

USB Media
Philip Li (pcl2007)

Pamela Lee (pyl2001)
Yanjie Ma (ym2009)

Neeraj Bahati (nrb2001)
Alex Kuo (aek2001)

Michael Chuen (mpc2002)

Table of Contents

1. Introduction……………………………………………………………….... 3
2. Project Description……………………………………………………….... 3
3. Responsibilities…………………………………………………………….. 3
4. Project Details…………………………………………………………….... 4
5. Problems Encountered………………………………………………………11
6. Lessons Learned…………………………………………………………… 12
7. Advice……………………………………………………………………… 13
8. Appendix…………………………………………………………………… 13
9. Files………………………………………………………………………… 18

 2

Introduction

Universal Serial Port (USB) is the new standard for connecting peripherals to computers.
Its performance outshines that of the traditional serial and parallel ports on a computer.
Serial and parallel ports are limited to certain devices configured a unique way. A
common issue with parallel ports are its non-standards while serial ports have limited
bandwidth and ports. However, the USB allows a means of standard connection
between peripherals and computers while providing a fast connection. The basis for the
project was the configuration of the USB so that it is recognized as a device that can
transmit information to the host computer particularly as a remote control. Programs
such as Winamp and Windows Media Player are a big force in the entertainment
industry. Many people have replaced the traditional radio and CD player with a more
advanced means of listening to music and have created a new market of products that will
enhance a listeners experience, thus is the basis of our idea for the project.

Project Description

The FPGA is used to receive information from a user to control several functions of a
mp3 player: play, stop and skip song. When a button is pushed, a signal is sent to the
OPB. The microblaze continually receives information from the USB indicating any
command changes from the push buttons and sends the information to the USB using the
Cypress CY&C68001 EZ-USB SX2 USB interface located on the board. Once data is
transferred over the USB, the operating system on the host computer automatically
installs drivers specific to the device specifications which will allow the computer to
retrieve information from the USB. The information received is handled using a C
program that will interface with a command line program that tells the music player
which functions to perform.

Responsibilities

1. Reading Signal from Push Button –Alex, Mike, Neeraj
2. Sending information to OPB-Pam, Phil, Yanjie
3. Enumeration of USB device – Pam, Phil, Yanjie
4. Sending Information over USB – Phil, Yanjie
5. Reading Information from USB port – Alex, Neeraj
6. Command Interface with Winamp – Alex, Mike, Pam

 3

Project Details

1. Push Buttons

The push buttons assign a media player functionality to three of the four pushbuttons on
the XESS XSB-300E. As you can see from the pushbutton assignments listed above,
there is no FPGA pin for pushbutton three. We’re unsure as to why the pin was either
left unconnected or why they neglected to list the pin number. Since we could only work

 4

with three functionalities, we decided to assign them as play, stop and next track. In
essence, these buttons would be the same as pushing the play, stop and next track buttons
within the player itself.

The actual implementation of the push buttons builds on the SRAM device that was
created in Lab 6. To fully understand the individual signals and clock cycles, we
examine the OPB clock diagram for a read operation. We can choose to ignore the write
operation here because the transfer from the push buttons is in onlyone direction (from
the pin to the OPB device). From the timing diagram, we choose to use a FSM in order
to represent each stage of the transfer progress. The above diagram is a general diagram
of the states that we implement in our FSM. When matched with the timing diagram,
cycle three represents the first transition into the SELECT state. (So cycle two is IDLE
and four is TRANSFER).

Clock Cycle of OPB During a Read Transaction

Because of the fact that the transfers from the push buttons are in a single direction, many
of the additional signals and booleans that were needed in the BRAM/SRAM

 5

implementation are no longer required. The general idea of mapping the ports and using
an OBUF and address mapping still take place in our implementation.
2. USB Transmission:

Once information is received by the push buttons, the information is then passed into a C
program that will then be passed into the USB. These signals in turn will then be used in
the interrupt service routine.

Register values we are using to communicate between USB controller and Microblaze:

 00: Command Interface
 04: FIFO Read via End Point 2
 08: FIFO Read via End Point 6
 10: To_C State -> interrupt indication
 14: Data_To_C State -> Data communication between vhdl and c
 18: Empty Flag State

USB FIFO address line setting
 100: Command Interface
 010: FIFO write
 000: FIFO read from To_C state, Data_To_C state, and Empty Flag State

Command Protocol:

For the command address read or write byte, the first bit signifies address transfer or data
transfer, the second bit signifies a read or write command and the next six bits represent
the register address. For the command data write byte, the first bit signifies a data
transfer and is split into two different bytes, where each of the four least significant bits
contain half of the data that is to be transferred.

Enumeration:

A descriptor of the device, via a C program, was written and manually loaded in the USB
interface rather than using the default descriptor given by the Cypress documentation.

 6

Block Diagram of OPB and USB Controller

Two modes of transfer over the USB were used: control and interrupt. Control
transfer was used by the host to receive information about the device and
configure it. It was used to initialize and report the status of the device. Interrupt
transfer was used to actually send data over the USB. In this mode of transfer,
data transfer is initialized in the opposite direction; data is retrieved from the
device rather than having the information sent from the device.

 7

Block Diagram of EZ-USB SX2

 8

Finite State Machine for USB Controller

3. XMMS Controller

XMMS is a Linux based multimedia player based on Winamp. Originally, we planned on
using Winamp. However, USB interfacing in Windows is significantly more
complicated than in Linux. Therefore, we decided to use Linux and XMMS due to its
similarity to Winamp.

Conveniently, XMMS can be operated using command line arguments, making it rather
simple to send commands to the player once a signal is sent. The –p, –s, –f and –e
switches can be used to perform the functionalities we desire. These correspond to play,

Selected

Idle

Read

Xfer Empty
Flag

IntC2

IntC1

Xfer Int

Full

CM_WR &
!ready /
Sln_retry

FIFO_WR or
 FIFO
_RD or
CM_WR

FIFO_WR &
full_flag

FIFO_RD/
slaveread=
’1’,
OE=’1’,CS
=’1’

CM_WR & ready /
slave_wr=’1’, cs=’1’,
tristate=’0’

FIFO_WR&!fullflag /
slave_wr=’1’, cs=’1’,
tristate=’0’

Fullflag/PKTEND=’1’

Interrupt/tristate=’1’,cs=’1’
,OE=’1’,slaveread=’1’,CM
_RD=’1’

FIFO_W
R or
CM_WR /to_C=’1’,

CM_RD=’1’

/to_C=’1
’

FIFO_RD/
tristaet=’1’
,cs=’1’,OE
=’1’

FIFO_RD/
passEF=’1’

 9

stop, forward and enqueue. Every time a command line argument is entered, XMMS
automatically clears the playlist. The enqueue switch is used in order to prevent XMMS
from clearing the playlist.

Our XMMS controller thus utilizes any keyboard like input, interprets the input, and then
sends the respective command to XMMS.

Once the USB transfer device is implemented, we decided that the best way for the Linux
machine to receive the input would be to disguise the MicroBlaze as a Human Interface
Device (HID). HIDs have their own device class definitions already installed on all
major operating systems, so a separate driver class would not have to be written (which
we actually started to do for a Windows environment, before we decided that Kernel
programming was beyond what we were capable of). In particular, Linux comes with
built in HID Usage Tables and convenient commands (ex. /sbin/lsusb) and files (ex.
/proc/bus/usb/) that show very detailed reports and attributes whenever a USB device is
inserted.

Since we had decided to write our XMMS controller to take in keyboard inputs, we
decided to mimic a HID keyboard for our MicroBlaze. By obtaining an USB keyboard
and running lsusb on the Linux machine, much of the required transfer variables were
obtained. Combined with other information located throughout various Linux files, we
“backwards engineered” the HID device and set the same variables into the MicroBlaze.
That way, when the Linux machine queries the MicroBlaze for product information, the
MicroBlaze now passes the information that a HID Keyboard would pass, and so Linux
thinks a USB HID Keyboard has just been connected.

4. Translation of Information

Once the connection is made between the USB device and Linux machine, we must not
only establish how the data is transferred (byte orders, memory size), but what data is
transferred (if we receive 0011 as the data, filtering out header bytes, etc., what does that
translate to?). For this, we examined how our keyboard interacted with Linux and once
again mimic this behavior on the MicroBlaze.

Every time a key is pressed on the keyboard, a scancode is transmitted. When the key is
released, another scancode is transmitted (released scancode = original scancode + 0x80).
The Linux machine then takes the received scancode and, using a mapping of scancodes
to keycodes viewable through getkeycodes, maps it into an equivalent keycode. The
keycode is then finally mapped to a keysym, which is the output we traditionally see (the
ASCI outputs, keyboard symbols, etc.)

 10

Our XMMS controller takes a finite set of keysyms, and so we are interested in being
able to mimic the generation of these specific keysyms from the MicroBlaze. Working
backwards then, we derive the original scancodes and send them from the MicroBlaze to
the Linux machine whenever a push button is pressed. Thankfully, Linux has a built in
function that enables you to see the scancode whenever a button is pressed (must be
under root). Using this feature, we establish the three buttons we want (inputs chosen in
order to correspond to c_source_file for XMMS controller).

Input Initial_scancode End_scancode
1 0x29 0xA9
2 0x02 0x82
3 0x03 0x83

Problems Encountered

Since there was no precedent in the USB device on the FPGA, we decided that we
needed to read up on all the background information available. Thus, right after the
completion of lab 6, we all met up to divide up the work. Out of our group team
members, we divided into two smaller groups - one to work on the Microblaze side and
one to work on the operating system side. Both groups were unfamiliar with USB
protocols and found reading material to familiarize themselves with the device. By the
75% demo, we had just finished reading books, manuals, and documentation and started
to actually code for the Microblaze. We realized we had spent too much time reading
more material than we needed to actually complete the project.
 When we hit an impasse in the VHDL side of our project, we recognized that we
needed help. We were in constant contact with Marcio, at both his office hours each
week, to enlist his aid with any and all problems we were confronted with. However,
even with Marcio’s help and countless hours spent in the lab working, we were still
unable to get the Microblaze portion of our project to work.

VHDL:
 The failure of the VHDL code has been the obstacle for the project to move
forward. The USB peripheral code is not able to communicate with the USB controller.
We attempted different approaches during the process, including different operating
mechanisms in the finite state machines but we were not able to write to and read from
the registers in the USB controller at the end. We suspected that the OPB bus was not
working properly but we tried to fetch values back to the Sln_DBus for the different OPB
address input and we successfully received the values in the Microblaze. So our
speculation is that the main problem lies in the finite state machines mechanism that

 11

communicates with the USB controller. Another problem that we encountered is that to
perform a read in the command interface at the USB controller, the VHDL code has to
enter the finite state machine cycle in response to an interrupt signal from the USB
controller. What we decided to do is that after the VHDL code stores in a register the
input data from the USB controller, the Microblaze performed a check to see if they
contain values, and read from it if it does. This mechanism generated another problem for
us in coding the Microblaze in terms of deciding how often and where we should check
for an interrupt signal. But we did not discover this problem until later in the process.
Using an ISR could have been a better solution to this problem.

Operating System Side:

Since we had divided our project into two portions, the Microblaze side and the
operating system side, and since the operating system side was largely contingent upon
completion of the Microblaze side, this bottleneck made us rethink our approach on the
operating system side. Instead of waiting for the Microblaze side to be finished, we tried
to get as many pieces on the operating system side finished as possible. We decided to
write a program which would control the XMMS player and to simulate the pushbuttons
with a USB device. Our belief was that if we could simulate the pushbuttons with another
USB device, when the Microblaze side was written, we could send the same recognition
information that device would send to effectively trick the operating system into
believing it was the USB device. This simulated device would only have three
functionalities to simulate the three pushbuttons available on the Microblaze board. These
functionalities would mimic three codes that the USB device would send. Therefore, by
writing a program which could interpret the codes sent, we could finish a portion of the
project which would easily be inserted when the USB functionality was finished.

 We considered using several devices that the Microblaze could mimic. Initially,
we considered using a USB keyboard. However, we were unable to find anyone who was
in possession of a USB keyboard. We next turned to USB mice which are much more
readily available than their keyboard counterparts. Due to our limited knowledge of how
USB mice events were handled in C programs, we decided against using a USB mouse.
Next, we chose to use a PS/2 keyboard because we were able to find information on how
keycodes were sent and rationalized that the process would be similar to a USB
keyboard. We were able to write a program which read keyboard strokes from a PS/2
keyboard and subsequently controlled the XMMS player.

Lessons Learned

With a group as large as six members, it is difficult to keep in constant communication.
At the beginning of our project, we did not set up weekly meetings or even determine a
constant mode of communication, which was one of the largest obstacles in our project.
We learned too late that it was important to get everyone together in one room to discuss
any difficulties encountered and any progress made.

 12

Advice

As with any large project, it is better to start as early as possible. Our project was
divided onto two fronts, the Microblaze side and the operating system side, where the
latter was dependent on the implementation and thus the completion of the former. The
implementation of reading from the USB was based on the how the USB device was
enumerated as well as how the information was to be sent.

Since we were the sole group working with USB this semester and there were no
previous projects done on it, there was a lot of research done prior and during the project.
It is imperative that you familiarize yourself with the various manuals and data sheets on
the devices/chips that are associated with the project. We spent a large majority of the
time looking for information that was already in the manuals.

Appendix

CY7C68001 56-pin SSOP Pin Assignment

 13

FIFO Address Lines Setting

 14

Command Synchronous Read Timing Diagram

Command Synchronous Write Timing Diagram

 15

Slave FIFO Synchronous Read Timing Diagram

Slave FIFO Synchronous Write Timing Diagram

 16

Slave FIFO Synchronous Packet End Strobe Timing Diagram

Slave FIFO Synchronous Address Timing Diagram

Slave FIFO Address to Flags/Data Timing Diagram

Slave FIFO Output Enable Timing Diagram

 17

Files

USB Controller Source Code

main.c

#include "xparameters.h"
#include "xbasic_types.h"
#include "xio.h"

#define ADDR_CM 0x01800000 // XIO_Out
#define ADDR_FIFO_RD 0x01800004 // XIO_In
#define ADDR_FIFO_WR 0x01800008 // X_IO_Out
#define ADDR_SIG_INTERRUPT 0x01800010
#define ADDR_READ_INTERRUPT 0x01800014
#define ADDR_EMPTY_FLAG 0x01800018
#define DESC_LENGTH 0x42
#define BASE_ADDR 0x01800000

#define TEMP1 0x01800004
#define TEMP2 0x01800000
#define TEMP3 0x01800008

Xuint8 short_descriptor[6]= {
180,
4,
2,
16,
1,
0
};

Xuint8 descriptor[66] = {
// Descriptor for USB Remote Control - values written in integer format
// Philip Li
// Device Descriptor (ALL in INTEGER FORMAT)
18, //descriptor length
01, //descriptor type
00,02, //specification version BCD
00, //device class
00, //device subclass
00, //protocol
64, //max packet size for EP0
64, 64, //VID Vendor ID
64, 64, //PID Product ID
64, 64, //Device ID
00, //Manucfacturer String Index
00, //Product String Index
01, //Number of configurations
// DeviceQualDscr
10, //descriptor length
06, //descriptor type
00,02, //BCD
00, //device class
00, //device subclass

 18

00, //device sub-sub-class
64, //max packet size
01, //number of configuration
00, //reserved
//HighSpeedConfigDscr
9, //Dscr length
02, //Dscr type
46,00, //total data length (46 bytes)
1, //number of interfaces
1, //configuration number
0, //configuration string
160, //attibutes self powered, no remote wakeup 10100000
50, //power requirement (50mA)
//Interface Descriptor
9, //Dscr length
04, //Dscr type
00, //#index of interface
00, //alternate setting
02, //num of endpoints
03, //interface class (HID)
00, //interface subclass
01, //interface sub-subclass (ProtocolCcode,0-None,1-Keyboard,2-
Mouse)
00, //interface dscr string index
//Class Descriptor (HID interface)
9, //Dscr length
33, //Dscr type - HID 0x21
00,01, //HID spec release number
00, //hardware target country
01, //number of HID class dscr to follow
34, //Descriptor type 0x22 ???
//total length of report descriptor
// Endpoint Descriptor EP2
07, // Dscr length
05, // Dscr type
02, // Endpoint number and direction
03, // Endpoint type 0000 0011 - OUT interrupt transfer (Read
p.113 USBComplete)
00, // Max packet size LSB 512bytes
02, // Max packet size MSB (0x0200)
01, // polling interval maximum latency p.114 USBComplete
// Endpoint Descriptor EP6
07, // Dscr length
05, // Dscr type
134, // Endpoint number and direction
03, // Endpoint type 1000 0110 -IN interrupt transfer (Read
p.113 USBComplete)
00, // Max packet size LSB 512bytes
02, // Max packet size MSB (0x0200)
01 // polling interval maximum latency p.114 USBComplete
};

// USB address is from 0000 0001 1000 0000 to 0000 0001 1000 0111
int main()
{
 // variables for reading DSCR file

 19

 //variables

 int ready=0;
 int i;
 Xuint32 incoming_byte;
 Xuint32 incoming_byte1;
 Xuint32 incoming_byte2;
 Xuint32 incoming_byte3;
 Xuint32 incoming_byte4;
 Xuint32 incoming_byte5;
 Xuint32 incoming_byte6;
 Xuint8 incoming_byte8;
 Xuint8 incoming_byte7;
 Xuint8 outgoing_byte;

 // write register 0x1
 outgoing_byte = 0x5;
 write_register(0x01, outgoing_byte);

 print("write 0xf2 to register0x07\r\n");
 outgoing_byte = 0xf2; // 11110010
 write_register(0x06, outgoing_byte);

 print("finish writing\r\n");

 for(i=0; i<1000; i++){}
 incoming_byte7 = read_register(0x07);
 print("\r\n");
 print("read from the register and the byte is \r\n");
 putnum(incoming_byte6);

 print("write the descriptor now\r\n");
 write_descriptor2();

}

Xuint8 read_register (Xuint8 regaddress){
 int ready = 0;
 Xuint32 incoming;
 low_level_command_write(0xC0 + regaddress);
 while(ready == 0){
 XIo_In32(ADDR_CM);
 incoming = XIo_In32(ADDR_SIG_INTERRUPT);
 print("\r\n");
 print("addr_sig_interrupt is \r\n");
 putnum(incoming);
 if (incoming != 0x0)ready =1;
 };

 incoming = XIo_In32(ADDR_READ_INTERRUPT);
 print("incoming\r\n");
 putnum(incoming);
 return incoming;
}

 20

void write_register (Xuint8 regaddress, Xuint8 data){
 low_level_command_write(0x80 + regaddress); // command address byte
 low_level_command_write(0xF & (data>>4)); // command data byte one
 low_level_command_write(0xF & data); // command data byte two
}

void low_level_command_write(Xuint8 data){
 Xuint32 outgoing_byte;
 outgoing_byte = (0xFF & data);
 putnum(outgoing_byte);
 print("\r\n");
 // XIo_In32(ADDR_CM);
 XIo_Out32(ADDR_CM, outgoing_byte);
}

void write_descriptor2(){
 Xuint8 lengthOfRegister = 0x06; // Descriptor length = 6
 int i;
 low_level_command_write(0x80 + 0x30); // command address byte 0x30 is
the Desc RAM
 low_level_command_write(lengthOfRegister);
 low_level_command_write(0);

 for (i = 0; i <6 ; i ++){
 low_level_command_write(short_descriptor[i]);
 }

}

void write_descriptor(){
 Xuint8 lengthOfRegister = 0x42; // Descriptor length = 66
 int i;
 low_level_command_write(0x80 + 0x30); // command address byte 0x30 is
the Desc RAM
 low_level_command_write(lengthOfRegister);
 low_level_command_write(0);

 for (i = 0; i <66 ; i ++){
 low_level_command_write(descriptor[i]);
 }

}

 21

opb_usb.vhd

--
-- OPB Peripheral: USB controller
--
-- Philip Li (pcl2007), Yanjie Ma (ym2009), Pamela Lee (pyl2001)
--

library ieee;
use ieee.std_logic_1164.all;

entity opb_usb is

 generic (
 C_OPB_AWIDTH : integer := 32;
 C_OPB_DWIDTH : integer := 32;
 C_BASEADDR : std_logic_vector(0 to 31) := X"00000000";
 C_HIGHADDR : std_logic_vector(0 to 31) := X"FFFFFFFF");

 port (
 OPB_Clk : in std_logic;
 OPB_Rst : in std_logic;
 OPB_ABus : in std_logic_vector(31 downto 0);
 OPB_BE : in std_logic_vector(3 downto 0);
 OPB_DBus : in std_logic_vector(31 downto 0);
 OPB_RNW : in std_logic;
 OPB_select : in std_logic;
 OPB_seqAddr : in std_logic; -- Sequential Address
 Sln_DBus : out std_logic_vector(31 downto 0);
 Sln_errAck : out std_logic; -- (unused)
 Sln_retry : out std_logic; -- (unused)
 Sln_toutSup : out std_logic; -- Timeout suppress
 Sln_xferAck : out std_logic; -- Transfer acknowledge

 PB_D : inout std_logic_vector(15 downto 0);
 PB_A : out std_logic_vector(2 downto 0);
 PB_OE : out std_logic;
 PB_SLRD : out std_logic;
 PB_SLWR : out std_logic;
 PB_PKTEND : out std_logic;
 USB_IFCLK : out std_logic;
 USB_CS : out std_logic;
 USB_FLAGA : in std_logic;
 USB_FLAGB : in std_logic;
 USB_FLAGC : in std_logic;
 USB_READY : in std_logic;
 USB_INT : in std_logic;

 BUTTON_S1 : in std_logic;
 BUTTON_S2 : in std_logic;
 BUTTON_S4 : in std_logic

);

 22

end opb_usb;

architecture Behavioral of opb_usb is

 constant USB_AWIDTH : integer := 3; -- Number of address lines on
the USB
 constant USB_DWIDTH : integer := 16; -- Number of data lines on the
USB

 component OBUF_F_24
 port (
 O : out STD_ULOGIC; -- the pin
 I : in STD_ULOGIC); -- signal to pin
 end component;

 component BUF
 port (
 O : out STD_ULOGIC; -- the pin
 I : in STD_ULOGIC); -- signal to pin
 end component;

 component IOBUF_F_24
 port (
 O : out STD_ULOGIC; -- signal from pin
 IO : inout STD_ULOGIC; -- the pin
 I : in STD_ULOGIC; -- signal to pin
 T : in STD_ULOGIC -- 1 = drive IO with I
);
 end component;

 signal USB_DI, USB_DO : std_logic_vector(15 downto 0);
 signal ABus : std_logic_vector(2 downto 0);
 signal interrupt_byte : std_logic_vector(15 downto 0);
 signal Addr8bit : std_logic_vector(7 downto 0);

 signal tristate, to_C : std_logic;
 signal FIFO_RD, FIFO_WR, CM_RD, CM_WR, DATA_TO_C_STATE, TO_C_STATE,
EMPTY_FLAG_STATE : std_logic;
 signal LAST_PKT_STATE : std_logic;
 signal pass_flagEF, empty_flag, full_flag, empty_flag_temp :
std_logic;
 signal chipselect, rnw : std_logic;
 signal output_enable, slave_write, slave_read, cs : std_logic;
 signal interrupt, ready, pktend, last_pkt, j, k : std_logic;
 signal to_C_out, to_C_1 : std_logic;
 signal interrupt_byte_out : std_logic_vector(15 downto 0);

 -- Sln_xferAck is generated directly from state bit 1 in some cases
 constant STATE_BITS : integer := 4;

 23

 constant Idle : std_logic_vector(0 to STATE_BITS-1) := "0000";
 constant Read : std_logic_vector(0 to STATE_BITS-1) := "0010";
 constant Xfer : std_logic_vector(0 to STATE_BITS-1) := "0110";
 constant IntC1 : std_logic_vector(0 to STATE_BITS-1) := "1000";
 constant IntC2 : std_logic_vector(0 to STATE_BITS-1) := "1010";
 constant Emptf : std_logic_vector(0 to STATE_BITS-1) := "1001";
 constant Selected : std_logic_vector(0 to STATE_BITS-1) := "1011";
 constant XferInt : std_logic_vector(0 to STATE_BITS-1) := "0011";
 constant Full : std_logic_vector(0 to STATE_BITS-1) := "0001";
 signal present_state, next_state : std_logic_vector(0 to 3);

 -- Critical: Sln_xferAck is generated directly from state bit 0!
 constant Idle2 : std_logic_vector(0 to 2) := "000";
 constant Selected2 : std_logic_vector(0 to 2) := "001";
 constant Xfer2 : std_logic_vector(0 to 2) := "111";

 signal present_state2, next_state2 : std_logic_vector(0 to 2);

begin

 databus : for i in 0 to 15 generate

 data_buffer : IOBUF_F_24 port map (
 O => USB_DO(i),
 IO => PB_D(i),
 I => USB_DI(i),
 T => tristate);
 end generate;

 addrbus : for j in 0 to 2 generate

 addr_buffer : OBUF_F_24 port map (
 O => PB_A(j),
 I => ABus(j));
 end generate;

 to_C_buffer : BUF port map (
 O => to_C_out,
 I => to_C_1);

 chipselect <= OPB_select when OPB_ABus(31 downto 16) =
"0000000110000000" else '0';
 rnw <= OPB_RNW;

-- Selectively passing OPB_ABUS to USB_A
 Addr8bit <= OPB_ABUS(7 downto 0) when chipselect='1' else X"00";
 -- pass address ABus and select types of transfer
 -- List of Register Values to communicate with Microblaze
 -- Addr3bit = X"00" => Command Interface XOut CM_WR
 -- = X"04" => FIFO_RD EndPoint 2 XIn FIFO_RD
 -- = X"08" => FIFO_WR EndPoint 6 XOut FIFO_WR
 -- = X"10" => to-C XIn TO_C_STATE
 -- = X"18" => empty_flag XIn EMPTY_FLAG_STATE
 -- = NOT USED "110" => full_flag XIn FULL_FLAG_STATE
 -- = X"14" => data_to_C XIn DATA_TO_C_STATE

 24

 addr_reg_and_select_transfer : process (OPB_Clk, OPB_Rst)
 begin -- process
 if OPB_Rst = '1' then
 ABus <= (others => '0');
 FIFO_RD <= '0';
 FIFO_WR <= '0';
 CM_WR <= '0';
 EMPTY_FLAG_STATE <= '0';
 DATA_TO_C_STATE <= '0';
 TO_C_STATE <='0';

 elsif OPB_Clk'event and OPB_Clk = '1' then
 if CM_RD = '1' then -- pass the Address for CM_RD
transfer
 -- mode, triggered by CYPRESS
 ABus <= "100";
 elsif chipselect ='1' then
 if Addr8bit = X"00" and rnw = '0' then -- addr for
command interface
 ABus <= "100";
 elsif Addr8bit = X"04" then -- addr for FIFO Read
 ABus <= "000";
 elsif Addr8bit = X"08" then -- addr for FIFO write
 ABus <= "010";
 else ABus <= "000"; -- otherwise just 0
 end if;

 end if;
 -- determine the operating mode here

 if chipselect = '1' then
 if Addr8bit = X"04" and rnw = '1' then -- Set FIFO_RD
 FIFO_RD <= '1';
 elsif Addr8bit = X"10" and rnw = '1' then --Set TO_C_STATE
 TO_C_STATE <= '1';
 elsif Addr8bit = X"14" and rnw = '1' then -- Set DATA_TO_C
 DATA_TO_C_STATE <= '1';
 elsif Addr8bit = X"08" and rnw = '0' then --Set FIFO_WR
 FIFO_WR <= '1';
 elsif Addr8bit = X"00" and rnw = '0' then --Set CM_WR
 CM_WR <= '1';
 elsif Addr8bit = X"18" and rnw = '1' then --Set
EMPTY_FLAG_STATE
 EMPTY_FLAG_STATE <= '1';
 else
 FIFO_RD <= '0';
 FIFO_WR <= '0';
 CM_WR <= '0';
 DATA_TO_C_STATE <= '0';
 TO_C_STATE <= '0';
 EMPTY_FLAG_STATE <= '0';
 end if;
 end if;
 end if;
 end process addr_reg_and_select_transfer;

 data_register_opb_inputs: process (OPB_Clk, OPB_Rst)

 25

 begin
 if OPB_Rst = '1' then
 USB_DI <= (others => '0');
 elsif OPB_Clk'event and OPB_Clk = '1' then
 if FIFO_WR = '1' and CM_WR = '1' then
 USB_DI <= OPB_DBus(15 downto 0);
 else
 USB_DI <= "0000000000000000";
 end if;
 end if;
 end process data_register_opb_inputs;

 data_register_opb_outputs: process (OPB_Clk, OPB_Rst)
 begin
 if OPB_Rst = '1' then
 Sln_DBus(15 downto 0) <= (others => '0');
 elsif OPB_Clk'event and OPB_Clk = '1' then
 if chipselect ='1' then
 if FIFO_RD = '1' then
 Sln_DBus(15 downto 0) <= USB_DO; -- X"A101"
 elsif TO_C_STATE = '1' then
 Sln_DBus(15 downto 0) <= "000000000000000" & to_C_out; --
X"A102"; --
 elsif DATA_TO_C_STATE = '1' then
 Sln_DBus(15 downto 0) <= interrupt_byte_out; --
X"A103";
 elsif EMPTY_FLAG_STATE = '1' then
 Sln_DBus(15 downto 0) <= "000000000000000" & empty_flag; --
X"A104"; --
 else
 Sln_DBus(15 downto 0) <= (others => '0');
 end if;
 else
 Sln_DBus(15 downto 0) <= (others => '0');
 end if;
 end if;
 end process data_register_opb_outputs;

 Sln_DBus(31 downto 16) <= (others => '0');

 interrupt_signals_and_output_to_OPB : process (OPB_Clk, OPB_Rst)
 begin -- process
 if OPB_Rst = '1' then
 interrupt_byte <= (others => '0');
 elsif OPB_Clk'event and OPB_Clk = '1' then
 if present_state(1) = '1' and CM_RD = '1' then
 interrupt_byte_out <= "00000000" & USB_DO(7 downto 0);
 end if;
 end if;
 end process interrupt_signals_and_output_to_OPB;

 interrupt_to_C_output_to_OPB : process (OPB_Clk, OPB_Rst)
 begin -- process
 if OPB_Rst = '1' then -- asynchronous reset (active
low)
 to_C_1 <= '0';
 elsif OPB_Clk'event and OPB_Clk = '1' then

 26

 if to_C = '1' then
 to_C_1 <= '1';
 end if;
 end if;
 end process;

 empty_flag_process : process (OPB_Clk, OPB_Rst)
 begin -- process
 if OPB_Rst = '1' then
 empty_flag <= '0';
 elsif OPB_Clk'event and OPB_Clk = '1' then
 if pass_flagEF = '1' then
 empty_flag <= empty_flag_temp; -- empty_flag=1 => means FIFO
empty
 else
 empty_flag <= '0';
 end if;
 end if;
 end process empty_flag_process;
 empty_flag_temp <=
 '0' when USB_FLAGC = '1' else
 '1';

 -- Connecting OPB_Clk to CYPRESS CLK
 USB_IFCLK <= OPB_Clk;

 -- Unused outputs
 Sln_errAck <= '0';
 Sln_toutSup <= '0';

PB_OE <=
 '0' when output_enable = '1'else
 '1';
PB_SLRD <=
 '0' when slave_read = '1' else
 '1';
PB_SLWR <=
 '0' when slave_write = '1' else
 '1';
PB_PKTEND <=
 '0' when pktend = '1' else
 '1';
USB_CS <=
 '0' when cs = '1' else
 '1';
interrupt <=
 '0' when USB_INT = '1'else
 '1';
full_flag <=
 '0' when USB_FLAGB ='1' else
 '0';
ready <= USB_READY;

 -- Sequential part of the FSM
 fsm_seq : process(OPB_Clk, OPB_Rst)
 begin

 27

 if OPB_Rst = '1' then
 present_state <= Idle;
 elsif OPB_Clk'event and OPB_Clk = '1' then
 present_state <= next_state;
 end if;
 end process fsm_seq;

 -- Combinational part of the FSM
 fsm_comb : process(OPB_Select, OPB_Rst, present_state, interrupt,
FIFO_RD, FIFO_WR, CM_WR, CM_RD, ready, full_flag, last_pkt)
 begin

 output_enable <= '0';
 slave_read <= '0';
 slave_write <= '0';
 pktend <= '0';
 cs <= '0';
 tristate <= '0';
 to_C <= '0';
 pass_flagEF <= '0'; -- Default Values
 CM_RD <= '0';
 Sln_retry <= '0';

 if OPB_RST = '1' then
 next_state <= Idle;
 else
 case present_state is

 when Idle =>
 if interrupt = '1' then
 tristate <= '1';
 output_enable <= '1';
 slave_read <= '1';
 CM_RD <= '1';
 cs <= '1';
 next_state <= XferInt;
 elsif (FIFO_RD = '1'or FIFO_WR = '1' or CM_WR = '1') then
 next_state <= Selected;
 elsif (TO_C_STATE = '1' or DATA_TO_C_STATE = '1' or
EMPTY_FLAG_STATE = '1') then
 next_state <= Selected;
 else
 next_state <= Idle;
 end if;

 when XferInt =>
 to_C <= '1';
 CM_RD <= '1';
 next_state <= IntC1;

 when IntC1 =>
 to_C <= '1';
 next_state <= IntC2;

 when IntC2 =>
 next_state <= Idle;

 28

 when Selected =>
 if FIFO_RD = '1' then
 slave_read <= '1';
 output_enable <= '1';
 cs <= '1';
 next_state <= Read;

 elsif FIFO_WR = '1' then
 if full_flag = '0' then
 slave_write <= '1';
 cs <= '1';
 tristate <= '0';
 next_state <= Xfer;
 elsif full_flag = '1' then -- full_flag, flush signals
to HOST
 pktend <= '1';
 next_state <= Full;
 end if;
 elsif CM_WR = '1' then
 if ready = '1' then
 slave_write <= '1';
 cs <= '1';
 tristate <= '0';
 next_state <= Xfer;
 elsif ready = '0' then
 Sln_retry <= '1'; -- not ready, OPB_retry
 next_state <= Idle;
 end if;
 elsif (TO_C_STATE = '1' or DATA_TO_C_STATE = '1' or
EMPTY_FLAG_STATE = '1') then
 next_state <= Xfer;
 else
 next_state <= Idle;
 end if;

 when Full =>
 if full_flag = '0' and FIFO_WR = '1' then
 slave_write <= '1';
 cs <= '1';
 tristate <= '0';
 next_state <= Xfer;
 elsif full_flag = '1' and FIFO_WR = '1' then
 pktend <= '1';
 next_state <= Full;
 else
 next_state <= Idle;
 end if;

 when Read =>
 if FIFO_RD = '1' then
 tristate <= '1';
 cs <= '1';
 output_enable <= '1';
 next_state <= Xfer;
 else
 next_state <= Xfer;
 end if;

 29

 when Xfer =>
 if CM_WR = '1' or FIFO_WR = '1' then
 next_state <= Idle;
 elsif FIFO_RD = '1' then
 pass_flagEF <= '1';
 next_state <= Emptf;
 elsif (TO_C_STATE = '1' or DATA_TO_C_STATE = '1' or
EMPTY_FLAG_STATE = '1') then
 next_state <= Idle;
 else
 next_state <= Idle;
 end if;

 when Emptf => -- EmptF lets C reads
empty_flag_signal
 next_state <= Idle;

 when others=>
 next_state <= Idle;

 end case;
 end if;
 end process fsm_comb;
 Sln_xferAck <= present_state(1); -- present_state = Xfer

end Behavioral;

-- compile-command: "ghdl -a opb_usb.vhd"
-- End:

 30

opb_usb_ v2_1_0.mpd

 ###

Microprocessor Peripheral Definition

BEGIN opb_usb, IPTYPE = PERIPHERAL, EDIF=TRUE

BUS_INTERFACE BUS = SOPB, BUS_STD = OPB, BUS_TYPE = SLAVE

Generics for VHDL
PARAMETER c_baseaddr = 0xFFFFFFFF, DT = std_logic_vector, MIN_SIZE
= 0xFF
PARAMETER c_highaddr = 0x00000000, DT = std_logic_vector
PARAMETER c_opb_awidth = 32, DT = integer
PARAMETER c_opb_dwidth = 32, DT = integer

Ports
PORT opb_abus = OPB_ABus, DIR = IN, VEC = [0:(c_opb_awidth-1)],
BUS = SOPB
PORT opb_be = OPB_BE, DIR = IN, VEC = [0:((c_opb_dwidth/8)-
1)], BUS = SOPB
PORT opb_clk = "", DIR = IN, BUS =
SOPB
PORT opb_dbus = OPB_DBus, DIR = IN, VEC = [0:(c_opb_dwidth-1)],
BUS = SOPB
PORT opb_rnw = OPB_RNW, DIR = IN,
BUS = SOPB
PORT opb_rst = OPB_Rst, DIR = IN,
BUS = SOPB
PORT opb_select = OPB_select, DIR = IN,
BUS = SOPB
PORT opb_seqaddr = OPB_seqAddr, DIR = IN,
BUS = SOPB
PORT sln_dbus = Sl_DBus, DIR = OUT, VEC = [0:(c_opb_dwidth-1)],
BUS = SOPB
PORT sln_errack = Sl_errAck, DIR = OUT,
BUS = SOPB
PORT sln_retry = Sl_retry, DIR = OUT,
BUS = SOPB
PORT sln_toutsup = Sl_toutSup, DIR = OUT,
BUS = SOPB
PORT sln_xferack = Sl_xferAck, DIR = OUT,
BUS = SOPB

User Ports
PORT PB_D = "", DIR = INOUT, VEC = [0:15], 3STATE=FALSE,
IOB_STATE=BUF
PORT PB_A = "", DIR = OUT, VEC = [0:2], 3STATE=FALSE,
IOB_STATE=BUF
PORT PB_OE = "", DIR = OUT
PORT PB_SLRD = "", DIR = OUT
PORT PB_SLWR = "", DIR = OUT

 31

PORT PB_PKTEND = "", DIR = OUT
PORT USB_IFCLK = "", DIR = OUT
PORT USB_CS = "", DIR = OUT
PORT USB_FLAGA = "", DIR = IN
PORT USB_FLAGB = "", DIR = IN
PORT USB_FLAGC = "", DIR = IN
PORT USB_READY = "", DIR = IN
PORT USB_INT = "", DIR = IN

PORT BUTTON_S1 = "", DIR = IN
PORT BUTTON_S2 = "", DIR = IN
PORT BUTTON_S4 = "", DIR = IN

END

 32

system.mhs

Parameters
PARAMETER VERSION = 2.1.0

Global Ports

PORT FPGA_CLK1 = FPGA_CLK1, DIR = IN
PORT RS232_TD = RS232_TD, DIR=OUT
PORT RS232_RD = RS232_RD, DIR=IN
PORT PB_D = PB_D, DIR=INOUT, VEC = [0:15]
PORT PB_A = PB_A, DIR=OUT, VEC = [0:2]
PORT PB_OE = PB_OE, DIR=OUT
PORT PB_SLRD = PB_SLRD, DIR=OUT
PORT PB_SLWR = PB_SLWR, DIR=OUT
PORT PB_PKTEND = PB_PKTEND, DIR=OUT
PORT USB_IFCLK = USB_IFCLK, DIR=OUT
PORT USB_CS = USB_CS, DIR=OUT
PORT USB_FLAGA = USB_FLAGA, DIR=IN
PORT USB_FLAGB = USB_FLAGB, DIR=IN
PORT USB_FLAGC = USB_FLAGC, DIR=IN
PORT USB_READY = USB_READY, DIR=IN
PORT USB_INT = USB_INT, DIR=IN
PORT BUTTON_S1 = BUTTON_S1, DIR=IN
PORT BUTTON_S2 = BUTTON_S2, DIR=IN
PORT BUTTON_S4 = BUTTON_S4, DIR=IN

USB peripheral

BEGIN opb_usb

 PARAMETER INSTANCE = usb_peripheral
 PARAMETER HW_VER = 1.00.a
 PARAMETER C_BASEADDR = 0x01800000
 PARAMETER C_HIGHADDR = 0x01800fff
 PORT OPB_Clk = sys_clk
 BUS_INTERFACE SOPB = myopb_bus
 PORT PB_D = PB_D
 PORT PB_A = PB_A
 PORT PB_OE = PB_OE
 PORT PB_SLRD = PB_SLRD
 PORT PB_SLWR = PB_SLWR
 PORT PB_PKTEND = PB_PKTEND
 PORT USB_IFCLK = USB_IFCLK
 PORT USB_CS = USB_CS
 PORT USB_FLAGA = USB_FLAGA
 PORT USB_FLAGB = USB_FLAGB
 PORT USB_FLAGC = USB_FLAGC
 PORT USB_READY = USB_READY
 PORT USB_INT = USB_INT
 PORT BUTTON_S1 = BUTTON_S1
 PORT BUTTON_S2 = BUTTON_S2
 PORT BUTTON_S4 = BUTTON_S4

END

 33

The main processor core

BEGIN microblaze
 PARAMETER INSTANCE = mymicroblaze
 PARAMETER HW_VER = 2.00.a
 PARAMETER C_USE_BARREL = 1
 PARAMETER C_USE_ICACHE = 0
 PORT Clk = sys_clk
 PORT Reset = fpga_reset
 BUS_INTERFACE DLMB = d_lmb
 BUS_INTERFACE ILMB = i_lmb
 BUS_INTERFACE DOPB = myopb_bus
 BUS_INTERFACE IOPB = myopb_bus
END

Block RAM for code and data is connected through two LMB busses
to the Microblaze, which has two ports on it for just this reason.

Data LMB bus

BEGIN lmb_v10
 PARAMETER INSTANCE = d_lmb
 PARAMETER HW_VER = 1.00.a
 PORT LMB_Clk = sys_clk
 PORT SYS_Rst = fpga_reset
END

BEGIN lmb_bram_if_cntlr
 PARAMETER INSTANCE = lmb_data_controller
 PARAMETER HW_VER = 1.00.b
 PARAMETER C_BASEADDR = 0x00000000
 PARAMETER C_HIGHADDR = 0x00000FFF
 BUS_INTERFACE SLMB = d_lmb
 BUS_INTERFACE BRAM_PORT = conn_0
END

Instruction LMB bus

BEGIN lmb_v10
 PARAMETER INSTANCE = i_lmb
 PARAMETER HW_VER = 1.00.a
 PORT LMB_Clk = sys_clk
 PORT SYS_Rst = fpga_reset
END

BEGIN lmb_bram_if_cntlr
 PARAMETER INSTANCE = lmb_instruction_controller
 PARAMETER HW_VER = 1.00.b
 PARAMETER C_BASEADDR = 0x00000000
 PARAMETER C_HIGHADDR = 0x00000FFF
 BUS_INTERFACE SLMB = i_lmb
 BUS_INTERFACE BRAM_PORT = conn_1
END

The actual block memory

BEGIN bram_block

 34

 PARAMETER INSTANCE = bram
 PARAMETER HW_VER = 1.00.a
 BUS_INTERFACE PORTA = conn_0
 BUS_INTERFACE PORTB = conn_1
END

Clock divider to make the whole thing run

BEGIN clkgen
 PARAMETER INSTANCE = clkgen_0
 PARAMETER HW_VER = 1.00.a
 PORT FPGA_CLK1 = FPGA_CLK1
 PORT sys_clk = sys_clk
 PORT pixel_clock = pixel_clock
 PORT fpga_reset = fpga_reset
END

The OPB bus controller connected to the Microblaze
All peripherals are connected to this

BEGIN opb_v20
 PARAMETER INSTANCE = myopb_bus
 PARAMETER HW_VER = 1.10.a
 PARAMETER C_DYNAM_PRIORITY = 0
 PARAMETER C_REG_GRANTS = 0
 PARAMETER C_PARK = 0
 PARAMETER C_PROC_INTRFCE = 0
 PARAMETER C_DEV_BLK_ID = 0
 PARAMETER C_DEV_MIR_ENABLE = 0
 PARAMETER C_BASEADDR = 0x0fff1000
 PARAMETER C_HIGHADDR = 0x0fff10ff
 PORT SYS_Rst = fpga_reset
 PORT OPB_Clk = sys_clk
END

UART: Serial port hardware

BEGIN opb_uartlite
 PARAMETER INSTANCE = myuart
 PARAMETER HW_VER = 1.00.b
 PARAMETER C_CLK_FREQ = 50_000_000
 PARAMETER C_USE_PARITY = 0
 PARAMETER C_BASEADDR = 0xFEFF0100
 PARAMETER C_HIGHADDR = 0xFEFF01FF
 PORT OPB_Clk = sys_clk
 BUS_INTERFACE SOPB = myopb_bus
 PORT RX=RS232_RD
 PORT TX=RS232_TD
END

 35

system.mhs

PARAMETER VERSION = 2.2.0
PARAMETER HW_SPEC_FILE = system.mhs

BEGIN PROCESSOR
 PARAMETER HW_INSTANCE = mymicroblaze
 PARAMETER DRIVER_NAME = cpu
 PARAMETER DRIVER_VER = 1.00.a
END

BEGIN OS
 PARAMETER PROC_INSTANCE = mymicroblaze
 PARAMETER OS_NAME = standalone
 PARAMETER OS_VER = 1.00.a
 PARAMETER STDIN = myuart
 PARAMETER STDOUT = myuart
END

BEGIN DRIVER
 PARAMETER HW_INSTANCE = myuart
 PARAMETER DRIVER_NAME = uartlite
 PARAMETER DRIVER_VER = 1.00.b
END

Use null drivers for peripherals that don't need them
This supresses warnings

BEGIN DRIVER
 PARAMETER HW_INSTANCE = usb_peripheral
 PARAMETER DRIVER_NAME = generic
 PARAMETER DRIVER_VER = 1.00.a
END

BEGIN DRIVER
 PARAMETER HW_INSTANCE = lmb_data_controller
 PARAMETER DRIVER_NAME = generic
 PARAMETER DRIVER_VER = 1.00.a
END

BEGIN DRIVER
 PARAMETER HW_INSTANCE = lmb_instruction_controller
 PARAMETER DRIVER_NAME = generic
 PARAMETER DRIVER_VER = 1.00.a
END

 36

system.ucf

net sys_clk period = 25.000;

net FPGA_CLK1 loc="p77";

net RS232_TD loc="p71";
net RS232_RD loc="p73";

net PB_OE loc="p125";
net PB_SLRD loc="p121";
net PB_SLWR loc="p122";
net PB_PKTEND loc="p115";

net PB_A<0> loc = "p83";
net PB_A<1> loc = "p84";
net PB_A<2> loc = "p86";

net PB_D<0> loc = "p153";
net PB_D<1> loc = "p145";
net PB_D<2> loc = "p141";
net PB_D<3> loc = "p135";
net PB_D<4> loc = "p126";
net PB_D<5> loc = "p120";
net PB_D<6> loc = "p116";
net PB_D<7> loc = "p108";
net PB_D<8> loc = "p127";
net PB_D<9> loc = "p129";
net PB_D<10> loc = "p132";
net PB_D<11> loc = "p133";
net PB_D<12> loc = "p134";
net PB_D<13> loc = "p136";
net PB_D<14> loc = "p138";
net PB_D<15> loc = "p139";

net USB_IFCLK loc="p163";
net USB_CS loc="p148";

net USB_FLAGA loc="p162";
net USB_FLAGB loc="p152";
net USB_FLAGC loc="p151";
net USB_READY loc="p150";
net USB_INT loc="p149";

net BUTTON_S1 loc="p100";
net BUTTON_S2 loc="p101";
net BUTTON_S4 loc="p109";

 37

Push Button Source Code

opb_bram.vhd

--
-- Simple OPB peripheral: a BRAM controller
--
-- Stephen A. Edwards
-- sedwards@cs.columbia.edu
--

library ieee;
use ieee.std_logic_1164.all;

entity opb_bram is

 generic (
 C_OPB_AWIDTH : integer := 32;
 C_OPB_DWIDTH : integer := 32;
 C_BASEADDR : std_logic_vector(0 to 31) := X"01800000";
 C_HIGHADDR : std_logic_vector(0 to 31) := X"01800FFF");

 port (
 OPB_Clk : in std_logic;
 OPB_Rst : in std_logic;
 OPB_ABus : in std_logic_vector(0 to C_OPB_AWIDTH-1);
 OPB_BE : in std_logic_vector(0 to C_OPB_DWIDTH/8-1);
 OPB_DBus : in std_logic_vector(0 to C_OPB_DWIDTH-1);
 OPB_RNW : in std_logic;
 OPB_select : in std_logic;
 OPB_seqAddr : in std_logic; -- Sequential Address
 Sln_DBus : out std_logic_vector(0 to C_OPB_DWIDTH-1);
 Sln_errAck : out std_logic; -- (unused)
 Sln_retry : out std_logic; -- (unused)
 Sln_toutSup : out std_logic; -- Timeout suppress
 Sln_xferAck : out std_logic; -- Transfer acknowledge

 PB_A : out std_logic_vector(8 to 9));

end opb_bram;

architecture Behavioral of opb_bram is

 constant RAM_AWIDTH : integer := 2; -- Number of address lines on
the RAM
 constant RAM_DWIDTH : integer := 1; -- Number of data lines on the
RAM

 component OBUF_F_24
 port (
 O : out std_ulogic;
 I : in std_ulogic);
 end component;

 38

 signal RNW : std_logic;
 signal RAM_DI, RAM_DO : std_logic_vector(0 to RAM_DWIDTH-1);
 signal ABus : std_logic_vector(0 to RAM_AWIDTH-1);
 signal chip_select : std_logic;
 signal output_enable : std_logic;
 signal WE, RST, PI : std_logic;

 -- Critical: Sln_xferAck is generated directly from state bit 0!
 constant STATE_BITS : integer := 3;
 constant Idle : std_logic_vector(0 to STATE_BITS-1) := "000";
 constant Selected : std_logic_vector(0 to STATE_BITS-1) := "001";
 constant Read : std_logic_vector(0 to STATE_BITS-1) := "011";
 constant Xfer : std_logic_vector(0 to STATE_BITS-1) := "111";

 signal present_state, next_state : std_logic_vector(0 to STATE_BITS-
1);

begin

 pinpus: for i in 8 to 9 generate
 pinpad : OBUF_F_24 port map (
 O => PB_A(i),
 I => ABus(i-8));
 end generate;

 register_opb_inputs: process (OPB_Clk, OPB_Rst)
 begin
 if OPB_Rst = '1' then
 RAM_DI <= (others => '0');
 ABus <= (others => '0');
 RNW <= '0';
 elsif OPB_Clk'event and OPB_Clk = '1' then
 RAM_DI <= OPB_DBus(0 to RAM_DWIDTH-1);
 ABus <= OPB_ABus(C_OPB_AWIDTH-3-(RAM_AWIDTH-1) to C_OPB_AWIDTH-
3);
 RNW <= OPB_RNW;
 end if;
 end process register_opb_inputs;

 register_opb_outputs: process (OPB_Clk, OPB_Rst)
 begin
 if OPB_Rst = '1' then
 Sln_DBus(0 to RAM_DWIDTH-1) <= (others => '0');
 elsif OPB_Clk'event and OPB_Clk = '1' then
 if output_enable = '1' then
 Sln_DBus(0 to RAM_DWIDTH-1) <= RAM_DO;
 else
 Sln_DBus(0 to RAM_DWIDTH-1) <= (others => '0');
 end if;
 end if;
 end process register_opb_outputs;

 -- Unused outputs
 Sln_errAck <= '0';
 Sln_retry <= '0';
 Sln_toutSup <= '0';

 39

 Sln_DBus(RAM_DWIDTH to C_OPB_DWIDTH-1) <= (others => '0');

 chip_select <=
 '1' when OPB_select = '1' and
 OPB_ABus(0 to C_OPB_AWIDTH-3-RAM_AWIDTH) =
 C_BASEADDR(0 to C_OPB_AWIDTH-3-RAM_AWIDTH) else
 '0';

 -- Sequential part of the FSM
 fsm_seq : process(OPB_Clk, OPB_Rst)
 begin
 if OPB_Rst = '1' then
 present_state <= Idle;
 elsif OPB_Clk'event and OPB_Clk = '1' then
 present_state <= next_state;
 end if;
 end process fsm_seq;

 -- Combinational part of the FSM
 fsm_comb : process(OPB_Rst, present_state, chip_select, OPB_Select,
RNW)
 begin
 RST <= '1'; -- Default values
 -- WE <= '0';
 output_enable <= '0';
 if OPB_RST = '1' then
 next_state <= Idle;
 else
 case present_state is
 when Idle =>
 if chip_select = '1' then
 next_state <= Selected;
 else
 next_state <= Idle;
 end if;

 when Selected =>
 if OPB_Select = '1' then
 if RNW='1' then
 next_state <= Xfer;
 end if
 else
 next_state <= Idle;
 endd if;

 -- State encoding is critical here: xfer must only be true here
 when Xfer =>
 next_state <= Idle;

 when others =>
 next_state <= Idle;
 end case;
 end if;
 end process fsm_comb;

 Sln_xferAck <= present_state(0);

 40

end Behavioral;

-- Local Variables:
-- compile-command: "ghdl -a opb_bram.vhd"
-- End:

 41

system.mhs

Parameters
PARAMETER VERSION = 2.1.0

Global Ports

PORT FPGA_CLK1 = FPGA_CLK1, DIR = IN
PORT RS232_TD = RS232_TD, DIR=OUT
PORT RS232_RD = RS232_RD, DIR=IN
PORT PB_A = PB_A, DIR=OUT, VEC = [8:9]

Hint: Put your peripheral first in this file so it will be analyzed
first and will generate errors faster.

BRAM example peripheral

BEGIN opb_bram
 PARAMETER INSTANCE = bram_peripheral
 PARAMETER HW_VER = 1.00.a
 PARAMETER C_BASEADDR = 0x01800000
 PARAMETER C_HIGHADDR = 0x01800FFF
 PORT OPB_Clk = sys_clk
 BUS_INTERFACE SOPB = myopb_bus
 PORT PB_A = PB_A
END

The main processor core

BEGIN microblaze
 PARAMETER INSTANCE = mymicroblaze
 PARAMETER HW_VER = 2.00.a
 PARAMETER C_USE_BARREL = 1
 PARAMETER C_USE_ICACHE = 0
 PORT Clk = sys_clk
 PORT Reset = fpga_reset
 BUS_INTERFACE DLMB = d_lmb
 BUS_INTERFACE ILMB = i_lmb
 BUS_INTERFACE DOPB = myopb_bus
 BUS_INTERFACE IOPB = myopb_bus
END

Block RAM for code and data is connected through two LMB busses
to the Microblaze, which has two ports on it for just this reason.

Data LMB bus

BEGIN lmb_v10
 PARAMETER INSTANCE = d_lmb
 PARAMETER HW_VER = 1.00.a
 PORT LMB_Clk = sys_clk
 PORT SYS_Rst = fpga_reset
END

BEGIN lmb_bram_if_cntlr
 PARAMETER INSTANCE = lmb_data_controller

 42

 PARAMETER HW_VER = 1.00.b
 PARAMETER C_BASEADDR = 0x00000000
 PARAMETER C_HIGHADDR = 0x00000FFF
 BUS_INTERFACE SLMB = d_lmb
 BUS_INTERFACE BRAM_PORT = conn_0
END

Instruction LMB bus

BEGIN lmb_v10
 PARAMETER INSTANCE = i_lmb
 PARAMETER HW_VER = 1.00.a
 PORT LMB_Clk = sys_clk
 PORT SYS_Rst = fpga_reset
END

BEGIN lmb_bram_if_cntlr
 PARAMETER INSTANCE = lmb_instruction_controller
 PARAMETER HW_VER = 1.00.b
 PARAMETER C_BASEADDR = 0x00000000
 PARAMETER C_HIGHADDR = 0x00000FFF
 BUS_INTERFACE SLMB = i_lmb
 BUS_INTERFACE BRAM_PORT = conn_1
END

The actual block memory

BEGIN bram_block
 PARAMETER INSTANCE = bram
 PARAMETER HW_VER = 1.00.a
 BUS_INTERFACE PORTA = conn_0
 BUS_INTERFACE PORTB = conn_1
END

Clock divider to make the whole thing run

BEGIN clkgen
 PARAMETER INSTANCE = clkgen_0
 PARAMETER HW_VER = 1.00.a
 PORT FPGA_CLK1 = FPGA_CLK1
 PORT sys_clk = sys_clk
 PORT pixel_clock = pixel_clock
 PORT fpga_reset = fpga_reset
END

The OPB bus controller connected to the Microblaze
All peripherals are connected to this

BEGIN opb_v20
 PARAMETER INSTANCE = myopb_bus
 PARAMETER HW_VER = 1.10.a
 PARAMETER C_DYNAM_PRIORITY = 0
 PARAMETER C_REG_GRANTS = 0
 PARAMETER C_PARK = 0
 PARAMETER C_PROC_INTRFCE = 0
 PARAMETER C_DEV_BLK_ID = 0
 PARAMETER C_DEV_MIR_ENABLE = 0

 43

 PARAMETER C_BASEADDR = 0x0fff1000
 PARAMETER C_HIGHADDR = 0x0fff10ff
 PORT SYS_Rst = fpga_reset
 PORT OPB_Clk = sys_clk
END

UART: Serial port hardware

BEGIN opb_uartlite
 PARAMETER INSTANCE = myuart
 PARAMETER HW_VER = 1.00.b
 PARAMETER C_CLK_FREQ = 50_000_000
 PARAMETER C_USE_PARITY = 0
 PARAMETER C_BASEADDR = 0xFEFF0100
 PARAMETER C_HIGHADDR = 0xFEFF01FF
 PORT OPB_Clk = sys_clk
 BUS_INTERFACE SOPB = myopb_bus
 PORT RX=RS232_RD
 PORT TX=RS232_TD
END

system.ucf

net sys_clk period = 18.000;

net FPGA_CLK1 loc="p77";

net RS232_TD loc="p71";
net RS232_RD loc="p73";

net PB_A<8> loc="p100";
net PB_A<9> loc="p101";

 44

xparameters.h

/***
*
* CAUTION: This file is automatically generated by libgen.
* Version: Xilinx EDK 6.2 EDK_Gm.11
* DO NOT EDIT.
*
* Copyright (c) 2003 Xilinx, Inc. All rights reserved.
*
* Description: Driver parameters
*
***/

#define STDIN_BASEADDRESS 0xFEFF0100
#define STDOUT_BASEADDRESS 0xFEFF0100

/**/

#define XPAR_LMB_DATA_CONTROLLER_BASEADDR 0x00000000
#define XPAR_LMB_DATA_CONTROLLER_HIGHADDR 0x00000FFF
#define XPAR_LMB_INSTRUCTION_CONTROLLER_BASEADDR 0x00000000
#define XPAR_LMB_INSTRUCTION_CONTROLLER_HIGHADDR 0x00000FFF
#define XPAR_BRAM_PERIPHERAL_BASEADDR 0x01800000
#define XPAR_BRAM_PERIPHERAL_HIGHADDR 0x01800FFF

/**/

#define XPAR_XUARTLITE_NUM_INSTANCES 1
#define XPAR_MYUART_BASEADDR 0xFEFF0100
#define XPAR_MYUART_HIGHADDR 0xFEFF01FF
#define XPAR_MYUART_DEVICE_ID 0
#define XPAR_MYUART_BAUDRATE 9600
#define XPAR_MYUART_USE_PARITY 0
#define XPAR_MYUART_ODD_PARITY 1
#define XPAR_MYUART_DATA_BITS 8

/**/

 45

XMMS Controller

test.c

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>

int main (void) {
 int input;
 int runBefore = 0;
 char fileName[] = "/root/mp3/*.mp3";

 // Temporarily interface window
 do {
 char command[50] = "xmms "; // initialize
 printf("Select: (1) Play (2) Next (3) Stop (4) Quit\n");
 scanf("%d", &input);
 if (input == 1)
 strcat(command, "-p ");
 if (input == 2)
 strcat(command, "-f ");
 if (input == 3)
 strcat(command, "-s ");
 if (input == 4);
 else {
 if (runBefore == 0) {
 strcat(command, fileName);
 strcat(command, " &");
 runBefore = 1;
 }
 system(command);
 }
 }
 while (input != 4);
}

 46

