# **Embedded System Design**

Prof. Stephen A. Edwards sedwards@cs.columbia.edu

Spring 2006

# **Spot the Computer**







# **Hidden Computers**







Casio Camera Watch

**Nokia 7110** Browser Phone

Sony Playstation 2

Philips DVD Player

**Philips** TiVo Recorder

## **Technical Challenges**



Complexity



Real-time



Concurrency

Legacy Languages
Embedded System Design - p. 4/2

## Software complexity growing

#### **Size of Typical Embedded System**

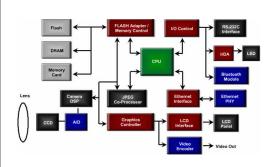
1985 13 kLOC

1989 21 kLOC ↓ 44 % per year

1 MLOC 1998 2 MLOC 2000

2008 16 MLOC ≈ Windows NT 4.0 2010 32 MLOC ≈ Windows 2000

Source: "ESP: A 10-Year Retrospective," Embedded Systems Programming, November 1998


## Written in stone-age languages

"Which of the following programming languages have you used for embedded systems in the last 12 months?"

> 81% Assembly 70% C++ 39% Visual Basic 16% Java

Source: "ESP: A 10-Year Retrospective," Embedded Systems Programming, November 1998

# Digital Camera Block Diagram



## The Design Challenge

#### Design optimal device that meets constraints on





Functionality



Performance

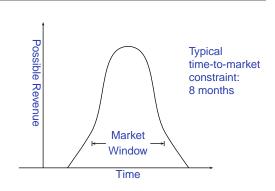


Size

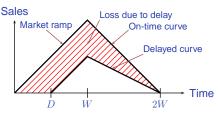




Time-to-market




Maintainability




Safety

# The Time-to-Market Challenge



# Simplified Revenue Model



Assuming a constant market ramp, on-time revenue is  $\frac{1}{2}bh=\frac{1}{2}\cdot 2W\cdot W=W^2$  and delayed revenue is  $\frac{1}{2}(2W-D)(W-D)$  so fractional revenue loss is

$$\frac{D(3W - D)}{2W^2} = O(D^2)$$

Example: when W=26 and D=10, fraction lost is about 50%.

Embedded System Design - p. 10

# Nonrecurring engineering cost: The cost of producing the first one. NRE cost dominates Production cost dominates Low NRE, high production costs High NRE, low production costs

# **Embedded System Technologies**



Integrated Circuits



Processing elements



Design tools

mbedded System Design – p. 1

# IC Technology



947: First transistor (Shockley, Bell Labs)



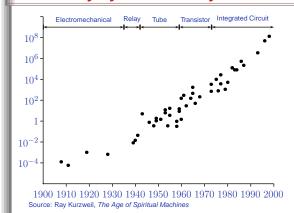
958: First integrated circuit (Kilby, TI)



1971: First microprocessor (4004: Intel)



Today: six wire layers, 90 nm features

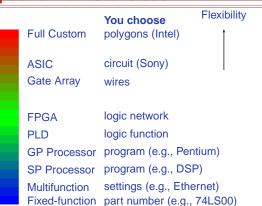

# Moore's Law



Gordon Moore, 1965: Exponential growth in the number of transistors per IC Source: Intel

Embedded System Design =

# \$1000 buys you this many CPS




Embedded System Design = p. 15

# 1918 Sears Roebuck Catalog



## **Spectrum of IC choices**



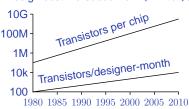
## **Hardware and Software**

Hardware Software Parallel Sequential **Synchronous** Asynchronous Stored programs **Logic Gates** Wire-based Memory-based communication communication Fixed topology Highly programmable Low power High power Less detailed More detailed No NRE High NRE Faster Slower

# **Design Tools**

HardwareSoftwareLogic SynthesisCompilersPlace-and-routeAssemblersDRC/ERC/LVSLinkersSimulatorsDebuggers

bedded System Design – p. 19

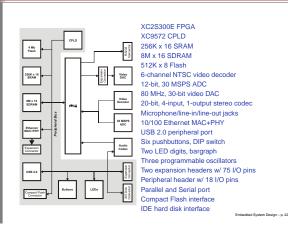

# Cost of Designs is Rising

1981: 100 designer-months for leading-edge chip 10k transistors, 100 transistors/month

2002: 30 000 designer-months

150M transistors, 5000 transistors/month

Design cost increased from \$1M to \$300M




Embedded System Design

# Your Nemesis: The XESS XSB-300E



## **Block Diagram**



#### Class Structure

First half of course: Six Introductory Labs:

- 1. Count in C on the 7-segment display
- 2. Serial Terminal in C
- 3. VHDL system reverse-engineering
- 4. Sum the contents of a small memory in VHDL
- 5. Create a simple peripheral
- 6. Build an OPB interface to off-chip SRAM

Second half project: Design-your-own

Embedded System Design - p. 2

# **Custom Project Ideas**

Broadly: C + VHDL + peripheral(s)

Video game (e.g., Pac-Man)

Video effects processor

Digital picture frame

Serial terminal

Serial port monitor

Very fancy digital clock (w/ video)

mbedded System Design – p. 2

## More Ideas

Digital tone control

Digital sound effects processor

Real-time audio spectrum analyzer

Speech synthesizer

Internet radio

# **Projects from 2004**

MIDI synthesizer

Line-following robot with video vision

SAE student vehicle telemetry system

Stereo video vision system

Pac-man-like video game

Internet video camera

# **Projects from 2005**

Scrabble Timer

Scorched Earth Video Game

SAE Auto Shifter

Internet Radio Broadcaster

3D Maze Game

Voice-over-IP Telephone

JPEG decoder

Sokoban video game

Rally-X video game