

CSEE 4840 - Embedded Systems Design
ObTrak Project Final Report

 Date: 05/11/2004
 Project Team Members:
 Marcio Buss (mob2101@columbia.edu)
 Anuj Maheshwari (atm2104@columbia.edu)

1. Introduction

Image and pattern recognition has been an area of much research and development in recent years. An
immaculate number of complex software has been written in order to get the best level of pattern
recognition. The applications of this type of software range from office surveillance systems to
tracking of objects for virtual reality gaming. The basis for this project was primitive forms of pattern
recognition in black-and-white. We also developed the required infrastructure for color manipulation,
namely, YUV to RGB conversion in software and in hardware.

The initial part of this document describes the project as a block diagram, highlighting relevant aspects
of video image capturing and manipulation. The final sections show in more detail the modules
implemented, some trade-off decisions we had to make and how the systems works as a whole. This
project uses a XESS XSB-300E Board (www.xess.com) containing, among other components, (1) a
Xilinx SpartanIIE FPGA with 300K system gates (2) a Philips SAA7114H video decoder (3) a 256K x
16 SRAM (4) a Texas Instruments THS8133B video DAC. The FPGA is loaded with a 32-bit
microprocessor (microblaze) and we have access to a C compiler for such CPU (microblaze-gcc).

2. Project Description

The overall view of the object tracker "OBTRAK" is sketched in the following block diagram.

Fig. 1 - Obtrack block diagam.

Basically, the system expects an NTSC analog video signal at the RCA-Jack connector J7 on the XSB
board. The analog signal is digitized by the video decoder and arrives at the FPGA through the IPD
and HPD buses. IPD and HPD connect to SAA7114H’s I-port and H-port, respectively, and are
defined in the Xess XSB-300E manual. The IPD bus carries the 8-bit luminance values (Y) and the
HPD carries the 8-bit chrominance information (UV). The data format at the video decoder output is
YUV 4:2:2, 16-bit output via I-Port and H-Port (See Figure 5), configured through subaddress 93H
(value C0H). A description of some relevant configuration registers is given later in the report.

The following figure shows at a higher level of detail the interconnection among the main components
shown in Figure 1. It also depicts some relevant modules that were built inside the FPGA such as
video decoder interface and block RAMs. “Block RAMs” are memory elements that can be found inside the
SpartanIIE FPGA. They can be used as dual port RAMs with independent clock frequencies, which
was very suitable for our project. Basically, video decoder interface receives the 8-bit luminance and 8-bit
chrominance values from the video decoder and generates the address (waddr) for the block RAMs to
store the luminance bytes. It also propagates IDQ (data valid indicator) and ICLK (video decoder
output frequency) from the video decoder to the block RAMs. Although the data output from the
video decoder interface is 16-bits wide (luma and chroma) only the luminance bytes are stored. More
specifically, the block RAMs module contains four dual-port internal RAMs, and each one stores
(through port B) a subset of the pixels from a single line of digital video at a time. We have decided to
skip every other pixel in order to meet time and space constraints. The three least significant bits of
waddr are used to select to which block RAM to write a given pixel’s luminance. In our design, block 0
stores Y0, Y8, Y16, Y24,… on its memory cells 0,1,2,3,… block 1 stores Y2, Y10, Y18, Y26,… on its
addresses 0,1,2,3,…, block 2 stores Y4, Y12, Y20, Y28,… on addresses 0,1,2,3,…, and block 3 stores
Y6, Y14, Y22, Y30,… on addresses 0,1,2,3,… Here, Yn represents the luminance value of pixel ‘n’.

Fig. 2 – FPGA internal modules I2C controller, xsb300 bridge and videodec; SRAM and video decoder also shown.

The opb_i2ccontroller module is used to drive the I2C bus where the video decoder is attached. This
module is conceptually quite simple – it only allows the microprocessor to write directly to pins
VID_I2C_SCL and VID_I2C_SDA. Specifically, a sequence of instructions executed by microblaze is
responsible for toggling SCL and SDA outputs in order to send the serial bits that configure the video
decoder. The module opb_xsb300 was developed by Cristian Soviani, and contains a memory
controller, a “vga timing” module and a vga “wrapper” module. In short, the memory controller
arbitrates the SRAM between the microprocessor and the vga module; the vga module constantly
reads the SRAM starting at address 00800000H through 0084B000H, treating each byte as the

luminance information for a single pixel, and sends RGB signals to the video DAC. The same
luminance byte is sent to the 8 upper bits of VIDOUT_RCR, VIDOUT_GY and VIDOUT_RCB,
essentially creating a black-and-white image on the screen. This feature was a modification we had to
insert on this module. The 2 lower bits of VIDOUT_RCR, VIDOUT_GY and VIDOUT_RCB are
tied to ‘0’. Figure 3 below shows all the inputs and outputs of opb_xsb300.

Fig. 3 – opb_xsb300 module block diagram.

BLOCK RAMs

Figure 4 shows in yet greater detail the block RAMs module. As depicted, this module is formed by
four block RAMs instantiated as RAMB4_S8_S8, summing up to 512 bytes x 4, or 2048 bytes (See
block_ram.vhd). As mentioned, these internal dual port memories can operate with independent clock
frequencies at each port. In this project, the “B” ports are written to by the video decoder interface at
iclk, and the “A” ports are read from the microprocessor at OPB_Clk.

Fig. 4 – Block RAMs module.

The timing diagram on Figure 5 shows the waveforms at the input and output of the video decoder

interface that are relevant for the block RAMs module. It also shows internal signals such as pix_count
and active – the former counts the valid bytes being sent by the video decoder, the latter goes to ‘1’ right
after the timing reference code “FF 00 00 SAV” has been transmitted. Notice that waddr increments
only when idq_in =’1’ and active=’1’. The rationale here is that we don’t want to store those bytes that
correspond to timing reference code.

Fig.5 – Timing diagram for the video decoder interface – writing to the block RAMs.

The 16-bit output signal called data in Figure 2 is simply the concatenation of IPD and HPD, and the
output signals iclk_out and idq_out are directly connected to idq_in and iclk_in.

As previously said, the block RAMs are written to by the video decoder interface and read from by
microblaze, both operating at different clock frequencies (iclk and OPB_Clk, respectively). Clearly
there is a need for some sort of synchronization between writes to and reads from the block RAMs –
even more because this module only stores one line of digital video at a time (note that waddr is reset to
‘0’ at the end of every line). In other words, each line of video has to be transferred to the SRAM
before the next line is stored. The way we do this synchronization is through the fil_level output shown
in Figure 2. Basically, this is a four-bit signal on which each bit corresponds to a “flag” indicating that
a given section of the current line has been already written to the block RAMs. The existing levels are
¼, ½, ¾ and entire line, from least to most significant bits respectively. The timing diagram below
sketches how fil_level evolves:

Fig.6 – fil_level timing diagram.

Note from Figure 2 that fil_level connects to the OPB data bus through data_bus_ce multiplexor. This

means it can be read by microblaze through an “XIo_In” instruction. We have specified address
0x01803FFC (allowed addresses must have “8” as the 3rd nibble) to do that, thus we can execute
XIo_In32(0x01803FFC) and check for a specific level by masking out the other 3 bits. More
precisely, the microprocessor can enter into a busy-wait state until, say, ¼ of the current line has been
written to the block RAMs. When that “milestone” is detected through polling, microblaze executes a
sequence of reads and writes in order to transfer the first quarter of the line from the block RAMs to
the SRAM. Then, it undergoes again to a busy-wait state until ½ of the line is reached, transferring the
second quarter, and so on until the entire line has been transferred to the SRAM. At this point (entire
line), we essentially have synchronized at the “line” level (HSYNC). The following piece of code was
extracted from main.c and shows the sequence of busy-wait/transfers mentioned here:

current_level = 0x01;
for (line_section = 0; line_section < 4; line_section++)
{
 while (! (XIo_In32(0x01803FFC) & current_level)) ; /* Busy-wait */

 if (current_level == 0x01) {
 start = 0;
 end = 160;
 }
 else if (current_level == 0x02) {
 start = 160;
 end = 320;
 }
 else if (current_level == 0x04) {
 start = 320;
 end = 480;
 }
 else if (current_level == 0x08) {
 start = 480;
 end = 640;
 }

 write_video(start, end, line); /* Transfer the current fourth */

 /* of the line to the SRAM */
 current_level = current_level << 1;
}

In the above code, write_video is a function that transfers one-fourth of the current line each time it
is called, starting at pixel “start” and ending at pixel “end”. One point here is that “start” and “end”
values identify the actual pixels, apparently not taking into account that we are skipping every other
pixel. Nevertheless, write_video does take this into account. One final point relates to how we
synchronize at the “frame” level (VSYNC). This is done by reading IGPV through data_bus_ce as well
(See Figure 2). We have specified XIo_In32(0x01802FFC) to do that.

READING FROM BLOCK RAMs

A value can be read from the block RAMs (or written to, for this matter) in one clock cycle. However,
this does not mean that each read operation will take only one cycle. In fact, the following timing
diagram shows a complete read operation, which actually takes 3 cycles. We use as an example the
instruction XIo_In32(0x018001FC) – the block RAMs are mapped to addresses 0x0180000 to
0x01800200, so this instruction reads four bytes from “somewhere” in the block RAMs. Specifically,
byte 0 comes from block 0, byte 1 comes from block 1, byte 2 comes from block 2 and byte 3 comes
from block 3. For alignment reasons, we use OPB_ABus(10 downto 2) as the actual read address.
Therefore, raddr points to memory cell 7F on all blocks. Note that each individual address reads 32 bits,
or 4 bytes. Thus, the block RAMs module can be viewed as a black-box memory with an address space
of 512 words of 32 bits each (9 bits for raddr therefore).

Fig.7 – Read operation timing diagram.

In the above figure, data_bus_ce is a 32-bit signal that is connected to the OPB bus data read port
(Sln_Dbus in the general case, VIDEC_DBus in our case) through a multiplexor that has
“fil_level & frame_id & line_count & igpv” as the second input (“&” here means concatenation). xfer is the
transfer acknowledge signal that our module has to send back to the microprocessor indicating the
completion of transfer. Only when this signal toggles to ‘1’ does microblaze “grabs” whatever value is
in the data bus. The xfer signal, as well as the ce signal in the above figure are generated by the following
state machine:

Fig.8 – State machine for read operation.

Basically, chip select (cs) goes to ‘1’ whenever microblaze is accessing an address within the range
0x01800000 to 0x01803FFF. This corresponds to the block RAMs data space (up to 0x01800200) plus
some extra room for future enhancements. The next rise of the clock will sense cs at ‘1’, and the first
transition of the state machine latches the correct read address at raddr. One cycle later the block
RAMs make the data available at the A ports, and the chip enable (ce) signal goes to ‘1’. The third
transition latches the data at data_bus_ce and sends the transfer acknowledge signal xfer to microblaze.
The VHDL code for the chip select and the state machine, coded as “one-hot”, follows:

cs <= OPB_select when OPB_ABus(31 downto 14) = "000000011000000000" else '0';
process (OPB_Clk)
begin
 if OPB_Clk'event and OPB_Clk='1' then
 q2 <= (not q2 and q1) or (q2 and not q1);
 q1 <= (cs and not q2 and not q1) or (q2 and not q1);
 q0 <= q2 and not q1;
 end if;
end process;
ce <= q2 and not q1 and rnw;
xfer <= q0;

YUV to RGB COLOR CONVERSION IN SOFTWARE

An alternative module was created in order to display color video instead of black-and-white, YUV to
RGB conversion being done by software. In order to do that, both the hardware and software parts
had to be modified. In the hardware side, not only luminance but also chrominance bytes have to be
stored. To do so, diB inputs of blocks 0 and 2 are connected to the 8 upper bits of data signal (See
Figure 2), whereas blocks 1 and 3 are connected to the 8 lower bits of data. The data organization
changes slightly: block 0 now stores Y0, Y4, Y8, Y12,…, block 1 stores CB0, CB4, CB8, CB12,…,
block 2 stores Y1, Y5, Y9, Y13,…, and block 3 stores CR1, CR5, CR9, CR13,… Since CB and CR
bytes are sent on consecutive clock cycles, the strategy for skipping pixels also changes – we have to
store two pixels and skip two. Therefore, the “and” gates at the enB inputs have a different input set in
order to enable two blocks together each time we want to do a write. Blocks 0 and 1 have /waddr(1)
and /waddr(0). Blocks 2 and 3 have /waddr(1) and waddr(0). Finally, all addrB inputs on the “B” ports
are connected to waddr(10 downto 2). Almost nothing else needed to be modified in the hardware part.
On the software side, we have to be aware that each time microblazes executes an XIo_In32
instruction it now reads 2 pixels worth of information, organized as Yi-CB-Yi+1-CR. Therefore, we
have to execute twice the number of reads we did before for black-and-white, which stores luminance
bytes only. Fortunately, there is enough room in the block RAMs to store one line of color digital
video. The following code was extracted from conversion.c, and contains the necessary functions for the
color space conversion.

#include "xbasic_types.h"
#include "xio.h"

#define W 320
#define H 240
#define VGA_START 0x00800000

#define YUV2RGB(y, u, v, r, g, b)\
 r = y + ((v * 1434) / 2048);\
 g = y - ((u * 406) / 2048) - ((v * 595) / 2048);\
 b = y + ((u * 2078) / 2048);\
 r = r < 0 ? 0 : r;\
 g = g < 0 ? 0 : g;\
 b = b < 0 ? 0 : b;\
 r = r > 255 ? 255 : r;\
 g = g > 255 ? 255 : g;\
 b = b > 255 ? 255 : b

void convert_to_color()
{
 int i, r, g, b;
 int y0_u_y1_v;
 int rgb_2_pixs;
 int y0, y1, u, v;
 int rgb_pixel_y0, rgb_pixel_y1;

 for (i = 0; i < W*2*H; i+=4)
 {
 // Read Y0-Cb-Y1-Cr from the SRAM
 y0_u_y1_v = XIo_In32(VGA_START + i);

 // Separate Y0-Cb in two variables
 y0 = (y0_u_y1_v >> 24) & 0xFF;
 u = (y0_u_y1_v >> 16) & 0xFF;
 u = u - 128;

 // Separate Y1-Cr in two variables
 y1 = (y0_u_y1_v >> 8) & 0xFF;
 v = y0_u_y1_v & 0xFF;

 v = v - 128;

 // Convert Y0-Cb-Cr to RGB
 YUV2RGB (y0, u, v, r, g, b);

 // Get the 5 most significant bits of 8-bit red
 r = r & 0xF8;

 // Get the 6 most significant bits of 8-bit green
 g = g & 0xFC;

 // Get the 5 most significant bits of 8-bit blue
 b = b & 0xF8;

 // Shift green and blue to form an 16-bit rgb
 r = r << 8;
 g = g << 3;
 b = b >> 3;

 // Pack the just generated 5-6-5 into 16-bits
 rgb_pixel_y0 = r | g | b;

 // Convert Y1-Cb-Cr to RGB
 YUV2RGB (y1, u, v, r, g, b);

 // Get the 5 most significant bits of 8-bit red
 r = r & 0xF8;

 // Get the 6 most significant bits of 8-bit green
 g = g & 0xFC;

 // Get the 5 most significant bits of 8-bit blue
 b = b & 0xF8;

 // Shift green and blue to form an 16-bit rgb
 r = r << 8;
 g = g << 3;
 b = b >> 3;

 // Pack the just generated 5:6:5 into 16 bits
 rgb_pixel_y1 = r | g | b;

 rgb_pixel_y0 = rgb_pixel_y0 << 16;
 rgb_pixel_y0 = rgb_pixel_y0 & 0xFFFF0000;

 rgb_2_pixs = rgb_pixel_y0 | rgb_pixel_y1;

 XIo_Out32(VGA_START + i, rgb_2_pixs);
 }
}

Basically, after an entire frame of video has been transferred to the SRAM, the video capture stops and
the stored frame is converted from YUV to RGB. Since we used RGB 565, exactly the same memory
space in the SRAM could be used for storing the data before and after conversion. More precisely, 32
bits of memory can store 2 pixels in YUV format (Yi-CB-Yi+1-CR) or 2 pixels in RGB 565 format
(R i G i B i -R i+1G i+1Bi+1). Therefore, we can read 32 bits in YUV, perform the conversion, and store the
data back as RGB in the exact same address. As expected, though, the conversion of an entire frame is
too slow to allow real time video streaming.

YUV to RGB COLOR CONVERSION IN HARDWARE

Since the color space conversion is highly timing consuming, we decided to transfer the YUV to RGB
conversion from software to hardware. In other words, the video decoder interface module receives
luminance and chrominance information, as before, but it is now enhanced with an internal pipeline

that does essentially what the YUV2RGB macro performs in software. In this way, we are able to write
RGB565 directly into the block RAMs, using the same hardware for the block RAMs module that was
devised in the previous section. As expected, we were able to display real time color video on the
screen, since the YUV to RGB conversion in hardware allow us to run the system at the same speed as
if we were in black-and-white mode. The following figure shows the color space conversion pipeline
that has been implemented in VHDL (See video_decoder_intf.vhd).

Fig.9 – YUV to RGB color space conversion implemented in the video decoder interface module.

In this mode, we do not “skip” incoming pixels per se. Instead, we average the luminance information
for every two pixels being sent as Yi-CB-Yi+1-CR and use [(Yi+Yi+1)/2), CB and CR] to convert from
YUV to RGB. In this sense, we still store only half actual line of digital video in the block RAMs but,
at the same time, have a smoother representation of the image. The multipliers shown in the above
figure were created using the core generator software included in the XST tools. Since all
multiplications involve constants, the multipliers were able to perform the operations in one cycle of
iclk. Figure 10 shows the control state machine for the above pipeline. An important point here is that
each transition in this state machine only happens when iclk ticks from ‘0’ to ‘1’ and idq_in = ‘1’.

Fig.10 – Control state machine for the YUV to RGB pipeline shown in Figure 9.

In other words, the state machine only operates on valid data, making eventual transitions only when
data validator (idq) is high. In essence, control stays put at state ‘0’ while there is no incoming video
(igph = ‘0’). The next two transitions, 0 to 1 and 1 to 2, are solely responsible for ignoring the first 2
valid bytes of any given line (the rationale is that we want to skip the timing reference code “FF 00 00
SAV”). All the interesting things happen at transitions 2 to 3 and 3 to 2. The former is when the video
decoder sends Yi-CB and the latter is when it sends Yi+1-CR. Right at the second transition the pipeline
registers R0, R1, R2 and R3 contain Y i+1, CR, Y i, CB, as illustrated on Figure 9 for i = 0, i.e.,
considering the first valid pixel of a given line. At exactly this time, we want to “push” the pipeline
since we have right set of data on the “fetch” registers. Therefore, when state variables q1 and q0
shown in Figure 10 are both ‘1’, (and idq is ‘1’) we assert a control register named ‘A’ to ‘1’. The next
four cycles will propagate this ‘1’ until control register ‘D’ is reached. The following code was extracted
from video_decoder_intf.vhd :

-- Propagate "push" thru the pipeline
process (iclk_in)
begin
 if iclk_in'event and iclk_in='1' then
 A <= q1 and q0 and idq_in;
 B <= A;
 C <= B;
 D <= C;
 end if;
end process

Register ‘D’ is used as the validator for incrementing waddr and pix_count, setting active signal and it is
directly connected to idq_out signal. Notice that we cannot connect idq_in directly to idq_out as we did
before on Figure 5 for two reasons: (1) there is a delay of 5 cycles due to the 5 stages of the pipeline,
and (2) idq_in is high for two cycles when transmitting two adjacent pixels Yi-CB-Yi+1-CR, however we
are averaging Yi and Yi+1 and therefore we want idq_out to be high during one cycle only for every two
valid pixels!

VIDEO DECODER CONFIGURATION REGISTERS

One of the challenges we faced on this project was to configure the video decoder properly and get it
running. There are quite a few registers that need to be configured, and some subsets of these registers
are dependent on one another. Fortunately, after some experiments with “default” values plus some
trial-and-error strategy, we were able to get the right set of values. We list below a subset of
subaddresses-values pairs that we found crucial for correct operation in terms of synchronism control
and response speed. A great deal of registers is devoted to tasks such as luminance control,
chrominance control, hue saturation, etc. that, although relevant, do not interfere directly with the
desired “30 frames per second image” being displayed.

Subaddress Value used Function
06H EBH Horizontal sync start
07H E0H Horizontal sync stop
08H 59H Synchronism control
90H 00H Task handling
91H 08H Scaler input source and format definition
92H 10H Reference signal definition at scaler input
93H C0H I-port output formats and configuration
94H 10H Horizontal input offset (XO)

95H 00H Horizontal input offset (XO)
96H D0H Horizontal input (source) window length (XS)
97H 02H Horizontal input (source) window length (XS)
98H 0AH Vertical input offset (YO)
99H 00H Vertical input offset (YO)
9AH F2H Vertical input (source) window length (YS)
9BH 00H Vertical input (source) window length (YS)
9CH D0H Horizontal output (destination) window length (XD)
9DH 02H Horizontal output (destination) window length (XD)
9EH F0H Vertical output (destination) window length (YD)
9FH 00H Vertical output (destination) window length (YD)

Registers 9CH and 9DH define 720d as the horizontal output window, and registers 9EH and 9FH
define 240d as the vertical output window (720 x 240). The complete set of register values and
addresses used in the project can be found in main.c.

OBJECT TRACKING SOFTWARE

The object tracking module was implemented in software, and can be found in track_object.c. It
currently does the simple task of finding a white square on a black background. If more than one
object is placed in the scene, the tracking algorithm will return the largest white square placed in there.
(specifically, the object to be tracked does not necessarily have to be a square. The tracking software
actually looks for a white object that eventually circumscribes a white square with minimum side size
of n pixels, where n is a parameter that can be defined prior to compilation). The driving ideology for
this algorithm is that of a sliding window. The algorithm looks for maximum consistency with the
constraints provided in the form of minimum dimensions (X and Y) to be considered a shape (in this
case a rectangle). The pseudo-code follows, and a flowchart is found in the last page of the report.

Step 01

Grab image from video processor / camcorder, perform resizing / color

Step 02

Store the image to memory (into a A x B matrix)

Step 03

Set counter TOTAL = 0

Step 04

Set counters X = 1, Y = 1, MATCH_X=0, MATCH_Y=0

Step 05

G = X, H = Y

Step 06

TOTAL = TOTAL + CAM_IMAGE[G,H]

Step 07

If G < (X+M), G = G+1; JUMP to Step 06

Step 08

If H < (Y+N), H = H+1; Jump to Step 06

Step 09

If TOTAL = 0 (all locations 0) MATCH_X = X, MATCH_Y = Y; JUMP to Step 12

Step 10

If X < (A-M) X = X+1; JUMP to Step 05

Step 11

If Y < (B-N) Y = Y+1; JUMP to Step 05

Step 12

If MATCH_X !=0 PRINT “MATCH FOUND AT” MATCH_X , MATCH_Y

CONCLUSIONS

We believe that we have developed a successful project. The goal of tracking an object was achieved
and a couple of enhancements were produced in terms of color video. The YUV to RGB conversion
in software and then in hardware were very exciting experiences. Overall, having worked with an entire
system composed of a microprocessor (microblaze), a C compiler for it (microblaze-gcc), a
hardware/software interface through the OPB bus and the hardware modules developed for capturing
digital video was a huge learning experience in terms of computer architecture and embedded systems.
By designing the same functionality both in software and hardware we were able to truly face the
trade-offs associated with this type of engineering decisions. Some of the major challenges faced
during the development of the project were related to putting the video decoder to work. Also, the
synchronization tasks (horizontal and vertical) required some clever solutions such as the interleaving
between writing to and reading from the block RAMs (through the fil_level signal). Moreover, although
we used polling for these types of synchronizations, a seemly better strategy would be to use interrupts.
However, the overhead associated with context switching and machine status saving at each interrupt
request would have to be careful analyzed if we wanted to change from polling to interrupts. Another
extension would be to use RGB 888 instead of RGB 565. This, however, would require a DRAM
controller being implemented inside the FPGA. The reason is because the SRAM does not have
enough room for a reasonably large image where each pixel consumes 24 bits. The YUV to RGB
hardware module, however, actually converts YUV to RGB 888.

APPENDIX

VGA module and its timing diagram:

0

video_address

20

blank#
h_sync_delay#
v_sync_delay#

"00.."

"00.."

"00.." 8

7

7

10

10

10

9..8

12..10

15..13

233

16

16

video_req

pix_clk

rst

clk
19

VGA
Timing

4

Vga RAM address

vreq

vreq1

video_neq

load_word

pixel_clock

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 2 6 8 10 12

40 2 6 8 10 12 14

40 2 6 8 10 12 14

clk

constraint_y ++

color_run >
min_x_dim?

color_run >
 x_dim_tmp?

constraint_y
 > min_y_dim?

constarint_y
 > min_y_dim?

x_dim*y_dim <
y_dim_tmp*
x_dim_tmp?

Start

Initialize variables
conter = x = i = j = 0
xpos = -1, ypos = -1,
xdim = 0, ydim = 0

vga_sram[j,x]
= color and

j < HORZ_RES ?

 i < VERT_RES?

x > HORZ_RES?

color_run++
j++

x_dim_tmp = color_run

y_dim_tmp = constraint_y
y_pos_tmp = i=constraint_y + 1

y_dim = contraint_y
y_pos = i

color_run = 0
j = x
i++

x_dim = x_dim_tmp
y_dim = y_dim_tmp
x_pos = x_pos_tmp
y_pos = y_pos_tmp

i=0,x++,
constraint_y = 0
color_run = 0

x_dim_tmp = HORZ_RES+1
y_dim_tmp = 0
x_pos_tmp = x

Y

N

Y

Y

N

YN

Y

N

Y

N

Y

N

Y

N

End

N

BLACK AND WHITE MODE

VHDL AND C FILES

OPB_VIDEODEC.VHD
library IEEE;
use IEEE.std_logic_1164.all;

entity opb_videodec is
 generic (
 C_OPB_AWIDTH : integer := 32;
 C_OPB_DWIDTH : integer := 32;
 C_BASEADDR : std_logic_vector := X"0180_0000"; -- 512 positions of 32
 C_HIGHADDR : std_logic_vector := X"0180_3FFF"); -- bits plus extra room.
 -- Each 32 bits in the
 -- block RAMs stores 4
 -- pixels' luminance

 port (
 -- Global signals
 OPB_Clk : in std_logic;
 OPB_Rst : in std_logic;

 -- OPB signals
 OPB_ABus : in std_logic_vector (31 downto 0);
 OPB_BE : in std_logic_vector (3 downto 0);
 OPB_DBus : in std_logic_vector (31 downto 0);
 OPB_RNW : in std_logic;
 OPB_select : in std_logic;
 OPB_seqAddr : in std_logic;

 -- Slave signals
 VIDEC_DBus : out std_logic_vector (31 downto 0);
 VIDEC_errAck : out std_logic;
 VIDEC_retry : out std_logic;
 VIDEC_toutSup : out std_logic;
 VIDEC_xferAck : out std_logic;

 -- Coming from SAA7114H
 IPort : in std_logic_vector (7 downto 0);
 HPort : in std_logic_vector (7 downto 0);
 IDQ : in std_logic;
 ICLK : in std_logic;
 IPGV : in std_logic;
 IPGH : in std_logic;
 ITRI : out std_logic;
 ITRDY : out std_logic
);
end opb_videodec;

architecture structural of opb_videodec is

-- Buffered version of the signals
-- with the same name in the entity
signal buf_iclk : std_logic;
signal buf_ipgh : std_logic;
signal buf_ipgv : std_logic;
signal buf_idq : std_logic;
signal buf_iport : std_logic_vector (7 downto 0);
signal buf_hport : std_logic_vector (7 downto 0);

signal buf_itri : std_logic;
signal buf_itrdy : std_logic;

-- Latched versions of the above buffered signals
signal latched_ipgh : std_logic;
signal latched_ipgv : std_logic;
signal latched_idq : std_logic;
signal latched_iport : std_logic_vector (7 downto 0);
signal latched_hport : std_logic_vector (7 downto 0);

-- Signals used when reading from block
-- ram and filling status register
signal cs : std_logic;
signal ce : std_logic;
signal rnw : std_logic;
signal xfer : std_logic;

-- raddr(8 downto 0) is used to address the
-- block RAM. OPB_ABus(13) and OPB_ABus(12), which
-- correspond to raddr(11) and raddr(10), are
-- used to address the filling status register
signal raddr : std_logic_vector (11 downto 0);

-- Signals used by the filling level status
-- The video decoder interface sends a set
-- of signals indicating how much of the
-- current line it has already written into
-- the block RAMs (1/4, 1/2, 3/4 and 1)
-- Microblaze keeps polling this signal
signal filling_level : std_logic_vector(3 downto 0);

-- Count the number of lines being written by the video decoder
signal line_counter : std_logic_vector(15 downto 0);

-- Count the frame (Actually, it's the frame ID
signal frame_counter : std_logic_vector(1 downto 0);

-- Data coming from video decoder interface
signal data_from_decoder : std_logic_vector(15 downto 0);

-- Data bus and latched data bus
signal data_from_bram : std_logic_vector (31 downto 0);
signal data_bus_ce : std_logic_vector (31 downto 0);

-- Signals for the block ram state machine
signal q2, q1, q0 : std_logic;

-- Coming from video_decoder_intf, going to block_ram
signal intf_idq_out : std_logic;
signal intf_iclk_out : std_logic;
signal waddr : std_logic_vector (10 downto 0);
signal luma_data : std_logic_vector (7 downto 0);

-- Dummy signals. Reserved for future enhancements
-- We currently not write from microblze (XIo_Out)
signal wdata : std_logic_vector (31 downto 0);
signal be : std_logic_vector (3 downto 0);

component block_ram is
 port (
 waddr : in std_logic_vector (10 downto 0);
 data_in : in std_logic_vector (7 downto 0);
 raddr : in std_logic_vector (8 downto 0);
 data_out : out std_logic_vector (31 downto 0);
 idq : in std_logic;
 iclk : in std_logic;
 ipgh : in std_logic;
 clock : in std_logic;
 read_enable : in std_logic;
 reset : in std_logic
);
end component;

component video_decoder_intf is
 port (
 iport : in std_logic_vector (7 downto 0);
 hport : in std_logic_vector (7 downto 0);
 idq_in : in std_logic;
 iclk_in : in std_logic;
 ipgh : in std_logic;
 ipgv : in std_logic;
 data : out std_logic_vector (15 downto 0);
 waddr : out std_logic_vector (10 downto 0);
 idq_out : out std_logic;
 iclk_out : out std_logic;
 fil_level : out std_logic_vector(3 downto 0);
 line_count: out std_logic_vector(15 downto 0);
 frame_id : out std_logic_vector(1 downto 0);
 reset : in std_logic
);
end component;

component IBUFG is
 port (
 I : in std_logic;
 O : out std_logic);
end component;

component IBUF
 port (
 I : in STD_ULOGIC;
 O : out STD_ULOGIC);
end component;

component OBUF
 port(
 O: out std_ulogic;
 I: in std_ulogic
);
end component;

component FD
 port (
 C : in std_logic;

 D : in std_logic;
 Q : out std_logic);
end component;

 -- Setting the iob attribute to "true" ensures that instances of these
 -- components are placed inside the I/O pads and are therefore very fast

attribute iob : string;
attribute iob of FD : component is "true";

begin

itrdy_buf : OBUF port map (
 O => ITRDY,
 I => buf_itrdy
);

itri_buf : OBUF port map (
 O => ITRI,
 I => buf_itri
);

vbuf : IBUFG port map (
 I => ICLK,
 O => buf_iclk
);

ipgh_pinbuf : IBUF port map (
 I => IPGH,
 O => buf_ipgh
);

ipgh_pinlatch : FD port map (
 C => buf_iclk,
 D => buf_ipgh,
 Q => latched_ipgh
);

ipgv_pinbuf : IBUF port map (
 I => IPGV,
 O => buf_ipgv
);

ipgv_pinlatch : FD port map (
 C => buf_iclk,
 D => buf_ipgv,
 Q => latched_ipgv
);

idq_pinbuf : IBUF port map (
 I => IDQ,
 O => buf_idq
);

idq_pinlatch : FD port map (
 C => buf_iclk,
 D => buf_idq,

 Q => latched_idq
);

databus : for i in 0 to 7 generate
 I_data_pad : IBUF port map (
 I => IPORT(i),
 O => buf_iport(i));

 I_data_ff : FD port map (
 C => buf_iclk,
 D => buf_iport(i),
 Q => latched_iport(i));

 H_data_pad : IBUF port map (
 I => HPORT(i),
 O => buf_hport (i));

 H_data_ff : FD port map (
 C => buf_iclk,
 D => buf_hport(i),
 Q => latched_hport(i));
end generate;

u1 : block_ram
port map
(
 waddr => waddr,
 data_in => luma_data,
 raddr => raddr(8 downto 0),
 data_out => data_from_bram,
 idq => intf_idq_out,
 iclk => intf_iclk_out,
 ipgh => latched_ipgh,
 clock => OPB_Clk,
 read_enable => '1',
 reset => OPB_Rst
);

u2 : video_decoder_intf
port map (
 iport => latched_iport,
 hport => latched_hport,
 idq_in => latched_idq,
 iclk_in => buf_iclk, -- For tests, use OPB_Clk
 ipgh => latched_ipgh,
 ipgv => latched_ipgv,
 data => data_from_decoder,
 waddr => waddr,
 idq_out => intf_idq_out,
 iclk_out => intf_iclk_out,
 fil_level => filling_level,
 line_count => line_counter,
 frame_id => frame_counter,
 reset => OPB_Rst
);

-- Chip select for block RAM - port A of block RAMs is memory mapped

-- The binary number is X"0180" concatenated with binary "00"
cs <= OPB_select when OPB_ABus(31 downto 14) = "000000011000000000" else '0';

-- Latching read address. Used to address port A of block RAMs
process (OPB_Clk)
begin
 if OPB_Clk'event and OPB_Clk = '1' then
 if OPB_RST = '1' then
 raddr <= "000000000000";
 else
 raddr <= OPB_ABus(13 downto 2);
 end if;
 end if;
end process;

-- Latching RNW signal
process (OPB_Clk)
begin
 if OPB_Clk'event and OPB_Clk = '1' then
 if OPB_Rst = '1' then
 rnw <= '0';
 else
 rnw <= OPB_RNW;
 end if;
 end if;
end process;

-- Latching BE signal (byte enable). Dummy signal
process (OPB_Clk)
begin
 if OPB_Clk'event and OPB_Clk = '1' then
 if OPB_Rst = '1' then
 be <= "0000";
 else
 be <= OPB_BE;
 end if;
 end if;
end process;

-- The following process is dummy. It is used to
-- create a mux between this entity and OPB_DBus
process (OPB_Clk)
begin
 if OPB_Clk'event and OPB_Clk = '1' then
 if OPB_Rst = '1' then
 wdata <= X"0000_0000";
 else
 wdata <= OPB_DBus;
 end if;
 end if;
end process;

-- State machine for reading the block RAM
process (OPB_Clk)
begin
 if OPB_Clk'event and OPB_Clk='1' then
 q2 <= (not q2 and q1) or (q2 and not q1);
 q1 <= (cs and not q2 and not q1) or (q2 and not q1);
 q0 <= q2 and not q1;
 end if;
end process;

-- CE is data latch enable
ce <= q2 and not q1 and rnw;

-- Latch the data coming from the block RAM
-- or from the filling status register
-- at address 01803FFC
process (OPB_Clk, OPB_Rst)
begin
 if OPB_Rst='1' then
 data_bus_ce <= X"00000000";
 elsif OPB_Clk'event and OPB_Clk='1' then
 if ce='1' then
 if raddr(11)='1' and raddr(10)='1' then
 data_bus_ce <= "0000000000000000000000000000" & filling_level;
 elsif raddr(11)='1' and raddr(10)='0' then
 data_bus_ce <= "0000000000000000000000000000000" & latched_ipgv;
 elsif raddr(11)='0' and raddr(10)='1' then
 data_bus_ce <= X"0000" & line_counter;
 elsif raddr(11)='0' and raddr(10)='0' and raddr(9)='1' then
 data_bus_ce <= "0000000000000000000000000000000" & frame_counter(0);
 else
 data_bus_ce <= data_from_bram;
 end if;
 else
 data_bus_ce <= X"00000000";
 end if;
 end if;
end process;

-- Connect luma bits from video decoder interface to block RAMs input data bus
luma_data <= data_from_decoder(15 downto 8);

-- XFER is transfer acknowledge
xfer <= q0;

-- Slave data bus
VIDEC_DBus(31 downto 0) <= data_bus_ce;

-- Tie unused signals to zero
VIDEC_errAck <= '0';
VIDEC_retry <= '0';
VIDEC_toutSup <= '0';
VIDEC_xferAck <= xfer;
buf_itri <= '1';
buf_itrdy <= '1';

end structural;

VIDEO_DECODER_INTF.VHD
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity video_decoder_intf is
 port (
 iport : in std_logic_vector (7 downto 0);
 hport : in std_logic_vector (7 downto 0);
 idq_in : in std_logic;
 iclk_in : in std_logic;
 ipgh : in std_logic;
 ipgv : in std_logic;
 data : out std_logic_vector (15 downto 0);
 waddr : out std_logic_vector (10 downto 0);
 idq_out : out std_logic;
 iclk_out : out std_logic;
 fil_level : out std_logic_vector(3 downto 0);
 line_count: out std_logic_vector(15 downto 0);
 frame_id : out std_logic_vector(1 downto 0);
 reset : in std_logic
);
end video_decoder_intf;

architecture structural of video_decoder_intf is

signal active : std_logic;
signal pix_count : std_logic_vector (10 downto 0);
signal pixel_addr : std_logic_vector(10 downto 0);

signal line_counter : std_logic_vector(15 downto 0);
signal frame_counter : std_logic_vector(1 downto 0);

-- The following signals indicate how much of the
-- line was already written into the block RAM
signal one_fourth : std_logic;
signal half_line : std_logic;
signal three_quarters : std_logic;
signal entire_line : std_logic;
signal filling_level : std_logic_vector(3 downto 0);

begin

-- pixel address - where to store valid pixels in the block RAMs
process (iclk_in, reset)
begin
 if reset='1' then
 pixel_addr <= "00000000000";
 elsif iclk_in'event and iclk_in='1' then
 if ipgh='0' then
 pixel_addr <= "00000000000";
 elsif idq_in = '1' and active = '1' then
 pixel_addr <= pixel_addr + 1;
 end if;
 end if;
end process;

-- count the actual data coming from iport and hport.
-- Some data is control (FF, 00 , 00 , SAV business)
-- Reset the counter whenever ipgh is zero
process (iclk_in, reset)
begin
 if reset='1' then
 pix_count <= "00000000000";
 elsif iclk_in'event and iclk_in='1' then
 if idq_in='1' then
 if ipgh='0' then
 pix_count <= "00000000000";
 else
 pix_count <= pix_count + 1;
 end if;
 end if;
 end if;
end process;

-- count the number of lines
process (iclk_in, reset)
begin
 if reset='1' then
 line_counter <= X"0000";
 elsif iclk_in'event and iclk_in='1' then
 if ipgv='0' then
 line_counter <= X"0000";
 elsif ipgh='1' and pix_count=719 then
 line_counter <= line_counter + 1;
 end if;
 end if;
end process;

-- give the frame ID
process (iclk_in, reset)
begin
 if reset='1' then
 frame_counter <= "00";
 elsif iclk_in'event and iclk_in='1' then
 if line_counter = 239 and pix_count=719 then
 frame_counter <= frame_counter+1;
 end if;
 end if;
end process;

-- Active means we are within
-- the horizontal line active video
process (iclk_in)
begin
 if iclk_in'event and iclk_in='1' then
 if ipgh='0' then
 active <= '0';
 elsif pix_count = 1 then
 active <= '1';
 elsif pix_count=720 then
 active <= '0';
 end if;

 end if;
end process;

-- Set output signals according to where
-- in the current line the video decoder
-- is writing the block RAM
process (iclk_in, reset)
begin
 if reset='1' then
 one_fourth <= '0';
 elsif iclk_in'event and iclk_in='1' then
 if pix_count=0 then
 one_fourth <= '0';
 elsif pix_count=161 then
 one_fourth <= '1';
 end if;
 end if;
end process;

process (iclk_in, reset)
begin
 if reset='1' then
 half_line <= '0';
 elsif iclk_in'event and iclk_in='1' then
 if pix_count=0 then
 half_line <= '0';
 elsif pix_count=321 then
 half_line <= '1';
 end if;
 end if;
end process;

process (iclk_in, reset)
begin
 if reset='1' then
 three_quarters <= '0';
 elsif iclk_in'event and iclk_in='1' then
 if pix_count=0 then
 three_quarters <= '0';
 elsif pix_count=481 then
 three_quarters <= '1';
 end if;
 end if;
end process;

process (iclk_in, reset)
begin
 if reset='1' then
 entire_line <= '0';
 elsif iclk_in'event and iclk_in='1' then
 if pix_count=0 then
 entire_line <= '0';
 elsif pix_count=641 then
 entire_line <= '1';
 end if;
 end if;
end process;

filling_level(0) <= one_fourth;
filling_level(1) <= half_line;
filling_level(2) <= three_quarters;
filling_level(3) <= entire_line;

-- Output signals of this entity

fil_level <= filling_level;
line_count <= line_counter;
frame_id <= frame_counter;

data(15 downto 8) <= iport;
data(7 downto 0) <= hport;

waddr <= pixel_addr;
iclk_out <= iclk_in;
idq_out <= idq_in;

end structural;

-- Test generator
-- signal pixel_data : std_logic_vector(15 downto 0);

-- begin

-- -- pixel data
-- process (iclk_in, reset)
-- begin
-- if reset='1' then
-- pixel_data <= X"00FF";
-- elsif iclk_in'event and iclk_in = '1' then
-- pixel_data <= pixel_data + X"100";
-- end if;
-- end process;

-- -- pixel address - where to store in the block RAMs
-- process (iclk_in, reset)
-- begin
-- if reset='1' then
-- pixel_addr <= "00000000000";
-- elsif iclk_in'event and iclk_in='1' then
-- pixel_addr <= pixel_addr + 1;
-- end if;
-- end process;

-- data <= pixel_data;
-- waddr <= pixel_addr;
-- iclk_out <= iclk_in;
-- idq_out <= '1';

-- end structural;

BLOCK_RAM.VHD
library IEEE;
use IEEE.std_logic_1164.all;

-- Four RAMB4_S8_S8 components instantiated.
-- Each one stores 8 bits of information (luma)
-- on each memory cell. Block 0 stores pixels
-- 0,4,8, etc. Block 1 stores pixels 1, 5, 9, etc,
-- Block 2 stores pixels 2, 6, 10, etc. and
-- Block 3 stores pixels 3, 7, 11, etc.
-- and so on.
entity block_ram is
 port (
 -- Address generated by video decoder intf module
 -- (video_decoder_intf.vhd). All block-RAMs see
 -- the same 9 *upper* bits. The remaining 2 *lower*
 -- bits are used to choose which block to store.
 waddr : in std_logic_vector (10 downto 0);

 -- Luminance data coming from the video decoder
 -- The video decoder is actually being configured
 -- to transmit 16-bit data (upper bits are luma,
 -- lower bits are chroma). However, the chroma
 -- bits are just being disconsidered as of now.
 data_in : in std_logic_vector (7 downto 0);

 -- Read address. Generated by microblaze every
 -- time one executes XIO_In32. Microblaze reads
 -- four pixels at a time: pixel "i" from block
 -- 0, pixel "i+1" from block 1, pixel "i+2"
 -- from block 2 and pixel "i+3" from block 3.
 -- That's why the *lower* bits of addr are used.
 raddr : in std_logic_vector (8 downto 0);

 -- Data going to microblaze. The 32 bits read
 -- correspond to 4 pixels, each one coming
 -- from a specific block RAM.
 data_out : out std_logic_vector (31 downto 0);

 -- IDQ is '1' when valid data is
 -- coming from video decoder
 idq : in std_logic;

 -- clock for port B is ICLK
 -- from video decoder
 iclk : in std_logic;

 -- From the video decoder
 ipgh : in std_logic;

 -- clock for port A is
 -- clk from CPU
 clock : in std_logic;

 -- Read enable
 read_enable : in std_logic;

 -- Reset
 reset : in std_logic
);
end block_ram;

architecture structural of block_ram is

-- Dual-port block RAM used for storing data coming from video decoder
-- Port B is written by the video decoder intf, Port A is read by CPU.
-- See "http://www.xilinx.com/bvdocs/appnotes/xapp173.pdf"
component RAMB4_S8_S8
 generic (
 INIT_00, INIT_01, INIT_02, INIT_03, INIT_04, INIT_05,
 INIT_06, INIT_07, INIT_08, INIT_09, INIT_0a, INIT_0b,
 INIT_0c, INIT_0d, INIT_0e, INIT_0f: bit_vector(255 downto 0)
 :=X"00"
);
 port (
 DIA,DIB : in STD_LOGIC_VECTOR (7 downto 0);
 ENA,ENB : in STD_logic;
 WEA,WEB : in STD_logic;
 RSTA,RSTB : in STD_logic;
 CLKA,CLKB : in STD_logic;
 ADDRA,ADDRB : in STD_LOGIC_VECTOR (8 downto 0);
 DOA,DOB : out STD_LOGIC_VECTOR (7 downto 0)
);
end component;

-- i_clock is ICLK from video decoder
-- opb_clock is opb_clk from OPB bus
signal i_clock : std_logic;
signal opb_clock : std_logic;

-- Read enable
signal r_en : std_logic;

-- Reset
signal rst : std_logic;

-- Shared address bus for all 4 block RAMs
signal addr_a : std_logic_vector (8 downto 0);
signal addr_b : std_logic_vector (8 downto 0);

-- Enable signals for distinct blocks
signal enb0, enb1, enb2, enb3 : std_logic;

-- Data coming from video decoder interface to B ports
signal data_in_signal : std_logic_vector (7 downto 0);

-- Data going to OPB Bus from A ports
signal data_out_a0 : std_logic_vector (7 downto 0);
signal data_out_a1 : std_logic_vector (7 downto 0);
signal data_out_a2 : std_logic_vector (7 downto 0);
signal data_out_a3 : std_logic_vector (7 downto 0);

begin

block_0: RAMB4_S8_S8 -- 512 words of 8 bits
port map
(
 DIA => X"00", DIB => data_in_signal,
 ENA => r_en, ENB => '1',
 WEA => '0', WEB => enb0,
 RSTA => rst, RSTB => rst,
 CLKA => opb_clock, CLKB => i_clock,
 ADDRA => addr_a, ADDRB => addr_b,
 DOA => data_out_a0, DOB => open
);

block_1: RAMB4_S8_S8 -- 512 words of 8 bits
port map
(
 DIA => X"00", DIB => data_in_signal,
 ENA => r_en, ENB => '1',
 WEA => '0', WEB => enb1,
 RSTA => rst, RSTB => rst,
 CLKA => opb_clock, CLKB => i_clock,
 ADDRA => addr_a, ADDRB => addr_b,
 DOA => data_out_a1, DOB => open
);

block_2: RAMB4_S8_S8 -- 512 words of 8 bits
port map
(
 DIA => X"00", DIB => data_in_signal,
 ENA => r_en, ENB => '1',
 WEA => '0', WEB => enb2,
 RSTA => rst, RSTB => rst,
 CLKA => opb_clock, CLKB => i_clock,
 ADDRA => addr_a, ADDRB => addr_b,
 DOA => data_out_a2, DOB => open
);

block_3: RAMB4_S8_S8 -- 512 words of 8 bits
port map
(
 DIA => X"00", DIB => data_in_signal,
 ENA => r_en, ENB => '1',
 WEA => '0', WEB => enb3,
 RSTA => rst, RSTB => rst,
 CLKA => opb_clock, CLKB => i_clock,
 ADDRA => addr_a, ADDRB => addr_b,
 DOA => data_out_a3, DOB => open
);

-- Uncomment the following lines if you don't want to skip pixels
-- Then comment the four lines indicating Y0, Y2, Y4, Y6 below.
--enb0 <= idq and ipgh and not waddr(1) and not waddr(0);
--enb1 <= idq and ipgh and waddr(1) and not waddr(0);
--enb2 <= idq and ipgh and not waddr(1) and not waddr(0);

--enb3 <= idq and ipgh and waddr(1) and not waddr(0);

enb0 <= idq and ipgh and not waddr(2) and not waddr(1) and not waddr(0); -- Y0
enb1 <= idq and ipgh and not waddr(2) and waddr(1) and not waddr(0); -- Y2
enb2 <= idq and ipgh and waddr(2) and not waddr(1) and not waddr(0); -- Y4
enb3 <= idq and ipgh and waddr(2) and waddr(1) and not waddr(0); -- Y6

-- Data out merger
data_out(31 downto 24) <= data_out_a0;
data_out(23 downto 16) <= data_out_a1;
data_out(15 downto 8) <= data_out_a2;
data_out(7 downto 0) <= data_out_a3;

-- Data in
data_in_signal <= data_in;

-- Actual bits addressing block RAMs, port A
addr_a <= raddr;

-- Uncomment the following line if you don't want to skip pixels
-- addr_b <= waddr(10 downto 2);

-- Actual bits addressing block RAMs, port B
addr_b <= "0" & waddr(10 downto 3);

-- Connect clocks and reset
i_clock <= iclk;
opb_clock <= clock;
rst <= reset;

-- Read enable
r_en <= read_enable;

end structural;

OPB_I2CCONTROLLER.VHD
library ieee;
use ieee.std_logic_1164.all;

entity opb_i2ccontroller is -- USER --
 generic
 (
 C_OPB_AWIDTH : integer := 32;
 C_OPB_DWIDTH : integer := 32;
 C_BASEADDR : std_logic_vector := X"FEFF0200";
 C_HIGHADDR : std_logic_vector := X"FEFF02FF");

 port
 (
 --Required OPB bus ports, do not add to or delete
 OPB_ABus : in std_logic_vector(0 to C_OPB_AWIDTH-1);
 OPB_BE : in std_logic_vector(0 to C_OPB_DWIDTH/8-1);
 OPB_Clk : in std_logic;
 OPB_DBus : in std_logic_vector(0 to C_OPB_DWIDTH-1);
 OPB_RNW : in std_logic;
 OPB_Rst : in std_logic;
 OPB_select : in std_logic;
 OPB_seqAddr : in std_logic;
 VID_I2C_DBus : out std_logic_vector(0 to C_OPB_DWIDTH-1);
 VID_I2C_errAck : out std_logic;
 VID_I2C_retry : out std_logic;
 VID_I2C_toutSup : out std_logic;
 VID_I2C_xferAck : out std_logic;

 -- USER --
 VID_I2C_SCL : inout std_logic;
 VID_I2C_SDA : inout std_logic
);

end entity opb_i2ccontroller; --USER--

--
-
-- architecture
--
-

architecture imp of opb_i2ccontroller is --USER--

component IOBUF_F_12
 port (
 O : out STD_ULOGIC;
 IO : inout STD_ULOGIC;
 I : in STD_ULOGIC;
 T : in STD_ULOGIC);
end component;

signal wdata : std_logic_vector(0 to 7);
signal rdata : std_logic_vector(0 to 7);
signal rnw : std_logic;
signal cs, xfer : std_logic;

signal q0,q1 : std_logic;
signal i2c_din : std_logic;

begin

sda_pad : IOBUF_F_12 port map (
 I => wdata(0),
 IO => VID_I2C_SDA,
 O => i2c_din,
 T => wdata(1)
);

scl_pad : IOBUF_F_12 port map (
 I => wdata(2),
 IO => VID_I2C_SCL,
 O => open,
 T => wdata(3)
);

-- Chip select, memory mapped. XIoOut8 for selecting the I2C controller
process (OPB_select, OPB_ABus)
begin

 if(OPB_select='1' and OPB_ABus(0 to 23)=C_BASEADDR(0 to 23)) then
 cs <= '1'; else
 cs <= '0';
 end if;
end process;

-- I2C Bus SDA interconnection
process (OPB_Clk,OPB_Rst)
begin
 if (OPB_Rst='1') then
 wdata <= "11111111";
 rdata <= "00000000";

 elsif OPB_Clk'event and OPB_Clk = '1' then
 rnw <= OPB_RNW;

 if (q1 = '0' and q0 = '1' and rnw='0') then
 wdata <= OPB_DBus(0 to 7);
 end if;

 if (q1='1') then
 rdata <= "00000000";
 elsif (q1='0' and q0='1' and rnw = '1') then
 rdata <= i2c_din & "0000000";
 end if;

 end if;
end process;

process (OPB_Clk,OPB_Rst)
begin

 if (OPB_Rst = '1') then
 q0 <= '0';
 q1 <= '0';
 elsif OPB_Clk'event and OPB_Clk='1' then
 q1 <= not q1 and q0;
 q0 <= not q1 and not q0 and cs;
 end if;
end process;

xfer <= q1;

VID_I2C_xferAck <= xfer;

VID_I2C_DBus <= rdata & X"000000";

VID_I2C_errAck <= '0';

VID_I2C_retry <= '0';

VID_I2C_toutSup <= '0';

end architecture imp;

WRITE_VIDEO.C

#include "xbasic_types.h"
#include "xio.h"

#define W 640
#define VGA_START 0x00800000
#define BRAM_START 0x01800000

// Transfer a section of "line" starting at pixel //
// "start" and ending at pixel "end" from the //
// block RAMs to the SRAM. //
void write_video(int start, int end, int line)
{
 int nPixs;
 Xuint32 luma_4pixels;
 Xuint32 bram_addr;
 Xuint32 vga_addr;

 nPixs = (end - start);
 vga_addr = VGA_START + (start>>1) + W*line;
 bram_addr = BRAM_START + (start>>1);

 while (nPixs > 0)
 {
 luma_4pixels = XIo_In32(bram_addr+0);
 XIo_Out32(vga_addr+0, luma_4pixels);

 luma_4pixels = XIo_In32(bram_addr+4);
 XIo_Out32(vga_addr+4, luma_4pixels);

 luma_4pixels = XIo_In32(bram_addr+8);
 XIo_Out32(vga_addr+8, luma_4pixels);

 luma_4pixels = XIo_In32(bram_addr+12);
 XIo_Out32(vga_addr+12, luma_4pixels);

 bram_addr += 16;
 vga_addr += 16;

 // Skip pixels //
 nPixs -=32;

 // If we lose vertical synchronism in the meantime //
 // then break from the "while" and return //
 if (!XIo_In32(0x01802FFC))
 break;
 }
}

CHAR_PRINTING.C

#include "xbasic_types.h"
#include "xio.h"
#include "font_8x8.h"

#define W 640
#define H 480
#define VGA_START 0x00800000

#define RED 0xE0
#define GREEN 0x1C
#define BLUE 0x03

void
draw_char (int x, int y, unsigned char ch)
{
 int row, col;
 short int row_template;

 // "Times 8" used to index the //
 // array declared in "font_8x8.h" //
 int init_pos = ch * 8;

 // Print the 8 rows of the character //
 // in the outermost loop //
 for (row = y; row < y + 8; row++)
 {
 // Read the character into a short //
 // int variable to be able to shift //
 row_template = fontdata_8x8[row - y + init_pos];

 // Print each pixel that is 1 or 0 //
 // in the character's template //
 for (col = x; col < x + 8; col++)
 {
 // The varying amount of shifting //
 // at each iteration takes care of //
 // analyzing the right bit at a time //
 if ((row_template << col-x) & 0x80)
 {
 XIo_Out8(VGA_START + col + 640*row, RED|GREEN|BLUE);
 }
 // To take care of cleaning something //
 // already written (write the background) //
 else
 {
 XIo_Out8(VGA_START + col + 640*row, 0);
 }
 }
 }
}

void draw_string(int x, int y, char *s)
{
 while(*s) draw_char(x+=8, y, *s++);
}

// This function can be used for debuging purposes //
void draw_hex(int x, int y, int n)
{
 int i, d;
 char c;
 for(i=0; i<8;i++){
 d=(n>>28)&0x0F;
 c = d>9 ? d-10+'A' : d+'0';
 draw_char(x+=8, y, c);
 n<<=4;
 }
}

TRACK_OBJECT.C

#include "xbasic_types.h"
#include "xio.h"

#define HORZ_RES 320
#define VERT_RES 240
#define W 320
#define H 240
#define MIN_X_DIM 2
#define MIN_Y_DIM 2
#define TOLERANCE 10
#define color_match 0xC0
#define VGA_START 0x00800000

/*
 The way this search algorithm works is quite simple. It first traverses
 through the video_sram, looking for a particular "color_match" in a
 sequence. From the current starting position in each line, it calculates
 the number of consecutive instances of "color_match" it can find and stores
 it to a 1-D array (each element corresponding to each horizontal line.

 Then the second segment of the code actually traverses ONLY through this
 1-D array created and looks for a consistent run of values that are more
 than the "MIN_X_DIM". Then once this traversal is complete, it now knows
 how many acceptable values of "color_run" occur in a sequence. Then it
 stores that value temporarily along with the corresponding Y value the
 sequence started at.

 Finally, the values of x_dim_tmp and y_dim_tmp are compared with the current
 values of x_dim and y_dim. Currently the decision is based on area, and if
 need be to speed up the program, it can always be changed to a simple comparison
 between x_dim, y_dim and X_dim_tmp and y_dim_tmp.
*/

void track_object()
{
 int line, pix;
 int color_run;
 int count;
 int i, j, x;
 int upperbound, lowerbound;
 int constraint_y;
 int x_dim, y_dim;
 int x_pos, y_pos;
 int y_pos_tmp, x_pos_tmp;
 int x_dim_tmp, y_dim_tmp;
 Xuint8 video_byte;
 int flag_x_fail = 0;

 count = 0;
 i = 0;
 j = 0;
 x_dim=0;
 y_dim=0;
 constraint_y = 0;
 upperbound = color_match + TOLERANCE;

 lowerbound = color_match - TOLERANCE;

 for(x = 0; x < HORZ_RES; x++)
 {
 // Traversing through video_sram to get the values of
 // matches for a particular color within a "tolerance"

 // The program can be altered very easily to change the
 // search color on the fly looking for any number of colors
 // by changing the color_match variable.

 // setting the current x_dim_tmp //
 // to a relative infinity //
 x_dim_tmp = HORZ_RES + 1;

 constraint_y = 0;
 y_dim_tmp = 0;
 x_pos_tmp = x;

 for (i = 0; i < VERT_RES ; i++)
 {
 color_run = 0;
 flag_x_fail = 0;
 /*
 Inner loop that checks values from the current x
 position till the end of the video_sram array

 This is the ONLY place where video_sram is being accessed.
 */
 for(j = x; ((j < HORZ_RES)&&(flag_x_fail == 0)); j++)
 {

 // Checks to see if the current videosram value is out of range
 // if the mismatch was found then the fail_x_flag is set as we
 // are not interested in any of the values that would occur after
 // the first anomalitiy.

 video_byte = XIo_In8(VGA_START + j + 640*i);
 if((video_byte > upperbound) || (video_byte < lowerbound))
 {
 flag_x_fail =1;
 break;
 }
 else // else adds one to it's counter
 {
 color_run++;
 }
 }

 // Here is where the 2-d recognition comes into play. This is
 // the second part of the algorithm where it looks for the
 // consistency in consistency of color values per se.

 // If it finds a decent consistency (i.e. one that satisfies
 // both the x_dim and y_dim constraints) then it will store
 // the x coordinate in x_pos_tmp and y coordinate in y_pos_tmp

 // and the corresponding x and y dimensions in x_dim_temp and
 // y_dim_temp respectivley.

 // We have just encountered a place where we have seen that
 // the color_run value is more than the minimum x dimension
 // so we have to first increment the constraint_y value and
 // possibly update the y_pos_tmp value to the index of the
 // start of the sequence.
 //
 // Also in the current color_run value was found to be lower
 // than the current x_dim_tmp, then you need to reassign it
 // as the x dimension of the rectangle will be decided by the
 // lowest value of color_run in acceptable range of x_dim value

 if (color_run >= MIN_X_DIM)
 {
 constraint_y++;
 if(color_run < x_dim_tmp)
 x_dim_tmp = color_run;
 if (constraint_y > y_dim)
 {
 y_dim_tmp = constraint_y;
 y_pos_tmp = i - constraint_y + 1;
 }
 }

 if (color_run < MIN_X_DIM)
 {
 if (constraint_y > y_dim)
 {
 y_dim = constraint_y;
 y_pos = i;
 }
 constraint_y = 0;
 }
 }

 // Now that the program has the values of the last best rectangle,
 // it compares it with the x and y dimensions of the one that was
 // just found (if any).

 // Currently the reassignment is made if the new rectangle has a
 // greater area than the older one. But for optimization, this can
 // be tossed for simpler decision criteia.

 if ((x_dim_tmp * y_dim_tmp) > (x_dim * y_dim)) {
 x_dim = x_dim_tmp;
 y_dim = y_dim_tmp;
 x_pos = x_pos_tmp;
 y_pos = y_pos_tmp;
 }

 } // main for loop

 // These are the values that are read //
 // out of the image and may be written //
 // to any part of the memory. //

 for (j = x_pos-2; j < x_pos+ 2 + x_dim; j+=2)
 {
 XIo_Out8(VGA_START + j + 640*(y_pos) ,0x95);
 XIo_Out8(VGA_START + j + 640*(y_pos+y_dim) ,0x95);
 }

 for (i = y_pos-2; i < y_pos+ 2 + y_dim; i+=2)
 {
 XIo_Out8(VGA_START + x_pos + 640*(i) ,0x95);
 XIo_Out8(VGA_START + x_pos+x_dim + 640*(i) ,0x95);
 }

}

MAIN.C

#include "xbasic_types.h"
#include "xio.h"

#define W 640
#define H 480
#define VGA_START 0x00800000
#define RED 0xE0
#define GREEN 0x1C
#define BLUE 0x03

extern void write_video(int start, int end, int line);
extern void track_object();

// Register addresses for SAA7114H configuration
unsigned char registers [] = {

 // Video decoder "generic" registers //
 0x01, 0x08, // Recommended setting
 0x02, 0xE9, // Analog input control 1 and input selection
 0x03, 0x10, // Analog input control 2
 0x04, 0x90, // Analog input control 3
 0x05, 0x90, // Analog input control 4
 0x06, 0xEB, // Horizontal Sync Start (delay)
 0x07, 0xE0, // Horizontal Sync Stop (delay)
 0x08, 0x59, // Sync control
 0x09, 0x40, // Luminance control
 0x0A, 0x80,
 0x0B, 0x44,
 0x0C, 0x40,
 0x0D, 0x00,
 0x0E, 0x89,
 0x0F, 0x2A, // Chrominance gain
 0x10, 0x0E, // Chrominance control
 0x11, 0x00,
 0x12, 0x46, // RT signal control
 0x13, 0x00,
 0x14, 0x00,
 0x15, 0x11,
 0x16, 0xFE,
 0x17, 0x40,
 0x18, 0x40,
 0x19, 0x80,
 0x1A, 0x00,
 0x1B, 0x00,
 0x1C, 0x00,
 0x1D, 0x00,
 0x1E, 0x00,
 0x30, 0x08, // Audio clock stuff
 0x31, 0x08, // Audio clock stuff
 0x32, 0x02,
 0x33, 0x00,
 0x34, 0xCD,
 0x35, 0xCC,
 0x36, 0x3A,

 0x37, 0x00,
 0x38, 0x03,
 0x39, 0x10,
 0x3A, 0x00,
 0x3B, 0x00,
 0x3C, 0x00,
 0x3D, 0x00,
 0x3E, 0x00,
 0x3F, 0x00,
 0x40, 0x40,
 0x41, 0xFF,
 0x42, 0xFF,
 0x43, 0xFF,
 0x44, 0xFF,
 0x45, 0xFF,
 0x46, 0xFF,
 0x47, 0xFF,
 0x48, 0xFF,
 0x49, 0xFF,
 0x4A, 0xFF,
 0x4B, 0xFF,
 0x4C, 0xFF,
 0x4D, 0xFF,
 0x4E, 0xFF,
 0x4F, 0xFF,
 0x50, 0xFF,
 0x51, 0xFF,
 0x52, 0xFF,
 0x53, 0xFF,
 0x54, 0xFF,
 0x55, 0xFF,
 0x56, 0xFF,
 0x57, 0xFF,
 0x58, 0x40,
 0x59, 0x47,
 0x5A, 0x06,
 0x5B, 0x03,
 0x5C, 0x00,
 0x5D, 0x3E,
 0x5E, 0x00,
 0x5F, 0x00,
 0x80, 0x10, // Only Task A: 0x10 ; Both tasks: 0x30.
 0x83, 0x01,
 0x84, 0xA0,
 0x85, 0x10,
 0x86, 0x45,
 0x87, 0x01,
 0x88, 0xF0,

 // Task A Registers //
 0x90, 0x00,
 0x91, 0x08,
 0x92, 0x10,
 0x93, 0xC0,
 0x94, 0x10,
 0x95, 0x00,
 0x96, 0xD0,

 0x97, 0x02,
 0x98, 0x0A,
 0x99, 0x00,
 0x9A, 0xF2,
 0x9B, 0x00,
 0x9C, 0xD0, // Horizontal output window size upper bits \ 0xD002 = 720
 0x9D, 0x02, // Horizontal output window size lower bits / by
 0x9E, 0xF0, // Vertical output window size upper bits \ 0xF000 = 240
 0x9F, 0x00, // Vertical output window size lower bits /
 0xA0, 0x01,
 0xA1, 0x00,
 0xA2, 0x00,
 0xA4, 0x80,
 0xA5, 0x40,
 0xA6, 0x40,
 0xA8, 0x00,
 0xA9, 0x04,
 0xAA, 0x00,
 0xAC, 0x00,
 0xAD, 0x02,
 0xAE, 0x00,
 0xB0, 0x00,
 0xB1, 0x04,
 0xB2, 0x00,
 0xB3, 0x04,
 0xB4, 0x00,
 0xB8, 0x00,
 0xB9, 0x00,
 0xBA, 0x00,
 0xBB, 0x00,
 0xBC, 0x00,
 0xBD, 0x00,
 0xBE, 0x00,
 0xBF, 0x00,

 /*
 // Task B Registers - Not being used as of now //
 0xC0, 0x08,
 0xC1, 0x08,
 0xC2, 0x10,
 0xC3, 0xC0,
 0xC4, 0x10,
 0xC5, 0x00,
 0xC6, 0xD0,
 0xC7, 0x02,
 0xC8, 0x0A,
 0xC9, 0x00,
 0xCA, 0xF2,
 0xCB, 0x00,
 0xCC, 0xD0,
 0xCD, 0x02,
 0xCE, 0xF0,
 0xCF, 0x00,
 0xD0, 0x01,
 0xD1, 0x00,
 0xD2, 0x00,
 0xD4, 0x80,

 0xD5, 0x40,
 0xD6, 0x40,
 0xD8, 0x00,
 0xD9, 0x04,
 0xDA, 0x00,
 0xDC, 0x00,
 0xDD, 0x02,
 0xDE, 0x00,
 0xE0, 0x00,
 0xE1, 0x04,
 0xE2, 0x00,
 0xE3, 0x04,
 0xE4, 0x00,
 0xE8, 0x00,
 0xE9, 0x00,
 0xEA, 0x00,
 0xEB, 0x00,
 0xEC, 0x00,
 0xED, 0x00,
 0xEE, 0x00,
 0xEF, 0x00,*/

 // Reset sequence. Extremelly needed!!
 // Do not comment the following out! //
 0x88, 0xD8,
 0x88, 0xF8,
 0xFF, 0xFF,};

// Witness variable //
int w = 0xFF;

// Provide a delay between signal toggling //
void i2c_delay()
{
 int i;
 for (i = 0; i < 1000; i++);
}

// Write "level" to SCL //
void SCLw(int level)
{
 if (level == 0)
 w &= 0xDF;
 else
 w |= 0x2F;

 // Assert the clock on SCL //
 // according to level //
 XIo_Out8(0xFEFF0200, w);
 i2c_delay();
}

// Write "level" to SDA //
void SDAw(int level)
{
 if (level == 0)
 w &= 0x7F;

 else
 w |= 0x8F;

 // Assert the clock on SDA //
 // according to level //
 XIo_Out8(0xFEFF0200, w);
 i2c_delay();
}

// Read from SDA //
int SDAr()
{
 int MSB = XIo_In8(0xFEFF0200);

 MSB = MSB >> 7;
 MSB &= 1;

 i2c_delay();
 return MSB;
}

// Tristate for SDA //
void SDAt(int rnw)
{
 if (rnw == 0)
 w &= 0xBF;
 else
 w |= 0x4F;

 // Assert the clock on SDA //
 // according to level //
 XIo_Out8(0xFEFF0200, w);
 i2c_delay();
}

// Tristate for SCL //
void SCLt(int rnw)
{
 if (rnw == 0)
 w &= 0xEF;
 else
 w |= 0x1F;

 // Assert the clock on SDA //
 // according to level //
 XIo_Out8(0xFEFF0200, w);
 i2c_delay();
}

// Send the start sequence
void send_start(void)
{
 SCLt(0);
 SDAt(0);
 SCLw(1);
 SDAw(0);
 SCLw(0);

}

// Send the restart sequence
// Needed for read register
void re_start(void) /* This function must be entered with SDA High
*/
{
 SCLw(1);
 SDAw(0);
 SCLw(0);
}

// Send stop sequence
void send_stop(void)
{
 SCLw(0);
 SDAw(0);
 SCLw(1);
 SDAw(1); /* Should leave with both lines high to indicate finish */
}

// Check acknowledge
int check_ack(void)
{
 int theresult;
 SDAt(1);
 SCLw(1);
 theresult=SDAr();
 SCLw(0);
 SDAw(1); /* Set the output before it becomes active to eliminate spike */
 SDAt(0);
 return theresult;
}

// Send one bit
void send_bit(int x)
{
 x = x & 1;
 SDAw(x);
 SCLw(1);
 SCLw(0);
}

// Send an entire bit
void send_byte(int byte)
{
 int i;
 for (i = 7; i >= 0; i--)
 {
 send_bit(byte >> i);
 }
}

// Read a register from the video decoder
int read_register(int sub_address)
{

 int id, input = 0;

 send_start();

 // Write slave address for SAA7114H is 43H //
 send_byte(0x42);

 check_ack();

 // Send the subaddress //
 send_byte(sub_address);

 check_ack();

 re_start();

 // Read address //
 send_byte(0x43);

 check_ack();

 SDAt(1);
 for(id=8 ; id>0 ; id=id-1)
 {
 input=input<<1;
 SCLw(1);
 input=input|SDAr();
 SCLw(0);
 }
 SDAw(1); /* Set the output prior to enable to eliminate spike and make
 compatible with Restart */
 SDAt(0);
 SCLw(1);
 SCLw(0);
 send_stop();
 return input;
}

// Write a register into the video decoder
void write_register(int sub_address, int data)
{
 int i;
 // Start conditions //
 send_start();

 for (i = 0; i < 5; i++)
 i2c_delay();

 // Write slave address for SAA7114H is 42H //
 send_byte(0x42);
 check_ack();
 send_byte(sub_address);
 check_ack();
 send_byte(data);
 check_ack();
 send_stop();
}

void read_one_field()
{
 int line;
 int start, end;
 int line_section;
 Xuint32 current_level;

 line = -1;

 while (1)
 {
 line = line + 1;

 // This variable indicates how much of //
 // the current line has been already //
 // written into the block RAMs //
 current_level = 0x0001;

 for (line_section = 0; line_section < 4; line_section++)
 {
 // Wait for the current line to be 1/4, 1/2, 3/4 //
 // and full filled. The while below executes 4 times //
 while (!(XIo_In32(0x01803FFC) & current_level))
 {
 // If in the meantime we lose vertical //
 // synchronism, then break //
 if (!XIo_In32(0x01802FFC))
 break;
 }

 if (current_level == 0x01) {
 start = 0;
 end = 160;
 }
 else if (current_level == 0x02) {
 start = 160;
 end = 320;
 }
 else if (current_level == 0x04) {
 start = 320;
 end = 480;
 }
 else if (current_level == 0x08) {
 start = 480;
 end = 640;
 }

 if (!XIo_In32(0x01802FFC))
 break;

 write_video(start, end, line);
 current_level = current_level << 1;

 if (!XIo_In32(0x01802FFC))
 break;

 }
 if (!XIo_In32(0x01802FFC))
 break;
 }
}

int main()
{
 int i;

 print("Hello World!\r\n");
 microblaze_enable_icache();

 // Start the bus protocol by sending //
 // a stop handshaking (SDA=1 and SCL=1) //
 send_stop();
 print("Configuring video decoder...");

 i = 0;

 // Configure the video decoder SAA7114H //
 while (registers[i] != 0xFF) {
 write_register (registers[i], registers[i+1]);
 i+=2;
 }
 print("Video decoder configured!\r\n");

 // Clear screen //
 for (i = 0; i < H*W; i++)
 XIo_Out8(VGA_START + i, 0);

 // Wait for a little bit
 for (i=0; i<10000;i++);

 while (1)
 {
 // Wait for the vertical synchronism
 while ((XIo_In32(0x01802FFC)));
 while (!(XIo_In32(0x01802FFC)));

 if (XIo_In32(0x018008FC))
 {
 while ((XIo_In32(0x01802FFC)));
 while (!(XIo_In32(0x01802FFC)));
 }

 read_one_field();
 track_object();
 }

 print("Goodbye\r\n");
 return 0;
}

VGA.VHD – parts of this file were modified
--
-
--
-- VGA video generator
--
-- Uses the vga_timing module to generate hsync etc.
-- Massages the RAM address and requests cycles from the memory controller
-- to generate video using one byte per pixel
--
-- Cristian Soviani, Dennis Lim, and Stephen A. Edwards
--
--
-

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity vga is
 port (
 clk : in std_logic;
 pix_clk : in std_logic;
 rst : in std_logic;
 video_data : in std_logic_vector(15 downto 0);
 video_addr : out std_logic_vector(19 downto 0);
 video_req : out std_logic;
 VIDOUT_CLK : out std_logic;
 VIDOUT_RCR : out std_logic_vector(9 downto 0);
 VIDOUT_GY : out std_logic_vector(9 downto 0);
 VIDOUT_BCB : out std_logic_vector(9 downto 0);
 VIDOUT_BLANK_N : out std_logic;
 VIDOUT_HSYNC_N : out std_logic;
 VIDOUT_VSYNC_N : out std_logic);
end vga;

architecture Behavioral of vga is

 -- Fast low-voltage TTL-level I/O pad with 12 mA drive

 component OBUF_F_12
 port (
 O : out STD_ULOGIC;
 I : in STD_ULOGIC);
 end component;

 -- Basic edge-sensitive flip-flop

 component FD
 port (
 C : in std_logic;
 D : in std_logic;
 Q : out std_logic);
 end component;

 -- Force instances of FD into pads for speed

 attribute iob : string;

 attribute iob of FD : component is "true";

 component vga_timing
 port (
 h_sync_delay : out std_logic;
 v_sync_delay : out std_logic;
 blank : out std_logic;
 vga_ram_read_address : out std_logic_vector (19 downto 0);
 pixel_clock : in std_logic;
 reset : in std_logic);
 end component;

 signal r : std_logic_vector (9 downto 0);
 signal g : std_logic_vector (9 downto 0);
 signal b : std_logic_vector (9 downto 0);
 signal blank : std_logic;
 signal hsync : std_logic;
 signal vsync : std_logic;
 signal vga_ram_read_address : std_logic_vector(19 downto 0);
 signal vreq : std_logic;
 signal vreq_1 : std_logic;
 signal load_video_word : std_logic;
 signal vga_shreg : std_logic_vector(15 downto 0);

begin

 st : vga_timing port map (
 pixel_clock => pix_clk,
 reset => rst,
 h_sync_delay => hsync,
 v_sync_delay => vsync,
 blank => blank,
 vga_ram_read_address => vga_ram_read_address);

 -- Video request is true when the RAM address is even

 -- FIXME: This should be disabled during blanking to reduce memory traffic

 vreq <= not vga_ram_read_address(0);

 -- Generate load_video_word by delaying vreq two cycles

 process (pix_clk)
 begin
 if pix_clk'event and pix_clk='1' then
 vreq_1 <= vreq;
 load_video_word <= vreq_1;
 end if;
 end process;

 -- Generate video_req (to the RAM controller) by delaying vreq by
 -- a cycle synchronized with the pixel clock

 process (clk)
 begin
 if clk'event and clk='1' then
 video_req <= pix_clk and vreq;

 end if;
 end process;

 -- The video address is the upper 19 bits from the VGA timing generator
 -- because we are using two pixels per word and the RAM address counts words

 video_addr <= '0' & vga_ram_read_address(19 downto 1);

 -- The video shift register: either load it from RAM or shift it up a byte

 process (pix_clk)
 begin
 if pix_clk'event and pix_clk='1' then
 if load_video_word = '1' then
 vga_shreg <= video_data;
 else
 -- Shift the low byte of read video data into the high byte
 vga_shreg <= vga_shreg(7 downto 0) & "00000000";
 end if;
 end if;
 end process;

 -- Copy the upper byte of the video word to the color signals
 -- Note that we use three bits for red and green and two for blue.

 r(9 downto 2) <= vga_shreg (15 downto 8);
 r(1 downto 0) <= "00";
 g(9 downto 2) <= vga_shreg (15 downto 8);
 g(1 downto 0) <= "00";
 b(9 downto 2) <= vga_shreg (15 downto 8);
 b(1 downto 0) <= "00";

 -- Video clock I/O pad to the DAC

 vidclk : OBUF_F_12 port map (
 O => VIDOUT_clk,
 I => pix_clk);

 -- Control signals: hsync, vsync, and blank

 hsync_ff : FD port map (
 C => pix_clk,
 D => not hsync,
 Q => VIDOUT_HSYNC_N);

 vsync_ff : FD port map (
 C => pix_clk,
 D => not vsync,
 Q => VIDOUT_VSYNC_N);

 blank_ff : FD port map (
 C => pix_clk,
 D => not blank,
 Q => VIDOUT_BLANK_N);

 -- Three digital color signals

 rgb_ff : for i in 0 to 9 generate

 r_ff : FD port map (
 C => pix_clk,
 D => r(i),
 Q => VIDOUT_RCR(i));

 g_ff : FD port map (
 C => pix_clk,
 D => g(i),
 Q => VIDOUT_GY(i));

 b_ff : FD port map (
 C => pix_clk,
 D => b(i),
 Q => VIDOUT_BCB(i));

 end generate;

end Behavioral;

