

CSEE 4840 – Embedded System Design
Scorched Earth XESS

Project Team Members:
Dennis Chua (dc2036@columbia.edu)

Mike Sumulong (mbs2114@columbia.edu)
Jeremy Chou (jc2465@columbia.edu)

Date: 3/29/2005

Introduction

Scorched Earth is a DOS console game belonging to the artillery game genre. It is a turn-
based game for two players in which each controls a tank and attempts to destroy the
other. When firing a shot, the player adjusts the angle of the ballistic, together with its
initial velocity. Both gravity and weather affect the trajectory of the shell. The game
provides an assortment of weapons and defenses to aid each tank. This combination of
offense and defense weapons, together with simple yet entertaining explosion in VGA,
makes for several hours of fun playing Scorched Earth.

In our project, we will take what we have learned in class to implement Scorched Earth
on the XESS XSB-300E board. We will be using the FPGA and its components along
with integrating VHDL code with C code to recreate this game. The game will take
inputs from the keyboard, RAM, and output the graphics onto the video display.

Problem Decomposition
Modules and Task Assignment

We have organized our project into the following three modules: (a) Game Engine &
UART I/O; (b) Video Display; (c) Video Buffer I/O.

FPGA

UART
Controller

Keyboard Input
&

Game Info/Debugging Display

Serial Cable

Game Engine
Running on
Microblaze

OPB

512 KB
SRAM

8 KB
BRAM

Video Controller

Storage for
game engine program

Display
Video buffer onto screen

OPB

Video Control Signals

SRAM/Video Arbiter

Read
SRAM to

get
Video
Buffer

The game engine is the software component of the project. It is coded in C for the XESS
MicroBlaze CPU. It handles the artillery calculations, the game mechanics, the graphic

drawing and the interaction with the user. The other two modules manage the XESS
peripherals.

The video buffer I/O stores and retrieves the pixel map of the game’s graphics in RAM.
Designing this module not only involves dealing with hardware memory, but also
devising the geometric layout of the display field together with exposing easy-to-use
routines to the C program for pixel manipulation.

The video display deals with the video subsystem of the XESS board. Our goal is to
display the video buffer contents by means of colored raster scanning. Conforming to the
operation of the video buffer I/O and dealing with XESS video hardware will be the main
challenge in developing this module.

Given this all comes up to a nice number, we’ve divided the modules among ourselves.
Each member of the team will be a “lead programmer” in one of these modules, with the
other two providing design and technical support, together with help in troubleshooting.
This way, we all have our individual responsibilities; yet every member knows the
overall shape of the project and is intimately involved in its development.

Module Lead Programmer

Game Engine & UART Dennis Chua
Video Display Jeremy Chou
Video Buffer I/O Mike Sumulong

Design Constraints

Video Display

The display field will be divided into two regions. At the upper section is a text port
where textual messages (such as score) are displayed. Below this is the larger graphics
port. The graphics and animations that are central to the game are rendered in this area.

 640

440

32
8

Text Port

Graphics Port

One of our initial concerns was with the amount of memory required by the video buffer.
Given that the buffer models the pixel-by-pixel appearance of the graphics display, we
identified display size and color depth as the two overriding factors. Using these, the
overall memory size for the video buffer is determined by the following:

Size of Video Buffer = (color depth) x (vertical and horizontal display size)

We considered a few combinations and settled on an 8-bits/pixel color depth for RGB
together with 640 x 480 display size. This comes up to a 300 kilo-byte video buffer,
which fits nicely into the off-chip SRAM.

Fonts and Static Graphics

Our next design issue dealt with bitmaps for static graphics such as the tank icons. We
chose to represent it by means of an 8x16 graphic. In order to animate the turret
movement, we’ll use ten of these templates. By loading them into the SRAM, we can
display them by means of a look-up operation instead of composing them on the fly. All
in all we calculate these pixel maps to take up 1,280 bits of SRAM.

We also limited the keyboard input to up-and-down (‘i’ and ‘k’ keys) and left-and-right
(‘j’ and ‘l’ keys) commands. This also cuts back on the textual elements displayed to the
video.

We’ve decided to restrict the range of text displayed to the set of numeric characters. In
fact, we’ve identified twenty-three alphanumeric characters for text display (ex. “0” …
“9”, “weapon”, “score”). Taking the 8x16 fonts for these from Lab #2, we expect these
fonts to take up 2,944 bits of SRAM. Overall we’re guided by the need to conserve
space allotted in the SRAM for these static graphics.

C Program Calculations

The responsiveness of the system was not a major issue. For one, our game is not in real-
time; it is turn-based, thus time-critical response is not required. For the same reasons,
we’re not too concerned with complex trigonometric and exponential calculations and the
delay they may introduce. Below is part of the ballistic calculation we expect to perform:

pi = 3.14159 -- define pi

angleDegrees = 40 -- shooting angle, in degrees
angleRadians = (angleDegrees/360) * 2 * pi

velocity = 20 -- define the velocity
vx0 = velocity * cos(angleRadians) -- x-axis velocity component
vy0 = velocity * sin(angleRadians) -- y-axis velocity component

xball = x0 + vx0*t -- x-coordinate of ballistic at time t
yball = y0 + vy0*t + (1/2)*g*t^2 -- y-coordinate

From: http://babek.info/libertybasicfiles/lbnews/nl126/parabolicnally.htm

Video Buffer

The figure above shows the memory map for the video buffer within the SRAM.

Refer to the Toshiba TC55V16256j SRAM documentation for complete details:
http://www1.cs.columbia.edu/~sedwards/classes/2005/4840/55v16256.pdf

Video Display

Mode Resolution Vertical Horizontal Pixel Clock

VGA 640 x 480 59.94 Hz 31.469 kHz 25.175 MHz

Peripherals Manifest

Below is a list of the XESS components used in this project:

• (XCS300E-6PQ208C) Xilinx Spartan IIE 300-Kgate FPGA.
• (THS8133B) Texas Instruments video D/A converter.
• (TC55V16256j) Toshiba 256K x 16 bit SRAM.

