THE GUITAR EFFECTOR

Jason Cardillo (jjc2124)
Jun Hao Ip (ji2115)
Chih-Chieh Lin (cl2291)

Table of Contents

1.0 Abstract
A OB = Fo @Y VT 4

G T 02N ¥ o [T 0o [N o
YN ST @00 11 (o = N o
(O [olo [C <0 1= = 1o T 6
DataHandling.......cc.uvnii e e e e e e e e e e]
AKAE65 CONFOl DAe ettt it e e e e e et e e e e e e e e e eaeas 9
4.0 Implementation of EffectS...........ccoo i e 10
9 1 (1 1 o SN 1§

B.0 CONCIUSION ... ettt e e e e e e e e e e e e e e e e 16
2SS o] ISy I == o 16
FULUNE A VI C . .. v e e e e e e e e e 17
[U0 TN AY o I I 4
RESPONSIDIITIES. .. . e e e e e e e e e e e e e e 17

7.0 References

Abstract

The Guitar Effector simulates a guitar effects pedal. The stereo audio port, AKM AK4565 Low
Power Audio Codec on the Xilinx XESS XSB 300E is utilized to receive analog sound from an
electric guitar. The onboard signal processing utilities to digitize the sound, implement a digital
effect and output analog sound to a speaker in real-time. This design allows the user to select
between the following digital effects: Clean (no effect), Distortion, Delay, Echo, Flange and
Flange with feedback. All the digital effects will be written in VHDL. The User Interface, which
allows the user to select the digital effect, will be written in C. The SRAM will be used to store
the sound bits for the digital effectsinvolving delay (Delay, Echo, Flange).

Design Overview

The design of the guitar effector involved four major components. Audio Codec, Effect
Generation, SRAM, and the Effect Selection. The Audio Codec component involves the real-
time playback of the guitar sound. This involved initializing the codec and simultaneously
reading and playing the sound back in real-time. The Effects Generation component as its name
indicates deals with generating the individual effects. As the 16-bit audio signal is received from
the codec all of the effects are performed on the signal. Then based on the user selection the
proper effect is chosen by using a multiplexor and sent back to the Audio Codec module. The
SRAM module as its name describes the interface with the SRAM. The effects involving delay
require that the sound be stored in the SRAM. The last component is the Effect Selector. This
module is contains both C and VHDL code. The user is prompted on the Minicom window to
select an effect that they would like to experience. This selection is entered on the keypad and
sent viathe UART to the VHDL hardware module.

—SIn_Dhus

0OPB_Clk
OFR Rt . | 0'-Sln_errAck
i dk st clk 0-Sln_ret
oAb | ko L etk e T -
OPB_BE o) Ik |—§ﬁ|€tt|5€| snd out - — 0-ShtoutSup
] #'05DCO"—jgelav. ten
OPB_DBus—, - ?;::(i — e STam_mw —Sln_xferAck
OPB_RW — (L Lgec i - st stamaddr — || | - SRAMLCE
OPB_select kIl g LUt ST B SRAMLOF
OPB.seqAddr| | 1c.catan (i Sd‘f"”e o SRAM_WE
adcdonel acla % :
L el || L echodone (adcdune latchLobit il 1 SRAM_ LR
adcdtou dacoad o Ll o —HH=SRAM LB
H— data_dtin s
AU_sdod ¢_done L adcdrout
- [snd_ourpur FBA
K'ED20 L= PR.D
L
c st c’Ik_ i nstate - (state [au_mclk
din dout - it ctr) [iﬁﬂﬂr sd_output - au_clk
nit_crt | fusel au_belk
— (Sl
[L fstate — s
|| OPBDhUS ot | IVE c_done
chip select il
(PB,_select p -‘ y . —
—|[[e et diLLs
- R | []
- pres_stite e — 0P8 Dws DI
! OPBRNW.
| WE F
chip. Sl -] | @m
(OPB_select kst
next_state |- He
o ol et Joutput_en SiDus
frextstate presenr_srarepl—‘ -

Figure 1.Block diagram of the Guitar Effector

Real-Time Playback: The Audio Codec

AK4565 Codec controller

The basis audio codec controller was implemented according to the given data sheet. The first
step was to generate a set of required clocks. Next, we had to get red/green (in/out) jacks on the
Xilinx board working. This was achieved by sending control signals. This module was broken
into two parts. Data handling and control.

Clock Generation

msoss [faes
e e gy
anck) !

I
Alek T | |
I

4 rck |

10 10,1us 10205 10,38 10,4us 105us 10,bus 10 fus IR 10,
B, 007ps

Figure 2. Clock Simulation

The manual tells us none of the clocks need to be in phase, but as was discovered later the mclk
must be synchronized with Irclk. In fact, all clocks needed to be synchronized with the rising
edge of mclk. Also, the manual wrongly described the channel processing sequence. In the
manual, left channel (mono input) is being processed when Irclk is high. After hours of
experiment, this sequence described in the Xilinx manual happens to be the reverse. This clock
generation was attained by using one 2-bit and 8-bit counter. The 2-bit counter generates the
master clock for the AK4565 chip. This clock is then fed into the 8-bit counter to generate the
bclk and Irclk. This processis described in Figure 3.

S0 .)
ck 1> clkdivl clkdiv2 shell
nshbell
slrell:
dent {—
adent(7) ad-capture
fz256clk -
cliccount(1) [dacnt(7) | da-stream
RV
o
mecll

Figure 3. Clock Generation

DataHandling

The first part of the Audio Codec module is the data handling. When Irclk="0" (left channel),
serial sound data is being latched into (serial to parallel) input shift register. After 16 cycles and
Irclk="1", the 16-bit sound input data is being latched into the adc_dtout register. Also when
Irclk="0’, parallel loaded (parallel to serial) output shift register will shift out its MSB each cycle
to the ak4565 seria input port.

W v |
At 1
wi [
daddone [0] | | L
4 dadoad 1] | |
Alrck i] | |
I 1 TUL_T L
B4 ad_dout 0000 - aret I fllal
Bdda din a7 it | fll I arit
4 sitol) i)
Ao il] T
ok i
MAcddan [a70e e | a3l I 278
At i L LT LT
A0 (i [[
A done it N
4 dore false fase

Figure 4. Data Handling Simulation

\‘

rslt rst
shifter :
iy =
(left) —— 0 ol o
std0 —— 0 RN aniE: L.t & 1)
Fd ta
o I ‘%I adc_dtout
r— o]
AN A\
I
ad_capture
shelk
Figure 5. Audio Serial to parallel
rat
D s_adcdon '
ad_capture — © =) adedone
shell
Figure 6. Audio serial to parallel done signal
16 rat
7 I fpgalaudi
g azaudio
I |
shifter . ¥
r 0 bl
(left) 7 -
) L2r]
|
I|:|| i I:I -{ -Ig'l
i
dac_dtin clk
Figure 7 .Audio parallel to seria output
rat
-
adstream — D Q s_dacload . s dacload
FAN

shille

Figure 8 .Audio output parallel load signal

AK4565 Control Data

The second part of the Audio codec module is the control. Control signals can be separate from
the data signals. It is a 16-bit serial output, with 3 bits opcode, 5 bit address and 8 bits data.
When control data is being sent, it must be sent on the falling edge of control clock, and chip
select signal must be zero. When transmission is finished, chip select returns back to one. This
can be implemented by a finite state machine where each bit sent represents a state. A 4-bit
counter and s done signal to establish a finite state machine structure for control data
transmission. When c_wr signal istriggered, the state machine is activated. When s_done is zero,
s _csn chip select signal is aso zero signaling ak4565 to grab input signal. As soon as the counter
reaches 15, s done is triggered, thus driving s csn back to one to stop transmission. Since
minimum 200ns clock requirement is needed, 3MHz clock was used for control transmission. It
was assumed that control signal is completely asynchronous with data clocks.

C_Wr

I

=

ek

o 141 1
A ! o
| & canis active low

fatdellc chip select signal
4 C_Wr C_Wr
l 1
. ==
o I
d 5 _C5h)
0xF . A s_done f"l‘x _ —D

16 fz6dcllc

i

C_Wr
' 2andioctr]
N) s fpgaZaudioc dti
shifter EI' D -
0 FEI
1 3
0 — (left) o!
: :
fatdcllc

Figure9. AK4565 Controller

Implementation of Effects

The following effects were implemented: Distortion, Delay, Echo and two types of Flange. The
process of implementing an effect began with its design. Research was done on many different
digital effects. The effects were then chosen based on the sound of the effect, ease of
implementation (due to the fact that there is a limited amount of clock cycles that can be utilized
to implement an effect) and the project deadline. Sample guitar clips were recorded using the
Sound Recorder in the Accessories folder of windows. The desired effect was programmed in
Matlab and the sound was passed through this effect. From these Matlab simulations, it was
possible to fine-tune the effect before it was synthesized in hardware. By listening to the sound
the particular effect, the various parameters of the effect (length of delay, decay of signal) could
be adjusted without having to synthesize the VHDL code in hardware. Also this allowed
parallelism as our group divided the labor as some members could use the board to test other
components of our design while another worked on the effect generation in Matlab.

Distortion

There are two well-known methods exist for performing distortion of an audio signal: Clipping
and absolute value. Like many decisions for this project, there was a trade-off. While easier to
implement, the absolute value solution has a noisier sound. The clipping method, while much
more difficult to implement has a much better sound. Our design team decided that absolute
value was the better solution, because the implementation takes less clock cycles and is not an
amplitude-dependent algorithm. For the clipping method, a threshold at which the sound was not
to surpass has to be set. Lower volumes, where the entire value of the signal falls below this
threshold would not experience the distortion effect. The clipping threshold would have to
change depending on the amplitude of the signal. There would be many clock cycle-consuming
comparisons in order to enact this method. The distortion agorithm that was implemented
simply checks the sign bit of the 16bit signal and if thisbitisa 1, all 16 bitsin the signal are
negated.

din(15)

din{15:0% 9

Figure 10 . Distortion

—
L27]
—t

ternp latch —
i
i
=3

SRAM Effects

SRAM_FX isthe main digital signal processing unit in our project. By using SRAM as acircular
buffer, we can achieve various effects by doing time domain calculations. The most common
effects are delay, echo, reverberation, and flanging. Delay, Echo, and flanging were implemented
because they have similar structures. Reverberation was not implemented for following reasons:

10

the electric guitar strings are intrinsically flexible and have a long settling time. Reverb is the
sound you hear in a room with hard surfaces where the sound bounces off the floors and walls
for aperiod of time after the initial sound stops. The problem is that the initial sound of the guitar
does not stop because the strings keep vibrating. This posed a problem because the various
reverberation techniques we implemented did not sound good. Also, reverberation has a
tendency to amplify the noise signal without using a compandor. If we are to do reverberation,
we need to increase number of statesto include additional delays.

Trigger=0

Trigger=1/
readram_dt=1
sr_rnw=1

s_done=0

1/
readram_dt=0
sr_rmw=0
s_done=1

1/
readram_dt=0
sr_mw=1
s_done=0

Figure 11 . Basic calculation FSM

The state machine (Figure 11) describes our SRAMFX protocol. By default, the state machine
starts in the idle state until it receives a trigger signal. Upon receiving this signal SRAM data is
latched. In state 1, the appropriate delay effect output is calculated and latched. In state 2,
depending on the effect selection (feedback or not), either the incoming data (from the codec) or
the delay effect output is stored in the SRAM.

di_in —— ()
+ sram_dt_wr

16

L 1
dt_out =
16 /I/
feedback

11

Figure 12. Feedback MUX

The delay calculation is achieved using the scheme described in Figure 13. Every clock cycle
the SRAM address is calculated continuously except when cstate is S2. Depending on what
effect is selected the delay goes through a series of multiplexers.

rst

18

c_addr
(current adddr. sr_addr
pointer) D Qﬂ
Delay_len sram_addr

(const. delay)

"000000"&d_cnt
(flanger delay)

18 cstate

51"
effect_sel

Figure 13.SRAM address (Delay) processing unit

12

snd_inl5 ==
snd_in1l5
snd_inl4 rst
snd_in13 I
snd_inl2
snd_inll
snd_in10

snd_in9 +D dt_in Q
snd_in& latch

snd_in7 16
snd_in6
snd_in5 A
snd_ind |
snd_in3

snd_in2 dk
snd_inl =——

sram_dt_rd1l5 =
sram_dt_rd15
sram_dt_rd14
sram_dt_rd13
sram_dt_rd12
sram_dt_rd11
sram_dt_rd10
sram_dt_rd9
sram_dt_rd8
sram_dt_rd7
sram_dt_rd6
sram_dt_rd5
sram_dt_rd4
sram_dt_rd3
sram_dt_rd2
sram_dt_rd]l —=——

sr_dt_rd

latch Q

snd_out

A

| cstate
ck 51

readram_dt

Figure 14. Feedback system

The feedback system is described in Figure 14. The following formulais implemented
Y(n) =% X(n) + ¥2 Y(n-d)
A divide by 2 is used because the addition will cause the output signal to saturate. The output

level must always be less than or equal to the max 16-bit signed number. This division is carried
out by a shift right operation.

Delay

The delay effect isimplemented by adding the current 16-bit signal with an attenuated signal that
was played a constant period of time ago. The amount of delay and decay are constant
parameters. The delay that was used was .5 seconds. This delay was achieved by hardwiring
X”05DCQ" into the delay_len input to the SRAM_FX module.

13

Echo
The Echo effect is similar to that of delay except that the signal has feedback. The same
delay of .5 seconds was used.

Flange

Input | Delay Output
Depth

Figure 15 .Block diagram for aflange implementation

The Flange effect is created by mixing a signal with delayed copies of itself, where the length of
the delay is changing continuously. This delay is usually ranges from O to 5ms. There are three
primary controls for the flange effect. They are referred to as depth, rate, and decay. Depth refers
to how long the delay is, Rate refers to how fast the delay changes, and Decay describes the
attenuation of the delayed sound. In order to achieve these delays the 50 MHz master clock is
divided down to 381Hz. This corresponds to a 2.6 ms period. This number is the delay variation
rate. This controls the depth. Then, this slow clock is fed into a 12-bit up/down counter, which
we limited it from O to 144, which it is corresponded to the depth. This caused the various delays
to range from 0 to 3ms.

rst rst rst
12
? 6 d_cnt (Flanger Delay)
06t ° 7 bit i 12 bit
counter 7 counter up/dwn
' ' counter
0 0 X"08F" 1
/\ /\ /\ umD (3ms delay)
| 0

figclk (48K/128)
variation rate

X"001"

clk (50MHz) Irclk (48KHz)

rst

D v Q
|_ up latch

Figure 16 .Flange hardware — Delay calculation

14

User Interface

The user interface is ssmply a menu that prompts the user to select one of six guitar effects. The
user can enter any numbers 1-6, which correspond to clean tone, distortion, delay, echo, flange
w/o feedback and flange w/ feedback respectively. The default setting is clean tone. If the user
attempts to press any other button on the keyboard except the buttons 1-6, the program does not
respond and the current effect remains playing. Once the effect is selected a three-bit sequenceis
loaded onto the OPB data bus and sent to our GDSP hardware module. This three-bit sequence
provides the control bits for the SRAMFX module and the demultiplexor that sends one of three
sounds back to the audio codec module for playback. The keystroke is received and an interrupt
is generated. The user selection is read from the two-bit array. The 3-bit sequence is then
generated. This piece of code was very similar to lab2, where a typewriter was implemented.

15

Conclusions

Lessons Learned

Jason.

This was my first project where as a group we could pick our own project. In my previous
courses, the specific project was assigned and | as the student had to complete it. There was no
choice or maybe the professor proposed three possible projects and | had to complete one of
them. This was the first project that as a group we had to essentially create ourselves. Not only
create we basically had to implement it ourselves also. While the Professor Edwards and TA
Marcio are familiar with the Xilinx boards and peripherals, they may not familiar with the details
of implementing unique projects that the students have come up with. Thus the burden of
implementation falls more strictly on the student as there is limited help you could receive from
the professor or TA. This is good because it forces you to be more resourceful. | also learned a
great deal about VHDL. While | have taken a previous course in VHDL, it was nothing this
advanced. We had to design a simple component. Throughout the course of this project | learned
a great deal about how to implement VHDL. | learned how to interpret manuals and data sheets
in order to make our project work.

Jun Hao

Thisisthe second course | have taken, where the mgjority of the work involved VHDL. Thiswas
an excellent design course for me. | learned to read and make sense (try to) out of the data sheets.
| also got much experience in coding in VHDL. Many times, the components | designed worked
great in simulation. The code is logically correct; however, in order to synthesize this VHDL
code into hardware, timing issues needed to be seriously considered as not all code that worksin
simulation is synthesizable. Also, | have learned that it is important to break VHDL into small
processes. This makes things easier for the synthesizer to handle. In addition, | gained experience
with implementing inter-chip communication protocols such as Audio port, SRAM, and OPB.
This is a fun practical project. If | get more time, | could of make it much more interesting by
including some Freguency domain filtering.

Chih-Chieh

This project is the first where | was able to design, create and implement my(our) own idea. All
of my previous projects were designed and assigned by a professor. We always had directions to
follow and a clear scope in mind and never had to start from scratch. While some of my previous
projects involved C programming, this project was my first using VHDL. | have never
programmed an FPGA or Microprocessor. | have never even written any VHDL code before.
The last time | learned anything about digital design or logic was six years ago. The skeleton of
the project was in VHDL and a lot of timing diagrams. | learned in details how to complete a
digital design project and learned the functions of the various files (.vhd,.mss, .mpd,.mhs.,etc). |
learned not only “read” the manual and timing diagram but also implement it. (Timing issue is
really a trouble in digital design.) | learned how to manipulate the board, peripherals and

16

processor. For example, since our project was concerning the delay parts of our signals, we had
to manipulate the SRAM. Also, | learned how to communicate with peripherals by using a
combination of C and VHDL.

Future advice

The board takes a while to compile and synthesize. Each time we compiled and synthesize it
took about 5-10 minutes to complete although it seemed like an eternity. We suggest that future
students use your brains for debugging and implementing. Do what you can without
synthesizing. We simulated all of our digital effects in Matlab, fine tuning all of the various
parameters such as delays, and decays, while we listened to the sound. This saved us alot of time
as we could fine-tune our digital effects in minutes rather than hours. Besides the simulations of
the sound effects, we simulated each one of our components before simulation. We verified the
waveforms were what we wanted before synthesizing the hardware. We accomplished this by
using Xilinx Student Edition software that came with the John F. Wakerly book Digital Design
Principles & Practices purchased for Professor Novick’s class: Advanced Logic Design. We aso
strongly suggest that students take a C and VHDL course before you enroll in Embedded
Systems. We feel that thisis not a beginner VHDL course and it would be very beneficial if you
had prior experience with both of theses languages. The reviews in the first two lectures just are
not enough if you have never been exposed to either language.

Future Work

As is, the SRAM data processing technique implemented functions properly. However, there is
still space for improvement. There may be a bug within the address calculation process. For
some reason, the counter generated address only works with certain number of bits. If we
arbitrary modify the number of address counter bits, our system will fail. One suggested solution
is to attempt to use as little IF statements as possible, and use as much combinational logic as
possible due to our team’s uncertainty about how ‘IF statements are synthesized into hardware.
In many cases, |F statements should be simplified to combinational logic, but sometimes it will
be turn into one big MUX (like what our diagrams shown. The SRAM state machine can be
improved so that it may include higher order delays. The effect functions can be parameterized.
Thiswill allow the user to control how SRAM effects work. The user could control all the delays
and decays.

Responsibilities

Jason
- AK4565 Controller
- Distortion
- User Interface(C,VHDL)
- OPB Protocol
- SRAMFX Module

17

Jun Hao
- DataHandling
- Clock Generation
- SRAMFX Module
- VHDL Integration of components

Chih-Chieh
- Matlab simulations and fine-tuning of al effects
- User Interface (UART)
- System File Modification
- SRAMEX Module

18

References

GM Arts Home Page. http://users.chariot.net.au/~gmarts/index.html

Lehman, Scott Flanging. http://www.harmony-central.com/Effects/Articles/Flanging/

19

Appendix

C program for User interface

#include "xparameters.h"
#include ""xbasic_types.h"
#include "xio.h"

#include "'xintc_I_.h"
#include "xuartlite_I_h"

/* get character, or say, selection from keyboard */
unsigned char buff;

/*

* Interrupt service routine for the UART
*/

void uart_handler(void *callback)

{

}

Xuint32 IsrStatus;

Xuint8 incoming_ character;

/* Check the ISR status register so we can identify the interrupt source */
IsrStatus = Xlo_In32(XPAR_MYUART_ BASEADDR + XUL_STATUS REG_OFFSET);

/* disable interrupts */

microblaze disable_interrupts();

if ((IsrStatus & (XUL_SR_RX_FIFO_FULL | XUL_SR_RX_FIFO_VALID_DATA)) != 0)
{

incoming_character =
(Xuint8) Xlo_In32(XPAR_MYUART_BASEADDR + XUL_RX FIFO_OFFSET);
buff= incoming_character;

/* Enable interrupts */
microblaze_enable_interrupts();

int main()

int j, k, addr;

/* Use a 2-character array to store input character(lst bit) and null

character(2nd bit) */

char disp_char[2];
char last="\0";
disp_char[1]="\0";

/* Enable UART interrupts and register uart _handler as the ISR */
XIntc_RegisterHandler(XPAR_INTC_BASEADDR, XPAR_MYUART_DEVICE_ID,
(XInterruptHandler)uart_handler, (void *)0);
XIntc_mEnablelntr(XPAR_INTC BASEADDR, XPAR_MYUART_INTERRUPT MASK);
XIntc_mMasterEnable(XPAR_INTC_BASEADDR);
XIntc_Out32(XPAR_INTC_BASEADDR + XIN_MER_OFFSET,

XIN_INT_MASTER_ENABLE_MASK) ;

microblaze_enable_interrupts();
XUartLite_mEnablelntr (XPAR_MYUART_BASEADDR) ;

20

/* USER INTERFACE SCREEN */
printC"\n") ;
print("\r\n\tWELCOME TO THE GUITAR EFFECTOR\r\n\n\n");

print(*"Select which effect you want to experience:\r\n\n");

print(" 1 - Clean\r\n");

print(’ 2 - Distortion\r\n');

print(’" 3 - Delay\r\n');

print(* 4 - Echo\r\n");

print("" 5 - Flange w/o feedback\r\n);
print("" 6 - Flange w/ feedback\r\n\n'");

print("Enter a number 1-6: \r\n');

for(;:)
{

/* get character from buffer to display */
microblaze disable_interrupts();
disp_char[0] = buff;
microblaze enable_interrupts();

/* Force the input to be one of the selections */

if(disp_char[0]=="1" || disp_char[0]=="2"]] disp_char[0]=="3" ||
disp_char[0]=="4" || disp_char[0]=="5" || disp_char[0]=="6")

{

if(disp_char[0]!=last)
/* print to minicom */
print(disp_char);
print(*’\r');
/* set mux controls based on input, first 3 bits are
the mux controls */
if(disp_char[0]=="1")
J=0x00000000;

if(disp_char[0]=="2")
J=0x20000000;

if(disp_char[0]=="3")
J§=0x80000000;

if(disp_char[0]=="4%)
J=0xC0000000;

if(disp_char[0]=="5")
J=0xA0000000;

if(disp_char[0]=="6")
J=0xE0000000;

addr = OxFEFF1001;
Xlo_Out32(addr, j);

k = Xlo_In32(addr);

21

print("'\r');
3

/* make sure that if user
nothing happens */
last=disp_char[0];
}

return O;

}

enters selects same effect as current effect

22

system.mhs

Parameters
PARAMETER VERSION = 2.1.0

Global Ports
PORT FPGA CLK1 = FPGA CLK1, DIR = IN

PORT RS232_TD RS232_TD, DIR=0UT
PORT RS232_RD RS232_RD, DIR=IN

PORT PB_A
PORT PB_D

A, DIR

» OUT, VEC = [17:0]
D, DIR

INOUT, VEC = [15:0]

T T

PORT SRAM_CE = SRAM_CE, DIR = OUT
PORT SRAM_OE = SRAM_OE, DIR = OUT
PORT SRAM_WE = SRAM_WE, DIR = OUT
PORT SRAM_UB = SRAM_UB, DIR = OUT
PORT SRAM_LB = SRAM_LB, DIR = OUT
B
B

PORT au_cs = au_cs, DIR = OUT

PORT au _mclk = au _mclk, DIR = OUT
PORT au_lrclk = au_Ilrclk, DIR = OUT
PORT au_bclk = au_bclk, DIR = OUT
PORT au_sdti au_sdti, DIR = OUT
PORT au_sdtoO = au_sdtoO, DIR = IN

Hint: Put your peripheral first in this file so it will be analyzed
First and will generate errors faster.

gDSP example peripheral

BEGIN gDSP

PARAMETER INSTANCE = gDSP_peripheral
PARAMETER HW_VER = 1.00.a

PARAMETER C_BASEADDR = OxFE100000
PARAMETER C_HIGHADDR = OXFE1fffff

PORT OPB_CIlk = sys clk
PORT SRAM_CE = SRAM_CE
PORT SRAM_OE = SRAM_OE
PORT SRAM_WE = SRAM_WE
PORT SRAM_UB = SRAM_UB
PORT SRAM_LB = SRAM_LB
PORT PB_A = PB_A

PORT PB_D = PB D

BUS_INTERFACE SOPB = myopb_bus
PORT au_cs = au_cs

PORT au_mclk = au_mclk

PORT au_lrclk = au_lrclk

PORT au_bclk = au_bclk

PORT au_sdti = au_sdti

PORT au_sdto0 = au_sdtoO

END

Interrupt controller for dealing with interrupts from the UART

BEGIN opb_intc

PARAMETER INSTANCE = intc
PARAMETER HW_VER = 1.00.c
PARAMETER C_BASEADDR = OxFFFF0000
PARAMETER C_HIGHADDR = OxFFFFOOFF
PORT OPB_Clk = sys clk

PORT Intr = wuart_intr

PORT Irq = intr

BUS_INTERFACE SOPB = myopb_bus
END

The main processor core

BEGIN microblaze
PARAMETER INSTANCE = mymicroblaze
PARAMETER HW_VER = 2.00.a

PARAMETER C_USE_BARREL = 1
PARAMETER C_USE_ICACHE = O
PORT Clk = sys clk

PORT Reset = fpga_reset

PORT Interrupt = intr
BUS_INTERFACE DLMB = d_Imb
BUS_INTERFACE ILMB = i_Imb
BUS_INTERFACE DOPB = myopb_bus
BUS_INTERFACE I10PB = myopb_bus

END

Block RAM for code and data is connected through two LMB busses
to the Microblaze, which has two ports on it for just this reason.

Data LMB bus

BEGIN Imb_v10
PARAMETER INSTANCE = d_Im
PARAMETER HW_VER = 1.00.a
PORT LMB_CIlk = sys clk
PORT SYS Rst = fpga reset
END

b

BEGIN Imb_bram_if _cntlr

PARAMETER INSTANCE = Imb_data_controller
PARAMETER HW_VER = 1.00.b

PARAMETER C_BASEADDR = 0x00000000
PARAMETER C_HIGHADDR = Ox00000FFF
BUS_INTERFACE SLMB = d_Imb

BUS_INTERFACE BRAM_PORT = conn_0O

END

#Instruction LMB bus

BEGIN Imb_v10

PARAMETER INSTANCE = i_Imb
PARAMETER HW_VER = 1.00.a
PORT LMB_CIk = sys _clk
PORT SYS Rst = fpga reset
END

BEGIN Imb_bram_if cntir

24

PARAMETER INSTANCE = Imb_instruction_controller
PARAMETER HW_VER = 1.00.b

PARAMETER C_BASEADDR = 0x00000000

PARAMETER C_HIGHADDR = 0OxO0000FFF

BUS_INTERFACE SLMB = i_Imb

BUS_INTERFACE BRAM_PORT = conn_1

END

#The actual block memory

BEGIN bram_block

PARAMETER INSTANCE = bram
PARAMETER HW_VER = 1.00.a
BUS_INTERFACE PORTA = conn_0
BUS_INTERFACE PORTB = conn_1
END

Clock divider to make the whole thing run

BEGIN clkgen

PARAMETER INSTANCE = clkgen_O
PARAMETER HW_VER = 1.00.a

PORT FPGA CLK1 = FPGA CLK1
PORT sys_clk = sys_clk

PORT pixel_clock = pixel_clock
PORT fpga reset = fpga reset
END

The OPB bus controller connected to the Microblaze
All peripherals are connected to this

BEGIN opb_v20
PARAMETER INSTANCE = myopb_bus
PARAMETER HW_VER = 1.10.a
PARAMETER C_DYNAM_PRIORITY = 0O
PARAMETER C_REG_GRANTS = O
PARAMETER C_PARK = 0O
PARAMETER C_PROC_INTRFCE = O
PARAMETER C_DEV_BLK_ ID = 0O
PARAMETER C_DEV_MIR_ENABLE = O
PARAMETER C_BASEADDR = OxOFfff1000
PARAMETER C_HIGHADDR = OxXOfff10ff
PORT SYS_Rst = fpga reset
PORT OPB_CIlk = sys_clk
END

UART: Serial port hardware

BEGIN opb_uartlite

PARAMETER INSTANCE = myuart
PARAMETER HW_VER = 1.00.b
PARAMETER C_CLK_FREQ = 50_000_000
PARAMETER C_USE_PARITY = 0
PARAMETER C_BASEADDR = OXFEFF0100
PARAMETER C_HIGHADDR = OXFEFFO1FF

PORT OPB_CIlk = sys clk
BUS_INTERFACE SOPB = myopb_bus

PORT Interrupt = uart_intr
PORT RX=RS232_RD

PORT TX=RS232_TD

END

26

System.mss

PARAMETER VERSION = 2.2.0
PARAMETER HW_SPEC FILE = system.mhs

BEGIN PROCESSOR

PARAMETER HW_INSTANCE = mymicroblaze
PARAMETER DRIVER_NAME = cpu
PARAMETER DRIVER_VER = 1.00.a

END

BEGIN 0S
PARAMETER PROC_INSTANCE = mymicroblaze
PARAMETER OS_NAME = standalone
PARAMETER OS_VER = 1.00.a
PARAMETER STDIN = myuart
PARAMETER STDOUT = myuart

END

BEGIN DRIVER

PARAMETER HW_INSTANCE myuart
PARAMETER DRIVER_NAME uartlite
PARAMETER DRIVER_VER = 1.00.b
END

BEGIN DRIVER

PARAMETER HW_INSTANCE intc
PARAMETER DRIVER_NAME intc
PARAMETER DRIVER_VER = 1.00.c
END

Use null drivers for peripherals that don"t need them
This supresses warnings

BEGIN DRIVER

PARAMETER HW_INSTANCE gDSP_peripheral
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a

END

BEGIN DRIVER

PARAMETER HW_INSTANCE
PARAMETER DRIVER_NAME
PARAMETER DRIVER_VER
END

Imb_data_controller
generic
1.00.a

BEGIN DRIVER

PARAMETER HW_INSTANCE Imb_instruction_controller
PARAMETER DRIVER_NAME generic

PARAMETER DRIVER_VER = 1.00.a

END

Microprocess Peripheral Definition File

HHAH AR R R R

H#HH

Microprocessor Peripheral Definition

HH

HEHH R A R R R R R R R

BEGIN gDSP,

IPTYPE = PERIPHERAL, EDIF=TRUE

BUS_INTERFACE BUS = SOPB, BUS_STD = OPB, BUS_TYPE = SLAVE

Generics for VHDL

PARAMETER
PARAMETER
PARAMETER
PARAMETER

FPGA Internal

PORT opb_abus = OPB_ABus,
= SOPB

PORT opb_be = OPB_BE,

= SOPB

PORT opb_clk = ",

= SOPB

PORT opb_dbus = OPB_DBus,
= SOPB

PORT opb_rnw = OPB_RNW,

= SOPB

PORT opb_rst = OPB_Rst,

= SOPB

PORT opb_select = OPB_select,
= SOPB

PORT opb_seqgaddr = OPB_seqAddr,
= SOPB

PORT slIn_dbus = Sl _DBus,

= SOPB

PORT sIn_errack = SI_errAck,
= SOPB

PORT sIn_retry = Sl _retry,
= SOPB

PORT slIn_toutsup

= SOPB

PORT slIn_xferack

= SOPB

Ports connecting
PORT SRAM_
PORT SRAM_OE
PORT SRAM_WE
PORT SRAM_
PORT SRAM_|

PORT PB_A
PORT PB_D

10B_STATE=

Cc_baseaddr
c_highaddr
c_opb_awidth
c_opb_dwidth

CE -

UuB
LB

BUF

OXFFFFFFFF, DT
0x00000000, DT

32,
32,

S1_toutSup,

S1_xferAck,

DIR

DIR

DIR

DIR

DIR

DIR

DIR

DIR

DIR

DIR

DIR

DIR

DIR

DIR
DIR
DIR
DIR
DIR
DIR
DIR

DT
DT

Ports, connects Microblaze

std_logic vector, MIN_SIZE = OxFF
std_logic_vector

integer

integer

and FPGA module

IN, VEC = [0:(c_opb_awidth-1)], BUS
IN, VEC = [0:((c_opb_dwidth/8)-1)], BUS
IN, BUS
IN, VEC = [0:(c_opb_dwidth-1)], BUS
IN, BUS
IN, BUS
IN, BUS
IN, BUS

OUT, VEC = [0:(c_opb_dwidth-1)], BUS

OouT,
ouT,
OouT,

ouT,

the module to the SRAM

ouT
ouT
ouT
ouT
ouT

BUS

BUS

BUS

BUS

OUT, VEC=[17:0], 10B_STATE=BUF
INOUT, VEC=[15:0], THREE_STATE=FALSE,

28

PORT
PORT
PORT
PORT
PORT
PORT

END

au_cs
au_mclk
au_lrclk
au_bclk
au_sdti
au_sdto0

DIR
DIR
DIR
DIR
DIR
DIR

ouT
ouT
ouT
ouT
ouT
IN

29

GDSP pao file

HHAHHHH A R R
#

gDSP pao file
#
BRI R A

lib gDSP_v1 00_a gDSP

lib gDSP_v1 00 _a ak4565

lib gDSP_v1 00 _a distortion
lib gDSP_v1l 00 _a SRAM_FX

30

ak4565.vhd

-- JunHao 1Ip

-- Jason Cardillo

-- Chih-Chieh Lin

--FPGA rule, don"t mix clock with signal

--use separate counter for each clock

--always work on either up latch or down latch

library ieee;

use ieee.std logic _1164.all;

use IEEE.STD_LOGIC_ARITH.all;
use IEEE.STD_LOGIC UNSIGNED.all;

entity ak4565 is

port (
clk > in std_logic;
rst > in std_logic;
mclk : out std_logic;
bclk : out std_logic;
Irclk : out std_logic;
sdti : out std_logic;
sdto0 - in std_logic;
csn : out std_logic;
cclk : out std_logic;
cdti : out std_logic;

adcdone : out std_logic;
dacload : out std _logic;

adc_dtout : out std_logic_vector(1l5 downto 0); --data out to fpga

dac _dtin : in std _logic_vector(15 downto 0); --parallelload data from
fpga

c_datain : in std_logic_vector(15 downto 0); --parallelload control from
fpga

Cc_wr : in std_logic;

c_done : out std logic

end ak4565;
architecture Behavioral of ak4565 is
signal fs256c¢clk : std_logic; --12.5Mhz = 256fs
signal fs64clk, sbclk, snbclk - std logic; --1.5625Mhz = 32fs
signal slrclk: std_logic; --48.8Khz = fs
--signal scclk : std logic; --3.125Mhz

signal clkcount: std_logic_vector(1l downto 0):="00";

signal adcount,dacount: std_logic_vector(7 downto 0):="00000000"

signal ccount : std_logic_vector(3 downto 0):="0000";
signal ad _capture, da stream : std_logic;

signal s _csn, sdone : std logic;

signal s_adcdone, s dacload: std_logic;

31

signal adc_datal6: std logic_vector(15 downto 0) := x'"0000";

signal in_shift _reg,out_shift reg,c shift reg: std logic vector(15 downto
0) := x'0000";

signal s_fpga2audio, s_fpga2audcntrl : std_logic;

-——-output to signal mapping-----————————————————————
begin

mclk <=not fs256c¢clk;

bclk <=sbclk;

Irclk <=slrclk;

sdti <=s_fpgaaudio;

csn <=s_csn;
cclk <=not fs64clk;
cdti <=s_fpgaaudcntrl;

adcdone <= s _adcdone;
dacload <= s dacload;

adc_dtout(15 downto O)<=adc datal6(l5 downto 0);
c _done <= sdone;

—----clocks and counters--- - ——-————————————————
clkdivl : process(clk,rst)
begin
if rst = "1 then
clkcount <= "00";
elsif clk"event and clk = "1 then
clkcount <= clkcount + 1;

-- phase doesn"t matter? ak4565 spec page 11
fs256clk<=clkcount(l); --sync with Irclk?
end if;

end process clkdivl;

clkdiv2 : process(fs256c¢lk,rst)
begin
if rst = "1" then
adcount <= "00000000";
dacount <= ""00000100";
elsif fs256¢clk"event and fs256c¢clk = "1 then
adcount <= adcount+1;
dacount <= dacount+1;

fs64clk<=adcount(l);
sbclk<=adcount(2); --clocks
snbclk<=dacount(2);
slrclk<=adcount(7);

ad_capture <=adcount(7); --regular signal
da_stream <=dacount(7);
end if;

end process clkdiv2;

32

—————— grab audio data----—-—-—————————————
get _audio : process(shclk,rst)
begin
if rst = 1" then
in_shift_reg <= X'"0000";
adc_datal6 <= X'0000';
elsif sbclk®"event and sbclk = 1" then
if ad_capture = "0" then
in_shift_reg(15)<=in_shift_reg(14);
in_shift_reg(14)<=in_shift _reg(13);
in_shift_reg(13)<=in_shift_reg(12);
in_shift _reg(12)<=in_shift_reg(11l);
in_shift_reg(1l)<=in_shift_reg(10);
in_shift_reg(10)<=in_shift_reg(9);
in_shift_reg(9)<=in_shift_reg(8);
in_shift_reg(8)<=in_shift reg(7);
in_shift_reg(7)<=in_shift _reg(6);
in_shift_reg(6)<=in_shift_reg(b);
in_shift_reg(5)<=in_shift_reg(4);
in_shift_reg(4)<=in_shift_reg(3);
in_shift_reg(3)<=in_shift _reg(2);
in_shift_reg(2)<=in_shift reg(l);
in_shift_reg(l)<=in_shift_reg(0);
in_shift_reg(0)<=sdto0;
else
adc_datal6(15 downto 0)<= in_shift reg(15 downto 0);
end if;
end if;
end process get_audio;

get_audio2 : process(sbclk,rst)
begin
if rst = 1" then
s_adcdone<="0";
elsif sbclk"event and sbclk = 1" then
if ad _capture = "0" then
s_adcdone<="0";
else
s_adcdone<="1";
end if;
end if;
end process get_audio2;

output audiostream : process(snbclk,rst)
begin
if rst ="1" then
out_shift_reg(15 downto 0)<=X"0000";
s_fpgaaudio<="0";
elsif snbclk®"event and snbclk = "1 then
if da stream="0" then
out_shift_reg(15)<=out_shift_reg(14);
out_shift_reg(14)<=out_shift_reg(13);
out_shift_reg(13)<=out_shift_reg(12);
out_shift _reg(12)<=out_shift_reg(1l);

33

out_shift _reg(ll)<=out_shift_reg(10);
out_shift _reg(10)<=out_shift _reg(9);
out_shift_reg(9)<=out_shift_reg(8);
out_shift_reg(8)<=out_shift_reg(7);
out_shift_reg(7)<=out_shift_reg(6);
out_shift _reg(6)<=out_shift reg(b);
out_shift _reg(b6)<=out_shift reg(4);
out_shift_reg(4)<=out_shift_reg(3);
out_shift_reg(3)<=out_shift_reg(2);
out_shift_reg(2)<=out_shift_reg(1l);
out_shift_reg(l)<=out_shift _reg(0);
out_shift _reg(0)<="0";
s_fpga2audio <= out_shift_reg(1l5);
else
out_shift_reg(15 downto 0)<= dac_dtin(15 downto 0);
s_fpga2audio<="0";
end if;
end if;
end process output_audiostream;

output audiostream2 : process(snbclk,rst)
begin
if rst = 1" then
s_dacload<="0";
elsif snbclk®event and snbclk = "1" then
if da_stream = "0" then
s _dacload<="0";
else
s_dacload<="1";
end if;
end if;
end process output_audiostream2;

————— audio port initialization -\ ————————————————
process (fs64clk,c_wr)
begin
if c wr="1" then
ccount<="0000";
sdone<="0";
s_csn<="1";
elsif fsb64clk"event and fs64clk="1" then
if sdone<="0" then
ccount<=ccount+1;
s_csn<="0";
end if;

if ccount = "1111" then
sdone<="1";
end if;

if sdone="1" then
s_csn<="1";
end if;
end if;
end process;

process (fs64clk,c _wr,c_datain)

begin

if c wr="1" then

c_shift_reg(15 downto 0) <= c_datain(15 downto

s_fpga2audcntri<="0";
elsif fs64clk®"event and fs64clk="1" then
if sdone ="0" then

c_shift_reg(15)
c_shift_reg(14)
c_shift_reg(13)
c_shift_reg(12)
c_shift_reg(11)
c_shift_reg(10)
c_shift_reg(9)
c_shift_reg(8)
c_shift_reg(7)
c_shift_reg(6)
c_shift_reg(5)
c_shift_reg(4)
c_shift_reg(3d)
c_shift_reg(2)
c_shift_reg(l)

c_shift_reg(0) <= "07;

s_fpgaaudcntrl

end if;

end if;
end process;

end Behavioral;

<
<
<
<
<

<
<=
<=
<=
<=

<=
<=
<=
<=

<=

c_shift_reg(14);
c_shift_reg(13);
c_shift_reg(12);
c_shift_reg(11);
c_shift_reg(10);
c_shift_reg(9);
c_shift_reg(8);
c_shift_reg(7);
c_shift_reg(6);
c_shift_reg(5);
c_shift_reg(4);
c_shift_reg(3);
c_shift_reg(2);
c_shift_reg(l);
c_shift_reg(0);

c_shift_reg(15);

0);

35

distortion.vhd

library ieee;
use leee.std logic_1164._all;

-— distortion is taking the absolute value of the data.

entity distortion is
port(clk: in STD_LOGIC;
rst: in std_logic;
din:in std_logic_vector(15 downto 0);
dout:out std logic_vector(15 downto 0));
end distortion;

architecture behavioral of distortion is
signal temp: std_logic_vector(15 downto 0):=x"0000";
begin

process(clk,rst)
begin
if rst = 1" then
temp<=x"0000"";
elsif clk="1" and clk"event then
if din(15)="1" then
temp(15)<=not(din(15));
temp(14)<=not(din(14));
temp(13)<=not(din(13));
temp(12)<=not(din(12));
temp(11l)<=not(din(1l));
temp(10)<=not(din(10));
temp(9)<=not(din(9));
temp(8)<=not(din(8));
temp(7)<=not(din(7));
temp(6)<=not(din(6));
temp(5)<=not(din(5));
temp(4)<=not(din(4));
temp(3)<=not(din(3));
temp(2)<=not(din(2));
temp(1)<=not(din(l));
temp(0)<=not(din(0));
else
temp(15 downto 0)<=din(15 downto 0);
end if;
end if;
end process;

dout<=temp(15 downto 0);
end behavioral;

36

gDSP.vhd

library ieee;

use leee.std logic_1164._all;
use IEEE.STD LOGIC_ARITH.all;
use IEEE.STD _LOGIC_UNSIGNED.all;

entity gDSP is

generic (
C_OPB_AWIDTH
C_OPB_DWIDTH
C_BASEADDR
C_HIGHADDR

);

port (
OPB_CIk
OPB_Rst
OPB_ABus
OPB_BE
OPB_DBus
OPB_RNW
OPB_select
OPB_seqAddr
SIn_DBus
SIn_errAck
SIn_retry
SIn_toutSup
SIn_xferAck

SRAM_CE
SRAM_OE
SRAM_WE
SRAM_UB
SRAM_LB
PB_A

PB_D

au_mclk
au_lrclk
au_bclk
au_sdti
au_sdto0
au_cs

)
end gDSP;

integer 1= 32;
integer 1= 32;

std_logic_vector(0 to 31) := X'"00000000";
std_logic_vector(0 to 31) := X"FFFFFFFF"

in std logic;

in std logic;

in std logic_vector(0 to C_OPB_AWIDTH-1); --(31:0)

in std logic_vector(0 to C_OPB_DWIDTH/8-1);--(3:0)

in std logic vector(0 to C_OPB_DWIDTH-1); --(31:0)

in std logic;

in std logic;

in std logic; -- Sequential Address

out std_logic_vector(0 to C_OPB_DWIDTH-1); --(31:0)

out std_logic; -— (unused)

out std_logic; -— (unused)

out std_logic; -- Timeout suppress

out std_logic; -- Transfer acknowledge

out std_logic; --sram chip enable (active low)

out std_logic; --sram output enable (active low)
out std_logic; --sram write enable (active low)

out std_logic; --sram enable upper-byte(active low)
out std_logic; --sram enable lower-byte(active low)
out std_logic vector(17 downto 0); --sram 18 bit address
inout std ulogic vector(15 downto 0); --sram 16 bit data

out std_logic;
out std_logic;
out std_logic;
out std_logic;
in std_logic;
out std_logic

architecture Behavioral of gDSP is

component wr_audio_control

port (
clk_in: in std_logic; -->200ns clock
init: in std_logic; --pulse input

37

done: out std_logic;
D_in: in std logic_vector(15 downto 0); --control data
cntrl_out: out std_logic);

end component;

component OBUF_F_24

port (
0 : out STD_ULOGIC; -- the pin
I - in STD_ULOGIC); -- signal to pin

end component;

component 10BUF_F 24

port (
0 : out STD_ULOGIC; -- signal from pin
10 : inout STD_ULOGIC; -- the pin
I : in STD _ULOGIC; -- signal to pin
T - in STD_ULOGIC); -- 1-drive 10 with 1

end component;

component ak4565

port (
clk - in std _logic;
rst > in std_logic;
mclk : out std_logic;
bclk : out std_logic;
Irclk - out std_logic;
sdti : out std_logic;
sdto0 > in std_logic;
csn : out std_logic;
cclk : out std_logic;
cdti : out std_logic;
adcdone : out std_logic; --AD indicator
dacload : out std_logic; --DA indicator

adc_dtout : out std_logic_vector(1l5 downto 0); --data out to fpga
dac _dtin : in std logic_vector(15 downto 0); --parallelload data
from fpga

c_datain : in std_logic_vector(15 downto 0); --parallelload control
from fpga

c_wr : in std_logic :="0"; --write to control

c_done : out std_logic --write control done

E

end component;

component distortion
port(clk: in STD _LOGIC;
rst: in STD_LOGIC;
din:in std_logic_vector(15 downto 0);
dout:out std_logic_vector(15 downto 0)
):

end component;

component SRAM_FX

port (
clk:in std_logic; --50Mhz system clk
rst:in std_logic;

38

feedback: in std _logic;

effect _sel: in std_logic;

delay len: in std_logic_vector(17 downto 0); --must be In 2°s
comp negative, this reduce unnessessary computation in vhdl

trigger: in std_logic;

done: out std_logic;

snd_in: in std _logic_vector(15 downto 0);
snd_out:out std_logic_vector(15 downto 0);

sram_rnw: out std _logic;

sram_addr: out std_logic vector(17 downto 0);
sram_dt_wr: out std_logic_vector(15 downto 0);
sram_dt_rd: in std_logic_vector(15 downto 0)
)

end component;

signal ABus: std_logic_vector(17 downto 0);
signal pbDIn: std_logic_vector(15 downto 0);

signal tri_state : std logic;

signal mclk : std_logic; --12.5Mhz
signal bclk : std_logic; --3.125Mhz
signal Irclk: std logic; --48.8Khz
signal cclk: std _logic;

signal sdti: std_logic;
signal latchl6ébit,dist out,echo out,delay out,snd_output:
std_logic_vector(15 downto 0) := x'"0000";

signal adcdone : std_logic;

signal dacload : std_logic;

signal adc_dtout : std logic_vector(15 downto 0); --data out to fpga

signal dac _dtin : std logic_vector(15 downto 0) :=x"0000"; --parallelload
data from fpga

signal c_datain : std_logic_vector(15 downto 0) :="1110000011100111"; --
parallelload control from fpga

signal csn : std _logic;

signal c_wr : std _logic;

signal c_done : std _logic;

signal feedback, effect_sel: std_logic;

signal en_echoproc, trigger,echobegin: std_logic;
signal echodone: std logic;

-- signal echoout: std _logic vector(15 downto 0);
signal sram_rnw: std_logic;

signal sram _addr: std_logic_vector(17 downto 0);
signal sram dt wr: std logic_vector(15 downto 0);
signal sram dt rd: std logic_vector(15 downto 0);

signal initcnt:std_logic_vector(15 downto 0):=X"0000"; --has to wait >
4128/fs=90ms for initialization

constant pre_init : std_logic vector(l downto 0):="00";

constant c_wr_wait: std_logic vector(l downto 0):="01";

constant wait _done: std _logic vector(l downto 0):="10";

39

constant norm : std _logic_vector(l downto 0):="11";
signal c_state, n_state : std logic vector(l downto 0):="00";
signal c_serial_data: std_logic;

———————————————————————————— OPB SIGNALS
——————————————————————————— PART FOR C PROGRAM CHOICE OF EFFECT

signal RNW : std _logic;--read not write
--signal ABus : std_logic_vector(0 to 15);
signal chip_select : std _logic;

signal output _enable : std_logic;

signal WE, RST : std logic;

--— Critical: SIn_xferAck is generated directly from state bit 0!
constant STATE BITS : integer := 3;

constant Idle : std logic_vector(0 to STATE_BITS-1) := "000";
constant Selected : std logic vector(0 to STATE BITS-1) := "001";
constant Read : std _logic_vector(0 to STATE_BITS-1) := "011";
constant Xfer : std _logic_vector(0 to STATE_BITS-1) := "111";

signal present state, next _state : std logic _vector(0 to STATE_BITS-1);

signal DI: std _logic_vector(0 to 15);
signal fx_sel:std _logic_vector(0 to 2);

—————————————————————————— END OPB SIGNALS-——————— e
——————————— BEGIN ARCHITECTURE---——————————— e
begin
------ Audio Interface Signals and Buffering------——————————————————————————

au_mclk<=mclk; ----- VERY IMPORTANT---- mclk must be sync with LRCLK

au_bclk<=bclk;
au_lrclk<=Irclk;
au_sdti <=sdti;
au_cs<=csn;

SRAM_CE <="0" when c_state=norm else -- *** must enable SRAMI!I
“1r-

SRAM_OE <="0";

SRAM_WE <=sram_rnw;

SRAM_UB <="0";

SRAM_LB <="0";

genl: for m in O to 17 generate

40

sramAddrpin:0OBUF_F 24 port map (0=>PB_A(m), 1=>ABus(m));
end generate;

gen2: for m in O to 15 generate
sramDatapin: 10BUF_F_24 port map (O=>sram_dt_rd(m),10=>PB_D(m),
I=>pbDIn(m), T=>tri_state);
end generate;
tri_state <=sram_rnw when c_state=norm else
"0"; --always writing

ABus<=sram_addr (17 downto 0);
pbDIN(15 downto 2) <=sram _dt wr(15 downto 2) when c_state=norm else
(others => "0%);
pbDIn(0)<=sram_dt_wr(0) when c_state=norm else
cclk;
pbDIn(1)<=sram_dt wr(1) when c_state=norm else
c_serial _data;

ak:ak4565 port map(clk =>0PB_CIk,

rst =>0PB_Rst,

mclk =>mclk,

bclk =>bclk,

Irclk =>lrclk,

sdti =>sdti,

sdto0 =>au_sdto0,

csn =>csn,

cclk =>cclk,

cdti =>c_serial _data,

adcdone =>adcdone,
dacload =>dacload,
adc_dtout => adc_dtout,
dac_dtin => dac_dtin,
c_datain =>c_datain,

c wr =>C_wr,

c_done =>c_done);

ak_distort:distortion port map(
clk=>0PB_CIKk,

rst =>0PB_Rst,

din => latchlébit,

dout=> dist_out

);

echobegin<=trigger when c_state = norm else
0" -
delaygen:SRAM_FX port map(
clk=>0PB_ClIk,
rst=>0PB_Rst,
feedback=>feedback,
effect_sel=>effect_sel,
delay_ len=>""000101110111000000",
trigger=>echobegin,
done=>echodone,
snd_in=>latchl6bit,

41

snd_out=>echo_out,
sram_rnw=>sram_rnw,
sram_addr=>sram_addr,
sram_dt_wr=>sram _dt wr,
sram_dt_rd=>sram _dt rd

)

-—-latch output data-----———————-——————————
process (OPB_Clk,0OPB_Rst)
begin
if OPB Rst = "1" then
latchl6bit<=x"0000";
dac_dtin<=x"0000";
elsif OPB_clk"event and OPB clk ="1" then
if adcdone = "1" and dacload = "1 then
latchl6bit(15 downto 0)<=adc dtout(15 downto 0);
dac_dtin(15 downto 0)<=snd_output(1l5 downto 0);
end if;
end if;
end process;

-—- generate effect trigger---—————————————-—
process (OPB_Clk,0OPB_Rst)
begin
if OPB Rst = "1" then
trigger<="0"-;
en_echoproc<="0";
elsif OPB_clk"event and OPB clk ="1" then
if adcdone = "1" and dacload = "1 then
if echodone="0" and en_echoproc="1" then
trigger<="1"-;
else
en_echoproc<="0";
trigger<="0-;
end if;
else
en_echoproc<="1";
end if;
end if;
end process;

-—--control initialization--—--———-
--op0 opl op2 a0 al a2 a3 a4 dO dl1 d2 d3 d4 d5 d6 d7
c_datain<= "1110000000100000";

process (bclk, OPB_Rst)
begin
if OPB Rst = "1" then
C_state <= pre_init;
elsif bclk"event and bclk="1" then
Cc_state<=n_state;
end if;
end process;

process (Irclk, OPB Rst)
begin

42

if OPB Rst = "1" then
initcnt <= X"0000";
elsif Irclk"event and Irclk="1" then
initcnt <= initcent + 1;
end if;
end process;

process (initcnt(15),c_state,c_done)
begin
c_ wr<="0";
case c_state is
when pre_init =>
--wait for initcnt
if initent(15) = "1° then
n_state<=c_wr_wait;
else
n_state<=pre_init;
end if;
when c_wr_wait =>
--hold c_wr for 1 cycle
c_wr<="1%;
n_state<=wait_done;
when wait_done =>
if c_done="1" then
--normal operation
n_state<=norm;
else
n_state<=wait _done;
end if;
when norm =>
n_state<=norm;

when others =>
n_state<=pre_init;
end case;
end process;

register_opb_inputs: process (OPB_Clk, OPB Rst)
begin
if OPB Rst = "1" then
DI <= (others => "0");
--ABus <= (others => "07%);
RNW <= "0";
elsit OPB_Clk"event and OPB_Clk = "1" then
DI <= OPB DBus(0 to 15);
--ABus <= OPB_ABus(C_OPB_AWIDTH-3-(RAM_AWIDTH-1) to C_OPB_AWIDTH-3);
RNW <= OPB_RNW;
end if;
end process register_opb_inputs;

register_opb_outputs: process (OPB Clk, OPB_Rst)
begin
if OPB_Rst = "1" then
SIn_DBus(0 to 15) <= (others => "0");
elsif OPB_Clk"event and OPB_Clk = "1" then
if output _enable = "1" then

SIn_DBus(0 to 15) <= fx_sel &'0000000000000"; --test purposes for now
else
SIn_DBus(0 to 15) <= (others => "0%);
end if;
end if;
end process register_opb_outputs;

-- Unused outputs

SIn_errAck <= "0°;

SIn_retry <= "0%;

SIn_toutSup <= "0%;

SIn_DBus(16 to 31) <= (others => "0%);

chip_select <=
1" when OPB_select = "1 and OPB_ABus(0 to 31) = x"FEFF1001"
else "0%;

--latch accumulator --for testing
another : process(OPB_Clk, OPB_Rst)
begin
if OPB Rst = "1" then
x_sel<="000";
elsif OPB_Clk"event and OPB Clk = "1" then
ifT WE= "1" then
fx_sel <= DI(0 to 2);
end if;
end if;
end process another;

-— Sequential part of the FSM
fsm _seq : process(OPB _Clk, OPB_Rst)
begin
if OPB Rst = "1" then
present_state <= Idle;
elsif OPB_Clk"event and OPB Clk = "1" then
present_state <= next_state;
end if;
end process fsm_seq;

-— Combinational part of the FSM
fsm _comb : process(OPB_Rst, present_state, chip_select, OPB_Select, RNW)

begin
RST <= "1-"; -- Default values
WE <= "0°;

output _enable <= "07;
if OPB_RST = "1" then
next_state <= Idle;
else
case present_state is
when ldle =>
if chip_select = "1" then
next state <= Selected;
else
next _state <= Idle;
end if;

when Selected =>
if OPB Select = "1" then
if RNW = "1" then

RST <= "0";
next _state <= Read;
else
WE <= "1°%;
next_state <= Xfer;
end if;
else
next _state <= Idle;
end if;

when Read =>
if OPB _Select = "1" then
output _enable <= "1%;
next state <= Xfer;
else
next_state <= Idle;
end if;

-— State encoding is critical here: xfer must only be true here
when Xfer =>
next_state <= Idle;

when others =>
next _state <= Idle;
end case;
end if;
end process fsm_comb;

SIn_xferAck <= present _state(0);
snd_output<=latchl6bit(15 downto 0) when fx_sel="000" else
dist_out(15 downto 0) when fx_sel="001" else
echo_out(15 downto 0);

feedback<=fx_sel (1);
effect_sel<=tx_sel (2);

end Behavioral;

SRAM EX.vhd

library ieee;

use IEEE.std logic _1164.all;

use IEEE.STD_LOGIC_ARITH.all;
use IEEE.STD_LOGIC UNSIGNED.all;

-— Since effects are involved with delays, we use SRAM to RW delay data.
-— We exploit the ideas of circular buffer to store data.
-— Here, it is performed with counters.

entity SRAM_FX is
port (
clk:in std _logic; --50Mhz system clk
rst:in std_logic;

feedback: in std _logic;

effect_sel: in std_logic;

delay len: in std logic vector(17 downto 0); --must be In 2"s
comp negative, this reduce unnessessary computation in vhdl

trigger: in std_logic;

done: out std_logic;

snd_in: in std logic_vector(15 downto 0);
snd_out:out std_logic_vector(15 downto 0);

--SRAM should always assume to be enabled

—--and it is controlled by RNW and Address
sram_rnw: out std logic;
sram_addr: out std_logic _vector(17 downto 0);
sram_dt_wr: out std_logic_vector(15 downto 0);
sram_dt_rd: in std_logic vector(15 downto 0)

);
end SRAM_FX;

architecture Behavioral of SRAM_FX is
signal s _done: std_logic;

signal dt _in: std logic vector(15 downto 0); --input latch
signal dt _out: std_logic _vector(15 downto 0); --output latch
signal sr_rnw, readram dt: std_logic;

signal sr_addr: std_logic_vector(17 downto 0); --address latch

signal sr_dt _rd: std _logic vector(15 downto 0); --sram latch

signal c_addr: std_logic_vector(17 downto 0):="000000000000000000"";
signal delay_addr: std _logic_vector(17 downto 0);--:="111010001001000000";

signal dt _mux: std_logic;
signal mux_dt,temp_sum,accum: std logic_vector(15 downto 0);

signal up:std_logic:="1";

signal lrcnt: std _logic_vector(9 downto 0);

signal Irclk:std_logic;

signal cnt: std_logic vector(6 downto 0):="0000000";

signal d_cnt: std_logic_vector(11l downto 0):=x"000";

signal fxdelay:std_logic_vector(17 downto 0):="000000000000000000"";

signal Flgclk:std logic;

constant idling : std_logic_vector(l downto 0):="00";
constant s1: std_logic_vector(l downto 0):="01";

constant s2 : std _logic_vector(l downto 0):="10";

--constant s3 : std _logic vector(l downto 0):="11";

signal c_state,n_state: std logic_vector(l downto 0) :="00";

begin
done<=s_done;
snd_out<=dt_out(15 downto 0);
sram_rnw<=sr_rnw;
sram_addr (17 downto 0)<=sr_addr(17 downto 0);

sram_dt_wr<= dt_in(15 downto 0) when feedback="0" else
temp_sum(15 downto 0);

process(clk,rst)
begin
if rst="1" then
Ircnt<=(others=>"0");
elsif clk"event and clk="1" then
Ircnt<=lrcnt+1;
Irclk<=lrcnt(9);
end if;
end process;

process(lrclk,rst)
begin
if rst="1" then
cnt<=""0000000";
elsif Irclk"event and lrclk="1" then
cnt<=cnt+1;
flgclk<=cnt(6);
end if;
end process;

--variation from O to .003sec, with rate=128/48000 per step
process(flgclk,rst)
begin
if rst="1" then
d_cnt<=""000000000000";
up<="1-;
elsit flgclk®"event and flgclk="1" then
if up="1" then
d _cnt<=d_cnt+1;
if d_cnt="000010001111" then
up<="0~;
end if;
else
d _cnt<=d_cnt-1;
ifT d_cnt="000000000001" then
up<="1-;
end if;
end if;
end if;

47

end process;

fxdelay<= delay_len when effect_sel="0" else
"'000000" & d_cnt;

-——-latch sound input--—————————-
--data input is divided by 2 to avoid saturation
--at first we divide data ip by 4 but get nothing!
process(clk,rst)
begin
if rst="1" then
dt_in<=X"0000";
elsif clk"event and clk="1" then
dt_in(15)<=snd_in(15);
dt_in(14)<=snd_in(15);
dt_in(13)<=snd_in(14);
dt_in(12)<=snd_in(13);
dt_in(11l)<=snd_in(12);
dt_in(10)<=snd_in(11);
dt_in(9)<=snd_in(10);
dt_in(8)<=snd_in(9);
dt_in(7)<=snd_in(8);
dt_in(6)<=snd_in(7);
dt_in(5)<=snd_in(6);
dt_in(4)<=snd_in(5);
dt_in(3)<=snd_in(4);
dt_in(2)<=snd_in(3);
dt_in(l)<=snd_in(2);
dt_in(0)<=snd_in(1);
--dt_in(14 downto 0)<=snd_in(15 downto 1);
end if;
end process;

--generate delay and current addresses
process(clk,rst)
begin
if rst="1" then
sr_addr<="000000000000000000";
elsif clk"event and clk="1" then
ifT c_state=sl then
sr_addr<=c_addr;
else
sr_addr<=delay_addr;
end if;
end if;
end process;

delay_addr<=c_addr-fxdelay;

--latch sram output---—-———-——--—
--data input is divided by 4 to avoid saturation
process(clk,rst)
begin
if rst="1" then
sr_dt_rd<=X"0000";
elsif clk"event and clk="1" then

48

if readram_dt<="1" then
sr_dt_rd(15)<=sram_dt _rd(15);
sr_dt_rd(14)<=sram_dt_rd(15);
sr_dt_rd(13)<=sram_dt_rd(14);
sr_dt_rd(12)<=sram _dt rd(13);
sr_dt_rd(l11l)<=sram_dt _rd(12);
sr_dt_rd(10)<=sram_dt rd(11);
sr_dt_rd(9)<=sram_dt_rd(10);
sr_dt_rd(8)<=sram_dt_rd(9);
sr_dt_rd(7)<=sram_dt_rd(8);
sr_dt_rd(6)<=sram dt_rd(7);
sr_dt_rd(56)<=sram _dt_rd(6);
sr_dt_rd(4)<=sram _dt_rd(5);
sr_dt_rd(3)<=sram _dt_rd(4);
sr_dt_rd(2)<=sram_dt_rd(3);
sr_dt_rd(l)<=sram dt_rd(2);
sr_dt_rd(0)<=sram dt_rd(1);
--sr_dt_rd(14 downto O)<=sram_dt_rd(15

end if;

end if;
end process;

-—fsm of delay process-----
process(clk,rst)
begin
if rst="1" then
c_state<=idling;
elsif clk"event and clk="1" then
c_state<=n_state;
end if;
end process;

--state machine combinational logic
FSM_Comb: process(rst,trigger,c_state)
begin

sr_rnw<="1"; --always reading

s _done<="0";

readram_dt<="0";

if rst="1" then
n_state <= idling;
else
case c_state is
when idling =>
if trigger="1" then
readram_dt<="1";
n_state<=sl;
else
n_state<=idling;
end if;
when sl1 =>
--wait for calculation to be done
n_state<=s2;
when s2 =>
--store new data to SRAM
sr_rnw<="0"; --write to sram
s _done<="1";

downto 1);

49

n_state<=idling;
when others =>
n_state<=idling;
end case;
end if;
end process;

--latch output------—-
process(clk, rst)
begin
if rst="1" then
dt_out<=X'"0000";
elsif clk"event and clk="1" then
ifT c_state=sl then
dt_out<=temp_sum(1l5 downto 0);
end if;
end if;
end process;

--update current SRAM address----—--——-—-
process(clk,rst)
begin
if rst="1" then
c_addr<=""000000000000000000"";
elsif clk"event and clk="1" then
if c_state=s2 then
c_addr<=c_addr+1;
end if;
end if;
end process;

-—--delay calculation-----—-—-
-—temp_sum is floating at c_state=2
temp_sum<=dt_in + sr_dt rd;

end Behavioral;

50

	The Guitar Effector
	Clock Generation
	Data Handling
	Delay
	Echo
	Flange
	C program for User interface

