
R

MicroBlaze
Processor
Reference Guide
Embedded
Development Kit

EDK (v3.2) April 1, 2003

MicroBlaze Processor Reference Guide www.xilinx.com EDK (v3.2) April 1, 2003
1-800-255-7778

http://www.xilinx.com

EDK (v3.2) April 1, 2003 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778

"Xilinx" and the Xilinx logo shown above are registered trademarks of Xilinx, Inc. Any rights not expressly granted herein are reserved.

CoolRunner, RocketChips, Rocket IP, Spartan, StateBENCH, StateCAD, Virtex, XACT, XC2064, XC3090, XC4005, and XC5210 are
registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

ACE Controller, ACE Flash, A.K.A. Speed, Alliance Series, AllianceCORE, Bencher, ChipScope, Configurable Logic Cell, CORE
Generator, CoreLINX, Dual Block, EZTag, Fast CLK, Fast CONNECT, Fast FLASH, FastMap, Fast Zero Power, Foundation, Gigabit
Speeds...and Beyond!, HardWire, HDL Bencher, IRL, J Drive, JBits, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroBlaze,
MicroVia, MultiLINX, NanoBlaze, PicoBlaze, PLUSASM, PowerGuide, PowerMaze, QPro, Real-PCI, Rocket I/O, SelectI/O, SelectRAM,
SelectRAM+, Silicon Xpresso, Smartguide, Smart-IP, SmartSearch, SMARTswitch, System ACE, Testbench In A Minute, TrueMap, UIM,
VectorMaze, VersaBlock, VersaRing, Virtex-II Pro, Virtex-II EasyPath, Wave Table, WebFITTER, WebPACK, WebPOWERED, XABEL,
XACT-Floorplanner, XACT-Performance, XACTstep Advanced, XACTstep Foundry, XAM, XAPP, X-BLOX +, XC designated products,
XChecker, XDM, XEPLD, Xilinx Foundation Series, Xilinx XDTV, Xinfo, XSI, XtremeDSP and ZERO+ are trademarks of Xilinx, Inc.

The Programmable Logic Company is a service mark of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown herein; nor does it convey
any license under its patents, copyrights, or maskwork rights or any rights of others. Xilinx, Inc. reserves the right to make changes, at any
time, in order to improve reliability, function or design and to supply the best product possible. Xilinx, Inc. will not assume responsibility for
the use of any circuitry described herein other than circuitry entirely embodied in its products. Xilinx provides any design, code, or
information shown or described herein "as is." By providing the design, code, or information as one possible implementation of a feature,
application, or standard, Xilinx makes no representation that such implementation is free from any claims of infringement. You are
responsible for obtaining any rights you may require for your implementation. Xilinx expressly disclaims any warranty whatsoever with
respect to the adequacy of any such implementation, including but not limited to any warranties or representations that the implementation
is free from claims of infringement, as well as any implied warranties of merchantability or fitness for a particular purpose. Xilinx, Inc. devices
and products are protected under U.S. Patents. Other U.S. and foreign patents pending. Xilinx, Inc. does not represent that devices shown
or products described herein are free from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to
correct any errors contained herein or to advise any user of this text of any correction if such be made. Xilinx, Inc. will not assume any
liability for the accuracy or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in such applications without
the written consent of the appropriate Xilinx officer is prohibited.

The contents of this manual are owned and copyrighted by Xilinx. Copyright 1994-2002 Xilinx, Inc. All Rights Reserved. Except as stated
herein, none of the material may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form
or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent
of Xilinx. Any unauthorized use of any material contained in this manual may violate copyright laws, trademark laws, the laws of privacy and
publicity, and communications regulations and statutes.

R

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com EDK (v3.2) April 1, 2003
1-800-255-7778

MicroBlaze Processor Reference Guide
EDK (v3.2) April 1, 2003

The following table shows the revision history for this document.

Version Revision

08/07/00 1.0 Xilinx EDK (Embedded Processor Development Kit) release.

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 5
EDK (v3.2) April 1, 2003 1-800-255-7778

Preface: About This Guide
Manual Contents . 7
Additional Resources . 7
Conventions . 8

Typographical . 8
Online Document . 9

Chapter 1: MicroBlaze Architecture
Summary . 11
Overview . 11

Features . 11
Instructions . 12
Registers . 16

General Purpose Registers . 16
Special Purpose Registers . 17

Pipeline . 19
Pipeline Architecture . 19
Branches. 20

Load/Store Architecture . 20
Interrupts, Exceptions and Breaks . 21

Interrupts . 21
Exceptions . 22
Breaks . 22

Instruction Cache . 23
Overview . 23
Cache Organization . 23
Cache Operation . 24
Software . 24
LMB Memory . 25

Data Cache . 25
Overview . 25
Cache Organization . 26
Cache Operation . 26
Software . 27
LMB Memory . 28

Fast Simplex Link Interface . 28
FSL Read Instructions . 28
FSL Write Instructions . 29

Debug Interface . 30
Debugging Features . 30

Chapter 2: MicroBlaze Bus Interfaces
Summary . 31

Table of Contents

http://www.xilinx.com

6 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

R

Overview . 31
Features . 31

Bus Configurations . 31
Typical Peripheral Placement. 33

Bit and Byte Labeling . 41
Core I/O . 41
Bus Organization . 43

OPB Bus Configuration . 43
LMB Bus Definition . 47
LMB Bus Operations . 48
Read and Write Data Steering . 51
FSL Bus Operation . 52

Debug Interface . 53
Implementation . 54

Parameterization . 54

Chapter 3: MicroBlaze Endianness
Definitions . 57
Bit Naming Conventions . 57
Data Types and Endianness . 57
VHDL Example . 59

BRAM – LMB Example . 59
BRAM – OPB Example . 61

Chapter 4: MicroBlaze Application Binary Interface
Scope . 65
Data Types . 65
Register Usage Conventions . 65
Stack Convention . 67

Calling Convention . 68
Memory Model . 68

Small data area . 68
Data area . 69
Common un-initialized area. 69
Literals or constants . 69

Interrupt and Exception Handling . 69

Chapter 5: MicroBlaze Instruction Set Architecture
Summary . 71
Notation . 71
Formats . 72
Instructions . 72

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 7
EDK (v3.2) April 1, 2003 1-800-255-7778

R

Preface

About This Guide

Welcome to the MicroBlaze Processor Reference Guide. This document provides
information about the 32-bit soft processor, MicroBlaze, included in the Embedded
Processor Development Kit (EDK). The document is meant as a guide to the MicroBlaze
hardware and software architecture.

Manual Contents
This manual discusses the following topics specific to MicroBlaze soft processor:

• Core Architecture

• Bus Interfaces and Endieness

• Application Binary Interface

• Instruction Set Architecture

Additional Resources
For additional information, go to http://support.xilinx.com. The following table lists
some of the resources you can access from this website. You can also directly access these
resources using the provided URLs.

Resource Description/URL

Tutorials Tutorials covering Xilinx design flows, from design entry to
verification and debugging

http://support.xilinx.com/support/techsup/tutorials/index.htm

Answer Browser Database of Xilinx solution records

http://support.xilinx.com/xlnx/xil_ans_browser.jsp

Application Notes Descriptions of device-specific design techniques and approaches

http://support.xilinx.com/apps/appsweb.htm

Data Book Pages from The Programmable Logic Data Book, which contains
device-specific information on Xilinx device characteristics,
including readback, boundary scan, configuration, length count,
and debugging

http://support.xilinx.com/partinfo/databook.htm

Problem Solvers Interactive tools that allow you to troubleshoot your design issues

http://support.xilinx.com/support/troubleshoot/psolvers.htm

http://www.xilinx.com
http://support.xilinx.com
http://support.xilinx.com/support/techsup/tutorials/index.htm
http://www.support.xilinx.com/xlnx/xil_ans_browser.jsp
http://support.xilinx.com/apps/appsweb.htm
http://support.xilinx.com/partinfo/databook.htm
http://www.support.xilinx.com/support/troubleshoot/psolvers.htm

8 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Preface: About This Guide
R

Conventions
This document uses the following conventions. An example illustrates each convention.

Typographical
The following typographical conventions are used in this document:

Tech Tips Latest news, design tips, and patch information for the Xilinx
design environment

http://www.support.xilinx.com/xlnx/xil_tt_home.jsp

GNU Manuals The entire set of GNU manuals

http://www.gnu.org/manual

Resource Description/URL

Convention Meaning or Use Example

Courier font
Messages, prompts, and
program files that the system
displays

speed grade: - 100

Courier bold
Literal commands that you
enter in a syntactical statement ngdbuild design_name

Helvetica bold

Commands that you select
from a menu File → Open

Keyboard shortcuts Ctrl+C

Italic font

Variables in a syntax
statement for which you must
supply values

ngdbuild design_name

References to other manuals
See the Development System
Reference Guide for more
information.

Emphasis in text
If a wire is drawn so that it
overlaps the pin of a symbol,
the two nets are not connected.

Square brackets []

An optional entry or
parameter. However, in bus
specifications, such as
bus[7:0], they are required.

ngdbuild [option_name]
design_name

Braces { } A list of items from which you
must choose one or more lowpwr ={on|off}

Vertical bar | Separates items in a list of
choices lowpwr ={on|off}

http://www.xilinx.com
http://www.support.xilinx.com/xlnx/xil_tt_home.jsp
http://www.gnu.org/manual

MicroBlaze Processor Reference Guide www.xilinx.com 9
EDK (v3.2) April 1, 2003 1-800-255-7778

Conventions
R

Online Document
The following conventions are used in this document:

Vertical ellipsis
.
.
.

Repetitive material that has
been omitted

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

Horizontal ellipsis . . .
Repetitive material that has
been omitted

allow block block_name
loc1 loc2 ... locn;

Convention Meaning or Use Example

Convention Meaning or Use Example

Blue text

Cross-reference link to a
location in the current file or
in another file in the current
document

See the section “Additional
Resources” for details.

Refer to “Title Formats” in
Chapter 1 for details.

Red text Cross-reference link to a
location in another document

See Figure 2-5 in the Virtex-II
Handbook.

Blue, underlined text Hyperlink to a website (URL) Go to http://www.xilinx.com
for the latest speed files.

http://www.xilinx.com

10 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Preface: About This Guide
R

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 11
EDK (v3.2) April 1, 2003 1-800-255-7778

Chapter 1

MicroBlaze Architecture

Summary
This document describes the architecture for the MicroBlaze™ 32-bit soft processor core.

Overview
The MicroBlaze embedded soft core is a reduced instruction set computer (RISC)
optimized for implementation in Xilinx field programmable gate arrays (FPGAs). See
Figure 1-1 for a block diagram depicting the MicroBlaze core.

Features
The MicroBlaze embedded soft core includes the following features:

• Thirty-two 32-bit general purpose registers

• 32-bit instruction word with three operands and two addressing modes

• Separate 32-bit instruction and data buses that conform to IBM’s OPB (On-chip
Peripheral Bus) specification

• Separate 32-bit instruction and data buses with direct connection to on-chip block
RAM through a LMB (Local Memory Bus)

• 32-bit address bus

• Single issue pipeline

• Instruction and data cache

• Hardware debug logic

• FSL (Fast Simplex Link) support

• Hardware multiplier (in Virtex-II and subsequent devices

http://www.xilinx.com

12 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 1: MicroBlaze Architecture

)

Instructions
All MicroBlaze instructions are 32 bits and are defined as either Type A or Type B. Type A
instructions have up to two source register operands and one destination register operand.
Type B instructions have one source register and a 16-bit immediate operand (which can be
extended to 32 bits by preceding the Type B instruction with an IMM instruction). Type B
instructions have a single destination register operand. Instructions are provided in the
following functional categories: arithmetic, logical, branch, load/store, and special.
Table 1-2 lists the MicroBlaze instruction set. Refer to the MicroBlaze Instruction Set
Architecture document for more information on these instructions. Table 1-1 describes the
instruction set nomenclature used in the semantics of each instruction.

Figure 1-1: MicroBlaze Core Block Diagram

Data-sideInstruction-side

DLMB

DOPB

ILMB

IOPB

bus interface bus interface

Instruction
Buffer

Program
Counter

Register File
32 X 32b

Add/Sub

Shift/Logical

Multiply

Instruction
Decode

Bus
IF

Bus
IF

MFSL0..7

SFSL0..7

Table 1-1: Instruction Set Nomenclature

Symbol Description

Ra R0 - R31, General Purpose Register, source operand a

Rb R0 - R31, General Purpose Register, source operand b

Rd R0 - R31, General Purpose Register, destination operand,

C Carry flag, MSR[29]

Sa Special Purpose Register, source operand

Sd Special Purpose Register, destination operand

s(x) Sign extend argument x to 32-bit value

*Addr Memory contents at location Addr (data-size aligned)

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 13
EDK (v3.2) April 1, 2003 1-800-255-7778

Instructions

Table 1-2: MicroBlaze Instruction Set Summary

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31

ADD Rd,Ra,Rb 000000 Rd Ra Rb 00000000000 Rd := Rb + Ra

RSUB Rd,Ra,Rb 000001 Rd Ra Rb 00000000000 Rd := Rb + Ra + 1

ADDC Rd,Ra,Rb 000010 Rd Ra Rb 00000000000 Rd := Rb + Ra + C

RSUBC Rd,Ra,Rb 000011 Rd Ra Rb 00000000000 Rd := Rb + Ra + C

ADDK Rd,Ra,Rb 000100 Rd Ra Rb 00000000000 Rd := Rb + Ra

RSUBK Rd,Ra,Rb 000101 Rd Ra Rb 00000000000 Rd := Rb + Ra + 1

ADDKC Rd,Ra,Rb 000110 Rd Ra Rb 00000000000 Rd := Rb + Ra + C

RSUBKC Rd,Ra,Rb 000111 Rd Ra Rb 00000000000 Rd := Rb + Ra + C

CMP Rd,Ra,Rb 000101 Rd Ra Rb 00000000001 Rd := Rb cmp Ra (signed)

CMPU Rd,Ra,Rb 000101 Rd Ra Rb 00000000011 Rd := Rb cmp Ra (unsigned)

ADDI Rd,Ra,Imm 001000 Rd Ra Imm Rd := s(Imm) + Ra

RSUBI Rd,Ra,Imm 001001 Rd Ra Imm Rd := s(Imm) + Ra + 1

ADDIC Rd,Ra,Imm 001010 Rd Ra Imm Rd := s(Imm) + Ra + C

RSUBIC Rd,Ra,Imm 001011 Rd Ra Imm Rd := s(Imm) + Ra + C

ADDIK Rd,Ra,Imm 001100 Rd Ra Imm Rd := s(Imm) + Ra

RSUBIK Rd,Ra,Imm 001101 Rd Ra Imm Rd := s(Imm) + Ra + 1

ADDIKC Rd,Ra,Imm 001110 Rd Ra Imm Rd := s(Imm) + Ra + C

RSUBIKC Rd,Ra,Imm 001111 Rd Ra Imm Rd := s(Imm) + Ra + C

MUL Rd,Ra,Rb 010000 Rd Ra Rb 00000000000 Rd := Ra * Rb

BSRL Rd,Ra,Rb 010001 Rd Ra Rb 00000000000 Rd : = Ra >> Rb

BSRA Rd,Ra,Rb 010001 Rd Ra Rb 01000000000 Rd := Ra[0], (Ra >> Rb)

BSLL Rd,Ra,Rb 010001 Rd Ra Rb 10000000000 Rd := Ra << Rb

MULI Rd,Ra,Imm 011000 Rd Ra Imm Rd := Ra * s(Imm)

BSRLI Rd,Ra,Imm 011001 Rd Ra 0000 0000.. Imm Rd : = Ra >> Imm

BSRAI Rd,Ra,Imm 011001 Rd Ra 0000 0100.. Imm Rd := Ra[0], (Ra >> Imm)

BSLLI Rd,Ra,Imm 011001 Rd Ra 0000 1000.. Imm Rd := Ra << Imm

IDIV Rd,Ra,Rb 010010 Rd Ra Rb 00000000000 Rd := Rb/Ra, signed

IDIVU Rd,Ra,Rb 010010 Rd Ra Rb 00000000001 Rd := Rb/Ra, unsigned

GET Rd,FSLn 011011 Rd 00000 0000 FSLn Rd := FSLn (blocking data read)

PUT Ra,FSLn 011011 00000 Ra 1000 FSLn FSLn := Ra (blocking data write)

nGET Rd,FSLn 011011 Rd 00000 0100 FSLn Rd := FSLn (non-blocking data read)

nPUT Ra,FSLn 011011 00000 Ra 1100 FSLn FSLn := Ra (non-blocking data write)

http://www.xilinx.com

14 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 1: MicroBlaze Architecture

cGET Rd,FSLn 011011 Rd 00000 0010 FSLn Rd := FSLn (blocking control read)

cPUT Ra,FSLn 011011 00000 Ra 1010 FSLn FSLn := Ra (blocking control write)

ncGET Rd,FSLn 011011 Rd 00000 0110 FSLn Rd := FSLn (non-blocking control read)

ncPUT Ra,FSLn 011011 00000 Ra 1110 FSLn FSLn := Ra (non-blocking control write)

OR Rd,Ra,Rb 100000 Rd Ra Rb 00000000000 Rd := Ra or Rb

AND Rd,Ra,Rb 100001 Rd Ra Rb 00000000000 Rd := Ra and Rb

XOR Rd,Ra,Rb 100010 Rd Ra Rb 00000000000 Rd := Ra xor Rb

ANDN Rd,Ra,Rb 100011 Rd Ra Rb 00000000000 Rd := Ra and Rb

SRA Rd,Ra 100100 Rd Ra 0000000000000001 Rd := Ra[0], (Ra >> 1); C := Ra[31]

SRC Rd,Ra 100100 Rd Ra 0000000000100001 Rd := C, (Ra >> 1); C := Ra[31]

SRL Rd,Ra 100100 Rd Ra 0000000001000001 Rd := 0, (Ra >> 1); C := Ra[31]

SEXT8 Rd,Ra 100100 Rd Ra 0000000001100000 Rd[0:23] := Ra[24];

Rd[24:31] := Ra[24:31]

SEXT16 Rd,Ra 100100 Rd Ra 0000000001100001 Rd[0:15] := Ra[16];

Rd[16:31] := Ra[16:31]

WIC Rd,Ra 100100 Ra Ra Rb 01101000 ICache_Tag := Ra, ICache_Data := Rb

WDC Rd,Ra 100100 Ra Ra Rb 01100100 DCache_Tag := Ra, DCache_Data := Rb

MTS Sd,Ra 100101 00000 Ra 110000000000000d Sd := Ra , where S1 is MSR

MFS Rd,Sa 100101 Rd 00000 100000000000000a Rd := Sa , where S0 is PC and S1 is MSR

BR Rb 100110 00000 00000 Rb 00000000000 PC := PC + Rb

BRD Rb 100110 00000 10000 Rb 00000000000 PC := PC + Rb

BRLD Rd,Rb 100110 Rd 10100 Rb 00000000000 PC := PC + Rb; Rd := PC

BRA Rb 100110 00000 01000 Rb 00000000000 PC := Rb

BRAD Rb 100110 00000 11000 Rb 00000000000 PC := Rb

BRALD Rd,Rb 100110 Rd 11100 Rb 00000000000 PC := Rb; Rd := PC

BRK Rd,Rb 100110 Rd 01100 Rb 00000000000 PC := Rb; Rd := PC; MSR[BIP] := 1

BEQ Ra,Rb 100111 00000 Ra Rb 00000000000 if Ra = 0: PC := PC + Rb

BNE Ra,Rb 100111 00001 Ra Rb 00000000000 if Ra /= 0: PC := PC + Rb

BLT Ra,Rb 100111 00010 Ra Rb 00000000000 if Ra < 0: PC := PC + Rb

BLE Ra,Rb 100111 00011 Ra Rb 00000000000 if Ra <= 0: PC := PC + Rb

BGT Ra,Rb 100111 00100 Ra Rb 00000000000 if Ra > 0: PC := PC + Rb

BGE Ra,Rb 100111 00101 Ra Rb 00000000000 if Ra >= 0: PC := PC + Rb

BEQD Ra,Rb 100111 10000 Ra Rb 00000000000 if Ra = 0: PC := PC + Rb

Table 1-2: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 15
EDK (v3.2) April 1, 2003 1-800-255-7778

Instructions

BNED Ra,Rb 100111 10001 Ra Rb 00000000000 if Ra /= 0: PC := PC + Rb

BLTD Ra,Rb 100111 10010 Ra Rb 00000000000 if Ra < 0: PC := PC + Rb

BLED Ra,Rb 100111 10011 Ra Rb 00000000000 if Ra <= 0: PC := PC + Rb

BGTD Ra,Rb 100111 10100 Ra Rb 00000000000 if Ra > 0: PC := PC + Rb

BGED Ra,Rb 100111 10101 Ra Rb 00000000000 if Ra >= 0: PC := PC + Rb

ORI Rd,Ra,Imm 101000 Rd Ra Imm Rd := Ra or s(Imm)

ANDI Rd,Ra,Imm 101001 Rd Ra Imm Rd := Ra and s(Imm)

XORI Rd,Ra,Imm 101010 Rd Ra Imm Rd := Ra xor s(Imm)

ANDNI Rd,Ra,Imm 101011 Rd Ra Imm Rd := Ra and s(Imm)

IMM Imm 101100 00000 00000 Imm Imm[0:15] := Imm

RTSD Ra,Imm 101101 10000 Ra Imm PC := Ra + s(Imm)

RTID Ra,Imm 101101 10001 Ra Imm PC := Ra + s(Imm); MSR[IE] := 1

RTBD Ra,Imm 101101 10010 Ra Imm PC := Ra + s(Imm); MSR[BIP] := 0

BRID Imm 101110 00000 10000 Imm PC := PC + s(Imm)

BRLID Rd,Imm 101110 Rd 10100 Imm PC := PC + s(Imm); Rd := PC

BRAI Imm 101110 00000 01000 Imm PC := s(Imm)

BRAID Imm 101110 00000 11000 Imm PC := s(Imm)

BRALID Rd,Imm 101110 Rd 11100 Imm PC := s(Imm); Rd := PC

BRKI Rd,Imm 101110 Rd 01100 Imm PC := s(Imm); Rd := PC; MSR[BIP] := 1

BEQI Ra,Imm 101111 00000 Ra Imm if Ra = 0: PC := PC + s(Imm)

BNEI Ra,Imm 101111 00001 Ra Imm if Ra /= 0: PC := PC + s(Imm)

BLTI Ra,Imm 101111 00010 Ra Imm if Ra < 0: PC := PC + s(Imm)

BLEI Ra,Imm 101111 00011 Ra Imm if Ra <= 0: PC := PC + s(Imm)

BGTI Ra,Imm 101111 00100 Ra Imm if Ra > 0: PC := PC + s(Imm)

BGEI Ra,Imm 101111 00101 Ra Imm if Ra >= 0: PC := PC + s(Imm)

BEQID Ra,Imm 101111 10000 Ra Imm if Ra = 0: PC := PC + s(Imm)

BNEID Ra,Imm 101111 10001 Ra Imm if Ra /= 0: PC := PC + s(Imm)

BLTID Ra,Imm 101111 10010 Ra Imm if Ra < 0: PC := PC + s(Imm)

BLEID Ra,Imm 101111 10011 Ra Imm if Ra <= 0: PC := PC + s(Imm)

BGTID Ra,Imm 101111 10100 Ra Imm if Ra > 0: PC := PC + s(Imm)

BGEID Ra,Imm 101111 10101 Ra Imm if Ra >= 0: PC := PC + s(Imm)

LBU Rd,Ra,Rb 110000 Rd Ra Rb 00000000000 Addr := Ra + Rb;

Rd[0:23] := 0, Rd[24:31] := *Addr

Table 1-2: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31

http://www.xilinx.com

16 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 1: MicroBlaze Architecture

Registers
MicroBlaze is a fully orthogonal architecture. It has thirty-two 32-bit general purpose
registers and two 32-bit special purpose registers.

General Purpose Registers
The thirty-two 32-bit General Purpose Registers are numbered R0 through R31. R0 is
defined to always have the value of zero. Anything written to R0 is discarded, and zero is
always read.

LHU Rd,Ra,Rb 110001 Rd Ra Rb 00000000000 Addr := Ra + Rb;

Rd[0:15] := 0, Rd[16:31] := *Addr

LW Rd,Ra,Rb 110010 Rd Ra Rb 00000000000 Addr := Ra + Rb;

Rd := *Addr

SB Rd,Ra,Rb 110100 Rd Ra Rb 00000000000 Addr := Ra + Rb;

*Addr := Rd[24:31]

SH Rd,Ra,Rb 110101 Rd Ra Rb 00000000000 Addr := Ra + Rb;

*Addr := Rd[16:31]

SW Rd,Ra,Rb 110110 Rd Ra Rb 00000000000 Addr := Ra + Rb;

*Addr := Rd

LBUI Rd,Ra,Imm 111000 Rd Ra Imm Addr := Ra + s(Imm);

Rd[0:23] := 0, Rd[24:31] := *Addr

LHUI Rd,Ra,Imm 111001 Rd Ra Imm Addr := Ra + s(Imm);

Rd[0:15] := 0, Rd[16:31] := *Addr

LWI Rd,Ra,Imm 111010 Rd Ra Imm Addr := Ra + s(Imm);

Rd := *Addr

SBI Rd,Ra,Imm 111100 Rd Ra Imm Addr := Ra + s(Imm);

*Addr := Rd[24:31]

SHI Rd,Ra,Imm 111101 Rd Ra Imm Addr := Ra + s(Imm);

*Addr := Rd[16:31]

SWI Rd,Ra,Imm 111110 Rd Ra Imm Addr := Ra + s(Imm);

*Addr := Rd

Table 1-2: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 17
EDK (v3.2) April 1, 2003 1-800-255-7778

Registers

Special Purpose Registers

Program Counter (PC)

The Program Counter is the 32-bit address of the next instruction word to be fetched. It can
be read by accessing RPC with an MFS instruction. It cannot be written to using an MTS
instruction.

Machine Status Register (MSR)

The Machine Status Register contains the carry flag and enables for interrupts, buslock,
cache and FSL error. It can be read by accessing RMSR with an MFS instruction. When
reading the MSR, bit 29 is replicated in bit 0 as the carry copy. MSR can be written to with
an MTS instruction. Writes to MSR are delayed one clock cycle. When writing to MSR

0 31

↑
R0-R31

Figure 1-2: R0-R31

Table 1-3: General Purpose Registers (R0-R31)

Bits Name Description Reset Value

0:31 R0 through
R31

General Purpose Register

R0 through R31 are 32-bit general
purpose registers. R0 is always zero.

0x00000000

0 31

↑
PC

Figure 1-3: PC

Table 1-4: Program Counter (PC)

Bits Name Description Reset Value

0:31 PC Program Counter

Address of next instruction to fetch

0x00000000

http://www.xilinx.com

18 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 1: MicroBlaze Architecture

using MTS, the value written takes effect one clock cycle after executing the MTS
instruction. Any value written to bit 0 is discarded

0 1 24 25 26 27 28 29 30 31

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
CC R E S E R V E D DCEICEICEFSLBIP C IE BE

Figure 1-4: MSR

Table 1-5: Machine Status Register (MSR)

Bits Name Description Reset Value

0 CC Arithmetic Carry Copy

Copy of the Arithmetic Carry (bit 29).
Read only.

0

1:25 Reserved

24 DCE Data Cache Enable

0 Data Cache is Disabled

1 Data Cache is Enabled

0

25 DBZ Dvision by Zero

0 No divison by zero has occured

1 Division by zero has occured

0

26 ICE Instruction Cache Enable

0 Instruction Cache is Disabled

1 Instruction Cache is Enabled

0

27 FSL FSL Error

0 FSL get/put had no error

1 FSL get/put had mismatch in
instruction type and value type

0

28 BIP Break in Progress

0 No Break in Progress
1 Break in Progress

Source of break can be software break
instruction or hardware break from
Ext_Brk or Ext_NM_Brk pin.

0

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 19
EDK (v3.2) April 1, 2003 1-800-255-7778

Pipeline

Pipeline
This section describes the MicroBlaze pipeline architecture.

Pipeline Architecture
The MicroBlaze pipeline is a parallel pipeline, divided into three stages:

• Fetch

• Decode

• Execute

In general, each stage takes one clock cycle to complete. Consequently, it takes three clock
cycles (ignoring any delays or stalls) for the instruction to complete.

In the MicroBlaze parallel pipeline, each stage is active on each clock cycle. Three
instructions can be executed simultaneously, one at each of the three pipeline stages. Even
though it takes three clock cycles for each instruction to complete, each pipeline stage can
work on other instructions in parallel with and in advance of the instruction that is
completing. Within one clock cycle, one new instruction is fetched, another is decoded,
and a third is completed. The pipeline effectively completes one instruction per clock cycle.

29 C Arithmetic Carry

0 No Carry (Borrow)
1 Carry (No Borrow)

0

30 IE Interrupt Enable

0 Interrupts disabled
1 Interrupts enabled

0

31 BE Buslock Enable

0 Buslock disabled on data-side OPB
1 Buslock enabled on data-side OPB

Buslock Enable does not affect
operation of ILMB, DLMB, or IOPB.

0

Table 1-5: Machine Status Register (MSR) (Continued)

Bits Name Description Reset Value

cycle 1 cycle 2 cycle 3

Fetch Decode Execute

cycle 1 cycle 2 cycle 3 cycle4 cycle5

instruction 1 Fetch Decode Execute

instruction 2 Fetch Decode Execute

instruction 3 Fetch Decode Execute

http://www.xilinx.com

20 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 1: MicroBlaze Architecture

Branches
Similar to other processor pipelines, the MicroBlaze pipeline can originate control hazards
that affect the pipeline execution rate. When an instruction that changes the control flow of
a program (branches) is executed and completed, and eventually changes the program
flow (taken branches), the previous pipeline work becomes useless. When the processor
executes a taken branch, the instructions in the fetch and decode stages are not the correct
ones, and must be discarded or flushed from the pipeline. The processor must refill the
pipeline with the correct instructions, taking three clock cycles for a taken branch, adding
a latency of two cycles for refilling the pipeline.

MicroBlaze uses two techniques to reduce the penalty of taken branches. One technique is
to use delay slots and another is use of a history buffer.

Delay Slots

When the processor executes a taken branch and flushes the pipeline, it takes three clock
cycles to refill the pipeline. By allowing the instruction following a branch to complete, this
penalty is reduced. Instead of flushing the instructions in both the fetch and decode stages,
only the fetch stage is discarded and the instruction in the decode stage is allowed to
complete. This effectively produces a delayed branch or delay slot. Since the work done on
the delay slot instruction is not discarded, this technique effectively reduces the branch
penalty from two clock cycles to one. Branch instructions that allow execution of the
subsequent instruction in the delay slot are denoted by a D in the instruction mnemonic.
For example, the BNE instruction does not execute the subsequent instruction in the delay
slot, whereas BNED does execute the next instruction in the delay slot before control is
transferred to the branch location.

Load/Store Architecture
MicroBlaze can access memory in the following three data sizes:

• Byte (8 bits)

• Halfword (16 bits)

• Word (32 bits)

Memory accesses are always data-size aligned. For halfword accesses, the least significant
address bit is forced to 0. Similarly, for word accesses, the two least significant address bits
are forced to 0.

MicroBlaze is a Big-Endian processor and uses the Big-Endian address and labeling
conventions shown in Figure 1-5 when accessing memory. The following abbreviations are
used:

• MSByte: Most Significant Byte

• LSByte: Least Significant Byte

• MSBit: Most Significant Bit

• LSBit: Least Significant Bit

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 21
EDK (v3.2) April 1, 2003 1-800-255-7778

Interrupts, Exceptions and Breaks

Interrupts, Exceptions and Breaks
When a Reset or a Debug_Rst occurs, MicroBlaze starts executing from address 0. PC and
MSR are reset to the default values. When an Ext_Brk occurs, MicroBlaze starts executing
from address 0x18 and stores the return address in register 16. An Ext_Brk is not executed
if the BIP bit in MSR is active (equal to 1). When an Ext_NM_Brk occurs, MicroBlaze starts
executing from address 0x18 and stores the return address in register 16. This occurs
independent of the BIP bit value in MSR.

Interrupts
When an interrupt occurs, MicroBlaze stops the current execution to handle the interrupt
request. MicroBlaze branches to address 0x00000010 and uses the General Purpose
Register 14 to store the address of the instruction that was to be executed when the
interrupt occurred. It also disables future interrupts by clearing the Interrupt Enable flag in
the Machine Status Register (setting bit 30 to 0 in MSR). The instruction located at the
address where the current PC points to is not executed. Interrupts do not occur if the BIP
bit in the MSR register is active (equal to 1).

Figure 1-5: Big-Endian Data Types

n n+1 n+2 n+3

0 1 2 3

MSByte LSByte

0 31

MSBit LSBit

Byte address

Byte label

Byte significance

Bit label

Bit significance

n n+1

0 1

MSByte LSByte

0 15

MSBit LSBit

Byte address

Byte label

Byte significance

Bit label

Bit significance

n

0

MSByte

0 7

MSBit LSBit

Byte address

Byte label

Byte significance

Bit label

Bit significance

Byte

Halfword

Word

http://www.xilinx.com

22 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 1: MicroBlaze Architecture

Equivalent Pseudocode

r14 ← PC
PC ← 0x00000010
MSR[IE] ← 0

Exceptions
When an exception occurs, MicroBlaze stops the current execution to handle the exception.
MicroBlaze branches to address 0x00000008 and uses the General Purpose Register 17 to
store the address of the instruction that was to be executed when the exception occurred.
The instruction located at the address where the current PC points to is not executed.

Equivalent Pseudocode

r17 ← PC
PC ← 0x00000008

Breaks
There are two kinds of breaks:

• Software (internal) breaks

• Hardware (external) breaks

Software Breaks

To perform a software break, use the brk and brki instructions. Refer to the Instruction Set
Architecture documentation for more information on software breaks.

Hardware Breaks

Hardware breaks are performed by asserting the external break signal. When a hardware
break occurs, MicroBlaze stops the current execution to handle the break. MicroBlaze
branches to address 0x00000018 and uses the General Purpose Register 16 to store the
address of the instruction that was to be executed when the break occurred. MicroBlaze
also disables future breaks by setting the Break In Progress (BIP) flag in the Machine Status
Register (setting bit 28 to 1 in MSR). The instruction located at the address where the
current PC points to is not executed.

Hardware breaks are only handled when there is no break in progress (the Break In
Progress flag is set to 0). The Break In Progress flag has higher precedence than the
Interrupt Enabled flag. While no interrupts are handled when the Break In Progress flag is
set, breaks that occur when interrupts are disabled are handled immediately. However, it is
important to note that non-maskable hardware breaks are always handled immediately.

Equivalent Pseudocode1

r16 ← PC
PC ← 0x00000018
MSR[IE] ← 1

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 23
EDK (v3.2) April 1, 2003 1-800-255-7778

Instruction Cache

Instruction Cache

Overview
MicroBlaze may be used with an optional instruction cache for improved performance
when executing code that resides outside the LMB address range.

The instruction cache has the following features

• User selectable cacheable memory area

• Configurable cache size and tag size

• Individual cache line lock capability

• Cache on and off controlled using a new bit in the MSR register

• Instructions to write to the instruction cache

• Does not require special memory controllers. Will work with existing OPB peripherals

• Memory is organized into a cacheable and a non-cacheable segment

• Very little area or frequency impact (< 20 LUTs)

• Can be used in conjunction with Instruction side LMB

Cache Organization
When the instruction cache is used, the memory address space in split into two segments -
a cacheable segment and a non-cacheable segment. The cacheable segment is determined
by two parameters, C_ICACHE_BASEADDR and C_ICACHE_HIGHADDR. All
addresses within this range correspond to the cacheable address space segment. All other
addresses are non-cacheable. .

All cacheable instruction addresses are further split into two segments - a cache line
segment and a tag address segment. The size of the two segments can be configured by the
user. The address bits between bit 1 and the first tag address bit is ignored in the cache. The

Figure 1-6: Cache Organization

Instruction Address Bits
0 30 31

Cache LineTag Address --

Tag

Instruction
 BRAM

BRAM
Addr

Addr

=
Tag

Valid Cache_Hit

Cache_instruction_data

http://www.xilinx.com

24 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 1: MicroBlaze Architecture

size of the cache line can be between 9 to 14 bits. This results in a cache sizes ranging from
4 Kbytes to 64 Kbytes. There is no limit on the tag address size.

Cache Operation
In the instruction fetch stage, MicroBlaze writes the instruction address to the instruction
address bus and waits for a ready signal. In order to reduce wait states, a request is done
simultaneously on the instruction OPB and the instruction LMB. If an acknowledge signal
is received from the LMB in the next cycle, the instruction access from OPB is aborted. For
every instruction fetched, the instruction cache detects if the instruction address belongs to
the cacheable segment. If the address is non-cacheable, the cache ignores the instruction
and allows the LMB or the OPB to fulfill the request. If the address is cacheable, a lookup
is performed on the tag memory to check if the requested instruction is in the cache. The
lookup is successful when both the valid bit is set and the tag address is the same as the tag
address segment of the instruction address.

If the instruction is in the cache, the cache will drive the ready signal (Cache_Hit) for
MicroBlaze and the instruction data for the address. If the instruction is not in the cache,
the cache will not drive the ready signal but will wait until the OPB fulfills the request and
updates the cache with the new information.

Software

MSR Bit

Bit 26 in the MSR indicates whether or not the cache is enabled. The MFS and MTS
instructions are used to read and write to the MSR respectively.

The contents of the cache are preserved by default when the cache is disabled. The user
may overwrite the contents of the cache using the WIC instruction or using the hardware
debug logic of MicroBlaze.

Figure 1-7: Cache Operation

IOPB_Address

IOPB_Data

Cache Line

Tag Address

0,1 (Locked,Valid)

Instruction BRAM

Tag BRAM

Data

Data

Address

Address

WE

WE

IOPB_XferAck

0 1

IOPB_Select

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 25
EDK (v3.2) April 1, 2003 1-800-255-7778

Data Cache

WIC Instruction

The WIC instruction may be used to update the instruction cache from a software
program. The assembly instruction is

WIC Ra,Rb

Where Ra contains cache line, tag address, valid and lock bit, Rb contains the instruction
data.

Ra(31) is the lock bit, Ra(30) is the valid bit (valid when bit is set to ‘1’), the rest of the Ra
contains the instruction address.

This instruction can only be used when the cache is disabled. The lock bit is described in
the Lock Bit section below. The

HW Debug Logic

The HW debug logic may be used to perform a similar operation as the WIC instruction.

Lock Bit

The lock bit can be used to permanently lock a code segment into the cache and therefore
guarantee the instruction execution time. Locking of the cacheline however may result in a
decrease in the number of cache hits. This is because there could be addresses that were not
cached as the cacheline is locked.

The use of instruction LMB in most cases would be a better choice for locking code
segments since the wait states for accessing the LMB is the same as for cache hits.

LMB Memory
Instruction LMB memory can be used even when instruction cache is used. The LMB
address in the case has to be in the non-cacheable memory segment.

Data Cache

Overview
MicroBlaze may be used with an optional data cache for improved performance when
reading data that resides outside the LMB address range.

The data cache has the following features

• Write-through data cache

• User selectable cacheable memory area

• Configurable cache size and tag size

• Individual cache line lock capability

• Cache on and off controlled using a new bit in the MSR register

• Instructions to write to the data cache

• Does not require special memory controllers. Will work with existing OPB peripherals

• Memory is organized into a cacheable and a non-cacheable segments

• Very little area or frequency impact (< 20 LUTs)

• Can be used in conjunction with Data side LMB

http://www.xilinx.com

26 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 1: MicroBlaze Architecture

Cache Organization
When the data cache is used, the memory address space in split into two segments - a
cacheable segment and a non-cacheable segment. The cacheable area is determined by two
parameters, C_DCACHE_BASEADDR and C_DCACHE_HIGHADDR. All addresses
within this range correspond to the cacheable address space segment. All other addresses
are non-cacheable. .

All cacheable data addresses are further split into two segments - a cache line segment and
a tag address segment. The size of the two segments can be configured by the user. The
address bits between bit 1 and the first tag address bit is ignored in the cache. The size of
the cache line can be between 9 to 14 bits. This results in a cache sizes ranging from 4
Kbytes to 64 Kbytes. There is no limit on the tag address size.

Cache Operation
When MicroBlaze executes a store instruction, the operation is performed as normal but if
the address is within the cacheable address segment, the data cache is updated with the
new data.

When MicroBlaze executes a load instruction, the address is first checked to see if the
address is within the cacheable area and secondly if the address is in the data cache. If that
case, the data is fetch from the data cache.

Figure 1-8: Cache Organization

Data Address Bits
0 30 31

Cache LineTag Address --

Tag

Data
 BRAM

BRAM
Addr

Addr

=
Tag

Valid Cache_Hit

Cache data

Load_Instruction

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 27
EDK (v3.2) April 1, 2003 1-800-255-7778

Data Cache

If the read data is in the cache, the cache will drive the ready signal (Cache_Hit) for
MicroBlaze and the data for the address. If the read data is not in the cache, the cache will
not drive the ready signal but will wait until the OPB fulfills the request.

Software

MSR Bit

Bit 24 in the MSR indicates whether or not the cache is enabled. The MFS and MTS
instructions are used to read and write to the MSR respectively.

The contents of the cache are preserved by default when the cache is disabled. The user
may overwrite the contents of the cache using the WDC instruction or using the hardware
debug logic of MicroBlaze.

Note: The cache cannot be turned on/off from an interrupt handler routine as the changes
to the MSR is lost once the interrupt is handled (the MSR state is restored after interrupt
handling).

WDC Instruction

The WDC instruction may be used to update the data cache from a software program. The
assembly instruction is

WDC Ra,Rb

Where Ra contains cache line, tag address, valid and lock bit, Rb contains the data.

Ra(31) is the lock bit, Ra(30) is the valid bit (valid when bit is set to ‘1’), the rest of the Ra
contains the instruction address.

This instruction can only be used when the cache is disabled. The lock bit is described in
the Lock Bit section below. The

HW Debug Logic

The HW debug logic may be used to perform a similar operation as the WDC instruction.

Figure 1-9: Cache Operation

DOPB_Address

DOPB_Data

Cache Line

Tag Address

0,1 (Locked,Valid)

Instruction BRAM

Tag BRAM

Data

Data

Address

Address

WE

WE

DOPB_XferAck
DOPB_Select

DOPB_RNW

Cacheable_address

http://www.xilinx.com

28 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 1: MicroBlaze Architecture

Lock Bit

The lock bit can be used to permanently lock a code segment into the cache and therefore
guarantee that this data is always in the cache. Locking of the cacheline however may
result in a decrease in the number of cache hits. This is because there could be addresses
that were not cached as the cacheline is locked.

The use of data LMB in most cases would be a better choice for locking data since the wait
states for accessing the LMB is the same as for cache hits.

LMB Memory
Data LMB memory can be used even when data cache is used. The LMB address in the case
has to be in the non-cacheable memory segment.

Fast Simplex Link Interface
MicroBlaze contains 8 input FSL interfaces and 8 output FSL interfaces. The FSL channels
are dedicated uni-directional point-to-point data streaming interfaces. The FSL interfaces
on MicroBlaze are 32 bits wide. Further, the same FSL channels can be used to transmit or
receive either control or data words. A separate bit indicates whether the trasmitted
(received) word is control or data information.

FSL Read Instructions
The Get instructions are used for reading data or control from an input FSL channel into a
MicroBlaze register. There are 4 types of get instructions.

Blocking Data Get Instruction

The assembly instruction to perform a blocking get is

get regM, fslN

The blocking get instruction stalls the MicroBlaze pipeline until data becomes available in
the input FSL, fslN. Once the data is available, the instruction is completed in two clock
cycles. The get instruction is used for getting Data values. If a get instruction is used to read
a Control value (the control_in bit of the fslN is set), a FSL get error bit is set in the MSR (Bit
27).

Non-blocking Data Get Instruction

The assembly instruction to perform a non-blocking get is

nget regM, fslN

The non-blocking get instruction does not stall the MicroBlaze pipeline whether or not data
is present on the input FSL, fslN. The instruction is completed in two clock cycles. If the
data is available, the carry bit (Bit 29)in the MSR is set. If the instruction fails the carry bit
in the MSR is reset. Bit 0 of the MSR has the copy of the carry bit. Hence, a direct branch on
carry may be performed following the nget instruction. The nget instruction is also used to
read Data values. If a Control value is read, the FSL error bit (Bit 27 of MSR) is set.

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 29
EDK (v3.2) April 1, 2003 1-800-255-7778

Fast Simplex Link Interface

Blocking Control Get Instruction

The assembly instruction to perform a blocking control get is

cget regM, fslN

The blocking control get instruction stalls the MicroBlaze pipeline until data becomes
available in the input FSL, fslN. Once the data is available, the instruction is completed in
two clock cycles. The cget instruction is used for reading Control values (the control_in bit
of the fslN is set). If the value read is a data value, the FSL error bit (Bit 27 of MSR) is set.

Non-blocking Control Get Instruction

The assembly instruction to perform a non-blocking get is

ncget regM, fslN

The non-blocking control get instruction does not stall the MicroBlaze pipeline whether or
not data is present on the input FSL, fslN. The instruction is completed in two clock cycles.
If the data is available, the carry bit (Bit 29) in the MSR is set. If the instruction fails the
carry bit in the MSR is reset. Bit 0 of the MSR has the copy of the carry bit. Hence, a direct
branch on carry may be performed following the ncget instruction. The ncget instruction is
also used to read Control values (the control_in bit of the fslN is set). If the value read is a
data value, the FSL error bit (Bit 27 of the MSR) is set.

FSL Write Instructions
The Put instructions are used for writing data or control to an output FSL channel into a
MicroBlaze register. There are 4 types of put instructions.

Blocking Data Put Instruction

The assembly instruction to perform a blocking put is

put regM, fslN

The blocking put instruction stalls the MicroBlaze pipeline until a data can be written to
the output FSL, fslN (data can be written when the full bit is not set). Once the data can be
written, the instruction is completed in two clock cycles. The put instruction is used for
writing Data values (the control_out bit of the fslN is reset).

Non-blocking Data Put Instruction

The assembly instruction to perform a non-blocking put is

nput regM, fslN

The non-blocking put instruction does not stall the MicroBlaze pipeline whether or not
data can be written to the output FSL, fslN (data can be written when the full bit is not set).
The instruction is completed in two clock cycles. If the data write succeeds, the carry bit
(Bit 29) in the MSR is set. If the data write fails, the carry bit in the MSR is reset. Bit 0 of the
MSR has the copy of the carry bit. Hence, a direct branch on carry may be performed
following the nput instruction. The nput instruction is also used to write Data values (the
control_out bit of fslN is reset).

Blocking Control Put Instruction

The assembly instruction to perform a blocking control put is

http://www.xilinx.com

30 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 1: MicroBlaze Architecture

cput regM, fslN

The blocking put instruction stalls the MicroBlaze pipeline until a data can be written to
the output FSL, fslN (data can be written when the full bit is not set). Once the data can be
written, the instruction is completed in two clock cycles. The put instruction is used for
writing Control values (the control_out bit of the fslN is set).

Non-blocking Data Put Instruction

The assembly instruction to perform a non-blocking control put is

ncput regM, fslN

The non-blocking put instruction does not stall the MicroBlaze pipeline whether or not
data can be written to the output FSL, fslN (data can be written when the full bit is not set).
The instruction is completed in two clock cycles. If the data write succeeds, the carry bit
(Bit 29) in the MSR is set. If the data write fails, the carry bit in the MSR is reset. Bit 0 of the
MSR has the copy of the carry bit. Hence, a direct branch on carry may be performed
following the nput instruction. The nput instruction is also used to write Control values
(the control_out bit of fslN is set).

Debug Interface
MicroBlaze features a debug interface to support JTAG based software debugging tools
(commonly known as BDM or Background Debug Mode debuggers) like the Xilinx
Microprocessor Debug (XMD) tool. The debug interface is designed to be connected to the
Xilinx Microprocessor Debug Module (MDM) IP core, which interfaces with the JTAG port
of Xilinx FPGAs. Multiple MicroBlazes can be interfaced with a single MDM to enable
multiprocessor debugging.

Debugging Features
• Configurable number of hardware breakpoints and watchpoints and unlimited

software breakpoints

• External processor control enables debug tools to stop, reset and single step
MicroBlaze

• Read and write memory and all registers including PC and MSR

• Support for multiple processors

• Write to Instruction and data cache

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 31
EDK (v3.2) April 1, 2003 1-800-255-7778

R

Chapter 2

MicroBlaze Bus Interfaces

Summary
This document describes the MicroBlaze™ Local Memory Bus (LMB) and On-chip
Peripheral Bus (OPB) interfaces.

Overview
The MicroBlaze core is organized as a Harvard architecture with separate bus interface
units for data accesses and instruction accesses. Each bus interface unit is further split into
a Local Memory Bus (LMB) and IBM’s On-chip Peripheral Bus (OPB). The LMB provides
single-cycle access to on-chip dual-port block RAM. The OPB interface provides a
connection to both on-and off-chip peripherals and memory. Further, the MicroBlaze core
provides 8 input and 8 output interfaces to Fast Simplex Link (FSL) buses. The FSL buses
are uni-directional non-arbitrated dedicated communication channels.

Features
The MicroBlaze bus interfaces include the following features:

• OPB V2.0 bus interface with byte-enable support (see IBM’s 64-Bit On-Chip Peripheral
Bus, Architectural Specifications, Version 2.0)

• LMB provides simple synchronous protocol for efficient block RAM transfers

• LMB provides guaranteed performance of 125 MHz for local memory subsystem

• FSL provides a fast non-arbitrated streaming communication mechanism.

Bus Configurations
The block diagram in Figure 2-1 depicts the MicroBlaze core with the bus interfaces
defined as follows:

DOPB: Data interface, On-chip Peripheral Bus
DLMB: Data interface, Local Memory Bus (BRAM only)
IOPB: Instruction interface, On-chip Peripheral Bus
ILMB: Instruction interface, Local Memory Bus (BRAM only)
MFSL0..MFSL7: Master data interface, Fast Simplex Link
SFSL0..SFSL7: Slave data interface, Fast Simplex Link
Core: Miscellaneous signals (Clock, Reset, Interrupt)

http://www.xilinx.com

32 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 2: MicroBlaze Bus Interfaces
R

MicroBlaze bus interfaces are available in six configurations, as shown in the following
figure. Further, any of these 6 configurations can be used along with a special FSL
configuration.

Figure 2-1: MicroBlaze Core Block Diagram

Data-sideInstruction-side

DOPB

DLMB

IOPB

ILMB

bus interface bus interface

Instruction
Buffer

Program
Counter

Register File
32 X 32b

Add/Sub

Shift/Logical

Multiply

Instruction
Decode

Bus
IF

Bus
IF

MFSL0..7

SFSL0..7

Figure 2-2: MicroBlaze Bus Configurations

DOPB

DLMB

IOPB

ILMB

DOPB

DLMB

IOPB DOPB

DLMBILMB

DOPBIOPB

ILMB

DOPBIOPB DOPB

ILMB

1 2 3

4 5 6

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 33
EDK (v3.2) April 1, 2003 1-800-255-7778

Bus Configurations
R

The optimal configuration for your application depends on code size and data spaces, and
if you require fast access to internal block RAM. The performance implications and
supported memory models for each configuration is shown in the following table:

Note: ILMB memory can be debugged via a software resident monitor if the second port of the dual-
ported ILMB BRAM is connected to an OPB BRAM memory controller. See Figure 2-6 and
Figure 2-8.

Typical Peripheral Placement
This section provides typical peripheral placement and usage for each of the six
configurations and the FSL configuration. Because there are many options for
interconnecting a MicroBlaze system, you should use the following examples as guidelines
for selecting a configuration closest to your application.

Table 2-1: MicroBlaze Bus Configurations

Configuration
Core
Fmax

Debug
available

Memory Models Supported

1 IOPB+ILMB+DOPB+DLMB 110 SW/JTAG Large external instruction memory,
Fast internal instruction memory (BRAM),
Large external data memory,
Fast internal data memory (BRAM)

2 IOPB+DOPB+DLMB 125 SW/JTAG Large external instruction memory,
Large external data memory,
Fast internal data memory (BRAM)

3 ILMB+DOPB+DLMB 125 SW/JTAG Fast internal instruction memory (BRAM),
Large external data memory,
Fast internal data memory (BRAM)

4 IOPB+ILMB+DOPB 110 JTAG for
ILMB

memory1

SW/for IOPB
memory

Large external instruction memory,
Fast internal instruction memory (BRAM),
Large external data memory,

5 IOPB+DOPB 125 SW/JTAG Large external instruction memory,
Large external data memory,

6 ILMB+DOPB 125 JTAG1 Fast internal instruction memory (BRAM),
Large external data memory,

http://www.xilinx.com

34 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 2: MicroBlaze Bus Interfaces
R

Configuration 1

Purpose

Use this configuration when your application requires more instruction and data memory
than is available in the on-chip block RAM (BRAM). Critical sections of instruction and
data memory can be allocated to the faster ILMB BRAM to improve your application’s
performance. Depending on how much data memory is required, the data-side memory
controller may not be present. The data-side OPB is also used for other peripherals such as
UARTs, timers, general purpose I/O, additional BRAM, and custom peripherals. The OPB-
to-OPB bridge is only required if the data-side OPB needs access to the instruction-side
OPB peripherals, such as for software-based debugging.

Typical Applications

• MPEG Decoder

• Communications Controller

• Complex state machine for process control and other embedded applications

• Set top boxes.

Characteristics

Because of the extra logic required to implement two buses per side, the maximum clock
rate of the CPU may be slightly less than configurations with one bus per side. This
configuration allows debugging of application code through either software-based
debugging (resident monitor debugging) or hardware-based JTAG debugging.

Figure 2-3: Configuration 1: IOPB+ILMB+DOPB+DLMB

DOPB

DLMB

IOPB

ILMB

Dual Port
Block RAM

A B

OPB-to-OPB
Bridge

Memory
Controller

(Ext. memory)

Memory
Controller

(Ext. memory)

Interrupt
Controller

Timer/
Counter

and WDT

UART
Other OPB

Master, Slave,
or Bridge

Data-side OPB
Instruction-side OPB

Data-side LMBInstruction-side LMB

MicroBlaze CPU Core

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 35
EDK (v3.2) April 1, 2003 1-800-255-7778

Bus Configurations
R

Configuration 2

Purpose

Use this configuration when your application requires more instruction and data memory
than is available in the on-chip BRAM. In this configuration, all of the instruction memory
is resident in off-chip memory or on-chip memory on the instruction-side OPB. Depending
on how much data memory is required, the data-side memory controller may not be
present. The data-side OPB is also used for other peripherals such as UARTs, timers,
general purpose I/O, additional BRAM, and custom peripherals. The OPB-to-OPB bridge
is only required if the data-side OPB needs access to the instruction-side OPB peripherals,
such as for software-based debugging.

Typical Applications

• MPEG Decoder

• Communications Controller

• Complex state machine for process control and other embedded applications

• Set top boxes.

Characteristics

This configuration allows the CPU core to operate at the maximum clock rate because of
the simpler instruction-side bus structure. Instruction fetches on the OPB, however, are
slower than fetches from BRAM on the LMB. Overall processor performance is lower than
implementations using LMB unless a large percentage of code is run from the internal
instruction history buffer. This configuration allows debugging of application code
through either software-based debugging (resident monitor debugging) or hardware-
based JTAG debugging.

Figure 2-4: Configuration 2: IOPB+DOPB+DLMB

DOPB

DLMB

IOPB

Block RAM

OPB-to-OPB
Bridge

Memory
Controller

(Ext. memory)

Memory
Controller

(Ext. memory)

Interrupt
Controller

Timer/
Counter

and WDT

UART
Other OPB

Master, Slave,
or Bridge

Data-side OPB
Instruction-side OPB

Data-side LMB

MicroBlaze CPU Core

http://www.xilinx.com

36 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 2: MicroBlaze Bus Interfaces
R

Configuration 3

Purpose

Use this configuration when your application code fits into the on-chip BRAM, but more
memory may be required for data memory. Critical sections of data memory can be
allocated to the faster DLMB BRAM to improve your application’s performance.
Depending on how much data memory is required, the data-side memory controller may
not be present. The data-side OPB is also used for other peripherals such as UARTs, timers,
general purpose I/O, additional BRAM, and custom peripherals.

Typical Applications

• Data-intensive controllers

• Small to medium state machines

Characteristics

This configuration allows the CPU core to operate at the maximum clock rate because of
the simpler instruction-side bus structure. The instruction-side LMB provides two-cycle
pipelined read access from the BRAM for an effective access rate of one instruction per
clock. This configuration allows debugging of application code through either software-
based debugging (resident monitor debugging) or hardware-based JTAG debugging.

Figure 2-5: Configuration 3: ILMB+DOPB+DLMB

DOPB

DLMBILMB

Dual Port
Block RAM

A B

Memory
Controller

(Ext. memory)

Interrupt
Controller

Timer/
Counter

and WDT

UART
Other OPB

Master, Slave,
or Bridge

Data-side OPB

Data-side LMBInstruction-side LMB

MicroBlaze CPU Core

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 37
EDK (v3.2) April 1, 2003 1-800-255-7778

Bus Configurations
R

Configuration 4

Purpose

Use this configuration when your application requires more instruction and data memory
than is available in the on-chip BRAM. Critical sections of instruction memory can be
allocated to the faster ILMB BRAM to improve your application’s performance. The data-
side OPB is used for one or more external memory controllers and other peripherals such
as UARTs, timers, general purpose I/O, additional BRAM, and custom peripherals. The
OPB-to-OPB bridge is only required if the data-side OPB needs access to the instruction-
side OPB peripherals, such as for software-based debugging.

Typical Applications

• MPEG Decoder

• Communications Controller

• Complex state machine for process control and other embedded applications

• Set top boxes

Characteristics

Because of the extra logic required to implement two buses per side, the maximum clock
rate of the CPU may be slightly less than configurations with one bus per side. This
configuration allows debugging of application code through either software-based
debugging (resident monitor debugging) or hardware-based JTAG debugging. However,
software-based debugging of code in the ILMB BRAM can only be performed if a BRAM
memory controller is included on the D-side OPB bus to provide write access to the LMB
BRAM.

Figure 2-6: Configuration 4: IOPB+ILMB+DOPB

DOPBIOPB

ILMB

Block RAM

OPB-to-OPB
Bridge

Memory
Controller

(Ext. memory)

Memory
Controller

(Ext. memory)

Interrupt
Controller

Timer/
Counter

and WDT

UART
Other OPB

Master, Slave,
or Bridge

Data-side OPB
Instruction-side OPB

Instruction-side LMB

MicroBlaze CPU Core

BRAM Memory
Controller

http://www.xilinx.com

38 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 2: MicroBlaze Bus Interfaces
R

Configuration 5

Purpose

Use this configuration when your application requires external instruction and data
memory. In this configuration, all of the instruction and data memory is resident in off-chip
memory or on-chip memory on the OPB buses. The data-side OPB is used for one or more
external memory controllers and other peripherals such as UARTs, timers, general
purpose I/O, BRAM, and custom peripherals. The OPB-to-OPB bridge is only required if
the data-side OPB needs access to the instruction-side OPB peripherals, such as for
software-based debugging.

Typical Applications

• MPEG Decoder

• Communications Controller

• Complex state machine for process control and other embedded applications

• Set top boxes

Characteristics

This configuration allows the CPU core to operate at the maximum clock rate because of
the simpler instruction-side bus structure. However, instruction fetches on the OPB are
slower than fetches from BRAM on the LMB. Overall processor performance is lower than
implementations using LMB unless a large percentage of code is run from the internal
instruction history buffer. This configuration allows debugging of application code
through either software-based debugging (resident monitor debugging) or hardware-
based JTAG debugging.

Figure 2-7: Configuration 5: IOPB+DOPB

DOPBIOPB

OPB-to-OPB
Bridge

Memory
Controller

(Ext. memory)

Memory
Controller

(Ext. memory)

Interrupt
Controller

Timer/
Counter

and WDT

UART
Other OPB

Master, Slave,
or Bridge

Data-side OPB
Instruction-side OPB

MicroBlaze CPU Core

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 39
EDK (v3.2) April 1, 2003 1-800-255-7778

Bus Configurations
R

Configuration 6

Purpose

Use this configuration when your application code fits into the on-chip ILMB BRAM, but
more memory may be required for data memory. The data-side OPB is used for one or
more external memory controllers and other peripherals such as UARTs, timers, general
purpose I/O, additional BRAM, and custom peripherals.

Typical Applications

• Minimal controllers

• Small to medium state machines

Characteristics

This configuration allows the CPU core to operate at the maximum clock rate because of
the simpler instruction-side bus structure. The instruction-side LMB provides two-cycle
pipelined read access from the BRAM for an effective access rate of one instruction per
clock. This configuration allows debugging of application code through either software-
based debugging (resident monitor debugging) or hardware-based JTAG debugging.
However, software-based debugging of code in the ILMB BRAM can only be performed if
a BRAM memory controller is included on the D-side OPB bus to provide write access to
the LMB BRAM.

FSL Configuration

Along with any of the above specified configurations, MicroBlaze can optionally include upto 8
FSL input interfaces and 8 FSL output interfaces.

Figure 2-8: Configuration 6: ILMB+DOPB

DOPB

ILMB

Dual Port
Block RAM

Memory
Controller

(Ext. memory)

Interrupt
Controller

Timer/
Counter

and WDT

UART
Other OPB

Master, Slave,
or Bridge

Data-side OPB

Instruction-side LMB

MicroBlaze CPU Core

UARTUART
BRAM Memory

Controller

http://www.xilinx.com

40 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 2: MicroBlaze Bus Interfaces
R

Purpose

Use this configuration for trasmitting data directly from the MicroBlaze core to other
peripherals or processors without using a shared bus. MicroBlaze contains several
instructions to read from the input FSLs and write to the output FSLs. The read and write
each consume two clock cycles. The number of FSL’s in MicroBlaze can be configured by
using the C_NUM_FSL parameter.

Typical Applications

The FSLs are particularly useful for streaming data style applications. These include signal
processing, image processing, DSP and Network processing applications. The FSL
communication channels can also be used to interface with hardware accelerators that are
implemented on the reconfigurable fabric.

Characterestics

The CPU clock frequency is unaffected by the addition of FSLs to the MicroBlaze core. The
area of the MicroBlaze core increases sligthly based on the number of FSL interfaces.

Figure 2-9: FSL Configuration + MicroBlaze

IN FIFO OUT FIFO

IN PORT OUT PORT

FSL0 FSL1 FSL2 FSL7 FSL8

r0 r1 r2 r3 r32

MICROBLAZE PROCESSOR

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 41
EDK (v3.2) April 1, 2003 1-800-255-7778

Bit and Byte Labeling
R

Bit and Byte Labeling
The MicroBlaze buses are labeled using a big-endian naming convention. The bit and byte
labeling for the MicroBlaze data types is shown in the following figure:

Core I/O
The MicroBlaze core implements separate buses for instruction fetch and data access,
denoted the I side and D side buses, respectively. These buses are split into the following
two bus types:

• OPB V2.0 compliant bus for OPB peripherals and memory controllers

• Local Memory Bus used exclusively for high-speed access to internal block RAM
(BRAM).

All core I/O signals are listed in Table 2-2. Page numbers prefaced by OPB reference IBM’s
64-Bit On-Chip Peripheral Bus, Architectural Specifications, Version 2.0.

The core interfaces shown in the following table are defined as follows:

Figure 2-10: MicroBlaze Big-Endian Data Types

n n+1 n+2 n+3

0 1 2 3

MSByte LSByte

0 31

MSBit LSBit

Byte address

Byte label

Byte significance

Bit label

Bit significance

n n+1

0 1

MSByte LSByte

0 15

MSBit LSBit

Byte address

Byte label

Byte significance

Bit label

Bit significance

n

0

MSByte

0 7

MSBit LSBit

Byte address

Byte label

Byte significance

Bit label

Bit significance

Byte

Halfword

Word

http://www.xilinx.com

42 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 2: MicroBlaze Bus Interfaces
R

DOPB: Data interface, On-chip Peripheral Bus
DLMB: Data interface, Local Memory Bus (BRAM only)
IOPB: Instruction interface, On-chip Peripheral Bus
ILMB: Instruction interface, Local Memory Bus (BRAM only)
MFSL0..MFSL7: FSL master interface
SFSL0..SFSL7: FSL slave interface
Core: Miscellaneous signals

Table 2-2: Summary of MicroBlaze Core I/O

Signal Interface I/O Description Page

DM_ABus[0:31] DOPB O Data interface OPB address bus OPB-11

DM_BE[0:3] DOPB O Data interface OPB byte enables OPB-16

DM_busLock DOPB O Data interface OPB buslock OPB-9

DM_DBus[0:31] DOPB O Data interface OPB write data bus OPB-13

DM_request DOPB O Data interface OPB bus request OPB-8

DM_RNW DOPB O Data interface OPB read, not write OPB-12

DM_select DOPB O Data interface OPB select OPB-12

DM_seqAddr DOPB O Data interface OPB sequential address OPB-13

DOPB_DBus[0:31] DOPB I Data interface OPB read data bus OPB-13

DOPB_errAck DOPB I Data interface OPB error acknowledge OPB-15

DOPB_MGrant DOPB I Data interface OPB bus grant OPB-9

DOPB_retry DOPB I Data interface OPB bus cycle retry OPB-10

DOPB_timeout DOPB I Data interface OPB timeout error OPB-10

DOPB_xferAck DOPB I Data interface OPB transfer acknowledge OPB-14

IM_ABus[0:31] IOPB O Instruction interface OPB address bus OPB-11

IM_BE[0:3] IOPB O Instruction interface OPB byte enables OPB-16

IM_busLock IOPB O Instruction interface OPB buslock OPB-9

IM_DBus[0:31] IOPB O Instruction interface OPB write data bus (always
0x00000000)

OPB-13

IM_request IOPB O Instruction interface OPB bus request OPB-8

IM_RNW IOPB O Instruction interface OPB read, not write (tied to ’0’) OPB-12

IM_select IOPB O Instruction interface OPB select OPB-12

IM_seqAddr IOPB O Instruction interface OPB sequential address OPB-13

IOPB_DBus[0:31] IOPB I Instruction interface OPB read data bus OPB-13

IOPB_errAck IOPB I Instruction interface OPB error acknowledge OPB-15

IOPB_MGrant IOPB I Instruction interface OPB bus grant OPB-9

IOPB_retry IOPB I Instruction interface OPB bus cycle retry OPB-10

IOPB_timeout IOPB I Instruction interface OPB timeout error OPB-10

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 43
EDK (v3.2) April 1, 2003 1-800-255-7778

Bus Organization
R

Bus Organization

OPB Bus Configuration
The MicroBlaze OPB interfaces are organized as byte-enable capable only masters. The
byte-enable architecture is an optional subset of the OPB V2.0 specification and is ideal for
low-overhead FPGA implementations such as MicroBlaze.

The OPB data bus interconnects are illustrated in Figure 2-11. The write data bus (from
masters and bridges) is separated from the read data bus (from slaves and bridges) to
break up the bus OR logic. In minimal cases this can completely eliminate the OR logic for
the read or write data buses. Optionally, you can "OR" together the read and write buses to
create the correct functionality for the OPB bus monitor. Note that the instruction-side OPB
contains a write data bus (tied to 0x00000000) and a RNW signal (tied to logic 1) so that its

IOPB_xferAck IOPB I Instruction interface OPB transfer acknowledge OPB-12

Data_Addr[0:31] DLMB O Data interface LB address bus 47

Byte_Enable[0:3] DLMB O Data interface LB byte enables 47

Data_Write[0:31] DLMB O Data interface LB write data bus 48

D_AS DLMB O Data interface LB address strobe 48

Read_Strobe DLMB O Data interface LB read strobe 48

Write_Strobe DLMB O Data interface LB write strobe 48

Data_Read[0:31] DLMB I Data interface LB read data bus 48

DReady DLMB I Data interface LB data ready 48

Instr_Addr[0:31] ILMB O Instruction interface LB address bus 47

I_AS ILMB O Instruction interface LB address strobe 48

IFetch ILMB O Instruction interface LB instruction fetch 48

Instr[0:31] ILMB I Instruction interface LB read data bus 48

IReady ILMB I Instruction interface LB data ready 48

FSL0_M .. FSL7_M MFSL O Master interface to Output FSL channels

FSL0_S .. FSL7_S SFSL I Slave interface to Input FSL channels

Interrupt Core I Interrupt

Reset Core I Core reset

Clk Core I Clock

Debug_Rst Core I Reset signal from OPB JTAG UART

Ext_BRK Core I Break signal from OPB JTAG UART

Ext_NM_BRK Core I Non-maskable break signal from OPB JTAG UART

Dbg_... Core IO Debug signals from OPB MDM

Table 2-2: Summary of MicroBlaze Core I/O (Continued)

Signal Interface I/O Description Page

http://www.xilinx.com

44 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 2: MicroBlaze Bus Interfaces
R

interface remains consistent with the data-side OPB. These signals are constant and
generally are minimized in implementation.

A multi-ported slave is used instead of a bridge in the example shown in Figure 2-12. This
could represent a memory controller with a connection to both the IOPB and the DOPB. In
this case, the bus multiplexing and prioritization must be done in the slave. The advantage
of this approach is that a separate I-to-D bridge and an OPB arbiter on the instruction side
are not required. The arbiter function must still exist in the slave device.

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 45
EDK (v3.2) April 1, 2003 1-800-255-7778

Bus Organization
R

Figure 2-11: OPB Interconnection (breaking up read and write buses)

DM_ABus[0:31]
DM_BE[0:3]
DM_busLock
DM_wrDBus[0:31]
DM_RNW
DM_select
DM_seqAddr

DOPB_ABus[0:31]
DOPB_BE[0:3]
DOPB_busLock
DOPB_wrDBus[0:31]

DOPB_RNW
DOPB_select
DOPB_seqAddr
DOPB_errAck
DOPB_retry
DOPB_timeout
DOPB_toutSup
DOPB_xferAck

DOPB_ABus[0:31]
DOPB_BE[0:3]
DOPB_busLock

DOPB_rdDBus[0:31]

DOPB_RNW
DOPB_select
DOPB_seqAddr

DOPB_errAck
DOPB_retry
DOPB_timeout
DOPB_xferAck

DOPB_wrDBus[0:31]

Sl1_rdDBus[0:31]
Sl1_errAck
Sl1_retry
Sl1_timeout
Sl1_toutSup
Sl1_xferAck

DOPB_ABus[0:31]
DOPB_BE[0:3]
DOPB_busLock

DOPB_RNW
DOPB_select
DOPB_seqAddr

DOPB_wrDBus[0:31]

Br1I_rdDBus[0:31]
Br1_errAck
Br1_retry
Br1_timeout

Br1_ABus[0:31]
Br1_BE[0:3]
Br1_busLock
Br1D_wrDBus[0:31]
Br1_RNW
Br1_select
Br1_seqAddr

IOPB_rdDBus[0:31]
IOPB_errAck
IOPB_retry
IOPB_timeout
IOPB_toutSup

IM_ABus[0:31]
IM_BE[0:3]
IM_busLock

IM_RNW
IM_select
IM_seqAddr

IOPB_rdDBus[0:31]
IOPB_errAck
IOPB_retry
IOPB_timeout
IOPB_xferAck

IOPB_ABus[0:31]
IOPB_BE[0:3]
IOPB_busLock

IOPB_RNW
IOPB_select
IOPB_seqAddr

IOPB_wrDBus[0:31]

Sl2_rdDBus[0:31]
Sl2_errAck
Sl2_retry
Sl2_timeout
Sl2_toutSup
Sl2_xferAck

IOPB_ABus[0:31]
IOPB_BE[0:3]
IOPB_busLock
IOPB_wrDBus[0:31]

IOPB_RNW
IOPB_select
IOPB_seqAddr
IOPB_errAck
IOPB_retry
IOPB_timeout
IOPB_toutSup
IOPB_xferAck

Br1_toutSup

MicroBlaze
Data OPB
Interface

OPB
Slave1

MicroBlaze
Instr OPB
Interface

(IOPB)

OPB
Slave2

DOPB
to

IOPB

OR

like

suffixes

OR

like

suffixes

DOPB_rdDBus[0:31]

IOPB_rdDBus[0:31]

OR
IOPB_wrDBus[0:31]
IOPB_rdDBus[0:31]

IOPB_DBus[0:31]

OR
DOPB_wrDBus[0:31]
DOPB_rdDBus[0:31]

DOPB_DBus[0:31]

Present for Bus Monitor functions:

Present for Bus Monitor functions:

Data-side OPB

Instruction-side OPB

I-side
OPB

arbiter

D-side
OPB

arbiter

Required if more than
one master present

Required

Br1_xferAckIOPB_xferAck

IM_wrDBus[0:31]

DM_requestDOPB_MGrant

IM_requestIOPB_MGrant

Br1_requestBr1_MGrant

http://www.xilinx.com

46 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 2: MicroBlaze Bus Interfaces
R

Figure 2-12: OPB Interconnection (with multi-ported slave and no bridge)

DM_ABus[0:31]
DM_BE[0:3]
DM_busLock
DM_wrDBus[0:31]
DM_RNW
DM_select
DM_seqAddr

DOPB_ABus[0:31]
DOPB_BE[0:3]
DOPB_busLock
DOPB_wrDBus[0:31]

DOPB_RNW
DOPB_select
DOPB_seqAddr
DOPB_errAck
DOPB_retry
DOPB_timeout
DOPB_toutSup
DOPB_xferAck

DOPB_ABus[0:31]
DOPB_BE[0:3]
DOPB_busLock

DOPB_rdDBus[0:31]

DOPB_RNW
DOPB_select
DOPB_seqAddr

DOPB_errAck
DOPB_retry
DOPB_timeout
DOPB_xferAck

DOPB_wrDBus[0:31]

Sl1_rdDBus[0:31]
Sl1_errAck
Sl1_retry
Sl1_timeout
Sl1_toutSup
Sl1_xferAck

DOPB_ABus[0:31]
DOPB_BE[0:3]
DOPB_busLock

DOPB_RNW
DOPB_select
DOPB_seqAddr

DOPB_wrDBus[0:31]

IM_ABus[0:31]
IM_BE[0:3]
IM_busLock

IM_RNW
IM_select
IM_seqAddr

IOPB_rdDBus[0:31]
IOPB_errAck
IOPB_retry
IOPB_timeout
IOPB_xferAck

IOPB_ABus[0:31]
IOPB_BE[0:3]
IOPB_busLock

IOPB_RNW
IOPB_select
IOPB_seqAddr

IOPB_wrDBus[0:31]

Sl2_rdDBus[0:31]
Sl2_errAck
Sl2_retry
Sl2_timeout
Sl2_toutSup
Sl2_xferAck

IOPB_ABus[0:31]
IOPB_BE[0:3]
IOPB_busLock
IOPB_wrDBus[0:31]

IOPB_RNW
IOPB_select
IOPB_seqAddr
IOPB_errAck
IOPB_retry
IOPB_timeout
IOPB_toutSup
IOPB_xferAck

MicroBlaze
Data OPB
Interface

OPB
Slave1

MicroBlaze
Instr OPB
Interface

OR

like

suffixes

OR

like

suffixes

DOPB_rdDBus[0:31]

IOPB_rdDBus[0:31]

OR
IOPB_wrDBus[0:31]
IOPB_rdDBus[0:31]

IOPB_DBus[0:31]

OR
DOPB_wrDBus[0:31]
DOPB_rdDBus[0:31]

DOPB_DBus[0:31]

Present for Bus Monitor functions:

Present for Bus Monitor functions:

Data-side OPB

Instruction-side OPB

Sl2_rdDBus[0:31]
Sl2_errAck
Sl2_retry
Sl2_timeout
Sl2_toutSup
Sl2_xferAck

OPB
Slave2
(multi-

D-side
OPB

arbiter

Required if more than
one master present

DM_requestDOPB_MGrant

IM_requestIOPB_MGrant

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 47
EDK (v3.2) April 1, 2003 1-800-255-7778

Bus Organization
R

LMB Bus Definition
The Local Memory Bus (LMB) is a synchronous bus used primarily to access on-chip block
RAM. It uses a minimum number of control signals and a simple protocol to ensure that
local block RAM is accessed in a single clock cycle. LMB signals and definitions are shown
in the following table. All LMB signals are high true.

Addr[0:31]

The address bus is an output from the core and indicates the memory address that is being
accessed by the current transfer. It is valid only when AS is high. In multicycle accesses
(accesses requiring more than one clock cycle to complete), Addr[0:31] is valid only in the
first clock cycle of the transfer.

Byte_Enable[0:3]

The byte enable signals are outputs from the core and indicate which byte lanes of the data
bus contain valid data. Byte_Enable[0:3] is valid only when AS is high. In multicycle
accesses (accesses requiring more than one clock cycle to complete), Byte_Enable[0:3] is
valid only in the first clock cycle of the transfer. Valid values for Byte_Enable[0:3] are
shown in the following table:

Table 2-3: LMB Bus Signals

Signal Data Interface Instr. Interface Type Description

Addr[0:31] Data_Addr[0:31] Instr_Addr[0:31] O Address bus

Byte_Enable[0:3] Byte_Enable[0:3] not used O Byte enables

Data_Write[0:31] Data_Write[0:31] not used O Write data bus

AS D_AS I_AS O Address strobe

Read_Strobe Read_Strobe IFetch O Read in progress

Write_Strobe Write_Strobe not used O Write in progress

Data_Read[0:31] Data_Read[0:31] Instr[0:31] I Read data bus

Ready DReady IReady I Ready for next transfer

Clk Clk Clk I Bus clock

Table 2-4: Valid Values for Byte_Enable[0:3]

Byte Lanes Used

Byte_Enable[0:3] Data[0:7] Data[8:15] Data[16:23] Data[24:31]

0000

0001 x

0010 x

0100 x

1000 x

http://www.xilinx.com

48 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 2: MicroBlaze Bus Interfaces
R

Data_Write[0:31]

The write data bus is an output from the core and contains the data that is written to
memory. It becomes valid when AS is high and goes invalid in the clock cycle after Ready
is sampled high. Only the byte lanes specified by Byte_Enable[0:3] contain valid data.

AS

The address strobe is an output from the core and indicates the start of a transfer and
qualifies the address bus and the byte enables. It is high only in the first clock cycle of the
transfer, after which it goes low and remains low until the start of the next transfer.

Read_Strobe

The read strobe is an output from the core and indicates that a read transfer is in progress.
This signal goes high in the first clock cycle of the transfer, and remains high until the clock
cycle after Ready is sampled high. If a new read transfer is started in the clock cycle after
Ready is high, then Read_Strobe remains high.

Write_Strobe

The write strobe is an output from the core and indicates that a write transfer is in progress.
This signal goes high in the first clock cycle of the transfer, and remains high until the clock
cycle after Ready is sampled high. If a new write transfer is started in the clock cycle after
Ready is high, then Write_Strobe remains high.

Data_Read[0:31]

The read data bus is an input to the core and contains data read from memory.
Data_Read[0:31] is valid on the rising edge of the clock when Ready is high.

Ready

The Ready signal is an input to the core and indicates completion of the current transfer
and that the next transfer can begin in the following clock cycle. It is sampled on the rising
edge of the clock. For reads, this signal indicates the Data_Read[0:31] bus is valid, and for
writes it indicates that the Data_Write[0:31] bus has been written to local memory.

Clk

All operations on the LMB are synchronous to the MicroBlaze core clock.

LMB Bus Operations
The following diagrams provide examples of LMB bus operations.

0011 x x

1100 x x

1111 x x x x

Table 2-4: Valid Values for Byte_Enable[0:3]

Byte Lanes Used

Byte_Enable[0:3] Data[0:7] Data[8:15] Data[16:23] Data[24:31]

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 49
EDK (v3.2) April 1, 2003 1-800-255-7778

Bus Organization
R

Generic Write Operation

Generic Read Operation

Figure 2-13: LMB Generic Write Operation

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Write_Strobe

Data_Read

Ready

A0

1111

D0

Figure 2-14: LMB Generic Read Operation

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Write_Strobe

Data_Read

Ready

A0

1111

D0

http://www.xilinx.com

50 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 2: MicroBlaze Bus Interfaces
R

Back-to-Back Write Operation (Typical LMB access - 2 clocks per write)

Single Cycle Back-to-Back Read Operation (Typical I-side access - 1 clock

per read)

Figure 2-15: LMB Back-to-Back Write Operation

Figure 2-16: LMB Single Cycle Back-to-Back Read Operation

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Write_Strobe

Data_Read

Ready

A0 A1

BE0 BE1

D0 D1

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Write_Strobe

Data_Read

Ready

A0 A1 A2

BE0 BE1 BE2

D0 D1 D2

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 51
EDK (v3.2) April 1, 2003 1-800-255-7778

Bus Organization
R

Back-to-Back Mixed Read/Write Operation (Typical D-side timing)

Read and Write Data Steering
The MicroBlaze data-side bus interface performs the read steering and write steering
required to support the following transfers:

• byte, halfword, and word transfers to word devices

• byte and halfword transfers to halfword devices

• byte transfers to byte devices

MicroBlaze does not support transfers that are larger than the addressed device. These
types of transfers require dynamic bus sizing and conversion cycles that are not supported
by the MicroBlaze bus interface. Data steering for read cycles is shown in Table 2-5, and
data steering for write cycles is shown in Table 2-6

Figure 2-17: Back-to-Back Mixed Read/Write Operation

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Write_Strobe

Data_Read

Ready

A0 A1

BE0 BE1

D1

D0

Table 2-5: Read Data Steering (load to Register rD)

Register rD Data

Address
[30:31]

Byte_Enable
[0:3]

Transfer Size rD[0:7] rD[8:15] rD[16:23] rD[24:31]

11 0001 byte Byte3

10 0010 byte Byte2

01 0100 byte Byte1

00 1000 byte Byte0

10 0011 halfword Byte2 Byte3

00 1100 halfword Byte0 Byte1

00 1111 word Byte0 Byte1 Byte2 Byte3

http://www.xilinx.com

52 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 2: MicroBlaze Bus Interfaces
R

Note that other OPB masters may have more restrictive requirements for byte lane
placement than those allowed by MicroBlaze. OPB slave devices are typically attached
"left-justified" with byte devices attached to the most-significant byte lane, and halfword
devices attached to the most significant halfword lane. The MicroBlaze steering logic fully
supports this attachment method.

FSL Bus Operation
The FSLs are implemented on the FPGA as a FIFO using the SRL16 primitives. The FSL bus
provides a point-to-point communication channel between an output FIFO and an input
FIFO.

Master FSL signals on MicroBlaze

MicroBlaze may contain upto 8 master FSL interfaces. The master signals are depicted in
Table 2-7.

Table 2-6: Write Data Steering (store from Register rD)

Write Data Bus Bytes

Address
[30:31]

Byte_Enable
[0:3]

Transfer Size Byte0 Byte1 Byte2 Byte3

11 0001 byte rD[24:31]

10 0010 byte rD[24:31]

01 0100 byte rD[24:31]

00 1000 byte rD[24:31]

10 0011 halfword rD[16:23] rD[24:31]

00 1100 halfword rD[16:23] rD[24:31]

00 1111 word rD[0:7] rD[8:15] rD[16:23] rD[24:31]

Table 2-7: Master FSL signals

Signal Name Description VHDL Type Direction

FSLn_M_Clk Clock std_logic output

FSLn_M_Write Write signal that enables
writing to FIFO when set

std_logic output

FSLn_M_Data Input Data std_logic_vector output

FSLn_M_CONTROL Control Bit indicating the
FSLn_IN_DATA is a Control
Word

std_logic output

FSLn_M_FULL Full Bit indicating input
FIFO full when set

std_logic input

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 53
EDK (v3.2) April 1, 2003 1-800-255-7778

Debug Interface
R

Slave FSL signals on MicroBlaze

MicroBlaze may contain upto 8 slave FSL interfaces. The slave FSL interface signals are
depicted in Table 2-8.

FSL BUS Timing Requirements

The FSL bus forms a communication channel between two communicating processors
using the SRL FIFO module.

Master Signal Timing Requirements

• When FIFO is Full, the FSLn_M_Full signal is set to ‘1’.

• When FIFO is empty, the FSLn_M_Full signal is ‘0’. To push data onto the FSL bus,
FSLn_M_Write must be set to ‘1’ for one clock cycle.

• When the value pushed onto the FIFO is a data word, FSLn_M_Control is set to ‘1’. If
the value is a control word, FSL_M_Control is set to ‘0’.

Slave Signal Timing Requirements

• When FSLn_S_Exists is ‘0’, data is unavailable, hence FSLn_S_Read must be set to ‘0’.

• When FSLn_S_Read is ‘1’, the data is popped from the FIFO and populated in
FSLn_S_Data the following cycle.

• If the value popped from the FIFO is a data word, FSLn_S_Control is ‘0’ else
FSLn_S_Control is ‘1’.

Debug Interface
The debug interface on MicroBlaze is designed to work with the Xilinx Microprocessor
Debug Module (MDM) IP core, which interfaces with the JTAG port of Xilinx FPGAs. An
external software debug tool can control MicroBlaze using the MDM core and the debug
port on MicroBlaze. The MDM can support connections to multiple MicroBlaze debug
ports. The debug signals on MicroBlaze are listed in Table 2-9

Table 2-8: Slave FSL signals

Signal Name Description VHDL Type Direction

FSLn_S_Clk Clock std_logic output

FSLn_S_Read Read signal requesting next
available input to be read

std_logic output

FSLn_S_Data Output Data std_logic_vector input

FSLn_S_Control Control Bit indicating the
FSLn_OUT_DATA is a
Control Word

std_logic input

FSLn_S_Exists Data Exists Bit indicating
data exists i input FIFO

std_logic input

http://www.xilinx.com

54 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 2: MicroBlaze Bus Interfaces
R

Implementation

Parameterization
The following characteristics of MicroBlaze can be parameterized:

• Data Interface options: OPB only, LMB+OPB

• Instruction Interface options: LMB only, LMB+OPB, OPB only

• Barrel shifte

• Number of FSL interfaces (same number for both input and output)

• Interrupt port

• Debug port

• Instruction cache

• Data cache

Table 2-9: MicroBlaze Debug signals

Signal Name Description VHDL Type Direction

Dbg_Clk JTAG Clock from MDM std_logic input

Dbg_TDI JTAG TDI from MDM std_logic input

Dbg_TDO JTAG TDO to MDM std_logic output

Dbg_Reg_En Debug Register Enable from
MDM

std_logic input

Dbg_Capture JTAG BSCAN Capture signal
from MDM

std_logic input

Dbg_Update JTAG BSCAN Update signal
from MDM

std_logic input

Table 2-10: MPD Parameters

Feature/Description Parameter Name Allowable Values
Default
Value

VHDL
Type

Target Family C_FAMILY Xilinx FPGA families virtex2 string

Data Size C_DATA_SIZE 32 32 integer

Instance Name C_INSTANCE Any instance name microblaze string

Data side OPB interface C_D_OPB 0, 1 1 integer

Data side LMB interface C_D_LMB 0, 1 1 integer

Instruction side OPB interface C_I_OPB 0, 1 1 integer

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 55
EDK (v3.2) April 1, 2003 1-800-255-7778

Implementation
R

Instruction side LMB interface C_I_LMB 0, 1 1 integer

Barrel Shifter C_USE_BARREL 0, 1 0 integer

Divide Unit C_USE_DIV 0, 1 0 integer

Number of FSL interfaces C_FSL_LINKS 0..8 0 integer

FSL data bus size C_FSL_DATA_SIZE 32 32 integer

Level/Edge Interrupt C_INTERRUPT_IS_EDGE 0, 1 0 integer

Negative/Positive Egde
Interrupt

C_EDGE_IS_POSITIVE 0, 1 1 integer

MDM Debug interface C_DEBUG_ENABLED 0,1 0 integer

Number of hardware
breakpoints

C_NUMBER_OF_PC_BR
K

0-8 1 integer

Number of read address
watchpoints

C_NUMBER_OF_RD_AD
DR_BRK

0-4 0 integer

Number of write address
watchpoints

C_NUMBER_OF_WR_A
DDR_BRK

0-4 0 integer

Instruction cache C_USE_ICACHE 0,1 0 integer

Instruction cache address tags C_ADDR_TAG_BITS 0-24 7 integer

Instruction cache size C_CACHE_BYTE_SIZE 512,1024,2048,4096,819
2,16384,32768,65536

8192 integer

Instruction cache base address C_ICACHE_BASEADDR X”00000000” -
X”FFFFFFFF”

X”00000000
”

std_logi
c_vector

Instruction cache high address C_ICACHE_HIGHADDR X”00000000” -
X”FFFFFFFF”

X”3FFFFFF
F”

std_logi
c_vector

Instruction cache write enable C_ALLOW_ICACHE_WR 0,1 1 integer

Data cache C_USE_DCACHE 0,1 0 integer

Data cache address tags C_DCACHE_ADDR_TA
G

0-24 7 integer

Data cache size C_DCACHE_BYTE_SIZE 512,1024,2048,4096,819
2,16384,32768,65536

8192 integer

Data cache base address C_DCACHE_BASEADDR X”00000000” -
X”FFFFFFFF”

X”00000000
”

std_logi
c_vector

Data cache high address C_DCACHE_HIGHADD
R

X”00000000” -
X”FFFFFFFF”

X”3FFFFFF
F”

std_logi
c_vector

Data cache write enable C_ALLOW_DCACHE_W
R

0,1 1 integer

Table 2-10: MPD Parameters

Feature/Description Parameter Name Allowable Values
Default
Value

VHDL
Type

http://www.xilinx.com

56 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 2: MicroBlaze Bus Interfaces
R

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 57
EDK (v3.2) April 1, 2003 1-800-255-7778

R

Chapter 3

MicroBlaze Endianness

This chapter describes big-endian and little-endian data objects and how to use little-
endian data with the big-endian MicroBlaze soft processor. This chapter includes the
following sections

• “Definitions”

• “Bit Naming Conventions”

• “Data Types and Endianness”

• “VHDL Example”

Definitions
Data are stored or retrieved in memory, in byte, half word, word, or double word units.
Endianness refers to the order in which data are stored and retrieved. Little-endian
specifies that the least significant byte is assigned the lowest byte address. Big-endian
specifies that the most significant byte is assigned the lowest byte address.

Note Endianness does not affect single byte data.

Bit Naming Conventions
The MicroBlaze architecture uses a bus and register bit naming convention in which the
most significant bit (MSB) name incorporates zero (‘0’). As the significance of the bits
decreases across the bus, the number in the name increases linearly so that a 32-bit vector
has a least significant bit (LSB) name equal to 31. Other Xilinx interfaces such as the PCI
Core use the opposite convention in which a name with a ‘0’ represents the LSB vector
position.

Data Types and Endianness
Hardware supported data types for MicroBlaze are word, half word, and byte. The data
organization for each type is shown in the following tables.

Table 3-1: Word Data Type

Byte address n n+1 n+2 n+3

Byte label 0 1 2 3

Byte
significance

MSByt
e

LSByte

http://www.xilinx.com

58 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 3: MicroBlaze Endianness
R

The following C language structure includes various scalars and character strings. The
comments indicate the value assumed to be in each structure element. These values show
how the bytes comprising each structure element are mapped into storage.

struct {
int a; /* 0x1112_1314 word */
long long b; /* 0x2122_2324_2526_2728 double word */
char *c; /* 0x3132_3334 word */
char d[7]; /* 'A','B','C','D','E','F','G' array of bytes */
short e; /* 0x5152 halfword */
int f; /* 0x6162_6364 word */
} s;

C structure mapping rules permit the use of padding (skipped bytes) to align scalars on
desirable boundaries. The structure mapping examples show each scalar aligned at its
natural boundary. This alignment introduces padding of four bytes between a and b, one
byte between d and e, and two bytes between e and f. The same amount of padding is
present in both big-endian and little-endian mappings.

Note For the MicroBlaze core, all operands in the ALU and GPRs, and all pipeline
instructions are big-endian.

Bit label 0 31

Bit significance MSBit LSBit

Table 3-2: Half Word Data Type

Byte address n n+1

Byte label 0 1

Byte
significance

MSByt
e

LSByte

Bit label 0 15

Bit significance MSBit LSBit

Table 3-3: Byte Data Type

Byte address n

Byte label 0

Byte
significance

MSByte

Bit label 0 7

Bit significance MSBit LSBit

Table 3-1: Word Data Type

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 59
EDK (v3.2) April 1, 2003 1-800-255-7778

VHDL Example
R

The big-endian mapping of “struct” is shown in the following table. (The data is
highlighted in the structure mappings). Hexadecimal addresses are below the data stored
at the address. The contents of each byte, as defined in the structure, are shown as a
number (hexadecimal) or character (for the string elements).

VHDL Example

BRAM – LMB Example
LMB uses big-endian byte addressing, while the BRAM uses little-endian byte addressing.
To translate data between the two busses, swap the data and address bytes.

Table 3-4: Big-endian Mapping

11

0x00

12

0x01

13

0x02

14

0x03 0x04 0x05 0x06 0x07

21

0x08

22

0x09

23

0x0A

24

0x0B

25

0x0C

26

0x0D

27

0x0E

28

0x0F

31

0x10

32

0x11

33

0x12

34

0x13

‘A’

0x14

‘B’

0x15

‘C’

0x16

‘D’

0x17

‘E’

0x18

‘F’

0x19

‘G’

0x1A 0x1B

51

0x1C

52

0x1D 0x1E 0x1F

61

0x20

62

0x21

63

0x22

64

0x23 0x24 0x25 0x26 0x27

Table 3-5: Little-endian Mapping

14

0x00

13

0x01

12

0x02

11

0x03 0x04 0x05 0x06 0x07

28

0x08

27

0x09

26

0x0A

25

0x0B

24

0x0C

23

0x0D

22

0x0E

21

0x0F

34

0x10

33

0x11

32

0x12

31

0x13

‘A’

0x14

‘B’

0x15

‘C’

0x16

‘D’

0x17

‘E’

0x18

‘F’

0x19

‘G’

0x1A 0x1B

52

0x1C

51

0x1D 0x1E 0x1F

64

0x20

63

0x21

62

0x22

61

0x23 0x24 0x25 0x26 0x27

http://www.xilinx.com

60 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 3: MicroBlaze Endianness
R

Interface Between BRAM and MicroBlaze

entity Local_Memory is
 port (
 Clk : in std_logic;
 Reset : in boolean;

 -- Instruction Bus
 Instr_Addr : in std_logic_vector(0 to 31);
 Instr : out std_logic_vector(0 to 31);
 IFetch : in std_logic;
 I_AS : in std_logic;
 IReady : out std_logic;

 -- ports to "Decode_I"
 Data_Addr : in std_logic_vector(0 to 31);
 Data_Read : out std_logic_vector(0 to 31);
 Data_Write : in std_logic_vector(0 to 31);
 D_AS : in std_logic;
 Read_Strobe : in std_logic;
 Write_Strobe : in std_logic;
 DReady : out std_logic;
 Byte_Enable : in std_logic_vector(0 to 3)
);

end Local_Memory;

architecture IMP of Local_Memory is

BRAM Component Declaration (little-endian)

 component mem_dp_0 is
 port (
 addra : in std_logic_vector(9 downto 0);
 addrb : in std_logic_vector(9 downto 0);
 clka : in std_logic;
 clkb : in std_logic;
 dinb : in std_logic_vector(7 downto 0);
 douta : out std_logic_vector(7 downto 0);
 doutb : out std_logic_vector(7 downto 0);
 web : in std_logic);
 end component mem_dp_0;

Swap BRAM Little-endian Data to Big-endian

Swap_BE_and_LE_order : process (....)
begin
 for I in addra'range loop
 addra(I) <= Instr_Addr(29-I);
 end loop;
 for I in addrb'range loop
 addrb(I) <= Data_Addr(29-I);
 end loop;
 for I in 0 to 3 loop
 for J in 0 to 7 loop
 dinb(I*8+J) <= Data_Write((3-I)*8+(7-J));
 Instr((3-I)*8+(7-J)) <= douta(I*8+J);
 Data_Read((3-I)*8+(7-J)) <= doutb(I*8+J);
 end loop;

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 61
EDK (v3.2) April 1, 2003 1-800-255-7778

VHDL Example
R

 end loop;
 end process Swap_BE_and_LE_order;

BRAM Instantiation

mem_dp_0_I : mem_dp_0
port map (
addra=>addra, --[IN std_logic_VECTOR(9 downto 0)]
addrb=>addrb, --[IN std_logic_VECTOR(9 downto 0)]
clka=>Clk, --[IN std_logic]
clkb=>Clk, --[IN std_logic]
dinb=>dinb(31 downto 24)--[IN std_logic_VECTOR(7 downto 0)]
douta=>douta(31 downto 24), --[OUT std_logic_VECTOR(7 downto 0)]
doutb => doutb(31 downto 24), --[OUT std_logic_VECTOR(7 downto 0)]
web=>we(0)); --[IN std_logic]

BRAM – OPB Example
OPB uses big-endian byte addressing, while the BRAM uses little-endian byte addressing.
To translate data between the two buses, swap the data and address bytes.

Interface Between BRAM and MicroBlaze

library IEEE;
use IEEE.std_logic_1164.all;

entity OPB_BRAM is
 generic (
 C_BASEADDR : std_logic_vector(0 to 31) := X"B000_0000";
 C_NO_BRAMS : natural := 4; -- Can be 4,8,16,32 only
 C_VIRTEXII : boolean := true
);
 port (
 -- Global signals
 OPB_Clk : in std_logic;
 OPB_Rst : in std_logic;

 -- OPB signals
 OPB_ABus : in std_logic_vector(0 to 31);
 OPB_BE : in std_logic_vector(0 to 3);
 OPB_RNW : in std_logic;
 OPB_select : in std_logic;
 OPB_seqAddr : in std_logic;
 OPB_DBus : in std_logic_vector(0 to 31);

 OPB_BRAM_DBus : out std_logic_vector(0 to 31);
 OPB_BRAM_errAck : out std_logic;
 OPB_BRAM_retry : out std_logic;
 OPB_BRAM_toutSup : out std_logic;
 OPB_BRAM_xferAck : out std_logic;

 -- OPB_BRAM signals (other port)
 BRAM_Clk : in std_logic;
 BRAM_Addr : in std_logic_vector(0 to 31);
 BRAM_WE : in std_logic_vector(0 to 3);
 BRAM_Write_Data : in std_logic_vector(0 to 31);
 BRAM_Read_Data : out std_logic_vector(0 to 31)
);

http://www.xilinx.com

62 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 3: MicroBlaze Endianness
R

end entity OPB_BRAM;

architecture IMP of OPB_BRAM is

BRAM Component Declaration (little-endian)

component RAMB16_S9_S9
 port (
 DIA : in std_logic_vector (7 downto 0);
 DIB : in std_logic_vector (7 downto 0);
 DIPA : in std_logic_vector (0 downto 0);
 DIPB : in std_logic_vector (0 downto 0);
 ENA : in std_ulogic;
 ENB : in std_ulogic;
 WEA : in std_ulogic;
 WEB : in std_ulogic;
 SSRA : in std_ulogic;
 SSRB : in std_ulogic;
 CLKA : in std_ulogic;
 CLKB : in std_ulogic;
 ADDRA : in std_logic_vector (10 downto 0);
 ADDRB : in std_logic_vector (10 downto 0);
 DOA : out std_logic_vector (7 downto 0);
 DOB : out std_logic_vector (7 downto 0);
 DOPA : out std_logic_vector (0 downto 0);
 DOPB : out std_logic_vector (0 downto 0));
 end component;
Swap BRAM Little-endian Data to Big-endian
 BE_to_LE : for I in 0 to 31 generate
 opb_dbus_le(I) <= OPB_DBus(31-I);
 bram_write_data_le(I) <= BRAM_Write_Data(31-I);
 BRAM_Read_Data(I) <= bram_Read_Data_LE(31-I);
 opb_ABus_LE(I) <= OPB_ABus(31-I);
 bram_Addr_LE(I) <= BRAM_Addr(31-I);
 end generate BE_to_LE;

BRAM Instantiation

All_Brams : for I in 0 to C_NO_BRAMS-1 generate

By_8 : if (C_NO_BRAMS = 4) generate

RAMB16_S9_S9_I : RAMB16_S9_S9
port map (
DIA => opb_DBUS_LE(((I+1)*8-1) downto I*8), --[in std_logic_vector(7
downto 0)]
DIB =>bram_Write_Data_LE(((I+1)*8)-1 downto I*8), --[in
std_logic_vector (downto 0)]
DIPA => null_1, -- [in std_logic_vector (7 downto 0)]
DIPB => null_1, -- [in std_logic_vector (7 downto 0)]
ENA => '1', -- [in std_ulogic]
ENB => '1', -- [in std_ulogic]
WEA => opb_WE(I), -- [in std_ulogic]
WEB => BRAM_WE(I), -- [in std_ulogic]
SSRA => '0', -- [in std_ulogic]
SSRB => '0', -- [in std_ulogic]
CLKA => OPB_Clk, -- [in std_ulogic]
CLKB => BRAM_Clk, -- [in std_ulogic]

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 63
EDK (v3.2) April 1, 2003 1-800-255-7778

VHDL Example
R

ADDRA => opb_ABus_LE(12 downto 2), -- [in std_logic_vector (10 downto
0)]
ADDRB => bram_Addr_LE(12 downto 2), -- [in std_logic_vector (10 downto
0)]
DOA=>opb_BRAM_DBus_LE_I(((I+1)*8-1)downto I*8),--[out
std_logic_vector(7 downto 0)]
DOB =>bram_Read_Data_LE(((I+1)*8-1) downto I*8),--[out
std_logic_vector(7 downto 0)]
DOPA => open, -- [out std_logic_vector (0 downto 0)]
DOPB => open); -- [out std_logic_vector (0 downto 0)]
end generate By_8;

http://www.xilinx.com

64 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 3: MicroBlaze Endianness
R

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 65
EDK (v3.2) April 1, 2003 1-800-255-7778

R

Chapter 4

MicroBlaze Application Binary
Interface

Scope
This document describes MicroBlaze Application Binary Interface (ABI), which is
important for developing software in assembly language for the soft processor. The
MicroBlaze GNU compiler follows the conventions described in this document. Hence any
code written by assembly programmers should also follow the same conventions to be
compatible with the compiler generated code. Interrupt and Exception handling is also
explained briefly in the document.

Data Types
The data types used by MicroBlaze assembly programs are shown in Table 4-1. Data types
such as data8, data16, and data32 are used in place of the usual byte, halfword, and word.

Register Usage Conventions
The register usage convention for MicroBlaze is given in Table 4-2.

Table 4-1: Data types in MicroBlaze assembly programs

MicroBlaze data types
(for assembly programs)

Corresponding
ANSI C data types

Size (bytes)

data8 char 1

data16 short 2

data32 int 4

data32 long int 4

data32 enum 4

data16/data32 pointera

a.Pointers to small data areas, which can be accessed by global pointers are
data16.

2/4

http://www.xilinx.com

66 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 4: MicroBlaze Application Binary Interface
R

The architecture for MicroBlaze defines 32 general purpose registers (GPRs). These
registers are classified as volatile, non-volatile and dedicated.

• The volatile registers are used as temporaries and do not retain values across the
function calls. Registers R3 through R12 are volatile, of which R3 and R4 are used for
returning values to the caller function, if any. Registers R5 through R10 are used for
passing parameters between sub-routines.

• Registers R19 through R31 retain their contents across function calls and are hence
termed as non-volatile registers. The callee function is expected to save those non-
volatile registers, which are being used. These are typically saved to the stack during
the prologue and then reloaded during the epilogue.

• Certain registers are used as dedicated registers and programmers are not expected to
use them for any other purpose.

♦ Registers R14 through R17 are used for storing the return address from interrupts,
sub-routines, traps and exceptions in that order. Sub-routines are called using the
branch and link instruction, which saves the current Program Counter (PC) onto
register R15.

♦ Small data area pointers are used for accessing certain memory locations with 16
bit immediate value. These areas are discussed in the memory model section of
this document. The read only small data area (SDA) anchor R2 (Read-Only) is
used to access the constants such as literals. The other SDA anchor R13 (Read-
Write) is used for accessing the values in the small data read-write section.

♦ Register R1 stores the value of the stack pointer and is updated on entry and exit
from functions.

Table 4-2: Register usage conventions

Register Type Purpose

R0 Dedicated Value 0

R1 Dedicated Stack Pointer

R2 Dedicated Read-only small data area anchor

R3-R4 Volatile Return Values

R5-R10 Volatile Passing parameters/Temporaries

R11-R12 Volatile Temporaries

R13 Dedicated Read-write small data area anchor

R14 Dedicated Return address for Interrupt

R15 Dedicated Return address for Sub-routine

R16 Dedicated Return address for Trap (Debugger)

R17 Dedicated Return Address for Exceptions

R18 Dedicated Reserved for Assembler

R19-R31 Non-Volatile Must be saved across function calls

RPC Special Program counter

RMSR Special Machine Status Register

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 67
EDK (v3.2) April 1, 2003 1-800-255-7778

Stack Convention
R

♦ Register R18 is used as a temporary register for assembler operations.

• MicroBlaze has certain special registers such as a program counter (rpc) and machine
status register (rmsr). These registers are not mapped directly to the register file and
hence the usage of these registers is different from the general purpose registers. The
value from rmsr and rpc can be transferred to general purpose registers by using mts
and mfs instructions (For more details refer to the “MicroBlaze Application Binary
Interface” chapter).

Stack Convention
The stack conventions used by MicroBlaze are detailed in Figure 4-1

The shaded area in Figure 4-1 denotes a part of the caller function’s stack frame, while the
unshaded area indicates the callee function’s frame. The ABI conventions of the stack
frame define the protocol for passing parameters, preserving non-volatile register values
and allocating space for the local variables in a function. Functions which contain calls to
other sub-routines are called as non-leaf functions, These non-leaf functions have to create
a new stack frame area for its own use. When the program starts executing, the stack
pointer will have the maximum value. As functions are called, the stack pointer is
decremented by the number of words required by every function for its stack frame. The
stack pointer of a caller function will always have a higher value as compared to the callee
function.

Figure 4-1: Stack Convention

High Address

Function Parameters for called sub-routine

(Arg n ..Arg1)

(Optional: Maximum number of arguments
required for any called procedure from the
current procedure.)

Old Stack Pointer Link Register (R15)

Callee Saved Register (R31....R19)

(Optional: Only those registers which are used
by the current procedure are saved)

Local Variables for Current Procedure

(Optional: Present only if Locals defined in the
procedure)

Functional Parameters (Arg n .. Arg 1)

(Optional: Maximum number of arguments
required for any called procedure from the
current procedure)

New Stack
Pointer

Link Register

Low Address

http://www.xilinx.com

68 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 4: MicroBlaze Application Binary Interface
R

Consider an example where Func1 calls Func2, which in turn calls Func3. The stack
representation at different instances is depicted in Figure 4-2. After the call from Func 1 to
Func 2, the value of the stack pointer (SP) is decremented. This value of SP is again
decremented to accommodate the stack frame for Func3. On return from Func 3 the value
of the stack pointer is increased to its original value in the function, Func 2.

Details of how the stack is maintained are shown in Figure 4-2.

Figure 4-2: Stack Frame

Calling Convention
The caller function passes parameters to the callee function using either the registers (R5
through R10) or on its own stack frame. The callee uses the caller’s stack area to store the
parameters passed to the callee.

Refer to Figure 4-2. The parameters for Func 2 are stored either in the registers R5 through
R10 or on the stack frame allocated for Func 1.

Memory Model
The memory model for MicroBlaze classifies the data into four different parts:

Small data area
Global initialized variables which are small in size are stored in this area. The
threshold for deciding the size of the variable to be stored in the small data area is set
to 8 bytes in the MicroBlaze C compiler (mb-gcc), but this can be changed by giving a
command line option to the compiler. Details about this option are discussed in the
GNU Compiler Tools chapter. 64K bytes of memory is allocated for the small data areas.
The small data area is accessed using the read-write small data area anchor (R13) and
a 16-bit offset. Allocating small variables to this area reduces the requirement of
adding Imm instructions to the code for accessing global variables. Any variable in the
small data area can also be accessed using an absolute address.

X9584

High Memory

Low Memory

SP

Func 1

SP

Func 1

Func 2

SP

Func 1

Func 2

Func 3
SP

Func 1

Func 2

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 69
EDK (v3.2) April 1, 2003 1-800-255-7778

Interrupt and Exception Handling
R

Data area
Comparatively large initialized variables are allocated to the data area, which can
either be accessed using the read-write SDA anchor R13 or using the absolute address,
depending on the command line option given to the compiler.

Common un-initialized area
Un-initialized global variables are allocated to the comm area and can be accessed
either using the absolute address or using the read-write small data area anchor R13.

Literals or constants
Constants are placed into the read-only small data area and are accessed using the
read-only small data area anchor R2.

The compiler generates appropriate global pointers to act as base pointers. The actual
values of the SDA anchors are decided by the linker, in the final linking stages. For more
information on the various sections of the memory please refer to the Address Management
chapter. The compiler generates appropriate sections, depending on the command line
options. Please refer to the GNU Compiler Tools chapter for more information about these
options.

Interrupt and Exception Handling
MicroBlaze assumes certain address locations for handling interrupts and exceptions as
indicated in Table 4-3. When the device is powered ON or on a reset, execution starts at
0x0. If an exception occurs, MicroBlaze jumps to address location 0x8, while in case of an
interrupt, the control is passed to address location 0x10. At these locations, code is written
to jump to the appropriate handlers.

The code expected at these locations is as shown in Figure 4-3. In case of programs
compiled without the -xl-mode-xmdstub compiler option, the crt0.o initialization file is
passed by the mb-gcc compiler to the mb-ld linker for linking. This file sets the appropriate
addresses of the exception handlers.

In case of programs compiled with the -xl-mode-xmdstub compiler option, the crt1.o
initialization file is linked to the output program. This program has to be run with the
xmdstub already loaded in the memory at address location 0x0. Hence at run-time, the
initialization code in crt1.o writes the appropriate instructions to location 0x8 through 0x14
depending on the address of the exception and interrupt handlers.

Table 4-3: Interrupt and Exception Handling

On Hardware jumps to Software Labels

Start / Reset 0x0 _start

Exception 0x8 _exception_handler

Interrupt 0x10 _interrupt_handler

http://www.xilinx.com

70 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 4: MicroBlaze Application Binary Interface
R

Figure 4-3: Code for passing control to exception and interrupt handlers

MicroBlaze allows exception and interrupt handler routines to be located at any address
location addressable using 32 bits. The exception handler code starts with the label
_exception_handler, while the interrupt handler code starts with the label
_interrupt_handler.

In the current MicroBlaze system, there are dummy routines for interrupt or exception
handling, which you can change. In order to override these routines and link your
interrupt and exception handlers, you must define the interrupt handler code with an
attribute interrupt_handler. For more details about the use and syntax of the interrupt
handler attribute, please refer to the GNU Compiler Tools chapter.

0x00: bri _start1
0x04: nop
0x08: imm high bits of address (exception handler)
0x0c: bri _exception_handler
0x10: imm high bits of address (interrupt handler)
0x14: bri _interrupt_handler

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 71
EDK (v3.2) April 1, 2003 1-800-255-7778

R

Chapter 5

MicroBlaze Instruction Set Architecture

Summary
This chapter provides a detailed guide to the Instruction Set Architecture of MicroBlaze™.

Notation
The symbols used throughout this document are defined in Table 1.

Table 1: Symbol notation

Symbol Meaning

+ Add

- Subtract

× Multiply

∧ Bitwise logical AND

∨ Bitwise logical OR

⊕ Bitwise logical XOR

x Bitwise logical complement of x

← Assignment

>> Right shift

<< Left shift

rx Register x

x[i] Bit i in register x

x[i:j] Bits i through j in register x

= Equal comparison

≠ Not equal comparison

> Greater than comparison

>= Greater than or equal comparison

< Less than comparison

<= Less than or equal comparison

http://www.xilinx.com

72 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 5: MicroBlaze Instruction Set Architecture
R

Formats
MicroBlaze uses two instruction formats: Type A and Type B.

Type A

Type A is used for register-register instructions. It contains the opcode, one destination and
two source registers.

Type B

Type B is used for register-immediate instructions. It contains the opcode, one destination
and one source registers, and a source 16-bit immediate value.

Instructions
MicroBlaze instructions are described next. Instructions are listed in alphabetical order. For
each instruction Xilinx provides the mnemonic, encoding, a description of it, pseudocode
of its semantics, and a list of registers that it modifies.

sext(x) Sign-extend x

Mem(x) Memory location at address x

FSLx FSL interface x

Table 1: Symbol notation

Symbol Meaning

Opcode Destination Reg Source Reg A Source Reg B 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

Opcode Destination Reg Source Reg A Immediate Value

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 73
EDK (v3.2) April 1, 2003 1-800-255-7778

Instructions
R

add Arithmetic Add

Description

The sum of the contents of registers rA and rB, is placed into register rD.

Bit 3 of the instruction (labeled as K in the figure) is set to a one for the mnemonic addk. Bit
4 of the instruction (labeled as C in the figure) is set to a one for the mnemonic addc. Both
bits are set to a one for the mnemonic addkc.

When an add instruction has bit 3 set (addk, addkc), the carry flag will Keep its previous
value regardless of the outcome of the execution of the instruction. If bit 3 is cleared (add,
addc), then the carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to a one (addc, addkc), the content of the carry flag
(MSR[C]) affects the execution of the instruction. When bit 4 is cleared (add, addk), the
content of the carry flag does not affect the execution of the instruction (providing a normal
addition).

Pseudocode

if C = 0 then
(rD) ← (rA) + (rB)

else
(rD) ← (rA) + (rB) + MSR[C]

if K = 0 then
MSR[C] ← CarryOut

Registers Altered

• rD

• MSR[C]

Latency

1 cycle

Note

The C bit in the instruction opcode is not the same as the carry bit in the MSR register.

add rD, rA, rB Add

addc rD, rA, rB Add with Carry

addk rD, rA, rB Add and Keep Carry

addkc rD, rA, rB Add with Carry and Keep Carry

0 0 0 K C 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

74 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 5: MicroBlaze Instruction Set Architecture
R

addi Arithmetic Add Immediate

Description

The sum of the contents of registers rA and the value in the IMM field, sign-extended to 32
bits, is placed into register rD. Bit 3 of the instruction (labeled as K in the figure) is set to a
one for the mnemonic addik. Bit 4 of the instruction (labeled as C in the figure) is set to a
one for the mnemonic addic. Both bits are set to a one for the mnemonic addikc.

When an addi instruction has bit 3 set (addik, addikc), the carry flag will Keep its previous
value regardless of the outcome of the execution of the instruction. If bit 3 is cleared (addi,
addic), then the carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to a one (addic, addikc), the content of the carry flag
(MSR[C]) affects the execution of the instruction. When bit 4 is cleared (addi, addik), the
content of the carry flag does not affect the execution of the instruction (providing a normal
addition).

Pseudocode

if C = 0 then
(rD) ← (rA) + sext(IMM)

else
(rD) ← (rA) + sext(IMM) + MSR[C]

if K = 0 then
MSR[C] ← CarryOut

Registers Altered

• rD

• MSR[C]

Latency

1 cycle

Notes

The C bit in the instruction opcode is not the same as the carry bit in the MSR register.

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

addi rD, rA, IMM Add Immediate

addic rD, rA, IMM Add Immediate with Carry

addik rD, rA, IMM Add Immediate and Keep Carry

addikc rD, rA, IMM Add Immediate with Carry and Keep Carry

0 0 1 K C 0 rD rA IMM

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 75
EDK (v3.2) April 1, 2003 1-800-255-7778

Instructions
R

and Logical AND

Description

The contents of register rA are ANDed with the contents of register rB; the result is placed
into register rD.

Pseudocode

(rD) ← (rA) ∧ (rB)

Registers Altered

• rD

Latency

1 cycle

and rD, rA, rB

1 0 0 0 0 1 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

76 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 5: MicroBlaze Instruction Set Architecture
R

andi Logial AND with Immediate

Description

The contents of register rA are ANDed with the value of the IMM field, sign-extended to 32
bits; the result is placed into register rD.

Pseudocode

(rD) ← (rA) ∧ sext(IMM)

Registers Altered

• rD

Latency

1 cycle

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an IMM instruction. See the imm instruction for details on using
32-bit immediate values.

andi rD, rA, IMM

1 0 1 0 0 1 rD rA IMM

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 77
EDK (v3.2) April 1, 2003 1-800-255-7778

Instructions
R

andn Logical AND NOT

Description

The contents of register rA are ANDed with the logical complement of the contents of
register rB; the result is placed into register rD.

Pseudocode

(rD) ← (rA) ∧ (rB)

Registers Altered

• rD

Latency

1 cycle

andn rD, rA, rB

1 0 0 0 1 1 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

78 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 5: MicroBlaze Instruction Set Architecture
R

andni Logical AND NOT with Immediate

Description

The IMM field is sign-extended to 32 bits. The contents of register rA are ANDed with the
logical complement of the extended IMM field; the result is placed into register rD.

Pseudocode

(rD) ← (rA) ∧ (sext(IMM))

Registers Altered

• rD

Latency

1 cycle

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

andni rD, rA, IMM

1 0 1 0 1 1 rD rA IMM

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 79
EDK (v3.2) April 1, 2003 1-800-255-7778

Instructions
R

beq Branch if Equal

Description

Branch if rA is equal to 0, to the instruction located in the offset value of rB. The target of
the branch will be the instruction at address PC + rB.

The mnemonic beqd will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (i.e. in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so
the instruction to be executed after the branch is the target instruction.

Pseudocode

If rA = 0 then
PC ← PC + rB

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

• PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

beq rA, rB Branch if Equal

beqd rA, rB Branch if Equal with Delay

1 0 0 1 1 1 D 0 0 0 0 rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

80 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 5: MicroBlaze Instruction Set Architecture
R

beqi Branch Immediate if Equal

Description

Branch if rA is equal to 0, to the instruction located in the offset value of IMM. The target
of the branch will be the instruction at address PC + IMM.

The mnemonic beqid will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (i.e. in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so
the instruction to be executed after the branch is the target instruction.

Pseudocode

If rA = 0 then
PC ← PC + sext(IMM)

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

• PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

beqi rA, IMM Branch Immediate if Equal

beqid rA, IMM Branch Immediate if Equal with Delay

1 0 1 1 1 1 D 0 0 0 0 rA IMM

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 81
EDK (v3.2) April 1, 2003 1-800-255-7778

Instructions
R

bge Branch if Greater or Equal

Description

Branch if rA is greater or equal to 0, to the instruction located in the offset value of rB. The
target of the branch will be the instruction at address PC + rB.

The mnemonic bged will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (i.e. in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so
the instruction to be executed after the branch is the target instruction.

Pseudocode

If rA >= 0 then
PC ← PC + rB

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

• PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

bge rA, rB Branch if Greater or Equal

bged rA, rB Branch if Greater or Equal with Delay

1 0 0 1 1 1 D 0 1 0 1 rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

82 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 5: MicroBlaze Instruction Set Architecture
R

bgei Branch Immediate if Greater or Equal

Description

Branch if rA is greater or equal to 0, to the instruction located in the offset value of IMM.
The target of the branch will be the instruction at address PC + IMM.

The mnemonic bgeid will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (i.e. in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so
the instruction to be executed after the branch is the target instruction.

Pseudocode

If rA >= 0 then
PC ← PC + sext(IMM)

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

• PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

bgei rA, IMM Branch Immediate if Greater or Equal

bgeid rA, IMM Branch Immediate if Greater or Equal with Delay

1 0 1 1 1 1 D 0 1 0 1 rA IMM

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 83
EDK (v3.2) April 1, 2003 1-800-255-7778

Instructions
R

bgt Branch if Greater Than

Description

Branch if rA is greater than 0, to the instruction located in the offset value of rB. The target
of the branch will be the instruction at address PC + rB.

The mnemonic bgtd will set the D bit. The D bit determines whether there is a branch delay
slot or not. If the D bit is set, it means that there is a delay slot and the instruction following
the branch (i.e. in the branch delay slot) is allowed to complete execution before executing
the target instruction. If the D bit is not set, it means that there is no delay slot, so the
instruction to be executed after the branch is the target instruction.

Pseudocode

If rA > 0 then
PC ← PC + rB

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

• PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

bgt rA, rB Branch if Greater Than

bgtd rA, rB Branch if Greater Than with Delay

1 0 0 1 1 1 D 0 1 0 0 rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

84 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 5: MicroBlaze Instruction Set Architecture
R

bgti Branch Immediate if Greater Than

Description

Branch if rA is greater than 0, to the instruction located in the offset value of IMM. The
target of the branch will be the instruction at address PC + IMM.

The mnemonic bgtid will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (i.e. in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so
the instruction to be executed after the branch is the target instruction.

Pseudocode

If rA > 0 then
PC ← PC + sext(IMM)

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

• PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

bgti rA, IMM Branch Immediate if Greater Than

bgtid rA, IMM Branch Immediate if Greater Than with Delay

1 0 1 1 1 1 D 0 1 0 0 rA IMM

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 85
EDK (v3.2) April 1, 2003 1-800-255-7778

Instructions
R

ble Branch if Less or Equal

Description

Branch if rA is less or equal to 0, to the instruction located in the offset value of rB. The
target of the branch will be the instruction at address PC + rB.

The mnemonic bled will set the D bit. The D bit determines whether there is a branch delay
slot or not. If the D bit is set, it means that there is a delay slot and the instruction following
the branch (i.e. in the branch delay slot) is allowed to complete execution before executing
the target instruction. If the D bit is not set, it means that there is no delay slot, so the
instruction to be executed after the branch is the target instruction.

Pseudocode

If rA <= 0 then
PC ← PC + rB

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

• PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

ble rA, rB Branch if Less or Equal

bled rA, rB Branch if Less or Equal with Delay

1 0 0 1 1 1 D 0 0 1 1 rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

86 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 5: MicroBlaze Instruction Set Architecture
R

blei Branch Immediate if Less or Equal

Description

Branch if rA is less or equal to 0, to the instruction located in the offset value of IMM. The
target of the branch will be the instruction at address PC + IMM.

The mnemonic bleid will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (i.e. in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so
the instruction to be executed after the branch is the target instruction.

Pseudocode

If rA <= 0 then
PC ← PC + sext(IMM)

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

• PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

blei rA, IMM Branch Immediate if Less or Equal

bleid rA, IMM Branch Immediate if Less or Equal with Delay

1 0 1 1 1 1 D 0 0 1 1 rA IMM

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 87
EDK (v3.2) April 1, 2003 1-800-255-7778

Instructions
R

blt Branch if Less Than

Description

Branch if rA is less than 0, to the instruction located in the offset value of rB. The target of
the branch will be the instruction at address PC + rB.

The mnemonic bltd will set the D bit. The D bit determines whether there is a branch delay
slot or not. If the D bit is set, it means that there is a delay slot and the instruction following
the branch (i.e. in the branch delay slot) is allowed to complete execution before executing
the target instruction. If the D bit is not set, it means that there is no delay slot, so the
instruction to be executed after the branch is the target instruction.

Pseudocode

If rA < 0 then
PC ← PC + rB

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

• PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

blt rA, rB Branch if Less Than

bltd rA, rB Branch if Less Than with Delay

1 0 0 1 1 1 D 0 0 1 0 rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

88 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 5: MicroBlaze Instruction Set Architecture
R

blti Branch Immediate if Less Than

Description

Branch if rA is less than 0, to the instruction located in the offset value of IMM. The target
of the branch will be the instruction at address PC + IMM.

The mnemonic bltid will set the D bit. The D bit determines whether there is a branch delay
slot or not. If the D bit is set, it means that there is a delay slot and the instruction following
the branch (i.e. in the branch delay slot) is allowed to complete execution before executing
the target instruction. If the D bit is not set, it means that there is no delay slot, so the
instruction to be executed after the branch is the target instruction.

Pseudocode

If rA < 0 then
PC ← PC + sext(IMM)

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

• PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

blti rA, IMM Branch Immediate if Less Than

bltid rA, IMM Branch Immediate if Less Than with Delay

1 0 1 1 1 1 D 0 0 1 0 rA IMM

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 89
EDK (v3.2) April 1, 2003 1-800-255-7778

Instructions
R

bne Branch if Not Equal

Description

Branch if rA not equal to 0, to the instruction located in the offset value of rB. The target of
the branch will be the instruction at address PC + rB.

The mnemonic bned will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (i.e. in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so
the instruction to be executed after the branch is the target instruction.

Pseudocode

If rA ≠ 0 then
PC ← PC + rB

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

• PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

bne rA, rB Branch if Not Equal

bned rA, rB Branch if Not Equal with Delay

1 0 0 1 1 1 D 0 0 0 1 rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

90 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 5: MicroBlaze Instruction Set Architecture
R

bnei Branch Immediate if Not Equal

Description

Branch if rA not equal to 0, to the instruction located in the offset value of IMM. The target
of the branch will be the instruction at address PC + IMM.

The mnemonic bneid will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (i.e. in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so
the instruction to be executed after the branch is the target instruction.

Pseudocode

If rA ≠ 0 then
PC ← PC + sext(IMM)

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

• PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

bnei rA, IMM Branch Immediate if Not Equal

bneid rA, IMM Branch Immediate if Not Equal with Delay

1 0 1 1 1 1 D 0 0 0 1 rA IMM

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 91
EDK (v3.2) April 1, 2003 1-800-255-7778

Instructions
R

br Unconditional Branch

Description

Branch to the instruction located at address determined by rB.

The mnemonics brld and brald will set the L bit. If the L bit is set, linking will be
performed. The current value of PC will be stored in rD.

The mnemonics bra, brad and brald will set the A bit. If the A bit is set, it means that the
branch is to an absolute value and the target is the value in rB, otherwise, it is a relative
branch and the target will be PC + rB.

The mnemonics brd, brad, brld and brald will set the D bit. The D bit determines whether
there is a branch delay slot or not. If the D bit is set, it means that there is a delay slot and
the instruction following the branch (i.e. in the branch delay slot) is allowed to complete
execution before executing the target instruction. If the D bit is not set, it means that there
is no delay slot, so the instruction to be executed after the branch is the target instruction.

Pseudocode

if L = 1 then
(rD) ← PC

if A = 1 then
PC ← (rB)

else
PC ← PC + (rB)

if D = 1 then
allow following instruction to complete execution

Registers Altered

• rD

• PC

Latency

2 cycles (if the D bit is set) or 3 cycles (if the D bit is not set)

Note

The instructions brl and bral are not available.

br rB Branch

bra rB Branch Absolute

brd rB Branch with Delay

brad rB Branch Absolute with Delay

brld rD, rB Branch and Link with Delay

brald rD, rB Branch Absolute and Link with Delay

1 0 0 1 1 0 rD D A L 0 0 rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

92 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 5: MicroBlaze Instruction Set Architecture
R

bri Unconditional Branch Immediate

Description

Branch to the instruction located at address determined by IMM, sign-extended to 32 bits.

The mnemonics brlid and bralid will set the L bit. If the L bit is set, linking will be
performed. The current value of PC will be stored in rD.

The mnemonics brai, braid and bralid will set the A bit. If the A bit is set, it means that the
branch is to an absolute value and the target is the value in IMM, otherwise, it is a relative
branch and the target will be PC + IMM.

The mnemonics brid, braid, brlid and bralid will set the D bit. The D bit determines
whether there is a branch delay slot or not. If the D bit is set, it means that there is a delay
slot and the instruction following the branch (i.e. in the branch delay slot) is allowed to
complete execution before executing the target instruction. If the D bit is not set, it means
that there is no delay slot, so the instruction to be executed after the branch is the target
instruction.

Pseudocode

if L = 1 then
(rD) ← PC

if A = 1 then
PC ← (rB)

else
PC ← PC + (rB)

if D = 1 then
allow following instruction to complete execution

Registers Altered

• rD

• PC

Latency

2 cycles (if the D bit is set) or 3 cycles (if the D bit is not set)

bri IMM Branch Immediate

brai IMM Branch Absolute Immediate

brid IMM Branch Immediate with Delay

braid IMM Branch Absolute Immediate with Delay

brlid rD, IMM Branch and Link Immediate with Delay

bralid rD, IMM Branch Absolute and Link Immediate with Delay

1 0 1 1 1 0 rD D A L 0 0 IMM

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 93
EDK (v3.2) April 1, 2003 1-800-255-7778

Instructions
R

Notes

The instructions brli and brali are not available.

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

http://www.xilinx.com

94 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 5: MicroBlaze Instruction Set Architecture
R

brk Break

Description

Branch and link to the instruction located at address value in rB. The current value of PC
will be stored in rD. The BIP flag in the MSR will be set.

Pseudocode

(rD) ← PC
PC ← (rB)
MSR[BIP] ← 1

Registers Altered

• rD

• PC

• MSR[BIP]

Latency

3 cycles

brk rD, rB

1 0 0 1 1 0 rD 0 1 1 0 0 rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 95
EDK (v3.2) April 1, 2003 1-800-255-7778

Instructions
R

brki Break Immediate

Description

Branch and link to the instruction located at address value in IMM, sign-extended to 32
bits. The current value of PC will be stored in rD. The BIP flag in the MSR will be set.

Pseudocode

(rD) ← PC
PC ← sext(IMM)
MSR[BIP] ← 1

Registers Altered

• rD

• PC

• MSR[BIP]

Latency

3 cycles

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

brki rD, IMM

1 0 1 1 1 0 rD 0 1 1 0 0 IMM

0 6 11 16 31

http://www.xilinx.com

96 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 5: MicroBlaze Instruction Set Architecture
R

bs Barrel Shift

Description

Shifts the contents of register rA by the amount specified in register rB and puts the result
in register rD.

The mnemonic bsll sets the S bit (Side bit). If the S bit is set, the barrel shift is done to the
left. The mnemonics bsrl and bsra clear the S bit and the shift is done to the right.

The mnemonic bsra will set the T bit (Type bit). If the T bit is set, the barrel shift perfomed
is Arithmetical. The mnemonics bsrl and bsll clear the T bit and the shift performed is
Logical.

Pseudocode

if S = 1 then
(rD) ← (rA) << (rB)[27:31]

else
if T = 1 then
if ((rB)[27:31]) ≠ 0 then
(rD)[0:(rB)[27:31]-1] ← (rA)[0]
(rD)[(rB)[27:31]:31] ← (rA) >> (rB)[27:31]

else
(rD) ← (rA)

else
(rD) ← (rA) >> (rB)[27:31]

Registers Altered

• rD

Latency

2 cycles

Note

These instructions are optional.

bsrl rD, rA, rB Barrel Shift Right Logical

bsra rD, rA, rB Barrel Shift Right Arithmetical

bsll rD, rA, rB Barrel Shift Left Logical

0 1 0 0 0 1 rD rA rB S T 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 97
EDK (v3.2) April 1, 2003 1-800-255-7778

Instructions
R

bsi Barrel Shift Immediate

Description

Shifts the contents of register rA by the amount specified by IMM and puts the result in
register rD.

The mnemonic bsll sets the S bit (Side bit). If the S bit is set, the barrel shift is done to the
left. The mnemonics bsrl and bsra clear the S bit and the shift is done to the right.

The mnemonic bsra will set the T bit (Type bit). If the T bit is set, the barrel shift perfomed
is Arithmetical. The mnemonics bsrl and bsll clear the T bit and the shift performed is
Logical.

Pseudocode

if S = 1 then
(rD) ← (rA) << IMM

else
if T = 1 then
if IMM ≠ 0 then
(rD)[0:IMM-1] ← (rA)[0]
(rD)[IMM:31] ← (rA) >> IMM

else
(rD) ← (rA)

else
(rD) ← (rA) >> IMM

Registers Altered

• rD

Latency

2 cycles

Notes

These are not Type B Instructions. There is no effect from a preceeding imm instruction.

These instructions are optional.

bsrli rD, rA, IMM Barrel Shift Right Logical Immediate

bsrai rD, rA, IMM Barrel Shift Right Arithmetical Immediate

bslli rD, rA, IMM Barrel Shift Left Logical Immediate

0 1 1 0 0 1 rD rA 0 0 0 0 0 S T 0 0 0 0 IMM

0 6 11 16 21 27 31

http://www.xilinx.com

98 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 5: MicroBlaze Instruction Set Architecture
R

cmp Integer Compare

Description

The contents of register rA is subtracted from the contents of register rB and the result is
placed into register rD.

The MSB bit of rD is adjusted to shown true relation between rA and rB. If the U bit is set,
rA and rB is considered unsigned values. If the U bit is clear, rA and rB is considered
signed values

.

Pseudocode

if (rA) = (rB) then
(rD) ← 0

else
(rD)(MSB) ← (rA) > (rB)

Registers Altered

• rD

Latency

1 cycle

Notes

.

cmp rD, rA, rB compare rB with rA (signed)

cmpu rD, rA, rB compare rB with rA (unsigned)

0 0 0 1 0 1 rD rA rB 0 0 0 0 0 0 0 0 0 U 0

0 6 11 16 21 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 99
EDK (v3.2) April 1, 2003 1-800-255-7778

Instructions
R

get get from fsl interface

Description

MicroBlaze will read from the FSLx interface and place the result in register rD.

The get instruction has four variants.

The blocking versions will stall microblaze until the data from the FSL interface is valid.
The non-blocking versions will not stall microblaze and will set carry to ‘0’ if the data was
valid and to ‘1’ if the data was invalid.

The get and nget instructions expect the control bit from the FSL interface to be ‘0’. If this
is not the case, the instruction will set MSR[FSL_Error] to ‘1’. The cget and ncget
instructions expect the control bit from the FSL interface to be ‘1’. If this is not the case, the
instruction will set MSR[FSL_Error] to ‘1’.

Pseudocode

(rD) ← FSLx
if (N = 1) then
MSR[Carry] ← not (Valid FSL Data)

if (Control bit from FSL) /= C then
MSR[FSL_Error] ← 1

Registers Altered

• rD

• MSR[FSL_Error]

• MSR[Carry]

Latency

2 cycle if non-blocking or if data is valid at the FSL interface. For blocking instruction,
MicroBlaze will stall until the data is valid

Notes

.For nget and ncget, a rsubc instruction can be used for counting down a index variable

get rD, FSLx get data from FSL x (blocking)

nget rD, FSLx get data from FSL x (non-blocking)

cget rD, FSLx get control from FSL x (blocking)

ncget rD, FSLx get control from FSL x (non-blocking)

0 1 1 0 1 1 rD 0 0 0 0 0 0 n c 0 0 0 0 0 0 0 0 0 0 FSLx

0 6 11 16 21 31

http://www.xilinx.com

100 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 5: MicroBlaze Instruction Set Architecture
R

idiv Integer Divide

Description

The contents of register rB is divided withthe contents of register rB and the result is placed
into register rD.

If the U bit is set, rA and rB is considered unsigned values. If the U bit is clear, rA and rB is
considered signed values

If the value of rA is 0, the divide_by_zero bit in MSR will be set and the value in rD will be
0.

Pseudocode

if (rA) = 0then
(rD) ← 0

else
(rD) ← (rB) / (rA)

Registers Altered

• rD

• MSR[Divide_By_Zero]

Latency

2 cycle if (rA) = 0, otherwise 34 cycles

Notes

idiv rD, rA, rB divide rB with rA (signed)

idivu rD, rA, rB divide rB with rA (unsigned)

0 1 0 0 1 0 rD rA rB 0 0 0 0 0 0 0 0 0 U 0

0 6 11 16 21 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 101
EDK (v3.2) April 1, 2003 1-800-255-7778

Instructions
R

.imm Immediate

Description

The instruction imm loads the IMM value into a temporary register. It also locks this value
so it can be used by the following instruction and form a 32-bit immediate value.

The instruction imm is used in conjunction with Type B instructions. Since Type B
instructions have only a 16-bit immediate value field, a 32-bit immediate value cannot be
used directly. However, 32-bit immediate values can be used in MicroBlaze. By default,
Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm instruction. The imm instruction locks the 16-bit IMM value
temporarily for the next instruction. A Type B instruction that immediately follows the
imm instruction will then form a 32-bit immediate value from the 16-bit IMM value of the
imm instruction (upper 16 bits) and its own 16-bit immediate value field (lower 16 bits). If
no Type B instruction follows the IMM instruction, the locked value gets unlocked and
becomes useless.

Latency

1 cycle

Note

The imm instruction and the Type B instruction following it are atomic, hence no
interrupts are allowed between them.

imm IMM

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 IMM

0 6 11 16 31

http://www.xilinx.com

102 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 5: MicroBlaze Instruction Set Architecture
R

lbu Load Byte Unsigned

Description

Loads a byte (8 bits) from the memory location that results from adding the contents of
registers rA and rB. The data is placed in the least significant byte of register rD and the
other three bytes in rD are cleared.

Pseudocode

Addr ← (rA) + (rB)
(rD)[24:31] ← Mem(Addr)
(rD)[0:23] ← 0

Registers Altered

• rD

Latency

2 cycles

lbu rD, rA, rB

1 1 0 0 0 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 103
EDK (v3.2) April 1, 2003 1-800-255-7778

Instructions
R

lbui Load Byte Unsigned Immediate

Description

Loads a byte (8 bits) from the memory location that results from adding the contents of
register rA with the value in IMM, sign-extended to 32 bits. The data is placed in the least
significant byte of register rD and the other three bytes in rD are cleared.

Pseudocode

Addr ← (rA) + sext(IMM)
(rD)[24:31] ← Mem(Addr)
(rD)[0:23] ← 0

Registers Altered

• rD

Latency

2 cycles

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

lbui rD, rA, IMM

1 1 1 0 0 0 rD rA IMM

0 6 11 16 31

http://www.xilinx.com

104 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 5: MicroBlaze Instruction Set Architecture
R

lhu Load Halfword Unsigned

Description

Loads a halfword (16 bits) from the halfword aligned memory location that results from
adding the contents of registers rA and rB. The data is placed in the least significant
halfword of register rD and the most significant halfword in rD is cleared.

Pseudocode

Addr ← (rA) + (rB)
Addr[31] ← 0
(rD)[16:31] ← Mem(Addr)
(rD)[0:15] ← 0

Registers Altered

• rD

Latency

2 cycles

lhu rD, rA, rB

1 1 0 0 0 1 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 105
EDK (v3.2) April 1, 2003 1-800-255-7778

Instructions
R

lhui Load Halfword Unsigned Immediate

Description

Loads a halfword (16 bits) from the halfword aligned memory location that results from
adding the contents of register rA and the value in IMM, sign-extended to 32 bits. The data
is placed in the least significant halfword of register rD and the most significant halfword
in rD is cleared.

Pseudocode

Addr ← (rA) + sext(IMM)
Addr[31] ← 0
(rD)[16:31] ← Mem(Addr)
(rD)[0:15] ← 0

Registers Altered

• rD

Latency

2 cycles

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

lhui rD, rA, IMM

1 1 1 0 0 1 rD rA IMM

0 6 11 16 31

http://www.xilinx.com

106 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 5: MicroBlaze Instruction Set Architecture
R

lw Load Word

Description

Loads a word (32 bits) from the word aligned memory location that results from adding
the contents of registers rA and rB. The data is placed in register rD.

Pseudocode

Addr ← (rA) + (rB)
Addr[30:31] ← 00
(rD) ← Mem(Addr)

Registers Altered

• rD

Latency

2 cycles

lw rD, rA, rB

1 1 0 0 1 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 107
EDK (v3.2) April 1, 2003 1-800-255-7778

Instructions
R

lwi Load Word Immediate

Description

Loads a word (32 bits) from the word aligned memory location that results from adding
the contents of register rA and the value IMM, sign-extended to 32 bits. The data is placed
in register rD.

Pseudocode

Addr ← (rA) + sext(IMM)
Addr[30:31] ← 00
(rD) ← Mem(Addr)

Registers Altered

• rD

Latency

2 cycles

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

lwi rD, rA, IMM

1 1 1 0 1 0 rD rA IMM

0 6 11 16 31

http://www.xilinx.com

108 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 5: MicroBlaze Instruction Set Architecture
R

mfs Move From Special Purpose Register

Description

Copies the contents of the special purpose register rS into register rD.

Pseudocode

(rD) ← (rS)

Registers Altered

• rD

Latency

1 cycle

Note

To refer to special purpose registers in assembly language, use rpc for PC and rmsr for
MSR.

mfs rD, rS

1 0 0 1 0 1 rD 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 rS

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 109
EDK (v3.2) April 1, 2003 1-800-255-7778

Instructions
R

mts Move To Special Purpose Register

Description

Copies the contents of register rD into the MSR register.

Pseudocode

(rS) ← (rA)

Registers Altered

• rS

Latency

1 cycle

Notes

You cannot write to the PC using the MTS instruction.

When writing to MSR using MTS, the value written will take effect one clock cycle after
executing the MTS instruction.

To refer to special purpose registers in assembly language, use rpc for PC and rmsr for
MSR.

mts rS, rA

1 0 0 1 0 1 0 0 0 0 0 rA 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 rS

0 6 11 16 31

http://www.xilinx.com

110 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 5: MicroBlaze Instruction Set Architecture
R

mul Multiply

Description

Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-
bit by 32-bit multiplication that will produce a 64-bit result. The least significant word of
this value is placed in rD.

Pseudocode

(rD) ← (rA) × (rB)

Registers Altered

• rD

Latency

3 cycles

Note

This instruction is only valid if the target architecture has an embedded multiplier.

mul rD, rA, rB

0 1 0 0 0 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 111
EDK (v3.2) April 1, 2003 1-800-255-7778

Instructions
R

muli Multiply Immediate

Description

Multiplies the contents of registers rA and the value IMM, sign-extended to 32 bits; and
puts the result in register rD. This is a 32-bit by 32-bit multiplication that will produce a 64-
bit result. The least significant word of this value is placed in rD.

Pseudocode

(rD) ← (rA) × sext(IMM)

Registers Altered

• rD

Latency

3 cycles

Notes

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

This instruction is only valid if the target architecture has an embedded multiplier.

muli rD, rA, IMM

0 1 1 0 0 0 rD rA IMM

0 6 11 16 31

http://www.xilinx.com

112 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 5: MicroBlaze Instruction Set Architecture
R

or Logical OR

Description

The contents of register rA are ORed with the contents of register rB; the result is placed
into register rD.

Pseudocode

(rD) ← (rA) ∨ (rB)

Registers Altered

• rD

Latency

1 cycle

or rD, rA, rB

1 0 0 0 0 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 113
EDK (v3.2) April 1, 2003 1-800-255-7778

Instructions
R

ori Logical OR with Immediate

Description

The contents of register rA are ORed with the extended IMM field, sign-extended to 32
bits; the result is placed into register rD.

Pseudocode

(rD) ← (rA) ∨ (IMM)

Registers Altered

• rD

Latency

1 cycle

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

ori rD, rA, IMM

1 0 1 0 0 0 rD rA IMM

0 6 11 16 31

http://www.xilinx.com

114 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 5: MicroBlaze Instruction Set Architecture
R

put put to fsl interface

Description

MicroBlaze will write the value from register rA to the FSLx interface.

The put instruction has four variants.

The blocking versions will stall microblaze until there is space available in the FSL
interface. The non-blocking versions will not stall microblaze and will set carry to ‘0’ if
space was available and to ‘1’ if no space was available.

The put and nput instructions will set the control bit to the FSL interface to ‘0’ and the cput
and ncput instruction will set the control bit to ‘1’.

Pseudocode

(FSL x) ← (rA)
if (N = 1) then
MSR[Carry] ← not (Valid FSL Data)

(Control bit to FSL) ← C

Registers Altered

• MSR[Carry]

Latency

2 cycle for non-blocking or if space is available on the FSL interface. For blocking,
MicroBlaze stalls until space is avaible on the FSL interface

Notes

.

put rA, FSLx put data to FSL x (blocking)

nput rA, FSLx put data to FSL x (non-blocking)

cput rA, FSLx put control to FSL x (blocking)

ncput rA, FSLx put control to FSL x (non-blocking)

0 1 1 0 1 1 0 0 0 0 0 rA 1 n c 0 0 0 0 0 0 0 0 0 0 FSLx

0 6 11 16 21 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 115
EDK (v3.2) April 1, 2003 1-800-255-7778

Instructions
R

rsub Arithmetic Reverse Subtract

Description

The contents of register rA is subtracted from the contents of register rB and the result is
placed into register rD. Bit 3 of the instruction (labeled as K in the figure) is set to a one for
the mnemonic rsubk. Bit 4 of the instruction (labeled as C in the figure) is set to a one for
the mnemonic rsubc. Both bits are set to a one for the mnemonic rsubkc.

When an rsub instruction has bit 3 set (rsubk, rsubkc), the carry flag will Keep its previous
value regardless of the outcome of the execution of the instruction. If bit 3 is cleared (rsub,
rsubc), then the carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to a one (rsubc, rsubkc), the content of the carry flag
(MSR[C]) affects the execution of the instruction. When bit 4 is cleared (rsub, rsubk), the
content of the carry flag does not affect the execution of the instruction (providing a normal
subtraction).

Pseudocode

if C = 0 then
(rD) ← (rB) + (rA) + 1

else
(rD) ← (rB) + (rA) + MSR[C]

if K = 0 then
MSR[C] ← CarryOut

Registers Altered

• rD

• MSR[C]

Latency

1 cycle

Notes

In subtractions, Carry = (Borrow). When the Carry is set by a subtraction, it means that
there is no Borrow, and when the Carry is cleared, it means that there is a Borrow.

rsub rD, rA, rB Subtract

rsubc rD, rA, rB Subtract with Carry

rsubk rD, rA, rB Subtract and Keep Carry

rsubkc rD, rA, rB Subtract with Carry and Keep Carry

0 0 0 K C 1 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

116 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 5: MicroBlaze Instruction Set Architecture
R

rsubi Arithmetic Reverse Subtract Immediate

Description

The contents of register rA is subtracted from the value of IMM, sign-extended to 32 bits,
and the result is placed into register rD. Bit 3 of the instruction (labeled as K in the figure)
is set to a one for the mnemonic rsubik. Bit 4 of the instruction (labeled as C in the figure)
is set to a one for the mnemonic rsubic. Both bits are set to a one for the mnemonic rsubikc.

When an rsubi instruction has bit 3 set (rsubik, rsubikc), the carry flag will Keep its
previous value regardless of the outcome of the execution of the instruction. If bit 3 is
cleared (rsubi, rsubic), then the carry flag will be affected by the execution of the
instruction. When bit 4 of the instruction is set to a one (rsubic, rsubikc), the content of the
carry flag (MSR[C]) affects the execution of the instruction. When bit 4 is cleared (rsubi,
rsubik), the content of the carry flag does not affect the execution of the instruction
(providing a normal subtraction).

Pseudocode

if C = 0 then
(rD) ← sext(IMM) + (rA) + 1

else
(rD) ← sext(IMM) + (rA) + MSR[C]

if K = 0 then
MSR[C] ← CarryOut

Registers Altered

• rD

• MSR[C]

Latency

1 cycle

Notes

In subtractions, Carry = (Borrow). When the Carry is set by a subtraction, it means that
there is no Borrow, and when the Carry is cleared, it means that there is a Borrow.

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

rsubi rD, rA, IMM Subtract Immediate

rsubic rD, rA, IMM Subtract Immediate with Carry

rsubik rD, rA, IMM Subtract Immediate and Keep Carry

rsubikc rD, rA, IMM Subtract Immediate with Carry and Keep Carry

0 0 1 K C 1 rD rA IMM

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 117
EDK (v3.2) April 1, 2003 1-800-255-7778

Instructions
R

rtbd Return from Break
rn from Interrupt

Description

Return from break will branch to the location specified by the contents of rA plus the IMM
field, sign-extended to 32 bits. It will also enable breaks after execution by clearing the BIP
flag in the MSR.

This instruction always has a delay slot. The instruction following the RTBD is always
executed before the branch target. That delay slot instruction has breaks disabled.

Pseudocode

PC ← (rA) + sext(IMM)
allow following instruction to complete execution
MSR[BIP] ← 0

Registers Altered

• PC

• MSR[BIP]

Latency

2 cycles

rtbd rA, IMM

1 0 1 1 0 1 1 0 0 0 1 rA IMM

0 6 11 16 31

http://www.xilinx.com

118 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 5: MicroBlaze Instruction Set Architecture
R

rtid Return from Interrupt
rn from Interrupt

Description

Return from interrupt will branch to the location specified by the contents of rA plus the
IMM field, sign-extended to 32 bits. It will also enable interrupts after execution.

This instruction always has a delay slot. The instruction following the RTID is always
executed before the branch target. That delay slot instruction has interrupts disabled.

Pseudocode

PC ← (rA) + sext(IMM)
allow following instruction to complete execution
MSR[IE] ← 1

Registers Altered

• PC

• MSR[IE]

Latency

2 cycles

rtid rA, IMM

1 0 1 1 0 1 1 0 0 0 1 rA IMM

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 119
EDK (v3.2) April 1, 2003 1-800-255-7778

Instructions
R

rtsd Return from Subroutine

Description

Return from subroutine will branch to the location specified by the contents of rA plus the
IMM field, sign-extended to 32 bits.

This instruction always has a delay slot. The instruction following the RTSD is always
executed before the branch target.

Pseudocode

PC ← (rA) + sext(IMM)
allow following instruction to complete execution

Registers Altered

• PC

Latency

2 cycles

rtsd rA, IMM

1 0 1 1 0 1 1 0 0 0 0 rA IMM

0 6 11 16 31

http://www.xilinx.com

120 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 5: MicroBlaze Instruction Set Architecture
R

sb Store Byte

Description

Stores the contents of the least significant byte of register rD, into the memory location that
results from adding the contents of registers rA and rB.

Pseudocode

Addr ← (rA) + (rB)
Mem(Addr) ← (rD)[24:31]

Registers Altered

• None

Latency

2 cycles

sb rD, rA, rB

1 1 0 1 0 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 121
EDK (v3.2) April 1, 2003 1-800-255-7778

Instructions
R

sbi Store Byte Immediate

Description

Stores the contents of the least significant byte of register rD, into the memory location that
results from adding the contents of register rA and the value IMM, sign-extended to 32
bits.

Pseudocode

Addr ← (rA) + sext(IMM)
Mem(Addr) ← (rD)[24:31]

Registers Altered

• None

Latency

2 cycles

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

sbi rD, rA, IMM

1 1 1 1 0 0 rD rA IMM

0 6 11 16 31

http://www.xilinx.com

122 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 5: MicroBlaze Instruction Set Architecture
R

sext16 Sign Extend Halfword

Description

This instruction sign-extends a halfword (16 bits) into a word (32 bits). Bit 16 in rA will be
copied into bits 0-15 of rD. Bits 16-31 in rA will be copied into bits 16-31 of rD.

Pseudocode

(rD)[0:15] ← (rA)[16]
(rD)[16:31] ← (rA)[16:31]

Registers Altered

• rD

Latency

1 cycle

sext16 rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 123
EDK (v3.2) April 1, 2003 1-800-255-7778

Instructions
R

sext8 Sign Extend Byte

Description

This instruction sign-extends a byte (8 bits) into a word (32 bits). Bit 24 in rA will be copied
into bits 0-23 of rD. Bits 24-31 in rA will be copied into bits 24-31 of rD.

Pseudocode

(rD)[0:23] ← (rA)[24]
(rD)[24:31] ← (rA)[24:31]

Registers Altered

• rD

Latency

1 cycle

sext8 rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

0 6 11 16 31

http://www.xilinx.com

124 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 5: MicroBlaze Instruction Set Architecture
R

sh Store Halfword

Description

Stores the contents of the least significant halfword of register rD, into the halfword
aligned memory location that results from adding the contents of registers rA and rB.

Pseudocode

Addr ← (rA) + (rB)
Addr[31] ← 0
Mem(Addr) ← (rD)[16:31]

Registers Altered

• None

Latency

2 cycles

sh rD, rA, rB

1 1 0 1 0 1 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 125
EDK (v3.2) April 1, 2003 1-800-255-7778

Instructions
R

shi Store Halfword Immediate

Description

Stores the contents of the least significant halfword of register rD, into the halfword
aligned memory location that results from adding the contents of register rA and the value
IMM, sign-extended to 32 bits.

Pseudocode

Addr ← (rA) + sext(IMM)
Addr[31] ← 0
Mem(Addr) ← (rD)[16:31]

Registers Altered

• None

Latency

2 cycles

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

shi rD, rA, IMM

1 1 1 1 0 1 rD rA IMM

0 6 11 16 31

http://www.xilinx.com

126 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 5: MicroBlaze Instruction Set Architecture
R

sra Shift Right Arithmetic

Description

Shifts arithmetically the contents of register rA, one bit to the right, and places the result in
rD. The most significant bit of rA (i.e. the sign bit) placed in the most significant bit of rD.
The least significant bit coming out of the shift chain is placed in the Carry flag.

Pseudocode

(rD)[0] ← (rA)[0]
(rD)[1:31] ← (rA)[0:30]
MSR[C] ← (rA)[31]

Registers Altered

• rD

• MSR[C]

Latency

1 cycle

sra rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 127
EDK (v3.2) April 1, 2003 1-800-255-7778

Instructions
R

src Shift Right with Carry

Description

Shifts the contents of register rA, one bit to the right, and places the result in rD. The Carry
flag is shifted in the shift chain and placed in the most significant bit of rD. The least
significant bit coming out of the shift chain is placed in the Carry flag.

Pseudocode

(rD)[0] ← MSR[C]
(rD)[1:31] ← (rA)[0:30]
MSR[C] ← (rA)[31]

Registers Altered

• rD

• MSR[C]

Latency

1 cycle

src rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

0 6 11 16 31

http://www.xilinx.com

128 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 5: MicroBlaze Instruction Set Architecture
R

srl Shift Right Logical

Description

Shifts logically the contents of register rA, one bit to the right, and places the result in rD.
A zero is shifted in the shift chain and placed in the most significant bit of rD. The least
significant bit coming out of the shift chain is placed in the Carry flag.

Pseudocode

(rD)[0] ← 0
(rD)[1:31] ← (rA)[0:30]
MSR[C] ← (rA)[31]

Registers Altered

• rD

• MSR[C]

Latency

1 cycle

srl rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 129
EDK (v3.2) April 1, 2003 1-800-255-7778

Instructions
R

sw Store Word

Description

Stores the contents of register rD, into the word aligned memory location that results from
adding the contents of registers rA and rB.

Pseudocode

Addr ← (rA) + (rB)
Addr[30:31] ← 00
Mem(Addr) ← (rD)[0:31]

Registers Altered

• None

Latency

2 cycles

sw rD, rA, rB

1 1 0 1 1 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

130 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 5: MicroBlaze Instruction Set Architecture
R

swi Store Word Immediate

Description

Stores the contents of register rD, into the word aligned memory location that results from
adding the contents of registers rA and the value IMM, sign-extended to 32 bits.

Pseudocode

Addr ← (rA) + sext(IMM)
Addr[30:31] ← 00
Mem(Addr) ← (rD)[0:31]

Register Altered

• None

Latency

2 cycles

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

swi rD, rA, IMM

1 1 1 1 1 0 rD rA IMM

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 131
EDK (v3.2) April 1, 2003 1-800-255-7778

Instructions
R

wdc Write to Data Cache

Description

Write into the data cache tag and data memory. Register rB contains the new data. Register
rA constains the data address. Bit 30 in rA is the new valid bit and bit 31 is the new lock bit.

The instruction only works when the data cache has been disabled by clearing the Data
cache enable bit in the MSR register

Pseudocode

(DCache Tag) ← (rA)
(DCache Data) ← (rB)

Registers Altered

• None

Latency

1 cycle

Note

wic rA,rB

1 0 0 1 0 1 rA rA rB 0 0 0 0 0 0 0 0 0 0 rS

0 6 11 16 31

http://www.xilinx.com

132 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 5: MicroBlaze Instruction Set Architecture
R

wic Write to Instruction Cache

Description

Write into the instruction cache tag and data memory. Register rB contains the new
instruction data. Register rA constains the instruction address. Bit 30 in rA is the new valid
bit and bit 31 is the new lock bit.

The instruction only works when the instruction cache has been disabled by clearing the
Instruction cache enable bit in the MSR register

Pseudocode

(ICache Tag) ← (rA)
(ICache Data) ← (rB)

Registers Altered

• None

Latency

1 cycle

Note

wic rA,rB

1 0 0 1 0 1 rA rA rB 0 0 0 0 0 0 0 0 0 0 rS

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 133
EDK (v3.2) April 1, 2003 1-800-255-7778

Instructions
R

xor Logical Exclusive OR

Description

The contents of register rA are XORed with the contents of register rB; the result is placed
into register rD.

Pseudocode

(rD) ← (rA) ⊕ (rB)

Registers Altered

• rD

Latency

1 cycle

xor rD, rA, rB

1 0 0 0 1 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

134 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 EDK (v3.2) April 1, 2003

Chapter 5: MicroBlaze Instruction Set Architecture
R

xori Logical Exclusive OR with Immediate

Description

The IMM field is extended to 32 bits by concatenating 16 0-bits on the left. The contents of
register rA are XORed with the extended IMM field; the result is placed into register rD.

Pseudocode

(rD) ← (rA) ⊕ sext(IMM)

Registers Altered

• rD

Latency

1 cycle

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

xori rA, rD, IMM

1 0 1 0 1 0 rD rA IMM

0 6 11 16 31

http://www.xilinx.com

	MicroBlaze Processor Reference Guide
	Table of Contents
	About This Guide
	Manual Contents
	Additional Resources
	Conventions
	Typographical
	Online Document

	MicroBlaze Architecture
	Summary
	Overview
	Features

	Instructions
	Registers
	General Purpose Registers
	Special Purpose Registers
	Program Counter (PC)
	Machine Status Register (MSR)

	Pipeline
	Pipeline Architecture
	Branches
	Delay Slots

	Load/Store Architecture
	Interrupts, Exceptions and Breaks
	Interrupts
	Equivalent Pseudocode

	Exceptions
	Equivalent Pseudocode

	Breaks
	Software Breaks
	Hardware Breaks

	Instruction Cache
	Overview
	Cache Organization
	Cache Operation
	Software
	MSR Bit
	WIC Instruction
	HW Debug Logic
	Lock Bit

	LMB Memory

	Data Cache
	Overview
	Cache Organization
	Cache Operation
	Software
	MSR Bit
	WDC Instruction
	HW Debug Logic
	Lock Bit

	LMB Memory

	Fast Simplex Link Interface
	FSL Read Instructions
	Blocking Data Get Instruction
	Non-blocking Data Get Instruction
	Blocking Control Get Instruction
	Non-blocking Control Get Instruction

	FSL Write Instructions
	Blocking Data Put Instruction
	Non-blocking Data Put Instruction
	Blocking Control Put Instruction
	Non-blocking Data Put Instruction

	Debug Interface
	Debugging Features

	MicroBlaze Bus Interfaces
	Summary
	Overview
	Features

	Bus Configurations
	Typical Peripheral Placement
	Configuration 1
	Purpose
	Typical Applications
	Characteristics
	Configuration 2
	Purpose
	Typical Applications
	Characteristics
	Configuration 3
	Purpose
	Typical Applications
	Characteristics
	Configuration 4
	Purpose
	Typical Applications
	Characteristics
	Configuration 5
	Purpose
	Typical Applications
	Characteristics
	Configuration 6
	Purpose
	Typical Applications
	Characteristics
	FSL Configuration
	Along with any of the above specified configurations, MicroBlaze can optionally include upto 8 FS...
	Purpose
	Typical Applications
	Characterestics

	Bit and Byte Labeling
	Core I/O
	Bus Organization
	OPB Bus Configuration
	LMB Bus Definition
	Addr[0:31]
	Byte_Enable[0:3]
	Data_Write[0:31]
	AS
	Read_Strobe
	Write_Strobe
	Data_Read[0:31]
	Ready
	Clk

	LMB Bus Operations
	Generic Write Operation
	Generic Read Operation
	Back-to-Back Write Operation (Typical LMB access - 2 clocks per write)
	Single Cycle Back-to-Back Read Operation (Typical I-side access - 1 clock per read)
	Back-to-Back Mixed Read/Write Operation (Typical D-side timing)

	Read and Write Data Steering
	FSL Bus Operation
	Master FSL signals on MicroBlaze
	Slave FSL signals on MicroBlaze
	FSL BUS Timing Requirements

	Debug Interface
	Implementation
	Parameterization

	MicroBlaze Endianness
	Definitions
	Bit Naming Conventions
	Data Types and Endianness
	VHDL Example
	BRAM – LMB Example
	Interface Between BRAM and MicroBlaze
	BRAM Component Declaration (little-endian)
	Swap BRAM Little-endian Data to Big-endian
	BRAM Instantiation

	BRAM – OPB Example
	Interface Between BRAM and MicroBlaze
	BRAM Component Declaration (little-endian)
	BRAM Instantiation

	MicroBlaze Application Binary Interface
	Scope
	Data Types
	Register Usage Conventions
	Stack Convention
	Calling Convention

	Memory Model
	Small data area
	Data area
	Common un-initialized area
	Literals or constants

	Interrupt and Exception Handling

	MicroBlaze Instruction Set Architecture
	Summary
	Notation
	Formats
	Type A
	Type B

	Instructions
	add
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	addi
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	and
	Description
	Pseudocode
	Registers Altered
	Latency

	andi
	Description
	Pseudocode
	Registers Altered
	Latency
	1 cycle
	Note

	andn
	Description
	Pseudocode
	Registers Altered
	Latency

	andni
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	beq
	Description
	Pseudocode
	Registers Altered
	Latency

	beqi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bge
	Description
	Pseudocode
	Registers Altered
	Latency

	bgei
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bgt
	Description
	Pseudocode
	Registers Altered
	Latency

	bgti
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	ble
	Description
	Pseudocode
	Registers Altered
	Latency

	blei
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	blt
	Description
	Pseudocode
	Registers Altered
	Latency

	blti
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bne
	Description
	Pseudocode
	Registers Altered
	Latency

	bnei
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	br
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bri
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	brk
	Description
	Pseudocode
	Registers Altered
	Latency

	brki
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bs
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bsi
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	cmp
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	get
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	idiv
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	.imm
	Description
	Latency
	Note

	lbu
	Description
	Pseudocode
	Registers Altered
	Latency

	lbui
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	lhu
	Description
	Pseudocode
	Registers Altered
	Latency

	lhui
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	lw
	Description
	Pseudocode
	Registers Altered
	Latency

	lwi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	mfs
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	mts
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	mul
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	muli
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	or
	Description
	Pseudocode
	Registers Altered
	Latency

	ori
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	put
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	rsub
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	rsubi
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	rtbd
	Description
	Pseudocode
	Registers Altered
	Latency

	rtid
	Description
	Pseudocode
	Registers Altered
	Latency

	rtsd
	Description
	Pseudocode
	Registers Altered
	Latency

	sb
	Description
	Pseudocode
	Registers Altered
	Latency

	sbi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	sext16
	Description
	Pseudocode
	Registers Altered
	Latency

	sext8
	Description
	Pseudocode
	Registers Altered
	Latency

	sh
	Description
	Pseudocode
	Registers Altered
	Latency

	shi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	sra
	Description
	Pseudocode
	Registers Altered
	Latency

	src
	Description
	Pseudocode
	Registers Altered
	Latency

	srl
	Description
	Pseudocode
	Registers Altered
	Latency

	sw
	Description
	Pseudocode
	Registers Altered
	Latency

	swi
	Description
	Pseudocode
	Register Altered
	Latency
	Note

	wdc
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	wic
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	xor
	Description
	Pseudocode
	Registers Altered
	Latency

	xori
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

