
Page 1 

Tetris Video Game 

Embedded Systems Design 

Summer, 2005 

David Sun, davidsun168@hotmail.com 

Conrad Lin, cklin.iic93g@nctu.edu.tw 

National Chiao Tung University, Taiwan, R.O.C 

 
 



Page 2 

Table of Content 
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
II. Game Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
III. Implementation Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
IV. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
 



Page 3 

Abstract - This document provides a detail of the "tetris video game". We are a team 
of two men, who complete this project in the last half of class during two weeks. The 
target platform is a development board called Spartan-3 Board, which has a Spartan-3 
FPGA chip on it. Our contribution is modifying the OPB video controller code for 
MicroBlaze, which is a software processor core developed by Xilinx, and writing a C 
program with size lessen then eight kilo bytes, as the body of logic of the " tetris 
video game". 
  Index Terms - Tetris game, fpga, embedded system, two old men. 
 



Page 4 

I. Introduction 

 
  The whole system roughly consists of two parts - software and hardware. The most 
important item, which executes the machine instructions, is processor. How can we 
obtain such a item, since all we have is a board with one FPGA chip? Two solutions 
are given by the vendor Xilinx - one is software processor simulator MicroBlaze, that 
could be downloaded into the FPGA chip as the bitstream format; the other solution is 
giving the board a "real" physical processor - IBM PowerPC Processor. The campus 
laboratory provides the previous one. 
 
  The other part of the whole system is software. With the development board, we 
can write software in two programming language, VHDL and C. We can write VHDL 
code for critical functions, OPB Video Controller and RS-232 Serial Communication, 
for example. We write C code for high level logic, in this project, is tetris game. 
 
  The developer can use a technology OPB by IBM, to let the VHDL code and C 
code communicate. For the C program, the VHDL could be accessed by memory ports 
which are some special memory addresses. For the VHDL code, the computed result 
could be put at some special memory addresses, which will be read by C program 
later. 
 
  In our design, the C program is tetris game body, and the screen data is sent by the 
sequential memory addresses, and no returned data needed. That does not mean the C 
program needs not incoming data. The C program needs player/user keyboard 
pressing data to determine what to do with the tetris block, like rotation, movement, 
dropping. 
 
  We describe how tetris game works. Bricks composed of four-squares drop from 
the top of screen sequentially. The player rotates the bricks and moves them to left or 
to right. A brick stops when touches the bottom of the screen or any brick piled up 
from the bottom of the screen. The game ends when the bricks pile touch the top of 
the screen. A row disappears when bricks fill a horizontal line, and the pile drops 
down, and more room is emptied out. 



Page 5 

II. Game Design 
 
  There are 7 types of tetris. We assign 7 colors to all of them. Encodinig 7 colors 
needs 3 bits. The C program define each square as one char, which is a 8 bits wide 
data. We use the MSB half part of the char (4 bits/1 nibble) to store the color 
information(3 bits). And the LSB half part of the char is for square status, like moving, 
dropping, and stopped. 
 
  The board is defined as  
    unsigned char grid[MAX_ROW_BLOCK_NUM] 

[MAX_ROW_BLOCK_NUM]; 
where MAX_ROW_BLOCK_NUM is 40 and MAX_ROW_BLOCK_NUM is 18. 
Each char is split into two parts too. LSB 4 bits could be 0, 1 and 2, which means 
empty/no block, moving and inside, respectively. 
 
  The incoming key press code is captured in ISR within C program. The desired 
keys are A, S, D and W which means moving to left, dropping, moving to right and 
rotation. Once the desired key codes induce an interrupt, the ISR store the keys in a 16 
elements queue. The seems-too-big queue is for buffering the quick player key presses. 
After each drop delaying for one unit time, the C program check the queue for doing 
correct responding. 
 
  The game ends when the scanning on grid[] shows that even the most top row is 
full and no more tetris block insertion is possible. 



Page 6 

III. Implementation Result 
  The result is a playable tetris game. The first part of implementation is the modified 
OPB Video Controller VHDL code, which can identify our 7 colors/3 bits data and 
mix correct RGB values to raster. 
 
  The second part of implementation is our C program. The following list shows the 
main data structure, functions, and pseudo code: 
 

Plane for store tetris blocks: 
unsigned char grid[40][18]; 

 
7 types of tetris blocks: 
short int blocksharp[7]={ 

0x4444, 0x0660, 0xE440, 0x4460, 0x2260, 0x0C60, 
0X0360 
}; 
 
Data structure for an active block: 
struct block 
{ 
    unsigned char type;/*:I,O,T,L,J,Z,N*/ 
    int  x; 
    int y; 
    unsigned char color; 
}; 
 
Important functions: 
int     main(); 
int     check_bottom(); 
int     check_top(); 
int     check_lborder(); 
int     check_rborder(); 
int     del_line(); 
void    initial(); 
void    drawblock(); 
void    clear_block(); 



Page 7 

void    todelay(void); 
void    buildblock(); 
struct  block create(); 
void    change(struct block cblock); 
void    updated_memory(struct block cblock); 
void    show_next(struct block drblock); 
 
The pseudo code of main(): 
int main () 
    Enable CPU interrupts 
    Initialize ISR handlers 
    WHILE(TRUE) 
        switch(key) 
            case DOWN() 
            case UP() 
            case LEFT() 
            case RIGHT() 
        delay for a while 
 

 



Page 8 

IV. Conclusion 
 
  During this class we learn little by little. From the theory to the practical. We study 
the tools including VHDL language, C language, Spartan-3 Board, EDK software, 
VGA control and finally the complete system - tetris game. All of the above 
items(except C language) are difficult for us. One of us(Sun) majored in EE and the 
other(Lin) majored in CS in college. So many times we can not communicate or have 
a consistent idea for one same problem or solution. 
 
  However we have an answer for the situation - the older man(Sun) knows more 
about the system. So Sun did the most jobs, from the labs to the project. Lin is the 
assistant. Our conclusion is that, with the trend of chip size shrinking and the more 
transistors available, it's always hard to conduct all layers together to do one task like 
one single system. 


