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1. Introduction 
 
The original goal of our project was to design an MP3 player. However, we have revised 
this goal towards implement an ADPCM player owing to time constraints and numerous 
problems faced with respect to implementation.  In addition, we also endeavor to 
implement a PCM player for 8 and 16 bit audio formats. 

 
What is Pulse Code Modulation? Pulse-Code Modulation 

A common method of representing continuous analog values in digital form is pulse-code 
modulation, or PCM. In PCM, distinct binary representations (pulse codes) are chosen for 
a finite number of points along the continuum of possible states. When-ever the value is 
being measured and it falls between two encoded points, the code for the closer point is 
used. 
 
This process is called quantization: the dividing of the range of values of a wave into sub 
ranges, each of which is represented by an assigned value. A series of these pulse codes 
can be transmitted in a pulse train, resulting in a pulse-code modulated signal. 
Because the samples of digitized speech referred to above are stored in the form of digital 
pulses, the stored  waveform can be thought of as an example of pulse-code modulation. 

What is Adaptive Differential Pulse Code Modulation? 

ADPCM is an audio coding technique that is widely used throughout the 
telecommunications industry. It works by calculating the difference between two 
consecutive samples in standard pulse code modulation (PCM) and codes the error of the 
‘predicted’ next sample increment (from the previous sample increment) to the true 
sample increment. 
It is a lossy compression technique that achieves a compression ratio of 4:1. However, it 
is popular since is returns a high quality signal with very little processing power required 
for fast decoding. 
There are primarily 2 different industry formats for ADPCM: 

1. IMA/DVI ADPCM 
2. Microsoft ADPCM 

Our implementation is centered on the IMA format. 
 
 
 
 
 
 
 
 



2. ADPCM Decoding 
2.1 Algorithm 
The diagram shows the steps involved in ADPCM decoding. 

 

Step Size 
calculation 

 
ADPCM decoding is comprised of the following steps: 
 
 
Step-Size calculation: 
The step-size is basically a coding scale for the ADPCM. It varies dynamically to 
accommodate the differences between small and large samples. The step size initially 
starts off at a preconfigured value. This value is then readjusted/predicted for the next 
sample, depending on the sample received. This process is called step-size adjustment. 
 
 
Decoding: 
The decoding for each 4 bits then happens by using the current sample and the step-size. 
The difference of the decoded output and the previous sample is then taken. This 
difference yields a 16-bit linear PCM sample. 
 

2.2 Implementation 
The following flow chart defines our implementation. We maintain 3 arrays to store 
stepsize values, nibbletobit values and sign value. We also have an array to store the 
value of the last 128 samples. 
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2.3 Calculation of Step Size 
 
For both the encoding and decoding process, the ADPCM algorithm adjusts the quantizer 
stepsize based on the most recent ADPCM value. The step size for the next sample, n+l, 
is calculated with the following equation: 
ss(n+1) = ss(n) * 1.1M(L(n)) 
 
This equation can be implemented efficiently as a two-stage lookup table. First the 
magnitude of the ADPCM code is used as an index to look up an adjustment factor as 
shown in Table 1. Then that adjustment factor is used to move an index pointer in Table 
2. The index pointer then points to the new step size. Values greater than 3 will increase 
the step size. Values less than 4 decrease the step size. 

 



Table 1. `M(L(n)) Values 
 
L(n)  Value M(L(n)) 
1111  0111 +8 
1110  0110 +6 
1101  0101 +4 
1100  0100 +2 
1011  0011 -1 
1010  0010 -1 
1001  0001 -1 
1000  0000 -1 
 

 
 

Table 2. Calculated Step Sizes 
 
No. StepSize No. StepSize  No. StepSize No. StepSize 
1  16  13  50  25  157  37  494 
2  17  14  55  26  173  38  544 
3  19  15  60  27  190  39  598 
4  21  16  66  28  209  40  658 
5  23  17  73  29  230  41  724 
6  25  18  80  30  253  42  796 
7  28  19  88  31  279  43  876 
8  31  20  97  32  307  44  963 
9  34  21  107  33  337  45  1060 
10  37  22  118  34  371  46  1166 
11  41  23  130  35  408  47  1282 
12  45  24  143  36  449  48  1411 
49  1552 

 
This method of adapting the scale factor with changes in the waveform is optimized for 
voice signals, not square waves or other non-sinusoidal waveforms. 
 
 
3. Design Alternatives 
 
ADPCM implementation can be done in 
 

• Software (in a programming language) like C or 
• In hardware (in a hardware-description language) like VHDL. 
 

We explored both alternatives, finally settling on the software approach. This was due to 
the following reasons: 
 

1. The computations involved in the decoding were not of a time-consuming nature. 
So implementing in hardware would have given no substantial benefit. 
 
MicroBlaze runs at a clock frequency of 50 MHz, and our input ADPCM file is of 
12 kHz. So we have 50M/12k = 4000 cycles for processing each sample. This 
gives us ample time to implement the algorithm in software. 
 

2. There are no floating-point computations in the procedure. 
 



MicroBlaze cannot do floating point computations. If there were floating point 
computations in the process, we would have had no choice but to do it in VHDL. 
 

3. The procedure involves few simple multiplication operations (step-size x 1-bit) 
and these can be optimized in software into simple conditional statements with 
additions. 
 
Timing is the most crucial thing in high speed I/O. Code optimization reduced the 
time taken to process the samples, thus obeying the time constraints. 

 
 

4.  Final Design 
 
Our design essentially composes of 3 modules, namely the UART module, the Audio 
Codec module and the Decoding module. 
 
The diagram below shows interaction among the various modules. 
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4.1 Platform and Peripherals 
 

1. Xilinx SpartanIIE FPGA on the XSB Board( XC2S300E-SPQ208C) 
2. Serial Port 
3. Stereo Codec(AK4565) 
4. 4Mbit SRAM( TC55V16256FT-15) 

 
 
Below is the description of  peripherals we used on the XSB Board 
 
 
4.1.1 Universal Asynchronous Receiver Transmitter 
 
This module is used to load PCM/ADPCM data from a workstation over the serial port. 
We extended the uart module which was part of lab 3.  Audio data to be decoded was 
stored in a uart application buffer and fed to the decoding module. However, PCM data 
was streamed to the audio codec, without much processing, except for converting it from 
mono to stereo. 
One feature of our UART module was that we had designed it for flow control. This 
feature enabled us to communicate with the test232 program on the workstation to 
alternately start and stop flow of audio data as and when the uart application buffer was 
tending towards empty or full. 
 
The FPGA handles the interface to the serial port. The four active lines of the serial port 
connect to the FPGA as follows. 
 

 
 
 
4.1.2 UART Configuration 
 
We configured the UART to operate at a speed of 115200 bauds. This was just enough to 
play an 8 bit 12 Khz PCM WAV correctly. But the output for a 16 bit wav is strained.  To 
play a 16 bit  12 Khz PCM WAV, we would have had to increase the UART speed 
further. Our handlers would have to be extremely fast then, and we would have lost data 
then. So, we settled on 115200 bauds. 
 



This speed is enough for 12 Khz ADPCM files though. Because after 1:4 decompression, 
we can manage to get the PCM samples at the correct frequency. 
 
4.1.3 SRAM 
We used the SRAM to create buffers for the input and output buffers. We have a 4kbyte 
UART buffer and 4kbyte audio buffer. We used the video memory section of the SRAM 
to make these buffers. This was helpful in debugging, because we could see how 
full/empty the buffers are at any time. 
 
Our FPGA has access to a 256K x 16 SRAM (TC55V16256FT-15) for local storage of 
data. 
 
SRAM pins: 
 
 
 

 
 
 
The SRAM was already configured for us. “Mylinkscript”  defines which parts of 
software go in the SRAM. By following that, we were able to place out buffers in the 
SRAM. 
 
 
4.1.4 Audio Codec 
 
The FPGA streams the decoded bit stream serial (through the SDTI pin) to the 
audio codec through the BRAM buffer. The buffer can store 4 kilobits of data. 
Each sample is of 32 bits. So at a time, we can store upto 128 samples on it. If our 
sampling frequency is 44.1 Khz, 128 samples would require 2.6 ms. The audio 
controller would generate an interrupt after every 1.3 ms, indicating that the 
buffer is half full. From the buffer, the serial bit streams are synchronized with a 
clock from the FPGA that enters the codec on the BLCK signal. The master clock 
from the FPGA (MCLK) synchronizes all the internal operations of the codec. 
The FPGA uses the LRCK (Left Right Clock) to select the left or the right 
channel as the destination of the serial data. 
 
Pin Configuration for Audio Codec: 
 
 



 

 
. 
 
 
 
4.1.5 Signal Definitions for CODEC 
 
LRCK – left/right clock; when high data is for left channel, low for right channel 
BCLK – bit clock; used to synchronize serial communications with chip 
SDTO0 – serial output from chip to FPGA (encoding of analog in) 
SDTI(i) – serial input from FPGA to chip (for analog out) 
 
 

 
 
 
 
4.2 Execution 
 
We modified the test232 script and added a communication protocol to it. Whenever it 
received a ‘1’ on its receiver buffer from the serial port, it stops transmitting any more 



characters. It restarts transmission only when it receives a ‘0’. This was done to prevent 
buffer overflow conditions. In this way, we would not lose out on any data because of the 
speed mismatch of the serial port and the decoding loop. 
 
 
One the UART receives a character, it interrupts the main loop and the character is stored 
in the uart buffer. In the main loop, the first 44 bytes are read first to determine the file 
information. Based on this, decoding is done. In case of 8-bit mono PCM, one byte is 
read in and a 32 bit sample is made from it by first shifting it left by 8 bits and then 
doubling it to make it stereo. In case  of 16-bit PCM, the same thing is done, but at a time 
2 bytes are read in, and copied for left and right channels. Note: the codec is stereo, that’s 
why we send data for both right and left channels 
 
In case of an ADPCM file, the decoding function is called for a fixed number of bytes at 
a time. The decoded output is written to a temporary buffer. 
 
Once a 32 bit sample is created in all these cases, it is written to the audio buffer. The 
audio interrupt controller reads in 64 samples at a time and writes them to the BRAM 
DAC, from where data is serially given to the codec. All this is controlled by the audio 
controller, a VHDL component. The audio controller is responsible for generating the 
clock signals for the codec, and for generating the interrupt for the microblaze processor. 
 
 
The following diagrams explain the control flow and data flow during execution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4.3 Data Exchange Flow 
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5. Project Material 
Here is the list of files we created/modified. The path is relative to the main directory. 
 
1. c_source_files/main.c 
2. c_source_files/isr.c 
3. c_source_files/main.h 
4. c_source_files/fonts.h 
5. c_source_files/decode.c 
6. test232.c 
7. myip/opb_xsb300_ak4565_v1_00_a/data/opb_xsb300_ak4565_v2_0_0.mpd 
8. myip/opb_xsb300_ak4565_v1_00_a/data/opb_xsb300_ak4565_v2_0_0.pao 
9. myip/opb_xsb300_ak4565_v1_00_a/hdl/vhdl/audio_ak4565.vhd 
10. myip/opb_xsb300_ak4565_v1_00_a/hdl/vhdl/opb_xsb300_ak4565.vhd 
11. system.mhs 
12. system.mss 
  
 6. Conclusion & Contributions 
 
This project has been a learning experience for us. It exposed us to challenges like 
making the right choice for implementation, how to decide between hardware and 
software based on critical timing analysis. We decided to do the decoding in software 
because the computational complexity of ADPCM decoding is not very high, and we 
made it even simpler by using simple operations like adding, shifting etc. But we realized 
that working in software gives you little control over the timing of the signals. We spent a 
lot of time in getting the right buffer sizes, synchronizing and optimizing execution, to 
meet the timing constraints. 
 
Broadly speaking, the contribution of the team members can be classified into: 
Devyani Gupta – VHDL modules (interfacing the application to the UART and audio 
codec modules, ROM modules for step size, shift tables), ADPCM Decoding. 
Prakash Gowri Shankor – Application buffering modules, Audio Header processing 
module. 
Vijayarka Nandikonda – ADPCM decoding, Debugging, tweaking serial port test code. 
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