otherwise.

Power & Temperature Monitor Functions

void sysPowerMonCpuGet(int *v1_8, int *v2_5, int *v3_3, int *v5, int *v12)

This routine reads the two power monitor devices on the IIC bus to determine the current
voltage levels on the CPU board. All voltages are returned in units of milli-volts. If the
voltage cannot be read for any reason, then that voltage level is returned as

http://www.xilinx.com

June 2003 www.xilinx.com 161
Processor IP User Guide 1-800-255-7778

R

SYS_MEASUREMENT-_ERROR. Parameters are interpreted as follows: v1_8 = 1.8volt
source, etc..

void sysPowerMonIoGet(int *v1_8, int *v2_5, int *v3_3, int *v5, int *v12)
This routine reads the two power monitor devices on the IIC bus to determine the current
voltage levels on the IO board. All voltages are returned in units of milli-volts. If the
voltage cannot be read for any reason, then that voltage level is returned as
SYS_MEASUREMENT-_ERROR. Parameters are interpreted as follows: v1_8 = 1.8volt
source, etc..

void sysPowerMonShow(void)

Print the voltages from all power monitor sources to the console. If errors are encountered
while reading the voltage monitors, then "Err" is displayed next to the voltage. This
function requires INCLUDE_POWERMON_SHOW be defined in config.h or in the project
facility under development tool components -> show routines.

void sysTemperatureMonGet(int *cpu, int *ambient)
This routine reads the two temperature sensing devices on the IIC bus to determine the
current temperature. If the temperature cannot be read for whatever reason, then that
temperature is returned as SYS_MEASUREMENT_ERROR. Temperature is returned in units
of deg C.

void sysPowerMonShow(void)
Print the temperature (in deg C) for the CPU and the ambient temperature. If errors are
encountered while reading the temperature monitors, then "Err" is displayed next to the
temperature. INCLUDE_TEMPERATUREMON_SHOW be defined in config.h or in the
project facility under development tool components -> show routines.

Miscellaneous Functions

void sysMsDelay(UINT32 delay)
Delay the specified number of milliseconds. The delay is implemented as a busy loop that
occupies the CPU. The delay can be pre-empted by a higher priority task or interrupts if
tasking/interrupts are enabled causing loss of delay precision.

void sysUsDelay(UINT32 delay)
Delay the specified number of microseconds. The delay is implemented as a busy loop that
occupies the CPU. The delay can be pre-empted by a higher priority task or interrupts if
tasking/interrupts are enabled causing loss of delay precision.

This function not accurate for delay times below 20us due to system overhead. The
overhead is more or less constant and can be negated by the use of SYS_US_DELAY_BIAS
defined in config.h. Use this constant to calibrate to your system’s needs. As delivered
with a 300 MHz CPU clock and a bias of -2, this function is accurate within +/-15% for a
20us delay. As the delay time increases, the accuracy increases.

Board Specific Options
This section discusses ML300Seg specific configuration options that can be set either in
config.h or in the Project GUI. Unless otherwise stated, these options can be set by
#define’ing or #undef’ing them in config.h or by defining them in the Project GUI in
the project workspace’s macros settings in the build tab.

http://www.xilinx.com

162 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

Table 8-10: Custom BSP Options

Option Description

INCLUDE_XSYSACE_INSTALL_-RESET_VEC Controls whether reset code is placed the processor’s
reset vector address. This reset code will trigger
SystemACE to load the default configuration
bitstream.

INCLUDE_XSYSACE_AUTOMOUNT Controls whether the System ACE filesystem is
mounted at boot time using the next two SYSACE_
constants defined in this table. This constant affects
only Project builds.

SYSACE_AUTOMOUNT_POINT Default mount point used when INCLUDE_-
XSYSACE_AUTOMOUNT is defined in Project
builds.

SYSACE_AUTOMOUNT_PARTITION Default partition used when INCLUDE_XSYSACE_-
AUTOMOUNT is defined in Project builds.

INCLUDE_GPIO_LED_SWITCHES Controls whether GPIO support is present for the
switches on top of the board and the LED in close
proximity to those switches. If support is not
included, then functions sysLedOn, sysLedOff, and
sysSwitchReadState have no effect.

INCLUDE_GPIO_TEST_PORT Controls whether GPIO support is present for the J10
I/O connector port. If support is not included, then
sysGpioBank functions have no effect.

SYS_US_DELAY_BIAS Adds the specified number of microseconds to the
delay parameter in sysUsDelay(). This option can be
used to cancel out overhead.

INCLUDE_LCD_CLEAR_AT_BOOT Clears the LCD display at VxWorks boot time.

INCLUDE_LCD_BARS_AT_BOOT Displays the color bar test screen on the LCD at
VxWorks boot time. If both INCLUDE_LCD_BARS_-
AT_BOOT and INCLUDE_LCD_CLEAR_AT_BOOT
are defined, the LCD will first be cleared then the
color bars will be drawn.

INCLUDE_EMAC_PHY_RESET_-AT_BOOT Controls whether the Ethernet PHY is reset at boot
time. In the Project GUI, this is a parameter under the
emac component and can be found under hardware-
>peripherals->IP CSP-> Ethernet Core. Set to TRUE to
enable, FALSE to disable.

INCLUDE_POWERMON_SHOW Controls whether function sysPowerMonShow is
compiled into the BSP.

INCLUDE_TEMPERATUREMON_-SHOW Controls whether function sysTemperature-
MonShow is compiled into the BSP.

SYS_GPIO_SWITCH_DEBOUNCE_TICKS Sampling interval used by function
sysSwitchReadState() when attempting to debounce
switches. Units are in clock ticks.

http://www.xilinx.com

June 2003 www.xilinx.com 163
Processor IP User Guide 1-800-255-7778

R

Release History

Version 1.2/0 (seg 092402) - November 13, 2002
Written using the ML300 HW as a testbed and the 9/24/02 hand-coded version of the SEG
IP load. This release supports more HW including the data cache, LCD, IIC, GPIO LEDs
and switches.

This is in reality a renamed ML300 1.2/0 BSP with additional HW support and other
refinements. The ML300 1.2/x BSP will be based on EDK/platgen bitstreams.

HW Supported
- 16550 UART on P107 (VxWorks console)
- 16550 UART on P106
- EMAC Ethernet
- 126MB DDR RAM
- 32KB BRAM
- LCD Display
- System ACE
- PPC MMU & Instruction & Data caches
- PLB/OPB Bridge BEAR & BESR register access (seg version)
- GPIO (LEDs & Switches)
- IIC including NVRAM, temperature & power monitors, and LCD brightness.

HW Not supported
The SEG IP load used by this BSP does map control registers for the following devices,
however there is no BSP support for them.

- PCI
- Parallel Port
- PS2 Ports
- USB Ports
- Audio Ports
- SPI

Usage Notes
None.

Errata

1. System mode debugging through the END connection does not work.

2. Serial port usage as the WDB target connection does not work. Serial port polling
mode does not seem to work.

Insight MDFG456 Reference BSP
This handcoded BSP was created to complement the EDK example system for the Insight
MDFG456 reference board. It has been customized to work with hardware devices specific
to the board. The BSP has enough support to allow application development using the
Tornado tool chain.

This BSP directly supports the following hardware:

• 10/100 BaseT Ethernet on P160 module

http://www.xilinx.com

164 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

• RS-232 Serial ports, one on main board, one on P160 module
• System ACE (requires daughter card)
• LCD Display
• GPIO (LEDs, pushbutton switches, DIP switches)
• 8MB SDRAM (Rev1 boards)
• 32KB BRAM
• 8MB Flash memory / 1MB SRAM on P160 module
• PPC405 built-in timers, instruction cache, data cache

The BSP utilizes drivers for the following IP cores:

• EMAC Ethernet: END driver type
• UART Lite on main board connector, SIO driver type on /tyco/0 (VxWorks console)
• UART Lite on P160 connectorP, SIO driver type on /tyco/1
• PLB to OPB bridge, PLB arbiter
• System ACE as a JTAG device
• System ACE as a block device for disk access (FAT32)
• INTC Interrupt controllers. 1 critical controller, 1 external controller

This BSP does not support the following hardware:

• IIC header on P160 module
• SPI header on P160 module
• PS/2 ports
• USB ports

Installation
See Installation, page 131 for instruction on how to install this BSP.

Compact Flash & SystemACE
A compress zipfile is provided in the ace subdirectory. This is a complete image containing
a bootrom and sample VxWorks images in ace and elf file formats. See the README in the
ace directory for more information.

To install this image, do the following:

1. Make a backup of your microdrive then erase all files from it.

2. Uncompress the ace/compactFlash.zip file to the microdrive.

3. Insert the microdrive into the compact flash slot on the MDFG456.

4. Connect a serial port cable to the mainboard connector. Default comm settings are
19200, N, 8, 1. Note that you shouldn’t use a null modem cable with this board.

5. Set the rotary switch on the MDFG456 to setting 6 and apply power. At this point, the
VxWorks bootrom should be running and writing to the console serial port.

6. Set the bootrom boot line per your requirements. See Bootroms, page 137 for more
information.

Setting Ethernet MAC Address
This procecure assumes a working P160 module has been attached to the mainboard.

To verify your MAC address is correct perform the following steps:

http://www.xilinx.com

June 2003 www.xilinx.com 165
Processor IP User Guide 1-800-255-7778

R

1. Reboot the system.

2. Interrupt the countdown sequence to get the [VxWorks Boot]: prompt.

3. Enter the "N" command (case sensitive). The current MAC will be displayed and you
will be prompted to enter a new MAC. The first three bytes of the MAC should be
000A35.

Press any key to stop auto-boot...
 1
[VxWorks Boot]: N
Current Ethernet Address is: 00:0a:35:00:03:20
Modify only the last 3 bytes (board unique portion) of Ethernet Address.
The first 3 bytes are fixed at manufacturer's default address block.
00- 00
0a- 0a
35- 35
00-

If the MAC is valid, then press return three times to accept the default. On new boards, the
address may be all FFs. If this is the case, enter the last three bytes that are assigned to the
board’s serial number. If you are not sure of the numbers, then enter return three times.
This will change the MAC to 00:0a:35:FF:FF:FF. This will provide you with a valid MAC
until the correct number is obtained. Boards with a MAC of all FFs will not be capable of
running the network stack. Multiple boards connected to the same network with the same
MAC will not work either.

Bootrom Flash Programming
This section will discuss steps involved with getting a VxWorks bootrom into flash
memory storage using the SingleStep debugger. It is assumed the reader is familiar with
the debugger and how to setup a connection to the target board.

Procedure
The following steps assume the target board is off, contains the FPGA bitstream associated
with the example system, a VisionProbe is connected to the board, the debugger is not
running, and "bootrom" or "bootrom_uncmp" has been created (see Creating Bootroms,
page 137).

1. Ensure DIP switch #2 is set to the ON position and turn the target board on. LED1
should be flashing. If a different bitstream other than the one that came with the
example system is being used, then the DIP switch and LED behaviour may be
different.

2. Start the SingleStep debugger. Click "Debug without a file" then click "OK" to connect
to the target board.

3. Go to the main menu and select "Tools" then "Vision Flash Utility".

4. Click the "Files" tab and press the "Convert" button. Select the file to program.

5. In the "File Conversion" dialog, change the "start address" to 0x10000 for "bootrom" or
0xC00000 for "bootrom_uncmp" image types. Click the "Add the newly converted file
to the flash file list" check box, then click "Convert". The file should be converted from
ELF to a binary representation with the resulting .bin added to the binary files list.

6. Click on the newly created file then click "Edit". Change the start address to
0xDE020000 then select "OK". This address corresponds to the first main block of flash
memory. If the bitstream has changed the base address of flash then use the
appropriate value (base + 0x20000).

http://www.xilinx.com

166 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

7. Click the "toggle enable" button. The "Enabled" field in the file list should change from
NOT ENABLED to ENABLED. Now click the "Configuration" tab to setup which flash
programming algorithm to utilize.

8. In the folder window select Devices -> AMD -> 29DL32xxB -> 2 Devices. In the "Device
Configuration" fields, enter the base address of the flash array at 0xDE000000. In the
"Erase Range" fields select block #’s 8 through 31.

9. Click the "Program tab". Select the "Initialize Target" checkbox. Click "Erase/Program"
to write the bootrom to flash memory.

Troubleshooting

Problem: SingleStep never finishes the programming operation.
Erasing and programming can take up to 3 minutes to complete. During this operation,
SingleStep shows a progress bar. If this progress stops for more than a few minutes then
emulator configuration settings may be incorrect. Verify "trap exception" is set to yes and
the workspace is set to a valid writable RAM space. This check is done using the emulator
command window. At the "SingleStep>" prompt, enter "vsh", then enter "cf". The emulator
settings are listed. Change as required.

Problem: The bootline and MAC address have been overwritten.
The BSP uses the first block of flash to store the bootline and MAC address. The flash erase
range may have been set to erase this block. You will need to adjust the erase range to leave
this block untouched. If this occurs, then the bootline and MAC will have to be reset. See
Bootline, page 138 and Setting Ethernet MAC Address, page 164.

Bootstrap Information
The default bitstream contains bootstrap code that performs the following algorithm when
the processor is reset:

if (DIP switch #2 == "ON")
{
 Flash LED #1 forever;
}
else
{
 Turn on LEDs #1,#2,#3,#4;
 Jump to flash address 0xDE020000;
}

DIP #2, when in the "ON" position, keeps the processor from running amok until
SystemACE completes its download or an emulator connects to the target board.

When "OFF", the processor will begin executing instruction in flash memory where a
VxWorks bootrom or some other OS loader resides. If there is no flash, or nothing
programmed into flash, or no GPIO with LED/DIP connections in the bitstream, then there
will likely be an exception to address 0xFFFF0200, 0xFFFF0100, or 0xFFFF0700. If there is
nothing at these address, then the processor will remain stuck there in an exception loop.

Memory Maps
Due to the nature of this evaluation board a full memory map is not given in this
document. The user is instead referenced to "C" source code header file xparameters.h.
This source file provides a memory map for all CSP devices. A partial map is given here
that relates directly to BSP operation.

http://www.xilinx.com

June 2003 www.xilinx.com 167
Processor IP User Guide 1-800-255-7778

R

RAM Memory Map
MDFG456 follows VxWorks conventions for RAM usage for PowerPC processors. Refer to
Appendix F of the VxWorks 5.4 Programmer’s Guide.

Flash Memory Map
The P160 communications module contains 8MB of flash memory implemented on two
Toshiba parts. These parts are wired together to form a 32 bit memory width. The flash
blocks are not of uniform size. Smaller "parameter" blocks reside at the beginning of the
addressing range of these parts. The BSP uses the first one of these eight parameter blocks.
The remaining parameter blocks are not used. The "main" blocks can be used to store a
VxWorks image or any other user data. The "hidden" block is not utilized by this BSP.

Table 8-11: System Memory Map

Device Start (hex) End (hex) Size (bytes)

PLB SDRAM 00000000 007FFFFF 32 MB

OPB Space 40000000 DFFFFFFF 2.5 GB

PLB BRAM FFFF8000 FFFFFFFF 32 KB

Table 8-12: RAM Memory Map

Physical Address
Range (hex) Usage

00000000..000000FF (SDRAM) Unused & undefined

00000100..00002FFF (SDRAM) Interrupt Vector table

00003000..00010000 (SDRAM) VxWorks usage. Exception reason message and other
VxWorks constructs are at the bottom of this region. Initial stack
is set at the top of this range and grows downward. Once
VxWorks has switched to multi-tasking mode, this stack is no
longer used.

00010000..00BFFFFF (SDRAM) RAM_LOW_ADRS. VxWorks image, interrupt stack,
host memory pool, and heap space.

00C00000..01FFFFFF (SDRAM) RAM_HIGH_ADRS. Two possible uses. (1) VxWorks
bootrom image and heap space. (2) VxWorks heap space.

48000000..480FFFFF (SRAM) This memory is resident on the P160 communications
add-on module and is part of the Toshiba flash memory device.
This memory area is used for network buffers.

FFFF8000..FFFFFFFF (BRAM) Address FFFFFFFC contains reset vector.

Table 8-13: Flash Memory Map

Offset Byte Address
Range (hex) Usage

00000000..00003FFF First parameter block used for NVRAM storage
VxWorks boot line at offset [0..255]
Ethernet mac address at offset [3FFA-3FFF]

00004000..0001FFFF Remaining parameter blocks unused

http://www.xilinx.com

168 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

OPB Memory Map

NVRAM Memory Map
NVRAM support is provided by the Toshiba flash memory. The first parameter block of
this flash array is reserved for NVRAM. A special NVRAM to flash driver is utilized by the
BSP at $WIND_BASE/src/drv/mem/nvRamToFlash.c. This driver uses functions in
sysFlash.c to read/write parameters to NVRAM.

When there is no flash support, the BSP will replace the NVRAM driver with
$WIND_BASE/src/drv/mem/nullNvRam.c which provides only function stubs so that
VxWorks will link. When this is the case, the default bootline is used (see config.h) and
the Ethernet MAC address defaults to: 00:0a:35:00:00:00.

Caches
The caches are configured by the following constants in MDFG456.h. These constants map
to the PPC cache control registers of the same name. See PPC405 documentation for further
information on these registers:

• MDFG456_ICCR_VAL - Initial contents of the ICCR register (instruction cacheability
attribute).

• MDFG456_DCCR_VAL - Initial contents of the DCCR register (data cacheability
attribute).

• MDFG456_DCWR_VAL - Initial contents of the DCWR register (write back/through
attribute).

• MDFG456_SGR_VAL - Initial contents of the SGR register (guarded attribute).

00020000..0031FFFF VxWorks image1

00320000..007FFFFF Unused
1 This region can be enlarged past 0x00320000 to accomodate big VxWorks images. ROM_TEXT_SIZE
in config.h and the BSP makefile must be changed to reflect the larger range.

Table 8-14: OPB Memory Map (unused areas not shown)

Physical Address
Range (hex) Usage

48000000..480FFFFF SRAM

5FFFFF00..5FFFFFFF EMC control

60000000..6000FFFF OPB peripherals

DE000000..DE7FFFFF Flash memory

Table 8-13: Flash Memory Map

Offset Byte Address
Range (hex) Usage

Table 8-15: NVRAM Memory Map

Part Offset
Range (hex)

sysNvRamGet/Set
Offset Usage

0000..00FF 0000..00FF Reserved for VxWorks bootline

0100..3FF9 0100..3FF9 Unused

3FFA..3FFF 3FFA..3FFF Ethernet MAC address

http://www.xilinx.com

June 2003 www.xilinx.com 169
Processor IP User Guide 1-800-255-7778

R

External Interrupts
There are two INTC interrupt controller IP cores in the design. One is wired to the external
interrupt signal of the PPC405 and the other to the critical interrupt signal.

PLB/OPB bridges & arbiters are wired to the critical INTC instance. If these interrupt
sources are enabled and the PPC machine check interrupt is enabled then VxWorks may
reboot when an exception occurs. This is because the PLB/OPB bridge/arbiter will assert
their interrupt signal when they cannot complete a transaction to the INTC. This signal
will propogate to the PPC as a critical interrupt exception (vector 0x100). At the same time
the PPC will detect a bad bus cycle and generate a machine check exception (vector 0x200).
VxWorks will begin handling the first exception, but during this time the second exception
arrives. VxWorks architecturally does not allow this and will reboot the system when it
occurs.

It is not recommended to sysIntCritEnable() one of these interrupt sources. Instead,
use the VxWorks excHookAdd() function to use your own function perform custom
exception processing (after VxWorks finishes its own processing). Here, the hook function
can examine the bridges/arbiters and perform whatever task is required for the event.

GPIO Switches & LEDs
LEDs 1, 2, 3, and 4 are available for application use. Pushbutton switches 1,2, and 3 are
available for application use. DIP switches 1-4 are reserved for HW and BSP use. DIP
switches 5-8 are available for application use.

Table 8-16: Cache Map

Physical Address Range (hex)
I

Cache
D

Cache

Write
Back/Thr

ough Guarded

00000000..01FFFFFF Y Y1 Back N

F8000000..FFFFFFFF Y Y N/A N

everything else N N N/A N
1 Rev1 boards require data caching enabled in this address range. This is due to a SDRAM design error that
prevents byte and half-word access.

Table 8-17: DIP Switch Usage

Number Use

1 Controls JTAG muxing between SystemACE and the CPU debug port. This
feature is implemented by the bitstream.

2 Controls whether system boots from flash memory. When set to "ON", the
processor spins in a loop flashing LED1 forever. When set to "OFF", all LEDs
are illuminated and control is transferred to flash memory. This feature is
implemented by the bootstrap program located in BRAM and incorporated
into the bitstream.

3 Reserved for future use

4 Reserved for future use

5 Available for application use

http://www.xilinx.com

170 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

Board API
This section will not go over CSP device driver functions. Instead the user is directed to the
appropriate ip_csp/xsrc/<device>.c file for documentation and usage.

There are a handful of "board level" BSP functions not implemented by the CSP device
drivers. Prototypes for these functions are located in:

config/MDFG456/sysLibExtra.h.

Standard I/O
The BSP comes with stdin, stdout, and stderr directed through the UART on the main
board. The default UART baud rate is set to 19200, no parity, 8 data bits, and 1 stop bit. The
secondary UART on the P160 communications is enabled and ready for application usage.
It defaults to 19200 baud, no parity, 8 data bits, and 1 stop bit.

GPIO
Two instances of GPIO can be included in the BSP. The first instance controls the
momentary push button switches, their surrounding LEDs, and the bank of 8 DIP
switches. The second GPIO instance controls the LCD display. Both instances require that
INCLUDE_XGPIO constant be defined.

DIP switches 1-4 are reserved for the bitstream and for the BSP. Application code may use
switches 5-8.

void sysLedOn(UINT32 mask)
Turns on LEDs in the mask. Bits set to one cause the associated LED to be illuminated. The
mask is built using constants GPIO_OUT_LEDx defined in MDFG456.h where x is the LED
number on the PCB. This function requires INCLUDE_XGPIO be defined.

void sysLedOff(UINT32 mask)
Turns off LEDs in the mask. Bits set to one cause the associated LED to be turned off. The
mask is built using constants GPIO_OUT_LEDx defined in MDFG456.h where x is the LED
number on the PCB. This function requires INCLUDE_XGPIO be defined.

UINT32 sysSwitchReadState(void)

Reads the state of all the push button switches. A mask is returned describing which
switches are closed (i.e. being pushed). The mask is decoded using constants
GPIO_IN_PUSHx defined in MDFG456.h where x is the switch on the PCB. This function
requires INCLUDE_XGPIO be defined. Usage example:

UINT32 mask = sysSwitchReadState();

if (mask & GPIO_IN_PUSH3)
{
 // handle switch 3 press
}

UINT32 sysDipReadState(void)

Reads the state of all the DIP switches. A mask is returned describing which switches are in
the "ON" position. The mask is decoded using constants GPIO_IN_DIPx defined in

6 Available for application use

7 Available for application use

8 Available for application use

Table 8-17: DIP Switch Usage

Number Use

http://www.xilinx.com

June 2003 www.xilinx.com 171
Processor IP User Guide 1-800-255-7778

R

MDFG456.h where x is the DIP switch position on the PCB. This function requires
INCLUDE_XGPIO be defined. Usage example:

UINT32 mask = sysDipReadState();

if (mask & GPIO_IN_DIP5)
{
 // handle DIP #5 being "on"
}

System ACE
These routines require that the INCLUDE_XSYSACE constant be defined.

STATUS sysSystemAceSetRebootAddr(unsigned configAddr)
Sets the reboot JTAG configuration address. This address is mapped to cfgaddr0..7 as
defined in XILINX.SYS in the root directory of the CF device. If this function is never
invoked, then the default address is used. The default address is the address selected by
the rotary switch. The given address will be rebooted if sysToMonitor() or reset() is
called.

The configAddr parameter range is 0..7 (i.e. cfgaddr0..7) or -1 to select the default
address.

Returns ERROR if configAddr is out of range, OK otherwise.

void sysSystemAceInitFS(void)
Initializes the required Wind River DosFs 2.0 libraries. Application code is not required to
call this function on a BSP built with the Project facility.

STATUS sysSystemAceMount(char* mountPoint, int partition)
Mount the compact flash as DOS file system volume. The mountpoint parameter is an
arbitrary string labeling the device. Once mounted, refer to this mountpoint in all file
accesses. The partition parameter specifies the partition to mount. If "0" is specified
then the boot device is assumed to not contain a partition table (i.e. it is treated like a floppy
disk).

Note: Before calling this routine, be sure to initialize the DOS file system with a call to
sysSystemAceInitFS().

Note: Application code is not required to call this function on a BSP built with the Project
facility with INCLUDE_XSYSACE_AUTOMOUNT defined.

LCD
This board contains a LCD character display capable of displaying 1 or 2 lines of
characters. Control of the display is handled using GPIO lines. The BSP sets up the LCD
display for two lines using the 5x8 character matrix with no cursor. This setup provides a
2x16 character window.

Low level functions are available to write instructions and data to the device (see
sysLcdWriteInstruction() and sysLcdWriteData() in section GPIO, page 170).

void sysLcdWriteString(char* string)
This function clears the display then writes the given string to it. The string parameter may
truncate in the display if too long. A null string will clear the display. If string contains the
newline character "\n", then characters following it will be placed in the 2nd line of the
display. If more than one newline is present, then the text following the last newline will be
written to the 2nd line of the display.

This function assumes LCD display characteristics have not been changed since
sysLcdInit() was invoked at boot time. If display font or line mode have been changed,
then the string may look scrambled in the display.

http://www.xilinx.com

172 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

void sysLcdWriteInstruction(UINT8 data)
This function clocks in an instruction command to the LCD device. Application code can
use this function to perform low level operations to the LCD display.

void sysLcdWriteData(UINT8 data)

This function clocks in data to the LCD device’s internal RAM. This function is typically
used to place a character somewhere in the device’s memory. Application code can use this
function to perform low level operations to the LCD display.

Miscellaneous Functions

void sysMsDelay(UINT32 delay)

Delay the specified number of milliseconds. The delay is implemented as a busy loop that
occupies the CPU. The delay can be pre-empted by a higher priority task or interrupts if
tasking/interrupts are enabled causing loss of delay precision.

void sysUsDelay(UINT32 delay)
Delay the specified number of microseconds. The delay is implemented as a busy loop that
occupies the CPU. The delay can be pre-empted by a higher priority task or interrupts if
tasking/interrupts are enabled causing loss of delay precision.

This function not accurate for delay times below 20us due to system overhead. The
overhead is more or less constant and can be negated by the use of SYS_US_DELAY_BIAS
defined in config.h. Use this constant to calibrate to your system’s needs.

Board Specific Options
This section discusses MDFG456 specific configuration options that can be set either in
config.h or in the Project GUI. Unless otherwise stated, these options can be set by
#define’ing or #undef’ing them in config.h or by defining them in the Project GUI in
the project workspace’s macros settings in the build tab.

Table 8-18: Custom BSP Options

Option Description

INCLUDE_P160_COMM_MODULE Controls whether code used to control peripherals is
eligible to be compiled into the BSP. P160 has an ethernet
controller, flash/SRAM memories, and a UART amongst
other things.

INCLUDE_XSYSACE_INSTALL_-RESET_VEC Controls whether reset code is placed the processor’s
reset vector address. This reset code will trigger
SystemACE to load the default configuration bitstream.

INCLUDE_XSYSACE_AUTOMOUNT Controls whether the System ACE filesystem is mounted
at boot time using the next two SYSACE_ constants
defined in this table. This constant affects only Project
builds.

SYSACE_AUTOMOUNT_POINT Default mount point used when INCLUDE_-
XSYSACE_AUTOMOUNT is defined in Project builds.

SYSACE_AUTOMOUNT_PARTITION Default partition used when INCLUDE_XSYSACE_-
AUTOMOUNT is defined in Project builds.

INCLUDE_BOOT_FLASH Sets the BSP up to boot from Flash memory. If not
defined, then SystemACE is assumed to be the bootstrap
device.

http://www.xilinx.com

June 2003 www.xilinx.com 173
Processor IP User Guide 1-800-255-7778

R

Release History

Version 1.2/0 - January 10, 2003
First pre-release for Tornado 2.0. This is a beta release that does not include support for all
HW. Note that testing has been done on the ML3 evaluation board as opposed to the
MDFG456. In other words, this version of the BSP has never been run on the MDFG456
hardware. The SEG IP bitstream is used for this load.

HW Supported
- Main board UART (console). IP core is UartLite.
- Main board SDRAM 32MB
- Main board LEDs (1-4)
- Main board push button switches (1-3)
- Main board DIP switch (1-8)
- Main board LCD display
- P160 daughter board UART. IP core is a UartLite.
- P160 daughter board Flash/SRAM.
- P160 daughter board Ethernet. IP core is a Emac.

HW Not supported
- System ACE daughter board.
- P160 daughter board IIC header
- P160 daughter board SPI header
- P160 daughter board USB port.
- P160 daughter board PS/2 port.

Errata

1. System mode debugging through the END connection does not work.

2. Serial port usage as the WDB target connection does not work. Serial port polling
mode does not seem to work.

SYS_US_DELAY_BIAS Adds the specified number of microseconds to the delay
parameter in sysUsDelay(). This option can be used
to cancel out overhead.

INCLUDE_EMAC_PHY_RESET_-AT_BOOT Controls whether the Ethernet PHY is reset at boot time.
In the Project GUI, this is a parameter under the emac
component and can be found under hardware-
>peripherals->IP CSP-> Ethernet Core. Set to TRUE to
enable, FALSE to disable.

SYS_GPIO_SWITCH_DEBOUNCE_TICKS Sampling interval used by function
sysSwitchReadState() when attempting to
debounce switches. Units are in clock ticks.

SYS_LCD_INIT_DISPLAY If this character constant is defined, then it’s value will
be written to the LCD display at boot time. Requires
GPIO support (INCLUDE_XGPIO).

Table 8-18: Custom BSP Options <Italic>(Continued)

Option Description

http://www.xilinx.com

174 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

3. Rev1 evaluation boards have mis-wired SDRAM that requires all accesses occur in 32
bit divisible quantities. This problem is worked around by enabling the data cache at
bootstrap time and leaving it on. Instruction fetches always occur in 32 bit divisible
quantities.

4. Since System ACE is not supported in this revision (it will be in future revisions), the
only way to get a VxWorks image downloaded into the target is via an emulator.

5. Ethernet links have been iffy on two sample Rev1 boards this BSP has been tested on.
If the link LED on the P160 board does not illuminate after applying power to the
target (assuming there is a cable connected between the RJ45 jack and another network
device), then try reseating the P160, emulator connector, and RS232 connectors. Once
the link is established, it seems to remain that way.

6. Use non null-modem cabling for the RS-232 serial ports.

7. System not tested with MMU enabled.

These BSP on Other Boards
The BSPs discussed here can be used directly on other development hardware such as the
Xilinx AFX Evaluation board. Modifications will be required to the BSP to account for a
differing list of CSP peripherals and the amount and type of RAM.

First step is to remove all unsupported peripheral drivers from the BSP. This can be done
by following steps in the section titled Configuration, page 133.

Next step is to change the amount and type of RAM the BSP recognizes. This can be done
by editing the constant LOCAL_MEM_SIZE. If not using the Tornado project facility, this
constant can be modified by editing its definition in config.h. If using the Tornado
Project facility, this constant can be modified by changing its property definition in the
memory folder.

Other areas to watch out for are constants defined by xparameters.h. These constants
must match the VirtexII Pro bitstream. If they do not then all kinds of problems can be
expected such as bus errors. Key constants to watch out for:

• XPAR_CPU_PPC405_CORE_CLOCK_FREQ_HZ
• XPAR_UARTNS550_0_CLOCK_HZ
• XPAR_<device>_BASEADDR
• XPAR_INTC_0_<device>_x_VEC_ID

Trouble-Shooting

Project Creation
Issues seen when creating a Tornado Project based on the ML300 BSP.

"Project Creation Error" Dialog Pop-up
Scroll to the end of the box and if it contains error messages complaining about missing
header files dpartCbio.h and dcacheCbio.h, then you don’t have the DosFS 2.0
libraries installed in your system.

http://www.xilinx.com

June 2003 www.xilinx.com 175
Processor IP User Guide 1-800-255-7778

R

SingleStep
Issues seen when using SingleStep with this BSP.

Source browser not displaying source code at addresses where source code
should be
Try to rebuild everything with the -gdwarf compiler option.

Tornado Crosswind debugger
Issues seen when using Tornado’s IDE debugger with this BSP.

Source browser not displaying source code at addresses where source code
should be
Is the -gdwarf option enabled in the compiler? Try to rebuild everything with the -g
compiler option.

Target Shell Issues
Issues seen when using the built-in target shell.

Relocation value does not fit in 24 bits message from Loader
This is seen when a system contains more than 32MB of memory. Recompile your source
code using the -mlongcall compiler option.

Ethernet Issues
Issues seen when integrating/using the XEmac Ethernet adapter

Network interface xemac unknown. Message from console at boot
There are multiple causes to this problem.

1. Did you compile the XEmac component into the BSP? In the Tornado Project facility,
check that both hardware->peripherals->IP CSP->Ethernet EMAC and EMAC END
components are included. On command line BSP builds, is INCLUDE_XEMAC and
INCLUDE_XEMAC_END declared in ip_config.h and not #undef’d anywhere.

2. In the Tornado Project facility, if you remove then later restore network support,
Project fails to restore "END" driver support. Check folder network components-
>network devices and verify that both END attach interface and END interface support
components are included.

References
• VxWorks 5.4 Programmer’s Guide

http://www.xilinx.com

176 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

• Tornado 2.0 User’s Guide

Revision History
The following table shows the revision history for this document.

Date Version Revision

02/07/03 1.0 Combined IPSPEC124 and 138 into this document

http://www.xilinx.com

June 2003 www.xilinx.com 177
Processor IP User Guide 1-800-255-7778

R

Chapter 9

Device Driver Summary

Summary
A summary of each device driver is provided with a link to its main header file. In
addition, building block components are described. A hardware-to-software driver cross-
reference table is also provided.

Device Driver Reference

ATM Controller
The Asynchronous Transfer Mode (ATM) Controller driver resides in the atmc
subdirectory. Details of the driver can be found in the xatmc.h header file

Ethernet 10/100 MAC
The Ethernet 10/100 MAC driver resides in the emac subdirectory. Details of the driver can
be found in the xemac.h header file.

Ethernet 10/100 MAC Lite
The Ethernet 10/100 MAC Lite driver resides in the emaclite subdirectory. Details of the
driver can be found in the xemaclite.h header file.

External Memory Controller
The External Memory Controller driver resides in the emc subdirectory. Details of the
driver can be found in the xemc.h header file.

General Purpose I/O
The General Purpose I/O driver resides in the gpio subdirectory. Details of the driver can
be found in the xgpio.h header file.

HDLC
The HDLC driver resides in the hdlc subdirectory. Details of the driver can be found in the
xhdlc.h header file.

Intel StrataFlash
The Intel StrataFlash driver resides in the flash subdirectory. Details of the driver can be
found in the xflash.h header file.

http://www.xilinx.com

178 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

Inter-Integrated Circuit (IIC)
The IIC driver resides in the iic subdirectory. Details of the driver can be found in the xiic.h
header file.

Interrupt Controller
The Interrupt Controller driver resides in the intc subdirectory. Details of the driver can be
found in the xintc.h header file.

OPB Arbiter
The OPB Arbiter driver resides in the opb_arbiter subdirectory. Details of the driver can be
found in the xopb_arbiter.h header file.

OPB to PLB Bridge
The OPB to PLB bridge driver resides in the opb2plb subdirectory. Details of the driver can
be found in the xopb2plb.h header file.

PLB Arbiter
The PLB arbiter driver resides in the plbarb subdirectory. Details of the driver can be found
in the xplbarb.h header file.

PLB to OPB Bridge
The PLB to OPB bridge driver resides in the plb2opb subdirectory. Details of the driver can
be found in the xplb2opb.h header file.

Rapid I/O
The Rapid I/O driver resides in the rapidio subdirectory. Details of the 0 low leve driver
can be found in the xrapidio_l.h header file

Serial Peripheral Interface (SPI)
The SPI driver resides in the spi subdirectory. Details of the driver can be found in the
xspi.h header file.

System ACE
The System ACE driver resides in the sysace subdirectory. Details of the driver can be
found in the xsysace.h header file.

Timer/Counter
The Timer/Counter driver resides in the tmrctr subdirectory. Details of the driver can be
found in the xtmrctr.h header file.

UART Lite
The UART Lite driver resides in the uartlite subdirectory. Details of the driver can be found
in the UART Lite Driver Datasheet and in the xuartlite.h header file.

UART 16450/16550
The UART 16450/16550 driver resides in the uartns550 subdirectory. Details of the driver
can be found in the xuartns550.h header file.

http://www.xilinx.com

June 2003 www.xilinx.com 179
Processor IP User Guide 1-800-255-7778

R

Watchdog Timer/Timebase
The Watchdog Timer/Timebase driver resides in the wdttb subdirectory. Details of the
driver can be found in the xwdttb.h header file.

Building Block Components

Common
Common components reside in the common subdirectory and comprise a collection of
header files and ".c" files that are commonly used by all device drivers and application
code. Included in this collection are: xstatus.h, which contains the identifiers for Xilinx
status codes; xparameters.h, which contains the identifiers for the driver configurations
and memory map; and xbasic_types.h, which contains identifiers for primitive data types
and commonly used constants.

CPU/CPU_PPC405
CPU components reside in the cpu[_ppc405] subdirectory and comprise I/O functions
specific to a processor. These I/O functions are defined in xio.h. These functions are used
by drivers and are not intended for external use.

IPIF
IPIF components reside in the ipif subdirectory and comprise functions related to the IP
Interface (IPIF) interrupt control logic. Since most devices are built with IPIF, drivers
utilize this common source code to prevent duplication of code within the drivers. These
functions are used by drivers and are not intended for external use.

DMA
DMA components reside in the dma subdirectory and comprise functions used for Direct
Memory Access (DMA). Both simple DMA and scatter-gather DMA are supported.

Packet FIFO
Packet FIFO components reside in the packet_fifo subdirectory and comprise functions
used for packet FIFO control. Packet FIFOs are typically used by devices that process and
potentially retransmit packets, such as Ethernet and ATM. These functions are used by
drivers and are not intended for external use.

Hardware/Software Cross Reference

Table 9-1: Hardware and Software Cross Reference

Hardware Device Software Driver

DCR Bus Structure XIo

DCR Interrupt Controller (INTC) XIntc

OCM Packet Processing Engine

OPB <-> PCI Full Bridge XPci

OPB 10/100M Ethernet Controller XEmac

http://www.xilinx.com

180 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

R

OPB 10/100M Ethernet Controller - Lite XEmacLite

OPB 16450 UART Controller XUartNs550

OPB 16550 UART Controller XUartNs550

OPB Arbiter and Bus Structure XOpbArb

OPB ATM Utopia Level 2 Master XAtmc

OPB ATM Utopia Level 2 Slave XAtmc

OPB External Memory Controller (EMC) XEmc

OPB GPIO Controller XGpio

OPB IIC Master and Slave Bus Controller XIic

OPB Interrupt Controller (INTC) XIntc

OPB IPIF XIpIf

OPB JTAG UART XUartLite

OPB PS/2 Controller

OPB Single Channel HDLC Controller XHdlc

OPB SPI Master and Slave Bus Controller XSpi

OPB TimeBase / WatchDog Timer XWdtTb

OPB Timer / Counter XTmrCtr

OPB Touchscreen Controller

OPB UART - Lite XUartLite

OPB2PLB Bridge XOpb2Plb

PLB 1Gb Ethernet Controller

PLB Arbiter and Bus Structure XPlbArb

PLB External Memory Controller (EMC) XEmc

PLB IPIF XIpIf

PLB Packet Processing Engine

PLB TFT VGA LCD Controller

PLB UART-16450 XUartNs550

PLB UART-16550 XUartNs550

PLB2OPB Bridge XPlb2Opb

RAPID IO Xrapidio

Table 9-1: Hardware and Software Cross Reference <Italic>(Continued)

Hardware Device Software Driver

http://www.xilinx.com

June 2003 www.xilinx.com 181
Processor IP User Guide 1-800-255-7778

Chapter 10

Automatic Generation of Tornado 2.x
(VxWorks 5.x) Board Support Packages

Overview
One of the key embedded system development activities is the development of the Board
Support Package (BSP). Creation of a BSP can be a lengthy and tedious process that must
be incurred every time the microprocessor complex (processor plus associated
peripherals) changes. While managing these changes applies to any microprocessor-
based project, the changes can come about more rapidly than ever with the advent of
programmable System-on-Chip (SoC) hardware.

This document describes the BSP Generator (BSPgen), which automatically generates a
customized BSP for various microprocessor, peripheral, and RTOS combinations. This tool
enables embedded system designers to do the following:

• Substantially decrease development cycles (decrease time-to-market)

• Create a BSP that matches the application (customized BSP)

• Eliminate BSP design bugs (automatically created based on certified components)

• Enable application software developers (do not have to wait for BSP development)

BSPgen is currently used in conjunction with the Xilinx Embedded Development Kit (EDK).
Using EDK, the user can choose to automatically create a BSP based on an embedded
system just created. The BSP contains all the necessary support software for a system,
including boot code, device drivers, and RTOS initialization. The BSP is customized based
on the type of operating system, processor, and peripherals chosen by the user for the
FPGA-based embedded system.

The only types of BSPs currently supported by BSPgen are for the WindRiver VxWorks
5.4/5.5 operating systems and Tornado 2.0.2/2.2 IDE, in conjunction with the IBM PowerPC
405 microprocessor core.

Tool/User Input
BSPgen requires a description of the embedded system in order to customize the BSP. The
system description includes the type of processor(s) in the system, the types of peripherals
and bus connections, interrupt connections, versions of peripherals and device drivers, and
any other information needed to generate a functional BSP. This system description is
typically provided by the tool that invokes BSPgen. But the user, of course, is ultimately
responsible for input of the system through the tool.

In addition, information about the BSP to be generated is provided. This information
includes the type of operating system, the directory location where the BSP will reside, and
the name of the BSP.

The user may also have to decide which peripherals, or devices, are tightly integrated into
the operating system. Tight integration typically means the device driver is connected

http://www.xilinx.com

182 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

directly to the operating system through an OS interface, such as a network stack or a
serial I/O interface. Other devices are loosely integrated into the OS, which means that
although there is no standard interface to access the device, the user can access the
device by using the device driver directly from the application.

Template-Based Approach
A set of BSP template files will be released with BSPgen. Every operating system
supported will have a corresponding set of template files. These template files are used
during creation of the BSP, making appropriate modifications based on the makeup of the
FPGA-based embedded system.

If the user chooses not to automatically generate a BSP, these template files could be used
as a reference for building a BSP from scratch.

Device Drivers
A set of device driver source files is released with the EDK tools and resides in an
installation directory. During creation of a customized BSP, device driver source code is
copied from this installation directory to the BSP directory. Only the source code pertaining
to the devices built into the FPGA-based embedded system are copied. This copy provides
the user with a self-contained, standalone BSP directory which can be modified by the user
if necessary and/or relocated if necessary. If the user makes changes to the device driver
source code for this BSP and sometime later wishes to back those changes out, the user
can use the EDK tools to regenerate the BSP. Device driver source files are then recopied
from the installation directory to the BSP.

Backups
If the directory location of the BSP contains existing files, these files are copied into a
backup directory before being overwritten. This prevents the inadvertent loss of changes
made by the user to BSP source files. The backup directory will reside within the BSP
directory and will be named backup<timestamp>, where <timestamp> represents the
current date and time.

Generating the Tornado BSP

Using the Embedded Development Kit (EDK)
Xilinx Platform Studio (XPS) is available in the EDK and is a graphical design entry and
implementation tool for a PPC405- or MicroBlaze-based embedded system. This section
describes the steps needed to invoke BSPgen and create a Tornado BSP using XPS.

1. Select the operating system and core clock frequency

In the software settings for the PPC instance, select the operating system using the
Environment tab. In this case, we want to select a VxWorks5_x operating system. In
addition, the Tornado BSP needs to know the frequency of the CPU. Enter it in the Core
Clk Freq field in MHz.

2. Configure the VxWorks console device

If you intend to use a serial device, such as a Uart, as the VxWorks console, select or
enter the instance name of the serial device as the STDIN/STDOUT peripheral. It is
important to enter the same device for both STDIN and STDOUT. Currently, BSPgen
supports only the Uart 16550/16450 and UartLite devices as VxWorks console
devices.

3. Integrate the device drivers

a. Configure all drivers with Level 1 interface

http://www.xilinx.com

June 2003 www.xilinx.com 183
Processor IP User Guide 1-800-255-7778

In general, all drivers that you want accessible from your VxWorks application or tightly
integrated into VxWorks need to be configured as Level 1 drivers. Only if there is no
Level 1 interface for a driver will its Level 0 interface be made available in the Tornado
BSP. Driver levels can be configured in the S/W Settings dialog box for each device

b. Connect to VxWorks

Some S/W Settings dialog boxes will provide a checkbox labeled “Connect to OS” or
“Connect to VxWorks”. These are typically provided for devices that can be tightly
integrated into the OS. If you want this device to be tightly integrated into the OS, select
this checkbox. See the section Device Integration for more details on tight integration
of devices.

c. Overwrite MDD Parameters

On the S/W Settings dialog box, there is a button labeled “MDD Params”. For certain
devices there may be a device parameter that needs to be tailored in order for software
to communicate correctly to that device. Be sure to click the “MDD Params” button and
set any parameter values correctly based on your system. An example of this is the
interrupt controller. If the interrupt controller device is attached to the PPC405’s DCR
bus, then the USE_DCR parameter value in the intc MDD Params dialog box should be
set to 1.

4. Generate the Tornado BSP

In the Tools menu of XPS, the menu item “Generate BSP for VxWorks” can be selected
to invoke BSPgen. The output of this invocation is shown in the XPS output window.
Warnings may be output for those devices that do not have Level 1 device driver
interfaces selected. Once BSPgen is done, the resulting Tornado BSP should exist
under the PPC405 instance subdirectory of the user’s EDK project. For example, if in
XPS the user has named their PPC405 instance myppc405, then the Tornado BSP will
reside at <user project>/myppc405/bsp_myppc405.

Using the Command Line and EDK Files
BSPgen supports a command-line interface in conjunction with files produced by the EDK.
Although the user would typically invoke BSPgen using the EDK tools, there is nothing to
prevent command-line invocation. The command-line interface requires system description
files in the form of .mss/.mhs files that are output by the EDK tools. The command-line
usage syntax is as follows:

Usage: bspgen -h <mhsfile> -s <mssfile> -p <project_path>

where:

-h <mhsfile>

Specifies the name of the .mhs file created by the EDK toolset. The .mhs file describes
the hardware selected by the user for the embedded system.

-s <mssfile>

Specifies the name of the .mss file created by the EDK toolset. The .mss file describes
the software, or device drivers, selected by the user and corresponding to the system
hardware.

-p <project_path>

The absolute path of the user’s EDK project directory.

BSPgen makes use of the XILINX_EDK environment variable. It should be set to the
installation directory of the EDK.

Note that the end user does not typically invoke BSPgen. Instead, the EDK tools invoke
BSPgen using the appropriate interface.

http://www.xilinx.com

184 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

The Tornado 2.x BSP
This section assumes the reader is familiar with WindRiver’s Tornado 2.0.2 or 2.2 IDE. It
describes the Tornado BSP output by BSPgen.

Integration with IDE
The automatically generated BSP is integrated into the Tornado IDE and Project facility.
The BSP can be compiled from the command-line using the Tornado make tools, or from
the Tornado Project facility (also referred to as the Tornado GUI). Once the BSP has been
generated, the user can simply type make vxWorks from the command-line to compile a
bootable RAM image. This assumes the Tornado environment has been previously set up,
which can be done via the command-line using the host/x86-win32/bin/torVars.bat script if
on a Windows platform. If using the Tornado Project facility, the user can create a project
based on the newly generated BSP, then use the build environment provided through the
GUI to compile the BSP.

In Tornado 2.2, the diab compiler is supported in addition to the gnu compiler. The Tornado
BSP created by BSPgen has a Makefile that can be modified by the command-line user to
use the diab compiler instead of the gnu compiler. Look for the make variable named
TOOLS and set the value to “diab” instead of “gnu”. If using the Tornado Project facility, the
user can select the desired tool when the project is first created.

The file 50<csp_name>.cdf resides in the BSP directory and is tailored during creation of
the BSP. This file integrates the CSP device drivers into the Tornado GUI. CSPs hook
themselves into the BSP at the hardware/peripherals sub-folder. Below this is a Core
library folder and individual device driver folders. Figure 1 shows the look of the GUI given
the CSP name “IP”.

http://www.xilinx.com

June 2003 www.xilinx.com 185
Processor IP User Guide 1-800-255-7778

Figure 1: Tornado 2.x Project GUI - VxWorks

The “Files” tab of the Tornado Project GUI will also show a number of new files used to
integrate the CSP device drivers into the Tornado build process. Once again, these files
are automatically created by BSPgen. The user need only be aware of that the files exist.

http://www.xilinx.com

186 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

These files are prefixed with the name of the CSP. Figure 2 shows an example of the CSP
build files.

Figure 2: Tornado 2.x Project GUI - Files

Device Integration
Devices in the FPGA-based embedded system have varying degrees of integration with
the VxWorks operating system. The degree of integration may be selectable by the user
through the system generation tools. Below is a list of currently supported devices and their
level of integration.

• A UART 16450/16550/Lite can be integrated into the VxWorks Serial I/O (SIO)
interface. This makes the UART available for file I/O and printf/stdio. Only one UART
device can be selected as the console, where standard I/O (stdin, stdout, and stderr)
is directed. Reference the sysSerial.c file of the BSP to see details of this integration.

• An Ethernet 10/100 MAC can be integrated into the VxWorks Enhanced Network
Driver (END) interface. This makes it available to the VxWorks network stack and thus
socket-level applications. Reference the configNet.h and sysNet.c files of the BSP to

http://www.xilinx.com

June 2003 www.xilinx.com 187
Processor IP User Guide 1-800-255-7778

see details of this integration.

• An Interrupt controller can be connected to the VxWorks exception handling and the
PowerPC 405 external non-critical interrupt pin. BSPgen does not currently handle
interrupt controller integration for the critical interrupt pin of the PPC405. However, the
user is always free to manually add this integration in the sysInterrupt.c file of the BSP.

• A System ACE controller can be connected to VxWorks as a block device, allowing the
user to attach a filesystem to the CompactFlash device connected to the System ACE
controller. The user must manually call BSP functions to initialize the System
ACE/CompactFlash as a block device and attach it to the DOS operating system. The
functions currently available to the user are: sysSystemAceInitFS() and
sysSystemAceMount(). Reference the file sysSystemAce.c in the BSP for more
details.

• All other devices and associated device drivers are not tightly integrated into a
VxWorks interface. Instead, they are loosely integrated and access to these devices is
available by directly accessing the associated device drivers from the user’s
application.

Device Driver Location and BSP Directory Tree
The automatically generated BSP contains boot code, device driver code, and initialization
code. The BSP resembles most other Tornado BSPs except for the placement of device
driver code. Off-the-shelf device driver code distributed with the Tornado IDE typically
resides in the target/src/drv directory in the Tornado distribution directory. Device driver
code for a BSP that is automatically generated resides in the BSP directory itself. This
minor deviation is due to the dynamic nature of FPGA-based embedded system. Since the
FPGA-based embedded system can be reprogrammed with new or changed IP, the device
driver configuration can change, calling for a more dynamic placement of device driver
source files.

The directory tree for the automatically generated BSP is shown below.

Figure 3: BSP Directory Tree

The top-level directory is named according to the name of the BSP the user provides. The
customized BSP source files reside in this directory. There is a subdirectory within the BSP
directory named according to the name of the CSP the user provides. The CSP directory
contains two subdirectories. The xsrc subdirectory contains all the device driver related
source files. The out subdirectory is created during the build process and only exists if
building from the command-line. It contains files generated during the compilation or build
process (e.g., the .o files for each driver source file). If building from the Project facility, the
files generated during the build process reside at
$PRJ_DIR/$BUILD_SPEC/<csp_name>_csp.

xsrc

out

<csp_name>_csp

<bsp_name>

http://www.xilinx.com

188 www.xilinx.com June 2003
1-800-255-7778 Processor IP User Guide

Limitations
The automatically generated BSP should be considered a good starting point for the user,
but should not be expected to meet all the user’s needs. Due to the potential complexities
of a BSP, the variety of features that can be included in a BSP, and the support necessary
for board devices external to the FPGA, the automatically generated BSP will likely require
enhancements by the user. However, the generated BSP will be compilable and will contain
all the necessary device drivers represented in the FPGA-based embedded system. Some
of commonly used devices are also integrated with the operating system.

http://www.xilinx.com

	Processor IP User Guide
	About This Manual
	Part I: Embedded Processor IP
	OPB Usage in FPGAs
	Overview
	Xilinx OPB Usage
	Legacy OPB Devices
	OPB Usage Notes
	OPB Comparison
	Revision History

	PLB Usage in Xilinx FPGAs
	Summary
	Overview
	Xilinx PLB Usage
	PLB Comparison
	Revision History

	Bus Infrastructure Cores
	On-Chip Peripheral Bus v2.0 with OPB Arbiter (v1.10a)
	Introduction
	Features

	On-Chip Peripheral Bus v2.0 with OPB Arbiter (v1.10b)
	Introduction
	Features

	OPB to PLB Bridge (v1.00a)
	Introduction
	Features

	OPB to PLB Bridge (v1.00b)
	Introduction
	Features

	OPB to OPB Bridge (Lite Version)
	Introduction
	Features

	OPB to DCR Bridge Specification
	Introduction
	Features

	Processor Local Bus (PLB) v3.4
	Introduction
	Features

	PLB to OPB Bridge (v1.00a)
	Introduction
	Features

	PLB to OPB Bridge (v1.00b)
	Introduction
	Features

	Device Control Register Bus (DCR) v2.9
	Introduction
	Features

	Processor System Reset Module
	Introduction
	Features

	Local Memory Bus (LMB) v1.0
	Introduction
	Features

	OPB Arbiter
	Introduction
	Features

	Fast Simplex Link Channel (FSL) v1.0
	Introduction
	Features

	IPIF
	OPB IPIF Architecture
	Introduction
	Features
	OPB IPIF Slave Attachment
	Introduction
	Features

	OPB IPIF Master Attachment
	Introduction
	Features

	OPB IPIF Address Decode
	Introduction
	Features

	OPB IPIF Interrupt
	Introduction
	Features

	OPB IP Interface Packet FIFO
	Introduction
	Features

	Direct Memory Access and Scatter Gather
	Introduction
	DMA[SG] Controller Overview

	Memory Interface Cores
	LMB Block RAM (BRAM) Interface Controller
	Introduction
	Features

	Dual LMB Block RAM (BRAM) Interface Controller
	Introduction
	Features

	OPB External Memory Controller (EMC) (v1.10a)
	Introduction
	Features

	OPB External Memory Controller (EMC) (v1.00d)
	Introduction
	Features

	OPB Synchronous DRAM (SDRAM) Controller
	Introduction
	Features

	OPB Block RAM (BRAM) Interface Controller
	Introduction
	Features

	OPB Block RAM Interface Controller (OPB_BRAM_IF_CNTLR)
	Introduction
	Features

	OPB Double Data Rate (DDR) Synchronous DRAM (SDRAM) Controller
	Introduction
	Features

	OPB SYSACE (System ACE) Interface Controller
	Introduction
	Features

	PLB External Memory Controller (EMC) Design Specification (v1.00d)
	Introduction
	Features

	PLB External Memory Controller (EMC) Design Specification (v1.10a)
	Introduction
	Features

	PLB Synchronous DRAM (SDRAM) Controller
	Introduction
	Features

	PLB Block RAM (BRAM) Interface Controller
	Introduction
	Features

	PLB Double Data Rate (DDR) Synchronous DRAM (SDRAM) Controller
	Introduction
	Features

	DDR Clock Module Reference Core
	Introduction
	Features

	Instruction Side OCM Block RAM (ISBRAM) Interface Controller
	Introduction
	Features

	Data Side OCM Block RAM (DSBRAM) Interface Controller
	Introduction
	Features

	Block RAM (BRAM) Block
	Introduction
	Features

	Peripheral Cores
	OPB ZBT Controller Design Specification
	Introduction
	Features
	Operation

	OPB Interrupt Controller (v1.00b)
	Introduction
	Features

	OPB Interrupt Controller (v1.00c)
	Introduction
	Features

	OPB 16550 UART
	Introduction
	Features

	OPB 16450 UART
	Introduction
	Features

	OPB UART Lite
	Introduction
	Features

	OPB JTAG_UART
	Introduction
	Features

	OPB IIC Bus Interface
	Introduction
	Features

	OPB Serial Peripheral Interface (SPI)
	Introduction

	OPB IPIF/LogiCore v3 PCI Core Bridge
	Introduction
	Features

	OPB Ethernet Media Access Controller (EMAC) (v1.00j)
	Introduction

	OPB Ethernet Media Access Controller (EMAC) (v1.00k)
	Introduction

	OPB Ethernet Media Access Controller (EMAC) (v1.00m)
	Introduction

	OPB Ethernet Lite Media Access Controller
	Introduction
	Features

	OPB Asynchronous Transfer Mode Controller (OPB_ATMC) (v1.00b)
	Introduction
	Features

	OPB Asynchronous Transfer Mode Controller (OPB_ATMC) (v2.00a)
	Introduction
	Features

	OPB HDLC Interface
	Introduction
	Features

	OPB Timebase WDT
	Introduction
	Features

	OPB General Purpose Input/Output (GPIO)
	Introduction
	Features

	OPB Timer/Counter
	Introduction
	The TC (Timer/Counter) is a 32-bit timer module that attaches to the OPB.
	Features

	Microprocessor Debug Module (MDM)
	Introduction
	Features

	OPB Central DMA Controller
	Introduction
	Features

	Channel FIFO
	Introduction
	Features

	Fixed Interval Timer (FIT)
	Introduction
	Features

	MII to RMII Design Specification
	Introduction
	Features

	PLB 1-Gigabit Ethernet Media Access Controller (MAC) With DMA
	Introduction
	Features

	PLB 1-Gigabit Ethernet Media Access Controller (MAC)
	Introduction

	PLB 16550 UART (v1.00b)
	Introduction
	Features

	PLB 16550 UART (v1.00c)
	Introduction
	Features

	PLB 16450 UART (v1.00b)
	Introduction
	Features

	PLB 16450 UART (v1.00c)
	Introduction
	Features

	PLB RapidIO LVDS Design
	Introduction
	Features

	PLB Asynchronous Transfer Mode Controller (PLB_ATMC)
	Introduction
	Features

	DCR Interrupt Controller Specification (v1.00a)
	Introduction
	Features

	DCR Interrupt Controller Specification (v1.00b)
	Introduction
	Features

	Part II: Software
	Device Driver Programmer Guide
	Overview
	Device Driver Architecture
	API and Naming Conventions
	Configuration Parameters
	Common Driver Infrastructure
	Revision History

	Tornado 2.0 BSP User Guide
	General Overview
	ML300 Reference BSP
	ML300Seg Reference BSP
	Insight MDFG456 Reference BSP
	These BSP on Other Boards
	Trouble-Shooting
	References
	Revision History

	Device Driver Summary
	Summary
	Device Driver Reference
	Building Block Components
	Hardware/Software Cross Reference

	Automatic Generation of Tornado 2.x (VxWorks 5.x) Board Support Packages
	Overview
	Generating the Tornado BSP
	The Tornado 2.x BSP

