
R

User Core
Templates
Reference
Guide

January 2004

The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

ASYL, FPGA Architect, FPGA Foundry, NeoCAD, NeoCAD EPIC, NeoCAD PRISM, NeoROUTE, Timing Wizard, TRACE, XACT, XILINX,
XC2064, XC3090, XC4005, XC5210, and XC-DS501 are registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

All XC-prefix product designations, A.K.A Speed, Alliance Series, AllianceCORE, BITA, CLC, Configurable Logic Cell, CoolRunner, CORE Gen-
erator, CoreLINX, Dual Block, EZTag, FastCLK, FastCONNECT, FastFLASH, FastMap, Fast Zero Power, Foundation, HardWire, IRL, LCA, Logi-
BLOX, Logic Cell, LogiCORE, LogicProfessor, MicroBlaze, MicroVia, MultiLINX, NanoBlaze, PicoBlaze, PLUSASM, PowerGuide, PowerMaze,
QPro, RealPCI, RealPCI 64/66, SelectI/O, SelectRAM, SelectRAM+, Silicon Xpresso, Smartguide, Smart-IP, SmartSearch, Smartspec, SMART-
Switch, Spartan, TrueMap, UIM, VectorMaze, VersaBlock, VersaRing, Virtex, WebFitter, WebLINX, WebPACK, XABEL, XACTstep, XACTstep
Advanced, XACTstep Foundry, XACT-Floorplanner, XACT-Performance, XAM, XAPP, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD,

Xilinx Foundation Series, XPP, XSI, and ZERO+ are trademarks of Xilinx, Inc. The Programmable Logic Company and The Programmable Gate
Array Company are service marks of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown herein; nor does it convey any
license under its patents, copyrights, or maskwork rights or any rights of others. Xilinx, Inc. reserves the right to make changes, at any time, in
order to improve reliability, function or design and to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any
circuitry described herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under one or more
of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155; 4,758,985; 4,820,937; 4,821,233; 4,835,418;

4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135; 5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390;
5,155,432; 5,166,858; 5,224,056; 5,243,238; 5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704;
5,329,174; 5,329,181; 5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,357,153;
5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189; 5,410,194; 5,414,377;
5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719; 5,448,181; 5,448,493; 5,450,021; 5,450,022; 5,453,706; 5,455,525; 5,466,117;
5,469,003; 5,475,253; 5,477,414; 5,481,206; 5,483,478; 5,486,707; 5,486,776; 5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196;
5,498,979; 5,498,989; 5,499,192; 5,500,608; 5,500,609; 5,502,000; 5,502,440; 5,504,439; 5,506,518; 5,506,523; 5,506,878; 5,513,124;
5,517,135; 5,521,835; 5,521,837; 5,523,963; 5,523,971; 5,524,097; 5,526,322; 5,528,169; 5,528,176; 5,530,378; 5,530,384; 5,546,018;
5,550,839; 5,550,843; 5,552,722; 5,553,001; 5,559,751; 5,561,367; 5,561,629; 5,561,631; 5,563,527; 5,563,528; 5,563,529; 5,563,827;
5,565,792; 5,566,123; 5,570,051; 5,574,634; 5,574,655; 5,578,946; 5,581,198; 5,581,199; 5,581,738; 5,583,450; 5,583,452; 5,592,105;
5,594,367; 5,598,424; 5,600,263; 5,600,264; 5,600,271; 5,600,597; 5,608,342; 5,610,536; 5,610,790; 5,610,829; 5,612,633; 5,617,021;
5,617,041; 5,617,327; 5,617,573; 5,623,387; 5,627,480; 5,629,637; 5,629,886; 5,631,577; 5,631,583; 5,635,851; 5,636,368; 5,640,106;
5,642,058; 5,646,545; 5,646,547; 5,646,564; 5,646,903; 5,648,732; 5,648,913; 5,650,672; 5,650,946; 5,652,904; 5,654,631; 5,656,950;
5,657,290; 5,659,484; 5,661,660; 5,661,685; 5,670,896; 5,670,897; 5,672,966; 5,673,198; 5,675,262; 5,675,270; 5,675,589; 5,677,638;
5,682,107; 5,689,133; 5,689,516; 5,691,907; 5,691,912; 5,694,047; 5,694,056; 5,724,276; 5,694,399; 5,696,454; 5,701,091; 5,701,441;
5,703,759; 5,705,932; 5,705,938; 5,708,597; 5,712,579; 5,715,197; 5,717,340; 5,719,506; 5,719,507; 5,724,276; 5,726,484; 5,726,584;
5,734,866; 5,734,868; 5,737,234; 5,737,235; 5,737,631; 5,742,178; 5,742,531; 5,744,974; 5,744,979; 5,744,995; 5,748,942; 5,748,979;
5,752,006; 5,752,035; 5,754,459; 5,758,192; 5,760,603; 5,760,604; 5,760,607; 5,761,483; 5,764,076; 5,764,534; 5,764,564; 5,768,179;
5,770,951; 5,773,993; 5,778,439; 5,781,756; 5,784,313; 5,784,577; 5,786,240; 5,787,007; 5,789,938; 5,790,479; 5,790,882; 5,795,068;
5,796,269; 5,798,656; 5,801,546; 5,801,547; 5,801,548; 5,811,985; 5,815,004; 5,815,016; 5,815,404; 5,815,405; 5,818,255; 5,818,730;
5,821,772; 5,821,774; 5,825,202; 5,825,662; 5,825,787; 5,828,230; 5,828,231; 5,828,236; 5,828,608; 5,831,448; 5,831,460; 5,831,845;
5,831,907; 5,835,402; 5,838,167; 5,838,901; 5,838,954; 5,841,296; 5,841,867; 5,844,422; 5,844,424; 5,844,829; 5,844,844; 5,847,577;
5,847,579; 5,847,580; 5,847,993; 5,852,323; 5,861,761; 5,862,082; 5,867,396; 5,870,309; 5,870,327; 5,870,586; 5,874,834; 5,875,111;
5,877,632; 5,877,979; 5,880,492; 5,880,598; 5,880,620; 5,883,525; 5,886,538; 5,889,411; 5,889,413; 5,889,701; 5,892,681; 5,892,961;
5,894,420; 5,896,047; 5,896,329; 5,898,319; 5,898,320; 5,898,602; 5,898,618; 5,898,893; 5,907,245; 5,907,248; 5,909,125; 5,909,453;
5,910,732; 5,912,937; 5,914,514; 5,914,616; 5,920,201; 5,920,202; 5,920,223; 5,923,185; 5,923,602; 5,923,614; 5,928,338; 5,931,962;
5,933,023; 5,933,025; 5,933,369; 5,936,415; 5,936,424; 5,939,930; 5,942,913; 5,944,813; 5,945,837; 5,946,478; 5,949,690; 5,949,712;
5,949,983; 5,949,987; 5,952,839; 5,952,846; 5,955,888; 5,956,748; 5,958,026; 5,959,821; 5,959,881; 5,959,885; 5,961,576; 5,962,881;
5,963,048; 5,963,050; 5,969,539; 5,969,543; 5,970,142; 5,970,372; 5,971,595; 5,973,506; 5,978,260; 5,986,958; 5,990,704; 5,991,523;

5,991,788; 5,991,880; 5,991,908; 5,995,419; 5,995,744; 5,995,988; 5,999,014; 5,999,025; 6,002,282; and 6,002,991; Re. 34,363, Re. 34,444,
and Re. 34,808. Other U.S. and foreign patents pending. Xilinx, Inc. does not represent that devices shown or products described herein are free
from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to correct any errors contained herein or to advise
any user of this text of any correction if such be made. Xilinx, Inc. will not assume any liability for the accuracy or correctness of any engineering

or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in such applications without the
written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-2004 Xilinx, Inc. All Rights Reserved.

R

User Core Templates Reference Guide www.xilinx.com January 2004
1-800-255-7778

http://www.xilinx.com

User Core Templates Reference Guide
The following table shows the revision history for this document.

Version Revision

11/19/02 1.0 Initial release.

01/17/03 1.1 Updated for EDK SP3

04/01/03 1.2 Updated for EDK 3.2 SP1

08/22/03 1.3 Updated for EDK 6.1

09/26/03 1.4 Updated for EDK 6.1 SP1
January 2004 www.xilinx.com User Core Templates Reference Guide
1-800-255-7778

http://www.xilinx.com

User Core Templates Reference Guide www.xilinx.com January 2004
1-800-255-7778

http://www.xilinx.com

R

Chapter 1

Adding User Cores to Your Embedded
System

Overview
There are several types of user logic associated with FPGA designs that incorporate an
embedded processor subsystem. User logic may be unrelated to the embedded processor
subsystem, it may have a weak coupling to the processor, or it may be included as an
integral part of the processor subsystem. There are also several configurations that can be
used to connect user cores and user logic to an embedded subsystem. Some of these
configurations are shown below in Figure 1-1. This document deals primarily with the
creation and use of a user core that is intended to be included as part of the embedded
processor subsystem. This configuration is shown as System 3 in Figure 1-1.

Definitions of the terms used in the document are:

• FPGA - the entire design to be loaded into the FPGA, consisting of an embedded
processor subsystem (created by the platform generation tools) and other logic
(created by the user).

• Embedded processor subsystem - a design described in an MHS (Microprocessor
Hardware Specification) file and generated with the platform generation tools. This
typically consists of one or more processors, bus peripherals, bus arbiters, bridges,
support logic (such as reset circuitry), and user cores.

• User core - a core designed to attach to an embedded processor bus, such as OPB or
PLB. From the viewpoint of the platform generation tools, the user core looks just like
the Xilinx-supplied embedded system cores.

• User logic - to simplify the process of attaching a user core to a CoreConnect bus, the
user core can make use of a portable, predesigned bus interface (called the IP
Interface, IPIF) that takes care of the bus interface signals, bus protocol, and other
interface issues. The IPIF presents an interface to the user logic called the IP
InterConnect (IPIC). User logic is logic that has been designed with an IPIC interface
to make use of the IPIF bus attachment and other services. User logic that is designed
with an IPIC has the advantage that it is portable and can be easily reused on different
processor buses by changing the IPIF to which it is attached.

• User Core Reference Design - the User Core Reference Design simplifies the task of
attaching the IPIF to user logic. The user core reference design is a VHDL file that
instantiates the IPIF and provides most of the VHDL code required to create a user
core. The reference design provides a place to instantiate the user logic, which can be
VHDL or a black box created from verilog, schematic, etc. There are a total of nine
user core reference designs that address specific bus attachment needs. They will be
described in greater detail below.

• Other logic - logic that is not included as part of the embedded processor subsystem.
It may have some connection to the embedded subsystem, but it typically does not
have a bus interface such as an IPIC and it is not considered a bus peripheral,
January 2004 www.xilinx.com 1
User Core Templates Reference Guide 1-800-255-7778

http://www.xilinx.com

Chapter 1: Adding User Cores to Your Embedded System
R

although a bus peripheral may provide an interface from the embedded system to the
other logic.

Figure 1-1: Three Embedded System Configurations

Proc

Core 1

Core 2

Core 3C
or

eC
on

ne
ct

 B
us

Embedded Processor
Subsystem Other Logic

FPGA

Proc

Core 1

Core 2

IPIFC
or

eC
on

ne
ct

 B
u

s

Embedded Processor
Subsystem Other Logic

FPGA

User Logic

Proc

Core 1

Core 2

UserC
or

eC
on

ne
ct

 B
u

s

Embedded Processor
Subsystem Other Logic

FPGA

Core

IPIF+User Logic

IPIC

(IPIC on User Logic)

System 1 - no user core

System 2 - user logic external to

System 3 - user core part of embedded
processor subsystem

embedded processor subsystem
2 www.xilinx.com January 2004
1-800-255-7778 User Core Templates Reference Guide

http://www.xilinx.com

User Core Reference Designs
R

User Core Reference Designs
The user core reference designs provide a convenient way to get your user logic attached
to the PLB or OPB bus. These reference designs are provided as VHDL source and provide
a framework into which user logic can be instantiated. Each user core reference design
contains an instantiation of an IPIF (IP Interface). The IPIF instantiated in each reference
design is customized so that only the features and services required by the reference
design are used. For example, the user core reference design that provides a simple OPB
slave interface uses only the slave signal set and bus attachment logic required for a slave
interface.

The user core reference designs are provided as starting points for building custom PLB
and OPB peripherals. Each reference design has some degree of parameterization as well,
so the best way to use the reference designs is to find a reference design that is closest to the
features and services required by your core and customize from there.

Reference Designs are named according to the features that are provided by the reference
design. For PLB and OPB slaves, there are four reference designs that provide varying
degrees of services for the user. PLB and OPB slave reference designs are denoted by the
ssp<n> (Slave Services Package n) suffix, where in general the higher number indicates
inclusion of more services. Table 1-1 below shows the PLB and OPB slave reference
designs available and the services provided by each.

For PLB and OPB masters, there are five reference designs that provide varying degrees of
services for the user. PLB and OPB master reference designs are denoted by the msp<n>
(Master Services Package n) suffix, where in general the higher number indicates inclusion
of more services. Table 1-2 below shows the PLB and OPB master reference designs
available and the services provided by each.

Table 1-1: PLB and OPB User Core Reference Designs (Slave)

Reference Design(1)

PLB/OPB
Slave

Attach-
ment

Address
Decode

Module
Identifica-

tion
Register

Reset
Register

Device
Interrupt

Controller
R/W FIFOs

R/W Packet
FIFOs

plb_core_ssp0_ref
opb_core_ssp0_ref

• • • •

plb_core_ssp1_ref
opb_core_ssp1_ref

• • • • •

plb_core_ssp2_ref
opb_core_ssp2_ref(1)

• • • • • •

plb_core_ssp3_ref
opb_core_ssp3_ref(2)

• • • • • •

Notes:
1. Resource utilization numbers for these reference designs can be found in the reference design documentation.
2. Available in a future release.
January 2004 www.xilinx.com 3
User Core Templates Reference Guide 1-800-255-7778

http://www.xilinx.com

Chapter 1: Adding User Cores to Your Embedded System
R

Creating a User Core
The process of creating a user core from the OPB user core reference designs is shown in
Figure 1-2. This same process is followed for creating a user core from the PLB user core
reference designs.

First, an appropriate reference design is selected based on the level of services required.
Then, the user logic is inserted into the reference design and the reference design file
names and entities are renamed if desired. Finally, the reference design MPD and PAO
files are modified as necessary and the user core is instantiated in the system’s MHS file.
For definitions of the MPD, PAO, and MHS file formats, see the Embedded System Tools
Guide document (est_guide.pdf) in the $EDK/doc directory.

Table 1-2: PLB and OPB User Core Reference Designs (Master)

Reference Design(1)

PLB/OPB
Slave

Attach-
ment

Address
Decode

Module
Identif-
cation

Register

Reset
Register

Device
Interrupt
Control-

ler

R/W
FIFOs

R/W
Packet
FIFOs

OPB
Master
Attach-
ment

Simple
DMA

DMA with
scatter/
gather

plb_core_msp0_ref(2)
opb_core_msp0_ref(2)

•

plb_core_msp1_ref(2)
opb_core_msp1_ref(2)

• • • • •

plb_core_msp2_ref(2)
opb_core_msp2_ref(2)

• • • • • •

plb_core_msp3_ref(2)
opb_core_msp3_ref(2)

• • • • • • • •

Notes:
1. Resource utilization numbers for these reference designs can be found in the reference design documentation.
2. Available in a future release.
4 www.xilinx.com January 2004
1-800-255-7778 User Core Templates Reference Guide

http://www.xilinx.com

Creating a User Core
R

.

Some important points about this process are:

• The User Logic can either be a VHDL entity or any type of black box (fixed netlist)
recognized by the Xilinx implementation tools. Black boxes are either NGC files
created by XST (Xilinx Synthesis Technology) or EDIF files created by a variety of
sources.

• Each reference design directory contains a design document, a VHDL source

Figure 1-2: OPB User Core Process

User Logic

user_logic.vhd
user_logic.v → user_logic.ngc
user_logic.sch → user_logic.edf

opb_ipif_ssp0

User Logic

opb_ipif_ssp0

MPD File

PAO File

+

+

opb_core_ssp0_ref.vhd

opb_mycore.vhd

opb_mycore_v2_1_0.mpd

opb_mycore_v2_1_0.pao

ppc_405

plb_v34

opb_timer

opb_v20

plb2opb_bridge

opb_mycore

system.mhs
January 2004 www.xilinx.com 5
User Core Templates Reference Guide 1-800-255-7778

http://www.xilinx.com

Chapter 1: Adding User Cores to Your Embedded System
R

reference design, an MPD template, and a PAO template. These files are located in the
EDK installation area under the following directories :
- opb_core_ssp0_ref.vhd is in:
$EDK/hw/XilinxReferenceDesigns/pcores/opb_core_ssp0_ref/<core_version>
/hdl/vhdl
- opb_core_ssp0_ref.pdf is in:
$EDK/hw/XilinxReferenceDesigns/pcores/opb_core_ssp0_ref/doc

• - opb_core_ssp0_ref_v2_1_0.mpd is in:
$EDK/hw/XilinxReferenceDesigns/pcores/opb_core_ssp0_ref/<core_version>
/data
- opb_core_ssp0_ref_v2_1_0.pao is in:
$EDK/hw/XilinxReferenceDesigns/pcores/opb_core_ssp0_ref/<core_version>
/data

• Note that the version number in the MPD and PAO file names are the Platform
Specification File (PSF) format version, not the core version number. The current PSF
format version is v2.1.0.

• Lines in the reference designs that can be customized by the user (to change the
peripheral name, for example) contain the comment --USER--. Searching for --USER--
in the VHDL, MPD, and PAO will guide the user to all lines that may require
modification.

• For detailed information on a particular reference design, including resource
utilization numbers, refer to the documentation provided with that reference design.

User Core Reference Systems
Reference System designs that incorporate the User Core Reference designs into a real
system are provided in the EDK installation directory (the reference design for OPB Slave
Services Package 0 is used for this example):

• $EDK/systems/XilinxReferenceSystems/opb_ssp0_<core_version>

These Reference System designs provide a EDK Xilinx Platform Studio project file
(system.xps), a Microprocessor Hardware Specification file (system.mhs), and
documentation of the reference system along with example software where applicable.

In addition to these files, an example UCF file is provided in the data directory of the
project that targets a commercially available development board. This UCF file needs to be
modified and renamed system.ucf for use in the user’s application hardware.

Reference System designs are currently available for the following User Core Reference
Designs:

• OPB Slave Services Package 0 & 1
• PLB Slave Services Package 0, 1, 2, & 3

Additional Reference System designs will be available in future releases.

PLB and OPB IPIC Interfaces
To effectively use the PLB and OPB user core reference designs, the user logic should be
designed with an IP Interconnect (IPIC). The IPIC is a simple set of signals that connect the
user logic to the IPIF logic. The marjority of the IPIC signal set is common to all Xilinx
IPIFs, so user logic that is designed with an IPIC can be easily ported to a different bus
simply by using the appropriate IPIF (and user core reference design). IPIFs currently exist
for the two Xilinx-supported CoreConnect buses, OPB and PLB. The IPIC is designed so
that only the subset required in a particular application can be used. For simple slaves,
only the slave interface signals are used, while for simple masters, only the master signals
are used. This simplifies use of the IPIC and reduces the complexity of interfacing to
simple peripherals.
6 www.xilinx.com January 2004
1-800-255-7778 User Core Templates Reference Guide

http://www.xilinx.com

PLB and OPB IPIC Interfaces
R

OPB IPIC Signal Set
The IPIC signal set for OPB slave and master peripherals is shown below in Table 1-3.

Table 1-3: OPB IPIC I/O Signals

Signal Name Range I/O Description

Bus2IP_Addr 0:C_<bus>_AWIDTH-1 I Address to User Logic

Bus2IP_BE 0:C_<bus>_DWIDTH/8-1 I Byte enables to User Logic

Bus2IP_Burst none I Burst-mode qualifier to User Logic

Bus2IP_Clk none I IPIC clock. Identical to the <bus> clock

Bus2IP_CE 0:C_NUM_CE-1 I “chip” enable to User Logic

Bus2IP_CS 0:C_NUM_CS-1 I “chip” select to User Logic

Bus2IP_Data 0:C_<bus>_DWIDTH-1 I Data to User Logic

Bus2IP_Freeze none I Tells the User Logic to freeze

Bus2IP_RdCE 0:C_NUM_CE-1 I Read enables to User Logic

Bus2IP_Reset none I Signal to reset the User Logic

Bus2IP_RNW none I Read/Not Write Signal to User Logic

Bus2IP_WrCE 0:C_NUM_CE-1 I Write enables to User Logic

IP2Bus_Ack none O Acknowledgement from User Logic

IP2Bus_Data 0:C_<bus>_DWIDTH-1 O Data from IP

IP2Bus_Error none O Error response

IP2Bus_Intr 0:C_IP_INTR_NUM-1 O Interrupt event signals from User Logic

IP2Bus_PostedWrInh none O Posted write inhibit from User Logic

IP2Bus_Retry none O Retry response from User Logic

IP2Bus_ToutSup none O Timeout suppress from User Logic

Bus2IP_MstError none I Master Error from IPIF

Bus2IP_MstLastAck none I Master Last Acknowledge from IPIF

Bus2IP_MstAck none I Master Acknowledge from IPIF

Bus2IP_MstRetry none I Master Retry from IPIF

Bus2IP_MstTimeOut none I Master Timeout from IPIF

IP2Bus_Addr 0:C_<bus>_AWIDTH-1 O <bus> address for the master transaction

IP2Bus_Clk none O Possible future signal to allow for dual-
clock-domain (asynchronous) FIFOs

IP2Bus_MstBE 0:C_<bus>_DWIDTH/8-1 O Byte-enables qualifiers from User Logic

IP2Bus_MstBurst none O Burst qualifier from User Logic

IP2Bus_MstBusLock none O Bus-lock qualifier from User Logic

IP2Bus_MstNum 0:3 O Burst size indicator from User Logic

IP2Bus_MstReq none O Master request from User Logic

IP2Bus_MstRNW none O Read/Not Write from User Logic

IP2IP_Addr 0:C_<bus>_AWIDTH-1 O Local device address for the master
transaction
January 2004 www.xilinx.com 7
User Core Templates Reference Guide 1-800-255-7778

http://www.xilinx.com

Chapter 1: Adding User Cores to Your Embedded System
R

PLB IPIC Signal Set
The IPIC signal set for PLB slave and master peripherals is shown below in Table 2.

Table 2: PLB IPIC I/O Signals

Signal Name Range I/O Description

Bus2IP_Addr 0:C_<bus>_AWIDTH-1 I Address to User Logic

Bus2IP_BE 0:C_<bus>_DWIDTH/8-1 I Byte enables to User Logic

Bus2IP_Burst none I Burst-mode qualifier to User Logic

Bus2IP_Clk none I IPIC clock. Identical to the <bus> clock

Bus2IP_CE 0:C_NUM_CE-1 I “chip” enable to User Logic

Bus2IP_CS 0:C_NUM_CS-1 I “chip” select to User Logic

Bus2IP_Data 0:C_<bus>_DWIDTH-1 I Data to User Logic

Bus2IP_Freeze none I Tells the User Logic to freeze

IP2Bus_RdAck none O Read transfer acknowledgement from User
Logic

Bus2IP_RdCE 0:C_NUM_CE-1 I Read enables to User Logic

Bus2IP_RdReq none I Read request to User Logic

Bus2IP_Reset none I Signal to reset the User Logic

Bus2IP_RNW none I Read/Not Write Signal to User Logic

IP2Bus_WrAck none O Write transfer acknowledgement from User
Logic

Bus2IP_WrCE 0:C_NUM_CE-1 I Write enables to User Logic

Bus2IP_WrReq none I Read request to User Logic

IP2Bus_Data 0:C_<bus>_DWIDTH-1 O Data from IP

IP2Bus_Error none O Error response

IP2Bus_IntrEvent 0:
C_IP_INTR_MODE_ARRAY'le
ngth - 1

O Interrupt event signals from User Logic

IP2Bus_PostedWrInh none O Posted write inhibit from User Logic

IP2Bus_Retry none O Retry response from User Logic

IP2Bus_ToutSup none O Timeout suppress from User Logic

Bus2IP_MstError none I Master Error from IPIF

Bus2IP_MstLastAck none I Master Last Acknowledge from IPIF

Bus2IP_MstRdAck none I Master Read Acknowledge from IPIF

Bus2IP_MstWrAck none I Master Write Acknowledge from IPIF

Bus2IP_MstRetry none I Master Retry from IPIF

Bus2IP_MstTimeOut none I Master Timeout from IPIF

IP2Bus_Addr 0:C_<bus>_AWIDTH-1 O <bus> address for the master transaction

IP2Bus_Clk none O Possible future signal to allow for dual-
clock-domain (asynchronous) FIFOs

IP2Bus_MstBE 0:C_<bus>_DWIDTH/8-1 O Byte-enables qualifiers from User Logic

IP2Bus_MstBurst none O Burst qualifier from User Logic

IP2Bus_MstBusLock none O Bus-lock qualifier from User Logic

IP2Bus_MstRdReq none O Master read request from User Logic
8 www.xilinx.com January 2004
1-800-255-7778 User Core Templates Reference Guide

http://www.xilinx.com

PLB and OPB IPIC Interfaces
R

IP2Bus_MstWrReq none O Master write request from User Logic

IP2IP_Addr 0:C_<bus>_AWIDTH-1 O Local device address for the master
transaction

IP2RFIFO_WrReq none I Active high signal indicating that the IP is
attempting to write the data on the
IP2RFIFO_Data bus to the User IP side of the
RdFIFO. The transaction is not completed
until the RdFIFO responds with an active
high assertion on the RFIFO2IP_WrAck
signal and a corresponding rising edge of
the Bus2IP_Clk signal occurs. (1)

IP2RFIFO_Data (0: C_RDFIFO_DWIDTH-1) I Write data from the User IP to the RdFIFO
write port is transmitted on this bus. Data
present on the bus is written when
IP2RFIFO_WrReq is high, RFIFO2IP_WrAck
is high, and a rising edge of the Bus2IP_Clk
occurs. (1)

IP2RFIFO_WrMark none I Active high signal commanding the RdFIFO
to perform a "Mark" operation. (1)

IP2RFIFO_WrRelease none I Active high signal commanding the RdFIFO
to perform a "Release" operation.(1)

IP2RFIFO_WrRestore none I Active high signal commanding the RdFIFO
to perform a "Restore" operation. (1)

RFIFO2IP_WrAck none O Active high signal indicating that the data
write request will complete at the next rising
edge of the Bus2IP_Clk signal. (1)

RFIFO2IP_AlmostFull none O Active high signal indicating that the
RdFIFO can accept only one more data
write. (1)

RFIFO2IP_Full none O Active high signal indicating that the
RdFIFO is full and cannot accept data. The
RFIFO2IP_WrAck signal assertion will be
suppressed until the FIFO is no longer full.
(1)

RFIFO2IP_Vacancy (0: log2(C_RDFIFO_DEPTH)-1) O Status bus indicating the available locations
for writing in the RdFIFO. (1)

IP2WFIFO_RdReq none I Active high signal indicating that the IP is
attempting to read data from the WrFIFO.
The transaction is not completed until the
WrFIFO responds with an active high
assertion on the WFIFO2IP_RdAck signal
and a corresponding rising edge of the
Bus2IP_Clk signal occurs. (1)

IP2WFIFO_RdMark none I Active high signal commanding the WrFIFO
to perform a "Mark" operation. (1)

IP2WFIFO_RdRelease none I Active high signal commanding the WrFIFO
to perform a "Release" operation. (1)

IP2WFIFO_RdRestore none I Active high signal commanding the WrFIFO
to perform a "Restore" operation. (1)

Table 2: PLB IPIC I/O Signals (Continued)

Signal Name Range I/O Description
January 2004 www.xilinx.com 9
User Core Templates Reference Guide 1-800-255-7778

http://www.xilinx.com

Chapter 1: Adding User Cores to Your Embedded System
R

Slave Interface Signal Descriptions
These signals listed below are primarily associated with the slave interface of the IPIC;
however, some of the signals are shared with the master interface and IPIFs that contain a
master (such as DMA) may make use of the slave signals to complete local transactions.
The behavior of the Read Packet FIFO and the Write Packet FIFO is discussed in the
Product Specification DS415 On-Chip Peripheral Bus IP Interface Packet FIFO therefore,
the signals associated with these services are not described here.

Bus2IP_Addr
This is the address bus from the IPIF to the user logic. This bus is the same width as the
host bus address bus. The Bus2IP_Addr bus can be used for additional address decoding
or as input to addressable memory devices.

Bus2IP_BE
The Bus2IP_BE is a bus of Byte Enable qualifiers from the IPIF to the user logic. A bit in the
Bus2IP_BE set to ‘1’ indicates that the associated byte lane contains valid data. For
example, if Bus2IP_BE = 0011, this indicates that byte lanes 2 and 3 contain valid data.

Bus2IP_Burst
The Bus2IP_Burst signal from the IPIF to the user logic indicates that the current
transaction is a burst transaction.

Bus2IP_Clk
This is the clock input to the user logic. All IPIC signals are synchronous to this clock. It is
identical to the <bus>_Clk signal that is an input to the user core. In an OPB core,

WFIFO2IP_Data (0: C_WRFIFO_DWIDTH - 1) O Read data from the WrFIFO to the User IP is
transmitted on this bus. Data present on the
bus is valid when IP2WFIFO_RdReq is high,
WFIFO2IP_RdAck is high, and a rising edge
of the Bus2IP_Clk occurs. (1)

WFIFO2IP_RdAck none O Active high signal asserted in response to a
User IP read request of the WrFIFO. Data on
the WFIFO2IP_Data bus is valid for reading
when this signal is asserted in conjunction
with the rising edge of the Bus2IP_Clk. (1)

WFIFO2IP_AlmostEm
pty

none O Active high signal indicating that the
WrFIFO can provide only one more data
read. (1)

WFIFO2IP_Empty none O Active high signal indicating that the
WrFIFO is empty and cannot provide data.
The WFIFO2IP_RdAck signal assertion will
be suppressed until the FIFO is no longer
empty. (1)

WFIFO2IP_Occupanc
y

(0: log2(C_WRFIFO_DEPTH)-1) O Status bus indicating the available locations
for reading in the WrFIFO. (1)

Notes:
1. The behavior of the Read Packet FIFO and the Write Packet FIFO is discussed in the Product Specification DS415 On-Chip

Peripheral Bus IP Interface Packet FIFO.

Table 2: PLB IPIC I/O Signals (Continued)

Signal Name Range I/O Description
10 www.xilinx.com January 2004
1-800-255-7778 User Core Templates Reference Guide

http://www.xilinx.com

PLB and OPB IPIC Interfaces
R

Bus2IP_Clk is the same as OPB_Clk, and in a PLB core, it is the same as PLB_Clk. No
additional buffering is provided on the clock; it is passed through as is.

Bus2IP_CE
Bus2IP_CE is a bus of “chip” enables from the IPIF to the user core. In the general case,
there can be an arbitrary number of CE signals for each Bus2IP_CS signal, but the number
of CE signals is fixed in some of the user core reference designs. The assertion of a bit in
Bus2IP_CE indicates that a point address associated with the CE has been decoded. For
example, the Bus2IP_CS signal indicates a decode of a block of addresses, and the
Bus2IP_CE signal indicates a decode of a particular register or address within the block of
addresses.

Bus2IP_CS
Bus2IP_CS is a bus of “chip” select signals from the IPIF to the user core. It indicates a
decode within a block of addresses defined by a base address and a high address. In the
simplest reference designs, there is only one Bus2IP_CS signal.

Bus2IP_Data
This is the data bus from the IPIF to the user logic; it is used for both master and slave
transactions. It is the same width as the host bus data bus.

Bus2IP_Freeze
The Bus2IP_Freeze signal is an input to the user logic that indicates a freeze has been
requested. A freeze is typically used in a debugging situation in which the core should
gracefully stop it’s internal operations but remain active on the bus. An example is a
watchdog timer which should be stopped when a software breakpoint is reached so that
spurious system resets are not generated. It is up to the user core to define the action
caused by the Bus2IP_Freeze input.

Bus2IP_RdCE
The Bus2IP_RdCE bus is an input to the user logic. It is Bus2IP_CE qualified by a read
transaction.

Bus2IP_RdReq (PLB)
The Bus2IP_RdReq signal is an input to the user logic indicating that the requested
transaction is a read transfer.

Bus2IP_Reset
Signal to reset the User Logic; asserts whenever the <bus>_Rst signal does and, if the Reset
block is included, whenever there is a software-programmed reset.

Bus2IP_RNW
Bus2IP_RNW is an input to the user logic that indicates the transaction type (read or
write). Bus2IP_RNW = 1 indicates a read transaction and Bus2IP_RNW = 0 indicates a
write transaction. It is valid whenever at least one Bus2IP_CS is active.

Bus2IP_WrCE
The Bus2IP_WrCE bus is an input to the user logic. It is Bus2IP_CE qualified by a write
transaction.

Bus2IP_WrReq (PLB)
The Bus2IP_WrReq signal is an input to the user logic indicating that the requested
transaction is a write transfer.
January 2004 www.xilinx.com 11
User Core Templates Reference Guide 1-800-255-7778

http://www.xilinx.com

Chapter 1: Adding User Cores to Your Embedded System
R

IP2Bus_Ack (OPB), IP2Bus_RdAck, IP2Bus_WrAck (PLB)
These signals provide the read/write acknowledgement from the user logic to the IPIF. For
writes, it indicates the data has been taken by the user logic. For reads, it indicates that
valid data is available. For immediate acknowledgement (such as for a register
read/write), this signal can be tied to ‘1’. Wait states can be inserted in the transaction by
delaying the assertion of the acknowledgement. If the IP2Bus_Ack for OPB cores will be
delayed more than 8 clocks, then the IP2Bus_ToutSup (timeout suppress) signal must also
be asserted to prevent a timeout on the host bus.

IP2Bus_Data
This is the data bus from the user logic to the IPIF; it is used for both master and slave
transactions. It is the same width as the host bus data bus.

IP2Bus_Error
This signal from the user logic to the IPIF indicates an error has occurred during the
current transaction. It is valid when IP2Bus_Ack is asserted.

IP2Bus_Intr (OPB), IP2Bus_IntrEvent (PLB)
The IP2Bus_Intr/IP2Bus_IntrEvent bus is an output from the user logic to the IPIF that
consists of interrupt event signals to be detected and latched inside the IPIF.

IP2Bus_PostedWrInh
This signal from the user logic to the IPIF indicates that posted writes should be inhibited.
Normally burst write operations are treated as posted writes to improve performance, but
assertion of the IP2Bus_PostedWrInh signal indicates that all writes should be treated as
single-beat write transactions.

IP2Bus_Retry
IP2Bus_Retry is a response from the user logic to the IPIF that indicates the currently
requested transaction cannot be completed at this time and that the requesting master
should retry the operation. If the IP2Bus_Retry signal will be delayed more than 8 clocks,
then the IP2Bus_ToutSup (timeout suppress) signal must also be asserted to prevent a
timeout on the host bus.

IP2Bus_ToutSup
The IP2Bus_ToutSup must be asserted by the user logic whenever its acknowledgement or
retry response will take longer than 8 clock cycles.

Master Interface Signal Descriptions
These signals listed below are primarily associated with the master interface of the IPIC;
however, some of the master signals are shared with the slave interface and IPIFs that
contain a master (such as DMA) may make use if the slave signals to complete local
transactions. These transactions are described in the chapters on the user reference designs
that provide master services in the IPIF.

Bus2IP_MstError
The Bus2IP_MstError signal from the IPIF to the user logic indicates whether the transfer
has an error. The signal is valid during the cycle that Bus2IP_MstLastAck is active. Note: a
burst transaction reporting an error may have terminated prematurely.
12 www.xilinx.com January 2004
1-800-255-7778 User Core Templates Reference Guide

http://www.xilinx.com

PLB and OPB IPIC Interfaces
R

Bus2IP_MstLastAck
Bus2IP_MstLastAck is a one-cycle acknowledgement of a master transaction from the IPIF
to the user logic. A transaction may consist of multiple transfers (burst transaction);
Bus2IP_MstLastAck will always accompany the last Bus2IP_MstAck for the transaction.

Bus2IP_MstAck (OPB), Bus2IP_MstRdAck, Bus2IP_MstWrAck (PLB)
This is a one-cycle acknowledgement of a master transfer from the IPIF to the user logic.
For writes it indicates that the IPIF has accepted the current data and is ready for the next
data; for reads it indicates that valid data is present on the Bus2IP_Data bus.

Bus2IP_MstRetry
Bus2IP_MstRetry is a one-cycle alternative completion signal to Bus2IP_MstLastAck. It
indicates that the requested transaction could not be performed but may succeed if retried;
if IP2Bus_MstReq remains asserted in the following cycle, the IPIF will retry the
transaction and may reuse any state that it has built up in support of the transaction (the
user logic must leave addresses and transaction qualification signals unchanged). If
otherwise the request signal is deasserted on the following cycle and the transaction is
considered abandoned from the point of view of the IPIF.

Bus2IP_MstTimeOut
Bus2IP_MstTimeOut (from the IPIF to the user logic) is a one-cycle alternative completion
signal to Bus2IP_MstLastAck. It indicates that the requested transaction could not be
performed within the timeout interval associated with the host bus.

IP2Bus_Addr
IP2Bus_Addr is an output from the user logic to the IPIF. It is the address bus for the
current master transaction. It is valid when IP2Bus_Req is active.

IP2Bus_Clk
Possible future signal from the user logic to the IPIF to allow for dual-clock-domain
(asynchronous) FIFOs. Not currently used.

IP2Bus_MstBE
IP2Bus_MstBE is a bus of Byte Enables qualifiers from the user logic to the IPIF for a master
transaction. A bit in the IP2Bus_MstBE set to ‘1’ indicates that the associated byte lane
contains valid data. For example, if IP2Bus_MstBE = 0011, this indicates that byte lanes 2
and 3 contain valid data.

IP2Bus_MstBurst
The IP2Bus_MstBurst qualifier from the user logic to the IPIC indicates the master
transaction is a burst operation.

IP2Bus_MstBusLock
The IP2Bus_MstBusLock qualifier from the user logic to the IPIC indicates the master is
requesting that the host bus be locked until IP2Bus_MstBusLock is deasserted. The
assertion of IP2Bus_MstBusLock must accompany a master request, and can be deasserted
at any time.

IP2Bus_MstNum (OPB Only)
The IP2Bus_MstNum bus indicates the burst length for burst transfers. The number of
transfers for the burst is IP2Bus_MstNum+1, so that a value of 0000 indicates a burst length
of one, and a value of 1111 indicates a burst length of 16. Bursts may be from 1 to 16 words,
halfwords, or bytes.
January 2004 www.xilinx.com 13
User Core Templates Reference Guide 1-800-255-7778

http://www.xilinx.com

Chapter 1: Adding User Cores to Your Embedded System
R

IP2Bus_MstReq (OPB Only)
This signal from the user logic to the IPIF indicates that the user logic is requesting a
master transaction. This request signal must remain asserted until acknowledged by
Bus2IP_MstLastAck, Bus2IP_Retry, or Bus2IP_TimeOut.

IP2Bus_MstRNW(OPB Only)
IP2Bus_MstRNW is an input to the IPIF from the user logic that indicates the transaction
type (read or write). IP2Bus_MstRNW = 1 indicates a read transaction and
IP2Bus_MstRNW = 0 indicates a write transaction. It is valid when IP2Bus_MstReq is
active.

IP2Bus_MstRdReq, IP2Bus_MstWrReq(PLB Only)
IP2Bus_MstRdReq and IP2Bus_MstWrReq are inputs to the IPIF from the user logic that
indicates that the user logic is requesting a master transaction (read or write). This request
signal must remain asserted until acknowledged by Bus2IP_MstLastAck, Bus2IP_Retry, or
Bus2IP_TimeOut.

IP2IP_Addr
The IP2IP_Addr signal is an output from the user logic that indicates the local device
address for the master transaction. This address will be the source for a master write
transaction and the sink for a master read transaction. This is used only in bus peripherals
that are both master and slave and the master requires access to the slave devices to
perform master operations. An example is a master that must read from a local memory
and then write that data to the host bus. In this case IP2IP_Addr is used to address the local
memory that provides the data for the write.

Example IPIC transactions
The timing diagrams shown below are intended to illustrate example IPIC transactions to
clarify the timing relationships between signals. These timing diagrams do not completely
define the behaviour of all signals and are intended to supplement the textual descriptions
given above. For simplicity, the OPB IPIC signal set is used in these timing diagrams. The
timing relationships of the PLB IPIC signals are for the most part identical. If there are
differences, these differences are noted in the text description of the timing diagram. Please
refer to the OPB and or PLB IPIF documentation for complete details.

The behavior of the Read Packet FIFO and the Write Packet FIFO is discussed in the
Product Specification DS415 On-Chip Peripheral Bus IP Interface Packet FIFO therefore,
the timing diagrams associated with these services are not repeated here.
14 www.xilinx.com January 2004
1-800-255-7778 User Core Templates Reference Guide

http://www.xilinx.com

PLB and OPB IPIC Interfaces
R

Slave Read – Single Beat
The timing diagram shows two typical IPIC read transactions, each started with the
assertion of Bus2IP_CS and terminated with assertion of the single-cyle IP2Bus_Ack
signal.

Figure 1-3: Slave Read – Single Beat

Bus2IP_Clk

Bus2IP_Addr

Bus2IP_BE

Bus2IP_Burst

Bus2IP_RNW

Bus2IP_CS(i)

Bus2IP_CE(i)

Bus2IP_RdCE(i)

Bus2IP_WrCE(i)

Bus2IP_Data

Bus2IP_Freeze

IP2Bus_Data

IP2Bus_Ack

IP2Bus_Error

IP2Bus_Retry

IP2Bus_Toutsup

IP2Bus_Intr

IP2Bus_PostedWrInh

A0 A1

1111 1111

D0 D1
January 2004 www.xilinx.com 15
User Core Templates Reference Guide 1-800-255-7778

http://www.xilinx.com

Chapter 1: Adding User Cores to Your Embedded System
R

Slave Write – Single Beat
This example shows two typical single-beat write transactions, each starting with assertion
of Bus2IP_CS and ending with assertion of the the single-cycle IP2Bus_Ack signal. Note
that two Bus2IP_CE signals are shown, indicating A0 and A1 are in the same Bus2IP_CS
space but are accessing different chip enables (Bus2IP_CE). This could represent writing to
two sequential registers within the same device. The empty cycle between the two
transactions is not required but is typical due to pipelining of the acknowledge signal to
the host bus.

Figure 1-4: Slave Write – Single Beat

Bus2IP_Clk

Bus2IP_Addr

Bus2IP_BE

Bus2IP_Burst

Bus2IP_RNW

Bus2IP_CS(i)

Bus2IP_CE(0)

Bus2IP_CE(1)

Bus2IP_RdCE(i)

Bus2IP_WrCE(0)

Bus2IP_WrCE(1)

Bus2IP_Data

Bus2IP_Freeze

IP2Bus_Data

IP2Bus_Ack

IP2Bus_Error

IP2Bus_Retry

IP2Bus_Toutsup

IP2Bus_Intr

IP2Bus_PostedWrInh

A0 A1

1111 1111

D0 D1
16 www.xilinx.com January 2004
1-800-255-7778 User Core Templates Reference Guide

http://www.xilinx.com

PLB and OPB IPIC Interfaces
R

Slave Read – Single Beat Back to Back
Single-cycle, back to back reads are possible if supported by the host bus, the IP, and the
pipelining within the IPIF is turned off (this is an advanced feature of the IPIF and is not
currently accessible from the user core reference design; it will be available in future user
core reference designs). The operation of the interface is the same: one data and
acknowledge for each assertion of Bus2IP_CS.

Figure 1-5: Slave Read – Single Beat Back to Back

Bus2IP_Clk

Bus2IP_Addr

Bus2IP_BE

Bus2IP_Burst

Bus2IP_RNW

Bus2IP_CS(i)

Bus2IP_CE(i)

Bus2IP_RdCE(i)

Bus2IP_WrCE(i)

Bus2IP_Data

Bus2IP_Freeze

IP2Bus_Data

IP2Bus_Ack

IP2Bus_Error

IP2Bus_Retry

IP2Bus_Toutsup

IP2Bus_Intr

IP2Bus_PostedWrInh

A0 A1 A2 A3 A4

1111 1100 1111 0001 1111

D0 D1 D2 D3 D4
January 2004 www.xilinx.com 17
User Core Templates Reference Guide 1-800-255-7778

http://www.xilinx.com

Chapter 1: Adding User Cores to Your Embedded System
R

Slave Write – Single Beat Back to Back
Single-cycle, back to back writes are possible if supported by the host bus, the IP, and the
pipelining within the IPIF is turned off (this is an advanced feature of the IPIF and is not
currently accessible from the user core reference design; it will be available in future user
core reference designs). The operation of the interface is the same: one data and
acknowledge for each assertion of Bus2IP_CS.

Figure 1-6: Slave Write – Single Beat Back to Back

Bus2IP_Clk

Bus2IP_Addr

Bus2IP_BE

Bus2IP_Burst

Bus2IP_RNW

Bus2IP_CS(i)

Bus2IP_CE(i)

Bus2IP_RdCE(i)

Bus2IP_WrCE(i)

Bus2IP_Data

Bus2IP_Freeze

IP2Bus_Data

IP2Bus_Ack

IP2Bus_Error

IP2Bus_Retry

IP2Bus_Toutsup

IP2Bus_Intr

IP2Bus_PostedWrInh

A0 A1 A2 A3 A4

1111 1100 1111 0001 1111

D0 D1 D2 D3 D4
18 www.xilinx.com January 2004
1-800-255-7778 User Core Templates Reference Guide

http://www.xilinx.com

PLB and OPB IPIC Interfaces
R

Slave Read – Single Beat with Retry
Retry is an alternate transaction completion that may be used in place of IP2Bus_Ack.
Assertion of IP2Bus_Retry indicates to the bus master that the transaction could not be
completed but will succeed at some time in the future if retried. Retry transactions are
identical to normally completed transactions except no data is returned and IP2Bus_Retry
is asserted in place of IP2Bus_Ack.

Figure 1-7: Slave Read – Single Beat with Retry

Bus2IP_Clk

Bus2IP_Addr

Bus2IP_BE

Bus2IP_Burst

Bus2IP_RNW

Bus2IP_CS(i)

Bus2IP_CE(i)

Bus2IP_RdCE(i)

Bus2IP_WrCE(i)

Bus2IP_Data

Bus2IP_Freeze

IP2Bus_Data

IP2Bus_Ack

IP2Bus_Error

IP2Bus_Retry

IP2Bus_Toutsup

IP2Bus_Intr

IP2Bus_PostedWrInh

A0 A0

1111 1111

D0 D0
January 2004 www.xilinx.com 19
User Core Templates Reference Guide 1-800-255-7778

http://www.xilinx.com

Chapter 1: Adding User Cores to Your Embedded System
R

Slave Write – Single Beat with Retry
Retry is an alternate transaction completion that may be used in place of IP2Bus_Ack.
Assertion of IP2Bus_Retry indicates to the bus master that the transaction could not be
completed but will succeed at some time in the future if retried. Retry transactions are
identical to normally completed transactions except no data is written and IP2Bus_Retry is
asserted in place of IP2Bus_Ack.

Figure 1-8: Slave Write – Single Beat with Retry

Bus2IP_Clk

Bus2IP_Addr

Bus2IP_BE

Bus2IP_Burst

Bus2IP_RNW

Bus2IP_CS(i)

Bus2IP_CE(0)

Bus2IP_CE(1)

Bus2IP_RdCE(i)

Bus2IP_WrCE(i)

Bus2IP_Data

Bus2IP_Freeze

IP2Bus_Data

IP2Bus_Ack

IP2Bus_Error

IP2Bus_Retry

IP2Bus_Toutsup

IP2Bus_Intr

IP2Bus_PostedWrInh

A0 A0

1111 1111

D0
20 www.xilinx.com January 2004
1-800-255-7778 User Core Templates Reference Guide

http://www.xilinx.com

PLB and OPB IPIC Interfaces
R

Slave Read – Single Beat with Timeout Suppress
IP2Bus_Toutsup must be asserted if the assertion of IP2Bus_Ack will be delayed by more
than 8 clocks from Bus2IP_CS. If more than 8 clocks elapse from assertion of Bus2IP_CS
without assertion of either IP2Bus_Ack or IP2Bus_Toutsup, a timeout error may occur on
the host bus.

Figure 1-9: Slave Read – Single Beat with Timeout Suppress

Bus2IP_Clk

Bus2IP_Addr

Bus2IP_BE

Bus2IP_Burst

Bus2IP_RNW

Bus2IP_CS(i)

Bus2IP_CE(i)

Bus2IP_RdCE(i)

Bus2IP_WrCE(i)

Bus2IP_Data

Bus2IP_Freeze

IP2Bus_Data

IP2Bus_Ack

IP2Bus_Error

IP2Bus_Retry

IP2Bus_Toutsup

IP2Bus_Intr

IP2Bus_PostedWrInh

A0

1111

D0
January 2004 www.xilinx.com 21
User Core Templates Reference Guide 1-800-255-7778

http://www.xilinx.com

Chapter 1: Adding User Cores to Your Embedded System
R

Slave Write – Single Beat with Timeout Suppress
IP2Bus_Toutsup must be asserted if the assertion of IP2Bus_Ack will be delayed by more
than 8 clocks from Bus2IP_CS. If more than 8 clocks elapse from assertion of Bus2IP_CS
without assertion of either IP2Bus_Ack or IP2Bus_Toutsup, a timeout error may occur on
the host bus.

Figure 1-10: Slave Write – Single Beat with Timeout Suppress

Bus2IP_Clk

Bus2IP_Addr

Bus2IP_BE

Bus2IP_Burst

Bus2IP_RNW

Bus2IP_CS(i)

Bus2IP_CE(i)

Bus2IP_RdCE(i)

Bus2IP_WrCE(i)

Bus2IP_Data

Bus2IP_Freeze

IP2Bus_Data

IP2Bus_Ack

IP2Bus_Error

IP2Bus_Retry

IP2Bus_Toutsup

IP2Bus_Intr

IP2Bus_PostedWrInh

A0

1111

D0
22 www.xilinx.com January 2004
1-800-255-7778 User Core Templates Reference Guide

http://www.xilinx.com

PLB and OPB IPIC Interfaces
R

Slave Read – Single Beat with Error
The IP2Bus_Error signal is a qualifier for IP2Bus_Ack (not an alternate completion) and
indicates that an error occurred during the transaction.

Figure 1-11: Slave Read – Single Beat with Error

Bus2IP_Clk

Bus2IP_Addr

Bus2IP_BE

Bus2IP_Burst

Bus2IP_RNW

Bus2IP_CS(i)

Bus2IP_CE(i)

Bus2IP_RdCE(i)

Bus2IP_WrCE(i)

Bus2IP_Data

Bus2IP_Freeze

IP2Bus_Data

IP2Bus_Ack

IP2Bus_Error

IP2Bus_Retry

IP2Bus_Toutsup

IP2Bus_Intr

IP2Bus_PostedWrInh

A0 A1

1111 1111

D0 D1
January 2004 www.xilinx.com 23
User Core Templates Reference Guide 1-800-255-7778

http://www.xilinx.com

Chapter 1: Adding User Cores to Your Embedded System
R

Slave Write – Single Beat with Error
The IP2Bus_Error signal is a qualifier for IP2Bus_Ack (not an alternate completion) and
indicates that an error occurred during the transaction.

Figure 1-12: Slave Write – Single Beat with Error

Bus2IP_Clk

Bus2IP_Addr

Bus2IP_BE

Bus2IP_Burst

Bus2IP_RNW

Bus2IP_CS(i)

Bus2IP_CE(0)

Bus2IP_CE(1)

Bus2IP_RdCE(i)

Bus2IP_WrCE(i)

Bus2IP_Data

Bus2IP_Freeze

IP2Bus_Data

IP2Bus_Ack

IP2Bus_Error

IP2Bus_Retry

IP2Bus_Toutsup

IP2Bus_Intr

IP2Bus_PostedWrInh

A0 A1

1111 1111

D0 D1
24 www.xilinx.com January 2004
1-800-255-7778 User Core Templates Reference Guide

http://www.xilinx.com

PLB and OPB IPIC Interfaces
R

Slave Read – Burst Operation
In burst operation, assertion of Bus2IP_Burst indicates that a burst is in progress and the
addresses follow sequential order. Bus2IP_BE must be consistent throughout the burst and
indicate sequential accesses. For example, a burst of words must have a constant
Bus2IP_BE of 1111, while a burst of bytes must sequence as 1000, 0100, 0010, 0001, 1000, etc.
Slaves may throttle the burst by negating IP2Bus_Ack during the burst, but the host bus
master is not allowed to throttle the burst. A burst may be any length and is terminated by
deassertion of the Bus2IP_Burst signal.

Note: The PLB Bus2IP_Burst signal will negate one clock cycle before the OPB
Bus2IP_Burst signal shown below. It negates coincident with the last address of the burst
(A0_28).

Figure 1-13: Slave Read – Burst Operation

Bus2IP_Clk

Bus2IP_Addr

Bus2IP_BE

Bus2IP_Burst

Bus2IP_RNW

Bus2IP_CS(i)

Bus2IP_CE(i)

Bus2IP_RdCE(i)

Bus2IP_WrCE(i)

Bus2IP_Data

Bus2IP_Freeze

IP2Bus_Data

IP2Bus_Ack

IP2Bus_Error

IP2Bus_Retry

IP2Bus_Toutsup

IP2Bus_Intr

IP2Bus_PostedWrInh

A0 A0+4 A0+8 A0+12 A4+16 A0+20 A0+24 A0+28

1111

D0 D1 D2 D3 D4 D5 D6 D7
January 2004 www.xilinx.com 25
User Core Templates Reference Guide 1-800-255-7778

http://www.xilinx.com

Chapter 1: Adding User Cores to Your Embedded System
R

Slave Write – Burst Operation
In burst operation, assertion of Bus2IP_Burst indicates that a burst is in progress and the
addresses follow sequential order. Bus2IP_BE must be consistent throughout the burst and
indicate sequential accesses. For example, a burst of words must have a constant
Bus2IP_BE of 1111, while a burst of bytes must sequence as 1000, 0100, 0010, 0001, 1000, etc.
Slaves may throttle the burst by negating IP2Bus_Ack during the burst, but the host bus
master is not allowed to throttle the burst. A burst may be any length and is terminated by
deassertion of the Bus2IP_Burst signal.

Note: The PLB Bus2IP_Burst signal will negate one clock cycle before the OPB
Bus2IP_Burst signal shown below. It negates coincident with the last address of the burst
(A0_28).

Figure 1-14: Slave Write – Burst Operations

Bus2IP_Clk

Bus2IP_Addr

Bus2IP_BE

Bus2IP_Burst

Bus2IP_RNW

Bus2IP_CS(i)

Bus2IP_CE(i)

Bus2IP_RdCE(i)

Bus2IP_WrCE(i)

Bus2IP_Data

Bus2IP_Freeze

IP2Bus_Data

IP2Bus_Ack

IP2Bus_Error

IP2Bus_Retry

IP2Bus_Toutsup

IP2Bus_Intr

IP2Bus_PostedWrInh

A0 A0+4 A0+8 A0+12 A4+16 A0+20 A0+24 A0+28

1111

D0 D1 D2 D3 D4 D5 D6 D7
26 www.xilinx.com January 2004
1-800-255-7778 User Core Templates Reference Guide

http://www.xilinx.com

PLB and OPB IPIC Interfaces
R

Master Read – Single Beat
A single-beat master read is initiated with assertion of IP2Bus_MstReq and terminated
with assertion of Bus2IP_MstAck and Bus2IP_MstLastAck. Bus2IP_MstLastAck is used to
indicate the last acknowledge of a transfer and hence must be asserted concurrently with
Bus2IP_MstAck for single-beat transfers; it is asserted only on the last data transfer of a
burst transfer.

Figure 1-15: Master Read – Single Beat

Bus2IP_Clk

IP2Bus_Addr

IP2Bus_MstBE

IP2Bus_Burst

IP2Bus_MstBusLock

IP2Bus_MstRNW

IP2Bus_MstReq

IP2Bus_Data

Bus2IP_Data

Bus2IP_MstAck

Bus2IP_MstLastAck

Bus2IP_MstError

Bus2IP_MstRetry

Bus2IP_MstTimeOut

IP2IP_Addr

A0 A1

1111 1111

D0 D1
January 2004 www.xilinx.com 27
User Core Templates Reference Guide 1-800-255-7778

http://www.xilinx.com

Chapter 1: Adding User Cores to Your Embedded System
R

Master Write – Single Beat
A single-beat master write is initiated with assertion of IP2Bus_MstReq and terminated
with assertion of Bus2IP_MstAck and Bus2IP_MstLastAck. Bus2IP_MstLastAck is used to
indicate the last acknowledge of a transfer and hence must be asserted concurrently with
Bus2IP_MstAck for single-beat transfers; it is asserted only on the last data transfer of a
burst transfer.

Figure 1-16: Master Write – Single Beat

Bus2IP_Clk

IP2Bus_Addr

IP2Bus_MstBE

IP2Bus_Burst

IP2Bus_MstBusLock

IP2Bus_MstRNW

IP2Bus_MstReq

IP2Bus_Data

Bus2IP_Data

Bus2IP_MstAck

Bus2IP_MstLastAck

Bus2IP_MstError

Bus2IP_MstRetry

Bus2IP_MstTimeOut

IP2IP_Addr

A0 A1

1111 1111

D0 D1
28 www.xilinx.com January 2004
1-800-255-7778 User Core Templates Reference Guide

http://www.xilinx.com

PLB and OPB IPIC Interfaces
R

Master Read – Single Beat Back to Back
This example illustrates single-cycle completion of single-beat master read transactions.
The unused cycle between transfers is not required but is typical due to pipeline delays in
the master logic.

Master Write – Single Beat Back to Back
This example illustrates single-cycle completion of single-beat master write transactions.
The unused cycle between transfers is not required but is typical due to pipeline delays in
the master logic.

Figure 1-17: Master Read – Single Beat Back to Back

Bus2IP_Clk

IP2Bus_Addr

IP2Bus_MstBE

IP2Bus_Burst

IP2Bus_MstBusLock

IP2Bus_MstRNW

IP2Bus_MstReq

IP2Bus_Data

Bus2IP_Data

Bus2IP_MstAck

Bus2IP_MstLastAck

Bus2IP_MstError

Bus2IP_MstRetry

Bus2IP_MstTimeOut

IP2IP_Addr

A0 A1 A2

1111 1111 1111

D0 D1 D2
January 2004 www.xilinx.com 29
User Core Templates Reference Guide 1-800-255-7778

http://www.xilinx.com

Chapter 1: Adding User Cores to Your Embedded System
R

Figure 1-18: Master Write – Single Beat Back to Back

Bus2IP_Clk

IP2Bus_Addr

IP2Bus_MstBE

IP2Bus_Burst

IP2Bus_MstBusLock

IP2Bus_MstRNW

IP2Bus_MstReq

IP2Bus_Data

Bus2IP_Data

Bus2IP_MstAck

Bus2IP_MstLastAck

Bus2IP_MstError

Bus2IP_MstRetry

Bus2IP_MstTimeOut

IP2IP_Addr

A0 A1 A2

1111 1111 1111

D0 D1 D2
30 www.xilinx.com January 2004
1-800-255-7778 User Core Templates Reference Guide

http://www.xilinx.com

PLB and OPB IPIC Interfaces
R

Master Read – Burst Operation
During master burst operation, the master must provide sequential addresses on
IP2Bus_Addr, with the address increment determined by the transaction size. For
example, the address must increment by 4 for fullword bursts, 2 for halfword bursts and 1
for byte bursts. The IP2Bus_MstBE must be consistent with the address presented on
IP2Bus_Addr. A burst is indicated by the assertion of IP2Bus_Burst, and the length of the
burst is defined by the IP2Bus_MstNum bus. The burst length is IP2Bus_MstNum+1. Each
transfer is terminated with assertion of Bus2IP_MstAck, and the last transfer of the burst
must be terminated by Bus2IP_MstLstAck.

Figure 1-19: Master Read – Burst Operation

Bus2IP_Clk

IP2Bus_Addr

IP2Bus_MstBE

IP2Bus_MstNum

IP2Bus_Burst

IP2Bus_MstBusLock

IP2Bus_MstRNW

IP2Bus_MstReq

IP2Bus_Data

Bus2IP_Data

Bus2IP_MstAck

Bus2IP_MstLastAck

Bus2IP_MstError

Bus2IP_MstRetry

Bus2IP_MstTimeOut

IP2IP_Addr

A0 A0+4 A0+8 A0+12 A0+16 A0+20 A0+24 A0+28

1111

0111

D0 D1 D2 D3 D4 D5 D6 D7
January 2004 www.xilinx.com 31
User Core Templates Reference Guide 1-800-255-7778

http://www.xilinx.com

Chapter 1: Adding User Cores to Your Embedded System
R

Master Write – Burst Operation
During master burst operation, the master must provide sequential addresses on
IP2Bus_Addr, with the address increment determined by the transaction size. For
example, the address must increment by 4 for fullword bursts, 2 for halfword bursts and 1
for byte bursts. The IP2Bus_MstBE must be consistent with the address presented on
IP2Bus_Addr. A burst is indicated by the assertion of IP2Bus_Burst, and the length of the
burst is defined by the IP2Bus_MstNum bus. The burst length is IP2Bus_MstNum+1. Each
transfer is terminated with assertion of Bus2IP_MstAck, and the last transfer of the burst
must be terminated by Bus2IP_MstLstAck.

Revision History
The following table shows the revision history for this document.

Figure 1-20: Master Write – Burst Operation

Bus2IP_Clk

IP2Bus_Addr

IP2Bus_MstBE

IP2Bus_MstNum

IP2Bus_Burst

IP2Bus_MstBusLock

IP2Bus_MstRNW

IP2Bus_MstReq

IP2Bus_Data

Bus2IP_Data

Bus2IP_MstAck

Bus2IP_MstLastAck

Bus2IP_MstError

Bus2IP_MstRetry

Bus2IP_MstTimeOut

IP2IP_Addr

A0 A0+4 A0+8 A0+12 A0+16 A0+20 A0+24 A0+28

1111

0111

D0 D1 D2 D3 D4 D5 D6 D7

Date Version Revision

11/15/02 1.0 Initial Xilinx version for EDK3.1 SP2

04/01/03 1.1 Added IPIC timing diagrams

08/22/03 1.2 Updated for PLB reference designs and EDK 6.1

09/26/03 1.3 Update for EDK 6.1 SP1

11/05/03 1.3.1 Correct path un User Core Reference System section for CR 179425
32 www.xilinx.com January 2004
1-800-255-7778 User Core Templates Reference Guide

http://www.xilinx.com

Revision History
R

January 2004 www.xilinx.com 33
User Core Templates Reference Guide 1-800-255-7778

http://www.xilinx.com

	User Core Templates Reference Guide
	Adding User Cores to Your Embedded System
	Overview
	User Core Reference Designs
	Creating a User Core
	PLB and OPB IPIC Interfaces
	Revision History

